Types and Sources
Environmental Problems
Removal of Free Oil
Emulsion Breaking
Sampling and Analysis

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit

Animal / Vegetable

Sources

Meat Packing
Food Processing
Restaurants

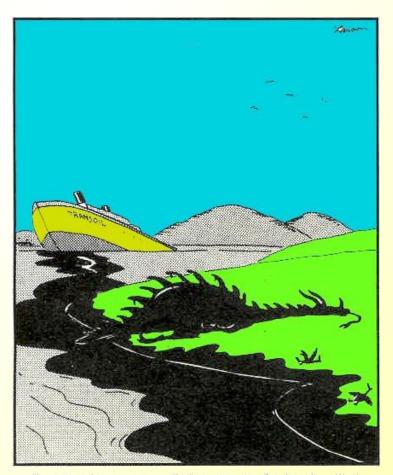
Biodegradable
Usually Free Floating

Petrochemical Sources

Cutting / Grinding Parts Degreasing Automotive

Toxic

Often Emulsified



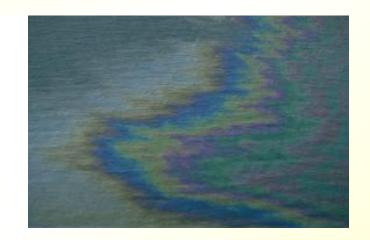
Typical Ranges of Oil and Grease in Wastewater

Wastewater	Range, mg/L
Sewage	10 - 100
Food Processing	100 - 1,000
Textile	10 - 500
Refining	100 - 1,000
Primary Metals	
Rinse Waters	10 - 1,000
Concentrates	10,000 - 50,000
Metals Fabrication	10,000 - 100,000
Metal Cleaning	
Rinse Waters	10 - 1,000
Concentrates	100 - 5,000
Commercial Laundries	100 - 2,000

So What's The Problem With Oil and Grease??

Environmental ProblemsCollection System Probs
WWTP Problems

A tragedy occurs off the coast of a land called Honah-Lee.


Environmental Problems

Toxicity
Suffocation

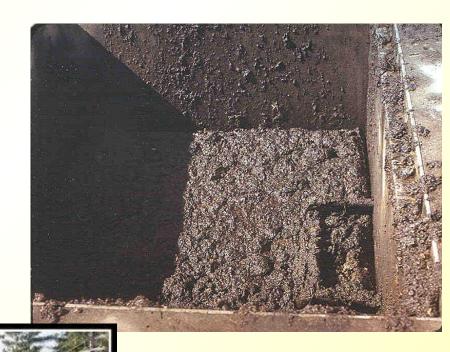
Environmental Problems

Toxicity

Suffocation

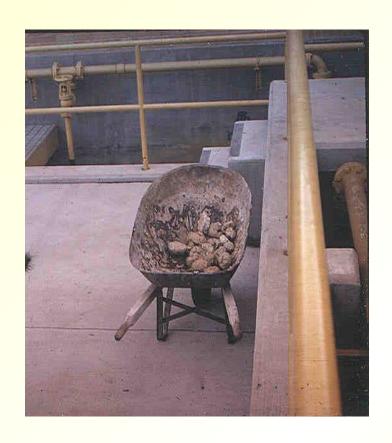
Prevents O₂ Transfer into the Water

Aesthetics



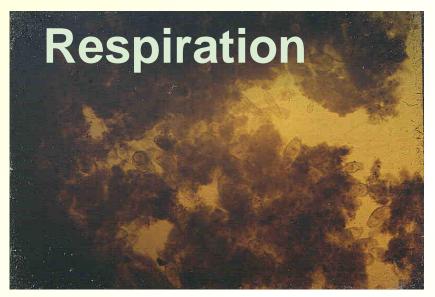
Collection System

Collection System



Estimated – 40 to 50 %

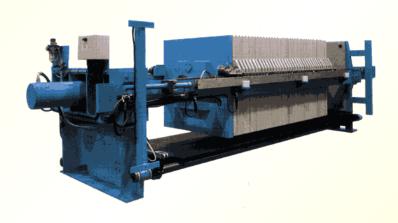
WWTP Problems - Maintenance



WWTP Problems – Treatment Efficiency

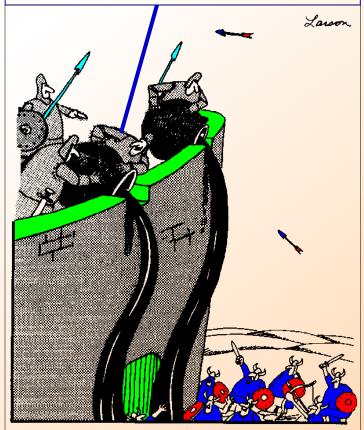
<u>WWTP Problems – Treatment Efficiency</u>

Settleability



Foaming

WWTP Problems – Solids Handling



NEED TO CONTROL

"You know, I have a confession to make, Bernie. Win or lose, I love this job."

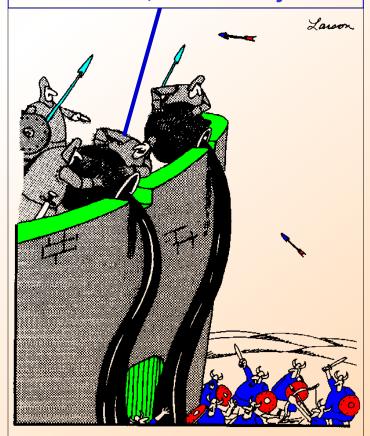


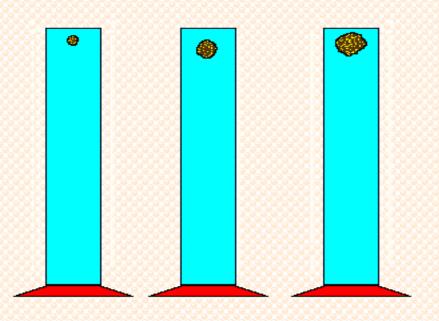
NEED TO CONTROL

At the Source

SEWER USE ORDINANCE

A Means to Regulate Discharges of Pollutants which could Harm the Collection System and Treatment Processes.


Help to Control


Hydraulic Loading
Organic Loading
Hazardous Materials

Corrosive
Nuisance
Toxic
Safety

NEED TO
REMOVE
What Can't
Be Controlled at Source

"You know, I have a confession to make, Bernie. Win or lose, I love this job."

Factors Affecting Separation of Free Oil From Water

Stoke's Law

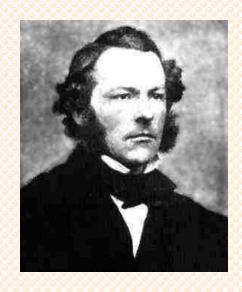
$$VR = \frac{2(p - p_o)g}{9n} (d/2)^2$$

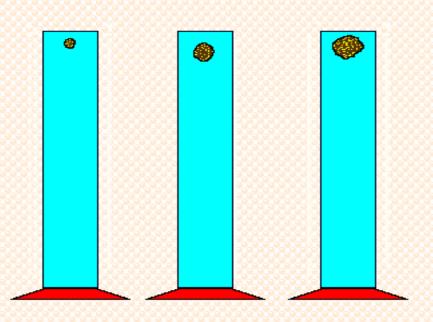
VR

Rise Velocity

 $(p - p_o)$

Density difference between


oil droplet and water


viscosity of water and oil

gravitational acceleration constant

diameter of the oil droplet

n g

Factors Affecting Separation of Free Oil From Water

Stoke's Law

$$\frac{2(p - p_0)g}{9n}(d/2)^2$$

VR

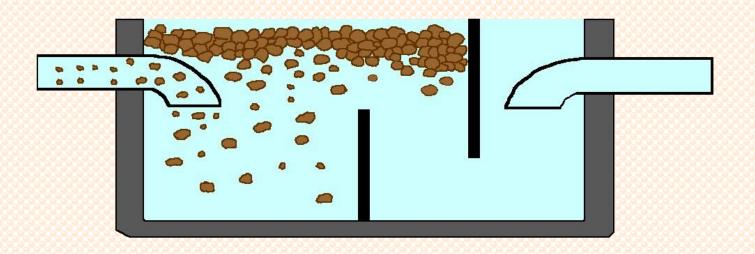
Rise Velocity

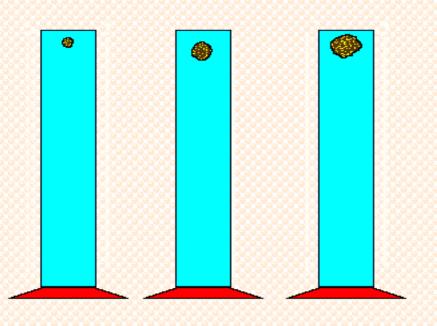
 $(p - p_o)$

Density difference between oil droplet and water viscosity of water and oil

n g

gravitational acceleration constant


d


diameter of the oil droplet

Density (Specific Gravity)

Viscosity

Droplet Size

Factors Affecting Separation of Free Oil From Water

Stoke's Law

$$VR = \frac{2(p - p_o)g}{9n} (d/2)^2$$

VR

 $(p - p_o)$

Rise Velocity

Density difference between oil droplet and water

n g viscosity of water and oil gravitational acceleration constant diameter of the oil droplet

Specific Gravity = the number of times heavier or lighter the solution is than water

Specific Gravity of a Solution = Weight of the Solution Weight of Water

1 gallon of water weighs 8.34 lbs Specific Gravity of water = 1.000

Sp. Gr. of Oils < 1

Hydrometer

#6 Fuel Oil SG = 0.95 #2 Fuel Oil SG = 0.85 Water SG = 1.00

VR Rise Velocity Related To

(p - p_o) Density <u>difference</u>

between oil droplet and water

#6 Fuel Oil SG = 0.95 #2 Fuel Oil SG = 0.85

Water SG = 1.00

#6 Fuel Oil

1.00

<u>- .95</u>

0.05

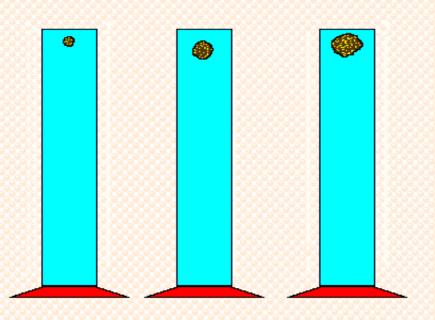
#2 Fuel Oil

1.00

- .85

0.15

Which Will Rise Faster?


How Much Faster?

Factors Affecting Separation of Free Oil From Water

Water SG = 1.00

#6 Fuel Oil #2 Fuel Oil 1.00 0.15 -.95 0.05 0.15 0.05 0.15

#2 Fuel Oil Will Rise 3 Times Faster in Water Than #6 Fuel Oil

Factors Affecting Separation of Free Oil From Water

Stoke's Law

$$VR = \frac{2(p - p_o)g}{9n} (d/2)^2$$

VR (p - p_o) **Rise Velocity**

Density difference between

oil droplet and water

viscosity of water and oil

gravitational acceleration constant diameter of the oil droplet

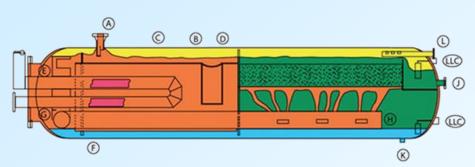
n

g

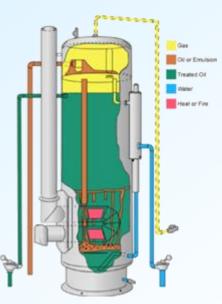
Effect of Temperature on Separation of Oil From Water

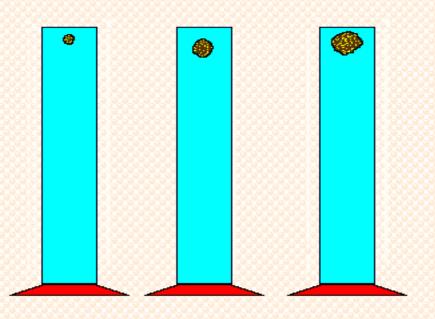
Viscosity is Related to Friction - High Viscosity Opposes Flow

The Lower the Viscosity of the Oil, the Faster it will Rise in Water


An Increase in Temperature Will Cause the Viscosity to Decrease

Oil Droplets in Water at 40 Degrees F will Rise at Half the Rate of Oil Droplets in Water at 90 Degrees F.


Effect of Temperature on Separation of Oil From Water



An Increase in Temperature Will

Cause the Vi

Factors Affecting Separation of Free Oil From Water

Stoke's Law

$$VR = \frac{2(p - p_o)g}{9n} (d/2)^2$$

VR (p - p_o)

n

Rise Velocity

Density differ

Density difference between

oil droplet and water

viscosity of water and oil

gravitational acceleration constant

diameter of the oil droplet

Time Required for an Oil Droplet to Rise Three Feet @ 68 Degrees F

SG = 0.85

Droplet Size		Rise Time	
μ m	mm	(Hr:Min:Sec)	
300	0.300	0:00:12	
150	0.150	0:00:42	
125	0.125	0:01:00	
90	0.090	0:01:54	
50	0.050	0:06:18	
30	0.030	0:17:24	
10	0.010	2:35:02	
1	0.001	258:23:53	

Types of Oil / Water Separators

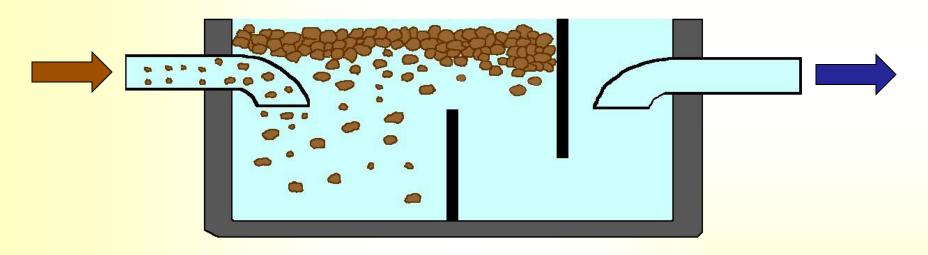
Grease Trap

Skimmer

API (American Petroleum Institute)

CPI (Corrugated Plate Interceptor)

Hydro Cyclone

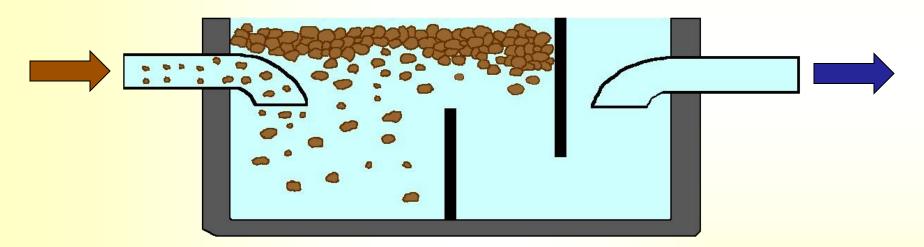

Centrifuge

Dissolved Air Floatation

Filtration

Removal of Free Floating Oil

API Separator (Interceptor)

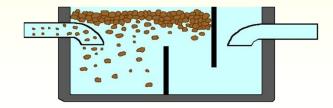


Gravity

>150 micron

Removal of Free Floating Oil

API Separator

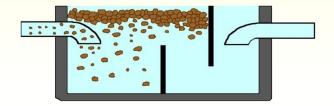


Operate in Design Loading Limits

Minimize Turbulence – Especially at Influent

Removal of Free Floating Oil

API Separator



Maintenance Practices

The ability of oil water separators to function properly depends upon the timely performance of required service and maintenance. Oil/water separators must be monitored and maintained by competent personnel who understand how the systems operate. Oil/water separators should be given the same close attention given to any other important piece of equipment. The operators, users, and maintainers of the oil/water separator must clarify who will be responsible for monitoring, inspecting, maintaining, and servicing the system. Frequent inspections should be made of the system and all associated piping, valves, etc. to prevent operational and mechanical failures or inefficiencies. Sludge and oil need to be periodically removed from the oil/water separator to keep it operating properly

Removal of Free Floating Oil

API Separator

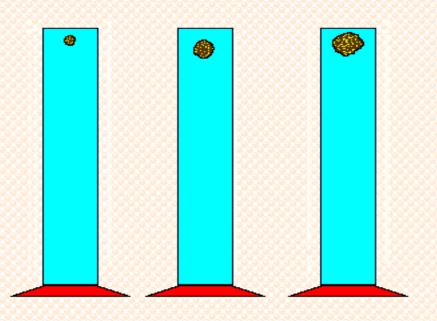
Oil/water separators must be monitored and maintained.

Frequent inspections should be made of the system and all associated piping, valves, etc.

Sludge and oil need to be periodically removed.

Removal of Free Floating Oil

Polypropylene is Oleophillic


Oil and Grease

Removal of Free Floating Oil

Centrifuge

Factors Affecting Separation of Free Oil From Water

Stoke's Law

$$VR = \frac{2(p - p_o)g}{9n} (d/2)^2$$

VR (p - p_o)

n

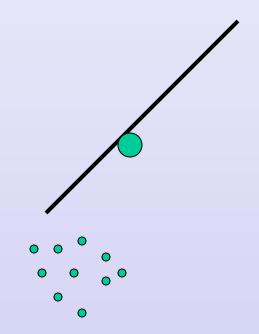
Rise Velocity

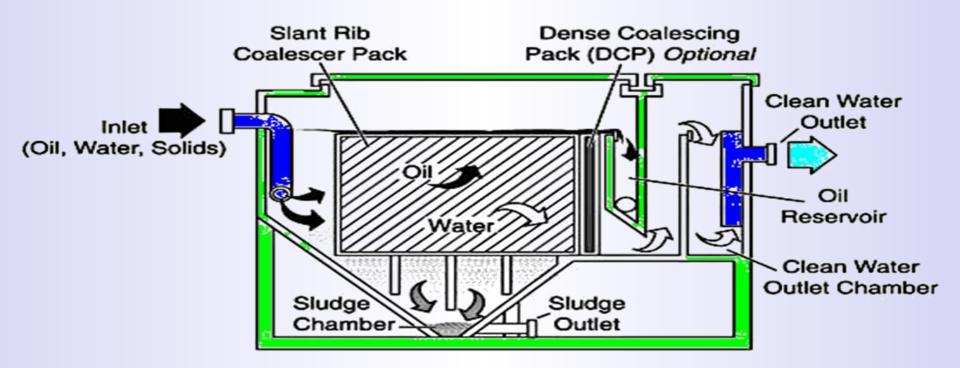
Density difference between

oil droplet and water

viscosity of water and oil

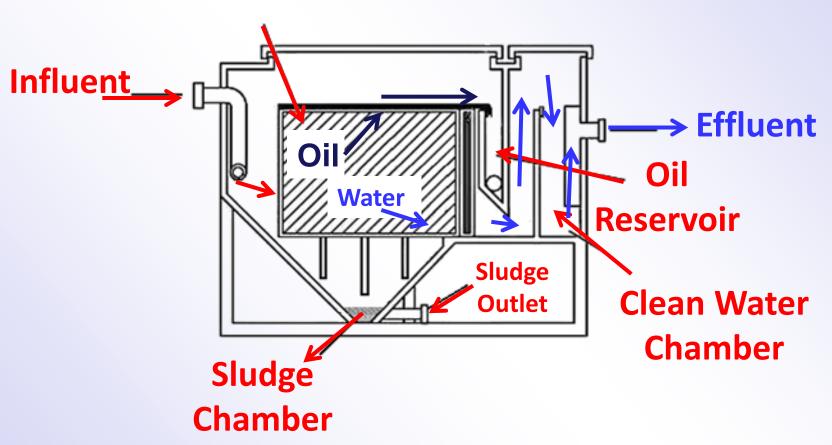
gravitational acceleration constant

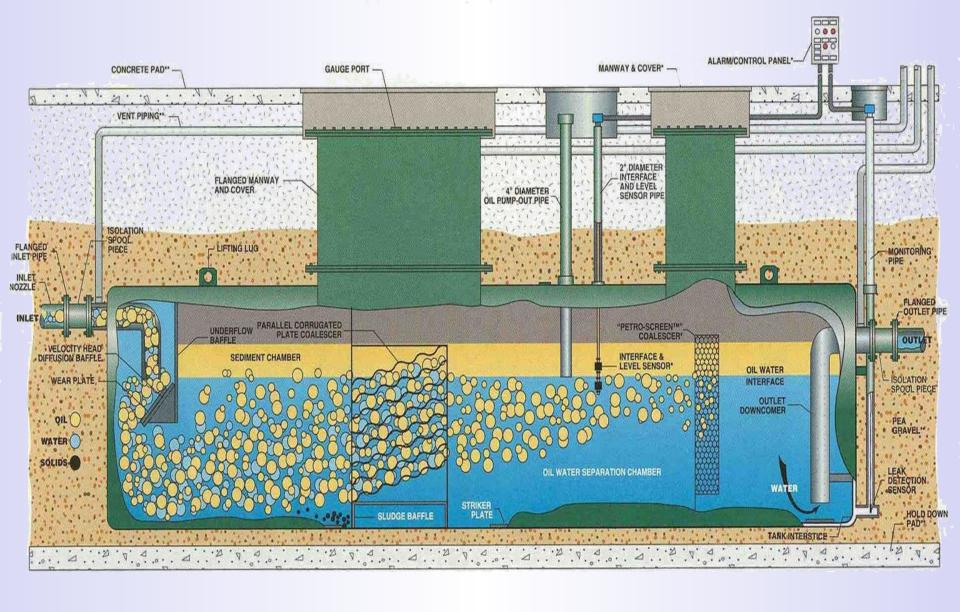

diameter of the oil droplet


Oil and Grease

Coalescence

Uniting, or Growing Together Increase Oil Droplet Size by Agglomeration


Coalescing Plate Interceptor (CPI)



> 60 micron

Coalescing Plate Interceptor (CPI)

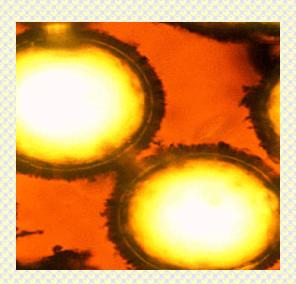
Coalescer Pack

In-Ground Oil Water Separator

Oil Water Separators

Pretreatment Considerations

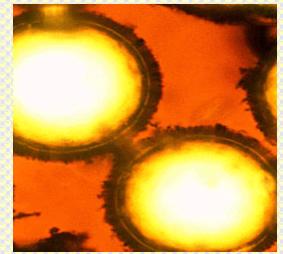
Isolate From Other WW Flows
Improves Treatability
Increases Chance for Recycle


Eliminate

Rags, Grit, Solids Solvents Emulsifiers

Maintenance Considerations
Cleaning
Sludge & Solids Removal

Emulsion


A disperse system in which both phases are liquids, one of which is generally water, and the other an oil or other water immiscible liquid.

Emulsion

A disperse system in which both phases are liquids, one of which is generally water,

and the other an oil or other water immiscible liquid.

Oil-In-Water Emulsions
Oil is Inner Phase, Water is External Phase
Milk, Egg Yolk

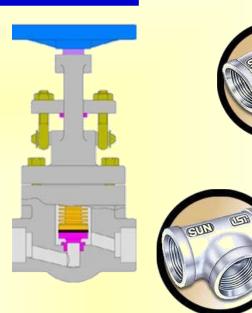
Water-In-Oil Emulsions

Water is Inner Phase, Oil is External Phase Butter

Mechanical Emulsions (Dispersions)

Oil Droplets Broken Into Smaller Droplets
Through Shear Forces:

Violent Mixing
High Shear
Pumps

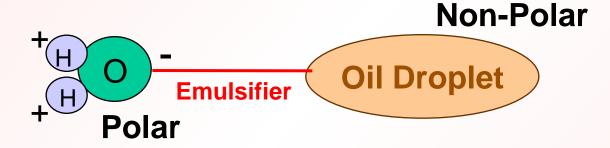


May or May Not Eventually Separate Depending on Electrostatic Charges

Mechanical Emulsions

Avoid:

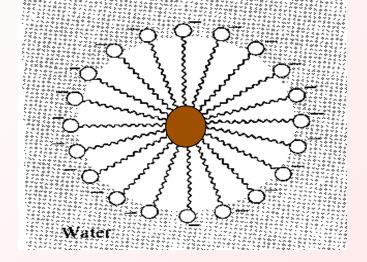
Centrifugal Pumps
Globe Valves
Small Piping
Elbows and Tees in Piping


Use:

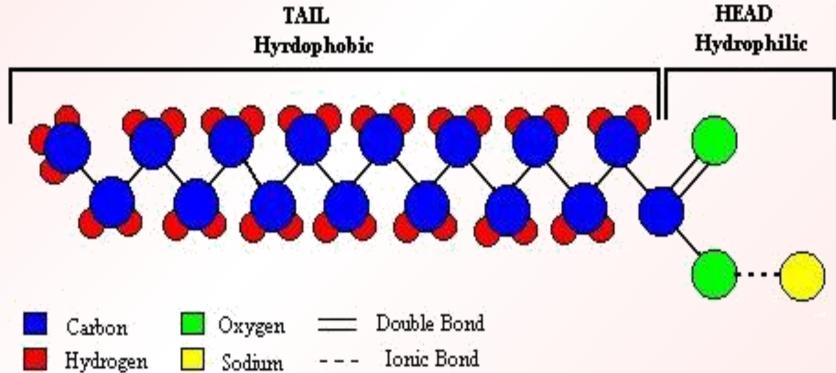
Gravity Flow, Peristaltic, or Progressive
Cavity Pumps
Smooth Piping (PVC)
Large Piping, Minimum Pressure Loss
Few Piping Bends and Fittings

Chemical Emulsions

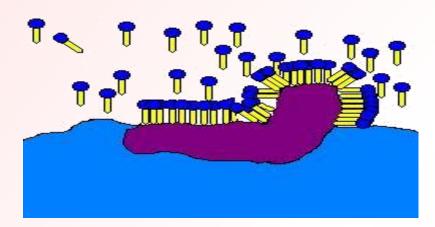
Emulsifying Agent

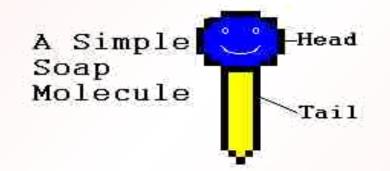

Causes Emulsion Stability

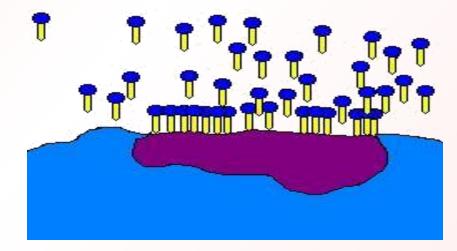
Forms a connection between the non-polar oil droplets

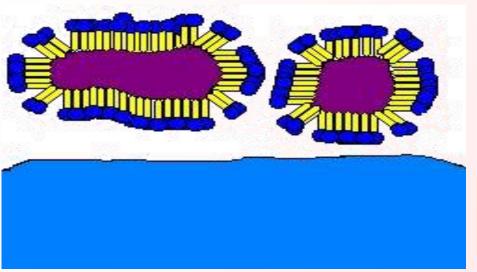

and the water which is polar.

Disperses the oil droplets due to repulsion of like electrical charge.

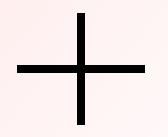



Emulsifiers





An Emulsion is Formed



Oil

Emulsifier

Wastewater Treatment Problem

Emulsion

Stability of Emulsion Depends On:

Surface Charge

pH

Viscosity


Agitation

Temperature

Emulsifying Agent

Emulsion Breaking

Physical

Either:

- Destabilize Oil Droplets or
- Chemically Bind or Destroy Any Emulsifying Agent Present

Acidification
Coagulation
Salting Out
Organic Polymers

Acidification

Acid Cracking

High pH (basic) Solutions Increase the Attraction Between Oil and Water

Addition of Acid to Oil-in Water Emulsion Neutralizes Base Chemicals and Releases the Oil (pH 2 - 4)

Destabilizes by pH Change, Increases Polarity of Water

Acid Cracking

Addition of Acid to Oil-in Water Emulsion Neutralizes Base Chemicals and Releases the Oil (pH 2, 4) Effluent Water Must be Neutralized

Effective but Expensive

Coagulation

Addition of Aluminum or Iron Salts
Oil Droplets Attach to Floc That Forms
From the Treatment Chemicals

Floc Settles to Bottom of Separator, or Rises to Top of DAF Unit Taking the Oil With It

Coagulation

Addition of Aluminum or Iron Salts

Floc Settles to Bottom of Separator, or Sludge Reserate Top Difficulture Dewater

Taking the Oil With It Reuse of the Oil is Limited

Salting Out

Addition of large quantities of an inorganic salt

Increases Dissolved Solids Content and Ionic Character of the Water

Drives Non-Polar Oil Into the Oil Layer, Away From the Water Layer

High TDS in Effluent

Polymer (Demulsifier) Addition

Destabilizes Charge Reduces Viscosity

(Surfactant Added)

Specialized
Extremely Effective
Expensive

Acidification
Coagulation
Salting Out
Organic Polymers

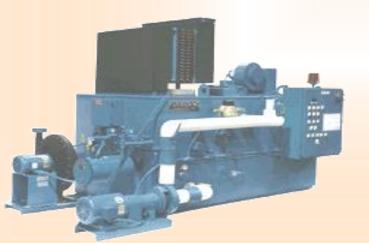
Emulsion Breaking

Physical

Heat

Centrifuge

Membrane Filtration



Physical Emulsion Breaking Heating

Water-in-Oil emulsions can be broken by Decreasing Viscosity of Water and Oil

May Require Up to 200 Degrees F

Don't Use Heat Unless Flash Point of Oil is High Enough

Don't Use Heat if Light Fuels or Other Solvents Will Present a Fire Hazard

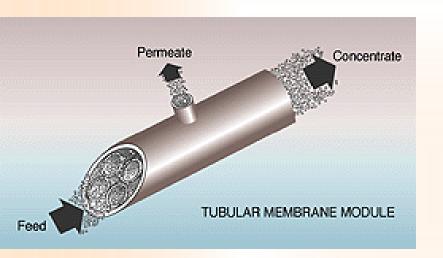
Physical Emulsion Breaking

Centrifuge

Takes advantage of the difference in specific gravity between oil and water

Lighter Oil material collects near the vortex

Centrifuge must be designed to remove a column of oil at the centerline

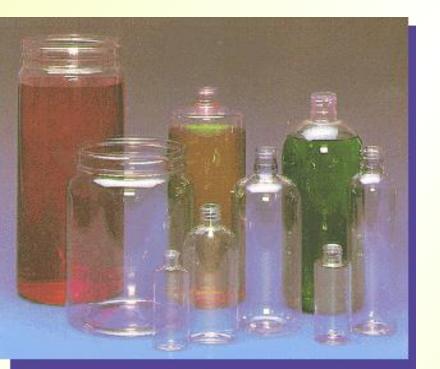

Limited use for Oil-in-Water emulsions

Widespread use for Water-in-Oil emulsions

Physical Emulsion Breaking

Membrane / Ultra Filtration

- High Quality Effluent
- Small Space Required
- Removes Oil and
 Particulates Down to
 0.01 micron


Concerns Chemical Resistance Fouling / Plugging Cost

Analysis for Oil and Grease

Sampling
Grab Sample
Wide Mouth Glass Bottle
Technique is Critical

Preservation:

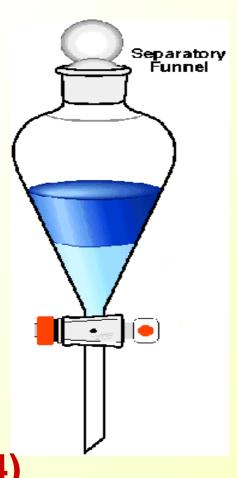
Cool to 4 Degrees C HCl or H₂SO₄ to pH <2 Max 28 Days Holding

Analysis for Oil and Grease

Extraction of Oil from Sample

Evaporation of extracting solvent

Determination of Oil and Grease by Weighing



(EPA Method 1664)

(St. Methods 5310)

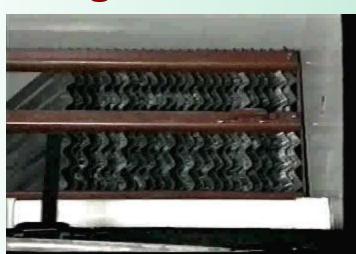
Freon (EPA Method 413.1)

Oil / Water Separation Points to Ponder

Pollution Prevention – Minimize the amount of oily wastewater that must be treated

- Segregate wastes
- Plug floor drains
- Dry cleanup for spills
- Education

Oil / Water Separation Points to Ponder


Avoid Emulsions

- Be careful what you buy
- Don't allow emulsifiers in waste stream
 Soaps and detergents
 Solvents

Oil / Water Separation Points to Ponder

- Proper Operation and Maintenance
- Pretreatment
- Cleaning
- Refill with water when putting back

into service

Oil and Grease

Types and Sources
Environmental Problems
Removal of Free Oil
Emulsion Breaking
Sampling and Analysis

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit