Ammonia TNT830 QA/QC

	Sample	True value	Actual reading	% Recovery for LFB (std)	LFM (Spike) %Recovery <u>+</u> 20%	RPD ≤ 20%	ICV or CCV % Recovery ± 10%
1	Blank (< detection limit)		0.0				
2	ICV - 1.0 mg/L NH ₃ -N	1.0	0.98				0.98 *100 1.0 =98%
3	LFB - 0.5 mg/L NH₃-N	0.5	0.51	<u>0.51</u> *100 0.50 =102%			
4	Influent, Composite – 25 x dilution		0.96 (x 25 = 24.00)				
5	LFM Influent, Composite – 25 x dilution *1.0 mg/L NH ₃ -N		1.95		1.95-0.96 *100 1.0 = 99%	1.98-1.95 *100 (1.98+1.95) 2	
6	LFMD - Influent, Composite – 25 x dilution *1.0 mg/L NH ₃ -N		1.98		= 102%	= 1.5%	
7	Sample, mg/L		0.05				
8	LFM - Sample Spike *1.0 mg/L NH ₃ -N added to Samples		1.13		= 108%		
9	LFMD - Sample Spike Dup * 1.0 mg/L NH ₃ -N added to Samples		1.22		= 117%	= 7.7%	
10	CCV - 1.0 mg/L NH ₃ -N	1.0	0.99				0.99 *100 1.0 =99%

^{*} For spike – Put 1.0 mL of 100 mg/L standard in 100 mL of sample (A or B). Use 100 mL volumetric flask. That will give you 101 mL of sample and spike. Then, take 5 mL of this to run test. This should raise the sample + spike value by 1.0 mg/L (ppm). Spike volume should be <1% of total volume.

(unspiked sample conc. * unspiked sample vol.) + (std conc for spike * vol of spike) = (? sample conc * 100 mL) + (100 mg/L * 1.0 mL) = mg/L (total sample vol. + spike vol) (100 mL + 1.0 mL)

Calculations

- % Recovery for LFB
 - o = <u>LFB Result</u> X 100% Expected Concentration
- RPD relative percent differences for duplicates and LFM/LFMD
 - = <u>Difference between sample and duplicate</u> X 100%

Average of the sample and duplicate

- % Recovery for LFM when using less than or equal to 1% spike volume compared to sample volume
 - = <u>LFM Result Sample Result</u> X 100%
 Actual Concentration of spike

Example Calculations:

Blanks < MDL (example 0.004 mg/L)

LFM/LFMD
$$\pm$$
 10% Recovery

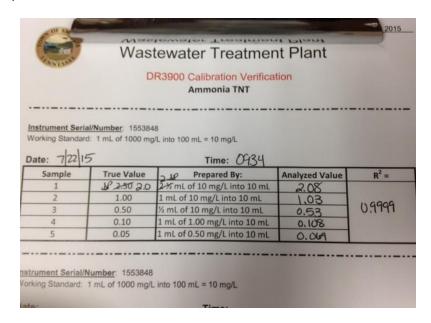
(1.22 - 0.051) mg/L = 1.17 = 1.17 * 100 = 117%

1 mg/L 1

(1.13 - 0.051) mg/L = 1.08 = 1.08 * 100 = 108%

1 mg/L 1

Reporting Limit = MDL


Method Detection Limit

The MDL must be greater than 1/10 the concentration of each spike. Example: if the spike was 0.05, the MDL cannot be lower than 0.005 (0.05 divided by 10)

Date	Analyst	Number	True Value	Value Read	% Recovery (50-150%)	
6/22/2015	SEP	1	0.05	0.066	132.00	
6/22/2015	SEP	2	0.05	0.080	160.00	
6/23/2015	SEP	3	0.05	0.056	112.00	
6/23/2015	SEP	4	0.05	0.055	110.00	
6/23/2015	SEP	5	0.05	0.054	108.00	
6/24/2015	SEP	6	0.05	0.056	112.00	
6/24/2015	SEP	7	0.05	0.056	112.00	
		Sta	ndard Deviation	0.009519404		
			Average	0.06		
Relat	tive Stan	dard Dev	riation (RSD)	15.75315	(Needs to be ≤ 20	0%)
		MDL		0.0298909		
	**This int	formation is	found in 22nd Ed	lition of Standarr	l Methods on nag	e 1-8

Calibration Curve

* The appropriate linear correlation coefficient for standard concentration-to-instrument response should be greater than or equal to 0.995.

		Low Ran	ge Calibration	1					
		S/N	I: 1553848						
Time: 0934									
Date	Subject	true value (x)	value read (y)	(x)(y)	X ²	y ²			
22-Jul-2015	1	2.00	2.080	4.1600	4.0000	4.3264			
22-Jul-2015	2	1.00	1.030	1.0300	1.0000	1.0609			
22-Jul-2015	3	0.50	0.530	0.2650	0.2500	0.2809			
22-Jul-2015	4	0.10	0.108	0.0108	0.0100	0.0117			
22-Jul-2015	5	0.05	0.069	0.0035	0.0025	0.0048			
	Sum (Σ)	3.65	3.817	5.4693	5.2625	5.6846			
22-Jul-2015	$R^2 =$	0.999900144							

1 mg/L is in the middle of the "curve", so it's a good place to spike with. You used 1 mL of 100 mg/L into 100 mL of sample. That should increase your sample value by 1 mg/L.

C1*V1 = C2*V2

(1 mL)(100 mg/L) = (100 mL)(x)

1 mg/L = x the spiked value