NEUTRALIZATION

Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit

NEUTRALIZATION

Addition of an acid or alkali (base) to a liquid to cause the pH of the liquid to move towards a neutral pH of 7.0.

<u>ACID</u>

Adds Hydrogen Ions

H۰

Hydrochloric Acid

HCI - H+ CI-

BASE

Adds Hydroxyl Ions
OH-

Sodium Hydroxide

NaOH - Na+ + OH-

$$H^+ + OH^- \longrightarrow H_2O$$

HCI + NaOH
$$\longrightarrow$$
 H₂O + NaCl + energy

How to Measure Strength of Acid

Concentration of H⁺

mg / L or moles / L

Typical Value

0.000001 moles/L

1 X 10⁻⁶ moles/L

pH

pH = -log [H+]

pH = -log (1 X
$$10^{-6}$$
)

pH = -(log 1 + log 10^{-6})

pH = -(0 + (-6))

pH = -(-6)

pH = 6

Concentration of H+ moles / L

Typical Value

0.000001 moles/L

1 X 10⁻⁶ moles/L

pH = 6.0

Liquid Water Separates Slightly into Ions

$$H_2O \longrightarrow H^+ + OH^-$$

 H^+ conc. = 0.0000001008 grams/Liter

0.000001008 grams/Liter X 1 mole/1.008 gram =

0.000001 mole/Liter

$$pH = - log [H^+]$$

$$= - \log [1 \times 10^{-7}]$$

$$pH = 7$$

pH Scale

Increasing Acidity

NEUTRAL

Increasing Basicity

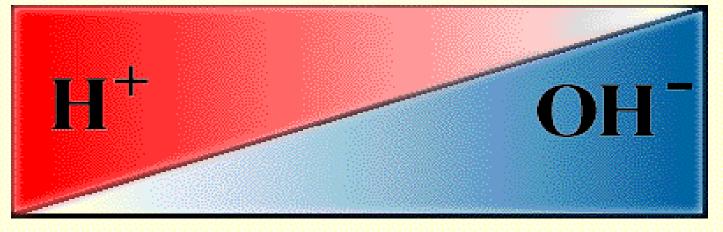
$$pH = 0$$

4

7

10

14

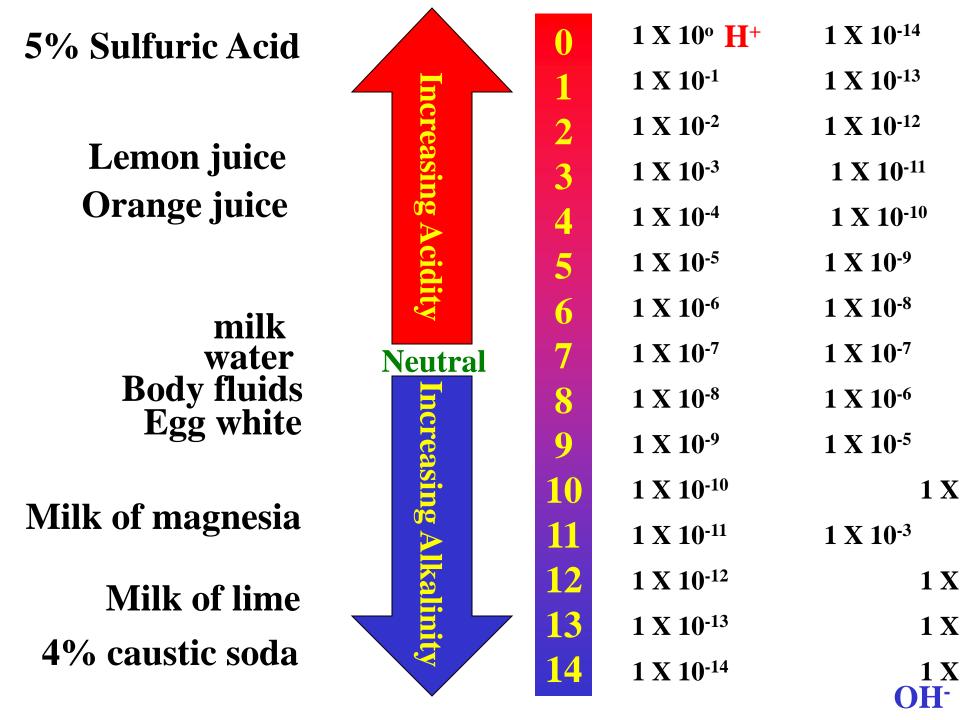

$$[H^+] = 10^{0}$$

10 -4

10 -7

10 -10

10 -14


$$[OH^{-}]=10^{-14}$$

10 -10

10 -7

10 -4

10⁰

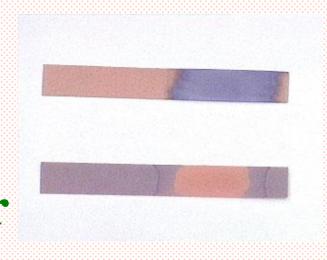
pH Scale

Logarithmic Scale

Each unit Change is a 10 Times Change in Concentration

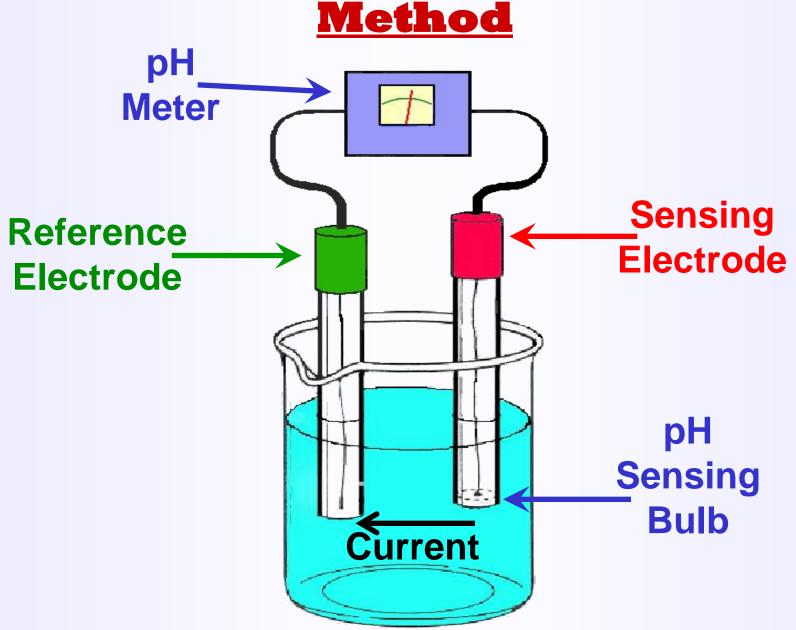
Two Unit Change is a <u>10 X10</u> Change or <u>100</u> Times Change

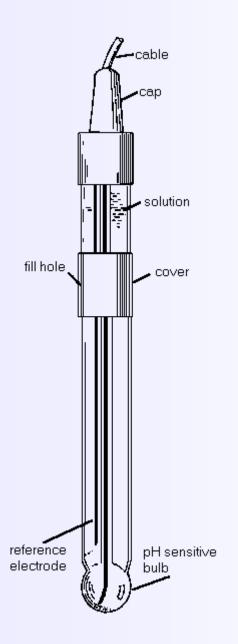
Three Unit Change is a <u>10 X 10 X10</u> Change or <u>1000</u> Times Change


Importance Of pH

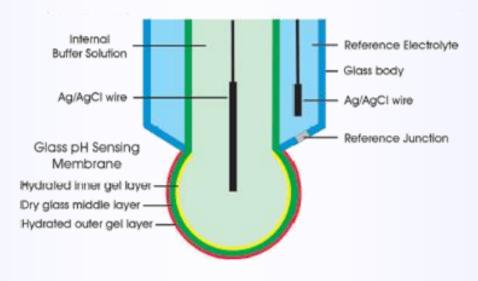
- 1. Lab Analyses
- 2. Corrosion Control
- 3. Cyanide Treatment
- 4. Precipitation Processes
 - 5. Biological Systems
 - a. WWTP's
 - b. Streams

MEASUREMENT OF pH


Rough Checks



Electrometric or Potentiometric



Electrometric or Potentiometric

Method

Combination Electrode

Electrometric or Potentiometric Method

MEASUREMENT OF pH

Procedure

Standard Methods "In each case follow manufacturer's instructions for pH meter and for storage and preparation of electrodes for use."

Meter Calibration

- two pt. Calibration
- order of calibration important for analog meters
- stirring required

Measurement of pH

PROCEDURE

- 1. Adjust or Compensate for Temperature.
- 2. Rinse Electrode(s).
- 3. Calibrate in Buffer at pH 7.0. (gentle mixing for all readings)
- 4. Rinse Electrode(s).
- 5. Immerse Electrode(s) in Second Buffer.
 - A. 3 pH Units Different from First.
 - B. Bracket Expected Sample pH.
- 6. Adjust Meter to Proper Reading using "Slope" Control.
- 7. Rinse Electrode(s) and Read Sample.
- 8. Properly Store Electrode(s).

MEASUREMENT OF pH

Sample Measurement

- use auto temp compensation if available
- bring samples close to room temp.
- stirring required

Electrode Maintenance ---

Probably the largest source of errors in determining pH.

MEASUREMENT OF pH

Some Things to Watch For:

- Physical condition of electrodes
- KCI precipitation in reference elec.
- KCI liquid level too low
- Fill hole of reference electrode should <u>not</u> be covered while making measurement
- Ability to calibrate with 2 standards
- Slope of electrode too low should change 59 mV per pH unit

Need to check slope often to assure proper operation of electrodes.

Checking Slope of pH Electrodes

The Slope of an Electrode is the millivolt Change that is seen for a Ten Times Change in Concentration.

Checking Slope of pH Electrodes

- 1. Set meter to read millivolts (mv).
- 2. Rinse electrode(s) and immerse in fresh pH 7.0 buffer.
- 3. Record my reading.
- 4. Rinse electrode(s) and immerse in either pH 4.0 or pH 10.0 buffer.
- 5. Record new my reading.
- 6. Subtract the lower my reading from the higher my reading.

EXAMPLES:

7. Divide the difference in my readings by the difference in pH readings.

EXAMPLES: pH 10 pH 7
(-) pH 7 (-)pH 4

$$\frac{3}{175/3} = 58.3 = SLOPE$$

8. The theoretical slope is 59.16.
A slope greater than <u>53</u> is acceptable.

(Note: When required to enter the slope in a digital meter, be sure to assign it a negative value).

NEUTRALIZATION

Addition of an acid or alkali (base) to a liquid to cause the pH of the liquid to move towards a neutral pH of 7.0.

Secondary Problems Associated with Neutralization

Does Not Remove Other Contaminants (metals)

May Change Solids Removal Efficiency (precipitate)

Will Increase Dissolved Solids (salts)

May Create a Safety Hazard (cyanide)

Other Wastewater Flows?

Most Economical

May Increase Secondary Problems

May Complicate Further Treatment

Cr Reduction

CN Removal

Oil and Grease

Chelating Compounds

To REDUCE pH: add Acid (H⁺)

- 1. Sulfuric Acid (H₂SO₄)
- 2. Hydrochloric Acid (HCl)
 - 3. Carbon Dioxide (CO₂)
 - 4. Sulfur Dioxide (SO₂)
 - 5. Flue Gases

To INCREASE pH:

add Base (OH^{*})

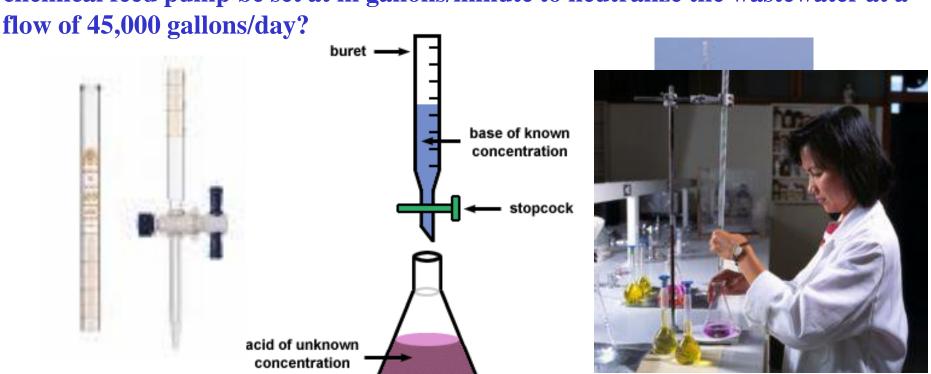
- 1. Potassium Hydroxide (KOH)
- 2. Trisodium Phosphate (Na₃PO₄)
- 3. Sodium Carbonate "soda ash" (Na₂CO₃)
- 4. Calcium Carbonate "limestone" (CaCO₃)
- 5. Calcium Magnesium Carbonate "dolomite" ((Ca-Mg)CO₃)
 - 6. Sodium Hydroxide "caustic soda" (NaOH)
 - 7. Calcium Hydroxide "hydrated lime" (Ca(OH)₂)
 - 8. Ammonium Hydroxide (NH₄OH)
 - 9. Magnesium Hydroxide (Mg(OH)₂)
 - 10. Calcium Oxide "quicklime" (CaO)
 - 11. Magnesium Oxide (MgO)
 - 12. Sodium Sulfide (Na₂S)
 - 13. Potassium Permanganate (KMnO₄)

Commonly Used Bases:

- 1. Calcium Oxide CaO (lime)
- 2. Calcium Hydroxide Ca(OH)₂ (hydrated lime)
- 3. Magnesium Oxide MgO
- 4. Magnesium Hydroxide Mg(OH)₂
- 5. Sodium Hydroxide NaOH (caustic soda)

How Much Chemical To Add?

Calculation


Difficult (logarithms)
Competing Reactions (buffers)

Titration

Cost Comparison Start-up

Example Calculation

A 100 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 3.6 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a

Example Calculation

A 100 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 3.6 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 45,000 gallons/day?

3.6 mL chemical
100 mL wastewater

Conversion Factor mL to Gallons
Same Conversion Factor

Example Calculation

A 100 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 3.6 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 45,000 gallons/day?

$$\frac{3.6 \text{ mL chemical}}{100 \text{ mL wastewater}} = \frac{3.6 \text{ gallons chemical}}{100 \text{ gallons wastewater}} = \frac{0.036 \text{ gal chemical}}{1 \text{ gallon wastewater}}$$

$$\frac{45,000 \text{ gal wastewater}}{\text{day}} \times \frac{0.036 \text{ gal chemical}}{\text{gal wastewater}} = \frac{1620 \text{ gal chemical}}{\text{day}}$$

$$\frac{1620 \text{ gal}}{\text{day}} \times \frac{1 \text{ day}}{1440 \text{ min}} = 1.125 \text{ gal/min}$$

1440 min

1.125 gal/min

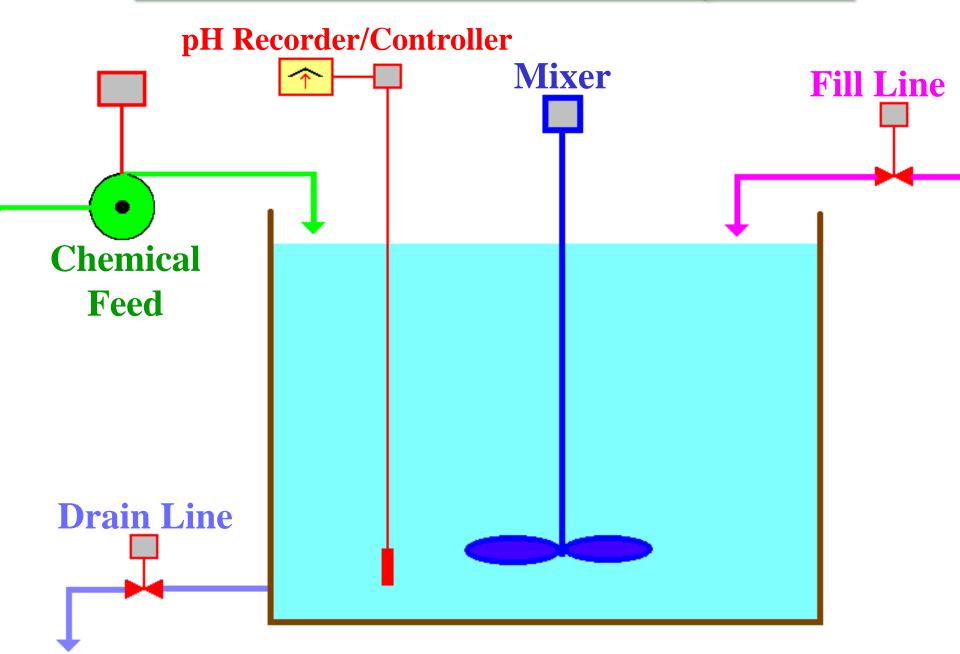
Practice Problem

A 500 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 5.8 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 15,000 gallons/day?

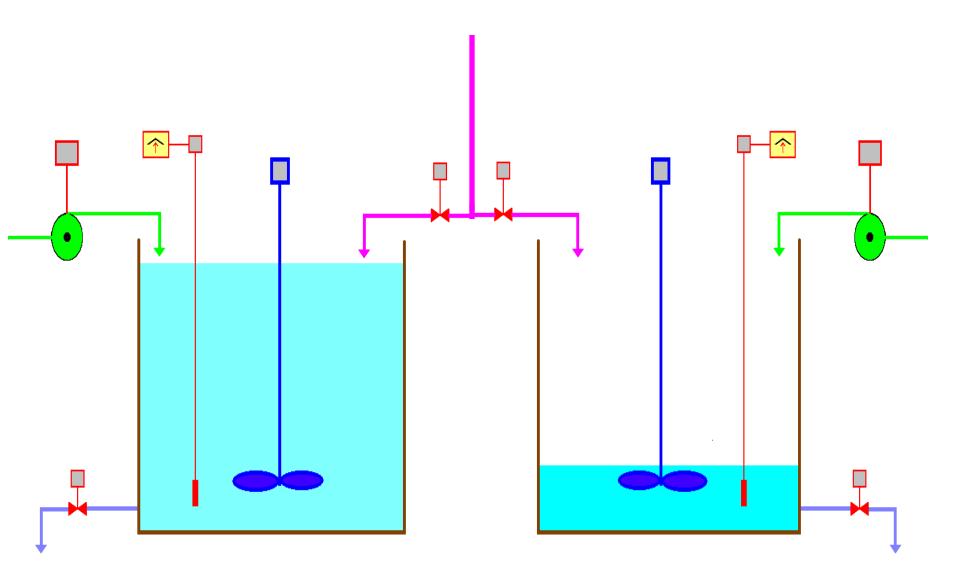
Work Calculation on Separate Paper Answers Given on Next Slide

Practice Problem

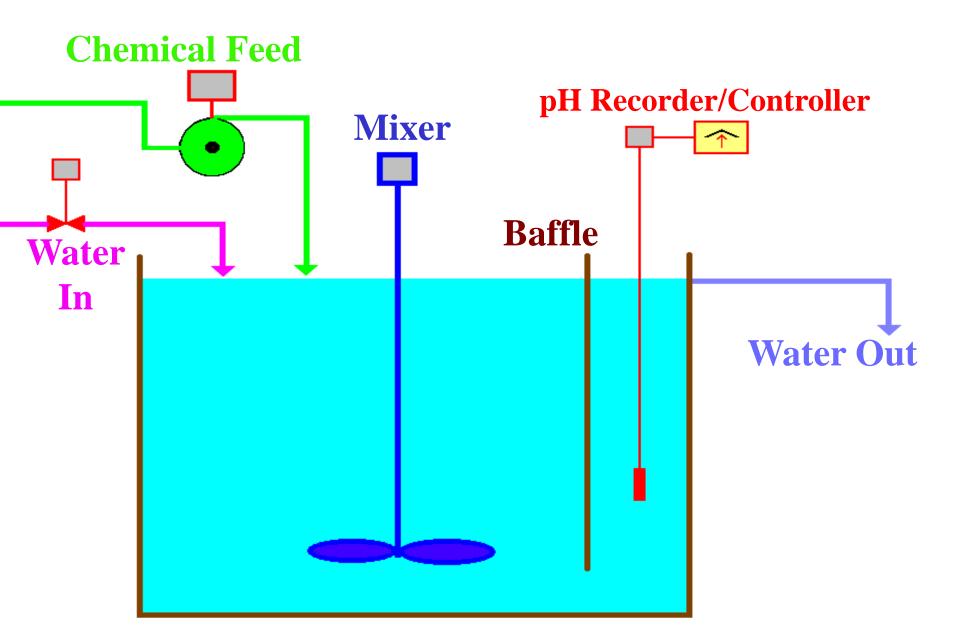
A 500 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 5.8 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 15,000 gallons/day?

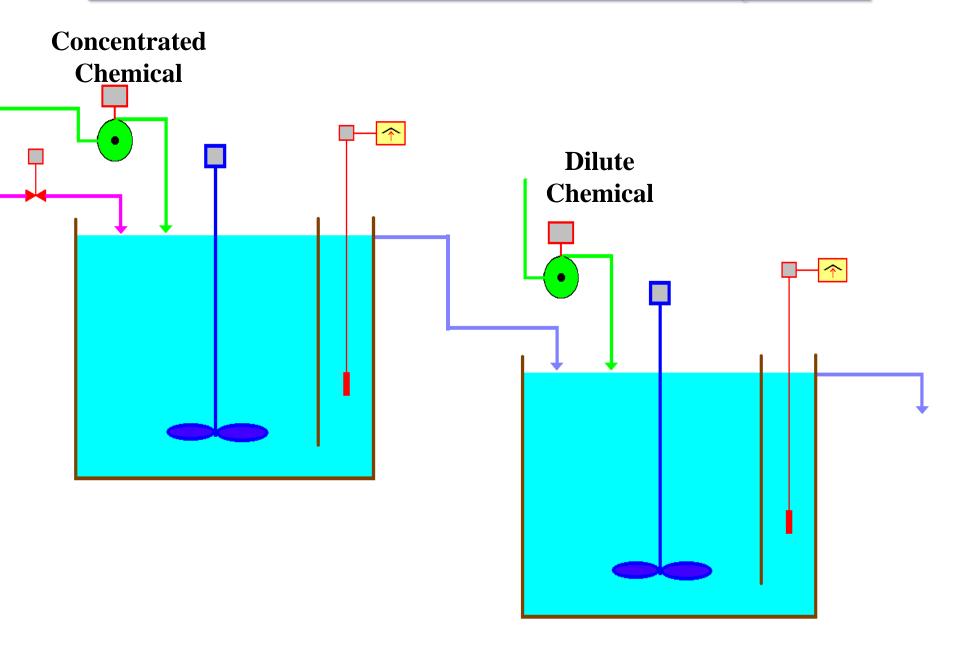

$$\frac{5.8 \text{ mL chemical}}{500 \text{ mL wastewater}} = \frac{5.8 \text{ gallons chemical}}{500 \text{ gallons wastewater}} = \frac{0.0116 \text{ gal chemical}}{1 \text{ gallon wastewater}}$$

$$\frac{15,000 \text{ gal wastewater}}{\text{day}} \times \frac{0.0116 \text{ gal chemical}}{\text{gal wastewater}} = \frac{174 \text{ gal chemical}}{\text{day}}$$


$$\frac{174 \text{ gal}}{\text{day}} \times \frac{1 \text{ day}}{1440 \text{ min}} = 0.12 \text{ gal/min}$$

$$0.12 \text{ gal/min} \times \frac{3785 \text{ mL}}{1 \text{ gal}} = 454 \text{ mL/min}$$


Batch Neutralization System


Two Tank - Batch Treatment System

Continuous Neutralization System

Continuous Neutralization System

Maintenance of Neutralization System

- 1. Primary sensors level probes pH probes
- 2. Chemical feed pumps bearings seals
- 3. Chemical feed controllers
- 4. Automatic valves
- 5. Mixers

Preventive Maintenance Program

Safety Concerns

Dilution

Always add Concentrated acids or bases to water, never the reverse!

```
Chemical Handling storage pumping
```

Hazardous Atmosphere
vapors
reactions

Emergency Procedures
splash
personal protection
spill clean-up

NEUTRALIZATION

Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit