Muscat Wastewater Scheme

Haya Water

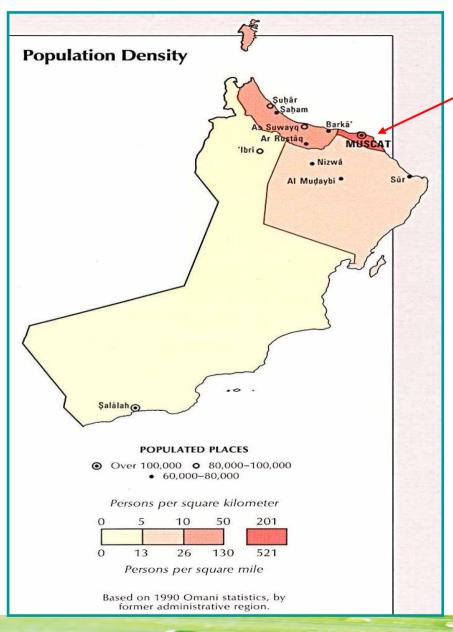
(Oman Wastewater Services Company)

A Presentation By: Abdullah Al Hashimi General Manager Projects

Contents

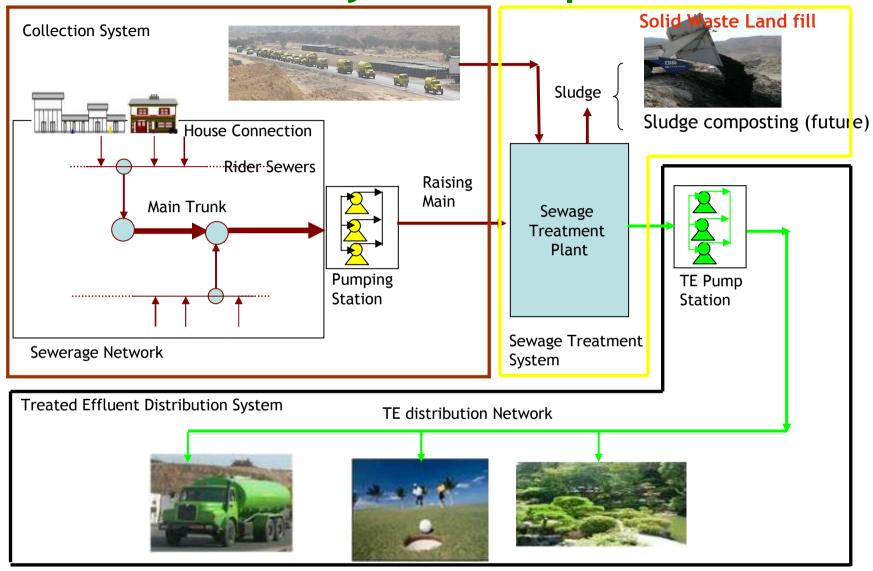
- > Introduction
- > Planned capital expenditure
- Technology Applied
- Reuse Potential

About HAYA Water


- Established in Dec 2002 by the Government of Oman to build and operate the Muscat Wastewater Project.
- The Company signed a concession agreement with the Government for 30 years ends by 2036.
- Its key objective is to connect 80% of Muscat Governorate population by 2014 and 90% by 2017.

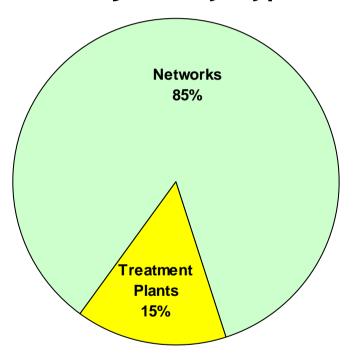
Responsibilities and Concession Areas

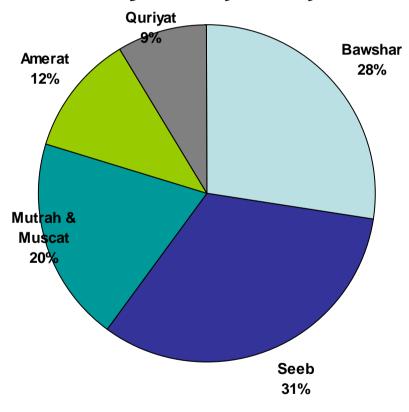
Muscat Governorate


Population in 2003: 632,000 Projected to Reach 1 million by 2035

Project Area 3900km²

Wastewater System Components

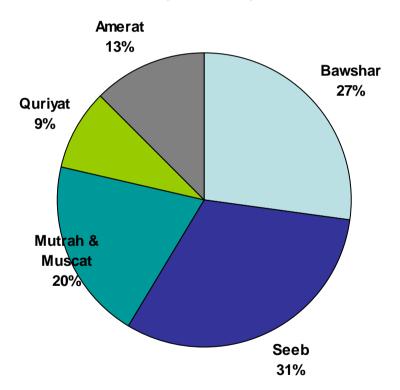


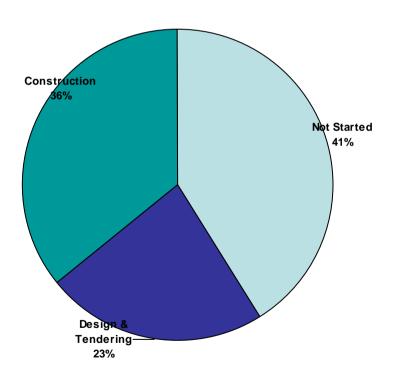


An Omani Rial 1.64 Billion Project (US\$4.26 Billion)

Projects By Type

Projects By Wilayat





Network Projects R.O. 1.4 Billion (US\$3.64 Billion)

By Wilayat

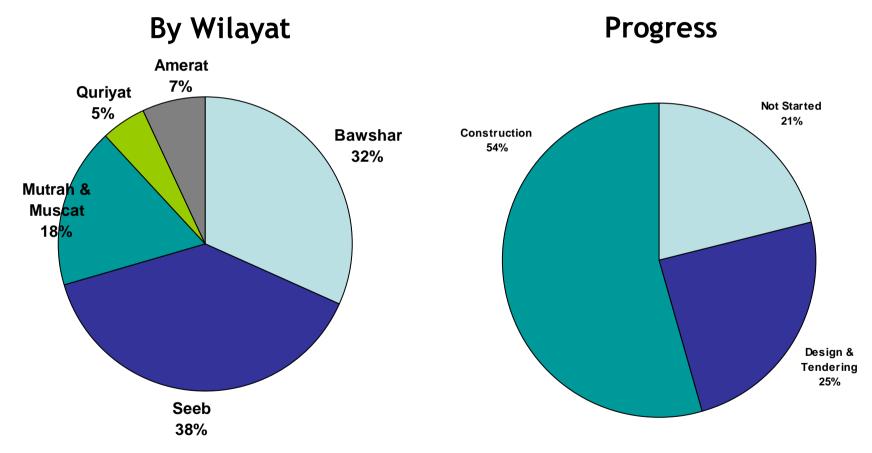
By Progress

Network Projects R.O. 1.4 Billion (US\$3.64 Billion)

PROGRESS BY CATCHMENT

A. Seeb:

- 5 NW construction packages.
- Largest vacuum sewer(11VS, 3000VV).
- Microtunneling 24km long (2000mm)
- B. Bawshar:
 - 3 NW construction packages
- C. Mutrah & Muscat:
 - 1 NW construction package.


FUTURE BY CATCHMENT

- A. Bawshar:
 - 2 NW construction packages.
- B. Mutrah & Muscat:
 - 3 NW construction packages.
- C. Amerat:
 - 3 NW construction packages.
- D. Quriyat:
 - 3 NW construction packages.

Treatment Plant Projects R.O. 244 million (US\$634 million)

Treatment Plant Projects R.O. 244 million (US\$634 million)

PROGRESS BY CATCHMENT

A. Seeb:

- 1 STP construction package.
- SBR Plant with ultra-filtration.
- 60,000m³/day- Phase 1.

B. Bawshar:

- 1 STP construction package (Al Ansab STP).
- MBR Plant.
- 55,000 m³/day- Phase 1.

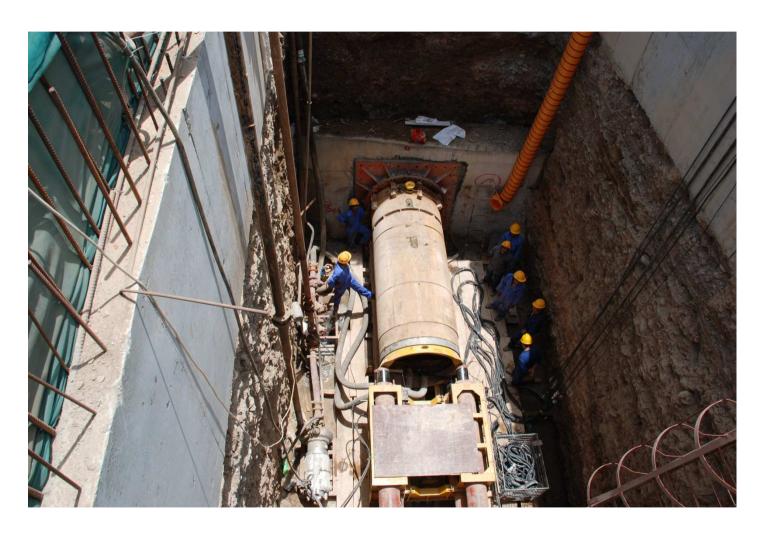
C. Mutrah & Muscat:

- 1 STP construction package (Darsait STP).
- MBR Plant.
- 50,000 m³/day.

FUTURE BY CATCHMENT

A. Seeb:

- 20,000m³/day expansion-Phase 2.
- B. Amerat:
 - 1 STP construction package.
 - MBR Plant.
 - 18,000 m³/day.
- C. Quriyat and Small Villages:
 - 5 STP construction packages.


Challenges of a Brown Field Implementation

- Availability of accurate data covering existing services.
- Multiple NOC bodies.
- Availability of service corridors.
- Public safety and inconvenience.
- Availability of contractors with state-of-the-art experience.
- Managing the public and the press.

Micro Tunneling Activities

Construction Activities

Sewage Treatment Plant

Issues considered in the evaluation of the process options

- a. Reliability/robustness
- b. Footprint
- c. Energy minimization
- d. Whole Life Cost
- e. Minimum Environmental impact
- f. Shock load resilience
- g. Modularity/phasing
- h. Operational complexity
- i. Maintenance redundancy
- j. Sludge production and type
- k. Public acceptance & Sustainability
- al. Adaptability for aquifer recharge/potable standard

Typical Wastewater Quality

BOD ₅	350	-	400	mg/L
TSS	400	-	500	mg/L
Total Nitrogen, N	50	-	70	mg/L
Ammonia	35	-	50	mg/L
Total Phosphorous	10	-	15	mg/L

Water Re-use & TE Standards Drives the Use of Membrane Technology

- Government Policy drives the company towards water reuse.
- Public health and safety is a primary concern

	Units	Land Reuse Standards	Target Quality
BOD	mg/l	15	5
SS	mg/l	15	5
NH ₃ - N	mg/l	5	1
Total N	mg/l	15	15
P - P	mg/l	30	12
Nematode Ova	eggs/l	1	1

• Proximity to the public means strict odor control requirements

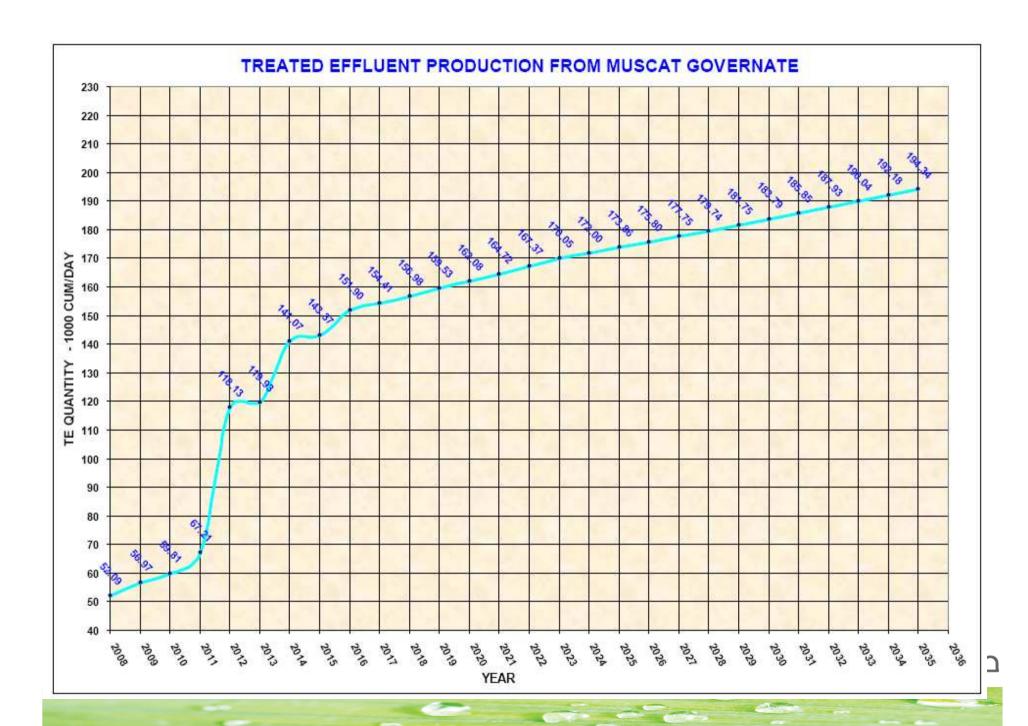
PROCESS & TREATMENT TECHNOLOGY APPLIED

- Membrane Bio Reactor (MBR) based on MLE process with Immersed Flat Sheet and HF membranes
- Sequential Batch Reactor process with U/F

Pretreatment

- •Coarse & Fine Screens
- Aerated FOG & Grit Removal

Post Treatment


•Chlorine dosing to maintain residual chlorine(0.30-1.0 mg/L)

Sludge Treatment

Belt Filter Press / Centrifuge & Final Composting

Driving Treated Water Reuse in Muscat

- Total average volume of treated water at the 11 Haya Water STPs is currently around 50,000 m³/day.
- All the existing treated water is sold to Muscat Municipality for landscaping and beautification irrigation.
- There are currently approx. 100 kms of pipelines that distribute treated water.
- Treated water available for reuse will reach 145,000 m3/day by 2015.
- All new network projects include treated water reuse networks.

Treated water Re-Use options

Supply to public landscaping and beautification (roads, parks etc.)



Treated water Re-Use options

 Supply to large private developments (golf courses, tourist projects, institutions).

Treated water Re-Use Options

 Agriculture for raising of crops (maize and cattle fodder)

Treated water Re-Use Options

 Integrated management of wetland; create new environment for birds and plants.

Treated water Re-Use Options

- Education programs on wastewater and water reuse.
- Tourism; birds watchers.

The Last Resort Sea Outfalls

Five outfalls will be built for emergency and excess TE disposal.

Bio-Solids Composting Project

- Technology: Open Agitated Windrow
- Materials: Bio-Solids and Green Waste
- Capacity: 40,000 dt/year (end product)
- Cost: US\$ 6.2m
- Standards Applied:
 - Ministry of Environment and Climate Affairs (Oman)
 - USEPA
- Commissioning Date: June 2010
- Present status: construction tender under evaluation.

Thank you!

