

Pumping

Marco Bruni, seecon international gmbh

Copyright & Disclaimer

Copy it, adapt it, use it - but acknowledge the source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. **Those materials are open source.** Following the open-source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0. This agreement officially states that:

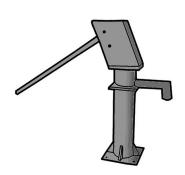
You are free to:

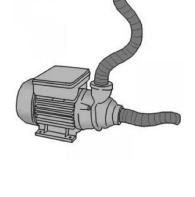
- Share to copy, distribute and transmit this document
- Remix to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions:

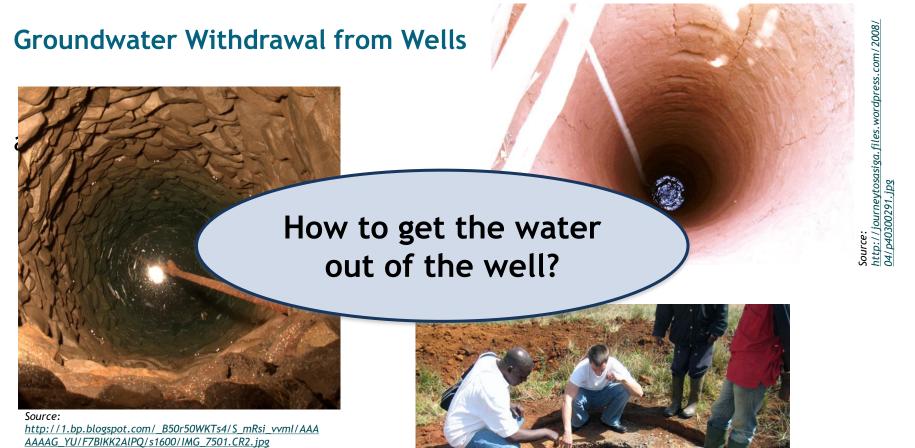
• Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

Disclaimer

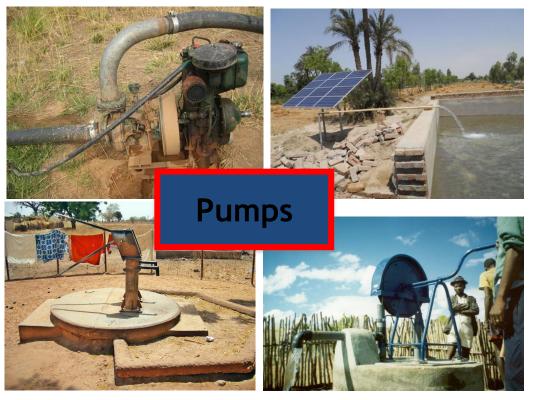

The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.


Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

Contents


- 1. Introduction
- 2. How Can Water Pumps Optimise my Local Water System?
- 3. Different Types of Pumps and their Characteristics
- 4. Operation and Maintenance
- 5. Applicability
- 6. Advantages and Disadvantages
- 7. References

1. Introduction



Source: http://hiprojects.files.wordpress.com/2009/07/well-depth-lg.jp

1. Introduction

Groundwater Withdrawal from Wells by Means of Buckets or Pumps

Source:

http://www.flickr.com/photos/foodforthepoor/61002 18694/sizes/z/in/photostream/ [Accessed: 17.05.2012]

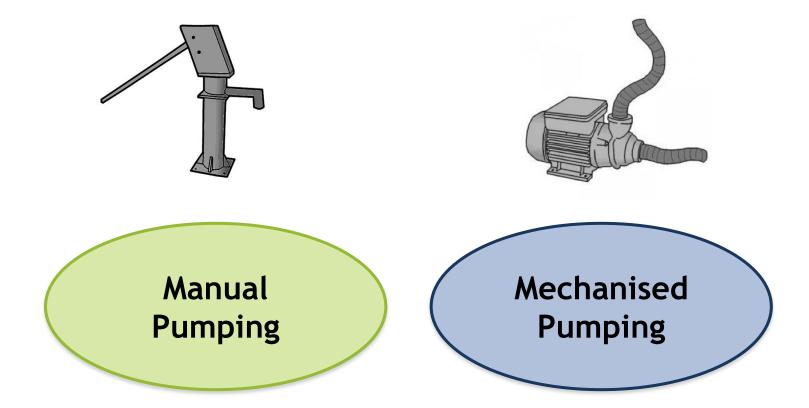
2. How Can Pumps Optimise my Local Water System?

Benefits

A dug or drilled well equipped with a pump can improve a community's water supply system substantially.

Increased performance

Many low-cost and low-tech pumps available

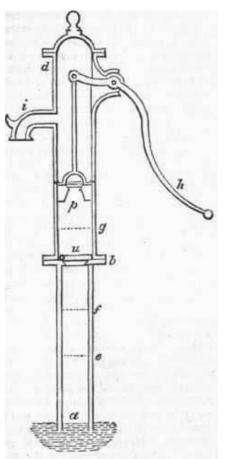

No surficial contamination (opening is sealed if a pump is installed)

Source: BAUMANN (2011)

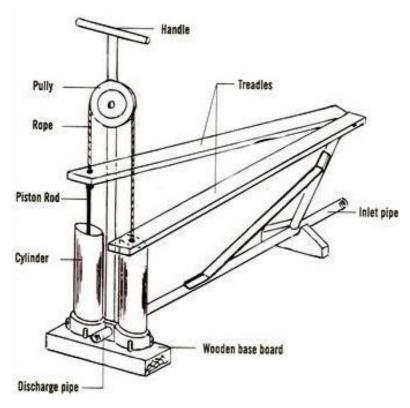
Manual vs. Mechanised Pumping

Manual Pumping

Туре	Manufacture	Investment Costs	Village Level Operation and Maintenance (VLOM)	Low- cost option available	Max. Lift Height [m]	Typical Lift Height [m]	Typical Flow Rate [l/min]
		SHALLOW	WELL PUMPS				
Suction/Piston/Plunger pump (cylinder is above water table)	Industrial	Low to medium	Yes	Yes (e.g. No. 6 pump)	7	7	24-36
Rower pump/ low-lift pump	Traditional	Low to medium	Yes	Yes	7	4	50
Treadle pump (foot pump)	Basic/ Traditional	Low to medium	Yes	Yes (e.g. pedal pump)	7	4	100
Chain / washer / 'pater <u>noster</u> ' (rotary) pump	Basic / Traditional	Low to medium	Yes	Yes	6	6	80
		DEEP WE	LL PUMPS				
Direct action / direct drive/ reciprocating lift / high-lift pump (cylinder is below water table)	Traditional/ (Industrial)	Medium to high	Yes	Yes (e.g. EMAS, Tara)	12	12	15-26
Rope (rotary) pump	Basic / Traditional	Low to medium	Yes	Yes	35	10	40
Deep-well diaphragm pump	Industrial	Medium to high	No	No	70	45	20
Helical rotor / progressive cavity pump	Industrial	Medium to high	No	No	100	45	16
Deep-well hand / lift / piston pump	Industrial	Low to high	Depends on design	Yes	100	45	11-17


Source: OLLEY (2008)

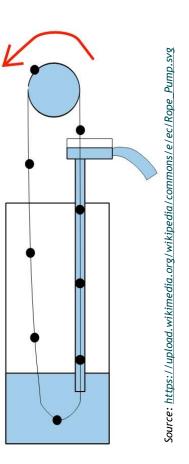
Example: Manual Pumps - Suction/Piston/Plunger Pump


Source: BAUMANN (2011)

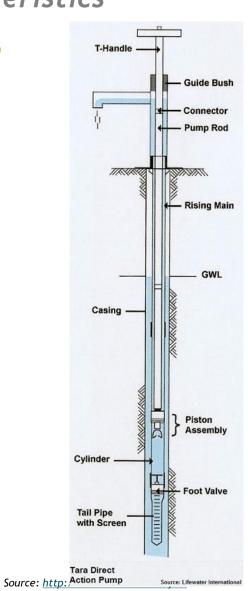
Source: http://chestofbooks.com/crafts/mechanics/Engine er-Mechanic-Encyclopedia-Vol2/images/Common-Pump-Or-Suction-Pump-243.jpg

Example: Manual Pumps - Treadle Pump

Source: http://product-image.tradeindia.com/00072160/b/0/Treadle-Pump.jpg


Source: W3W (2011)

Example: Manual Pumps - Rope Pump



Example: Manual Pumps - Deep Well Piston Pump

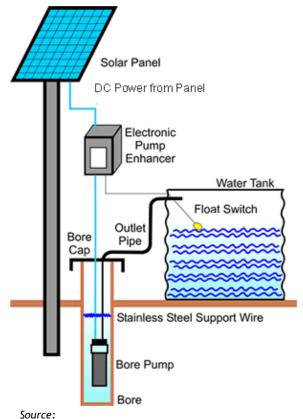
Source: APPROPRIATE PROJECTS (n.y.)

laymen.com/images/pumpoperationtara.jpg

Mechanised Pumping 1/2

Power Source Type			Principle
Electricity (Motor)	Grid		 Centralised power plant produces and distributes electricity via power grid Electricity drives a pump
	Solar/ Photovoltaic (PV)		 Solar panels produce electricity (AC/DC) Electricity drives a pump
	Diesel Generator	M ELLO A. GENERATOR	 Fuel-driven engine produces rotation Rotation is transformed to electricity Electricity drives pump

Mechanised Pumping 2/2


Power Source Type		Principle
Fuel (diesel, petroleum) (Engine) (Alternatively biomass/gas/coal)		 Fuel-driven engine produces rotation Rotation directly drives a pump
Wind power	Page Tall varie	 Wind mill produces rotation Rotation directly drives a pump
Animal-driven		• Animals produce rotation • Rotation directly drives a pump
Gravity/Hydro power		Hydraulic ram

Example: Mechanised Pump - Solar Pump

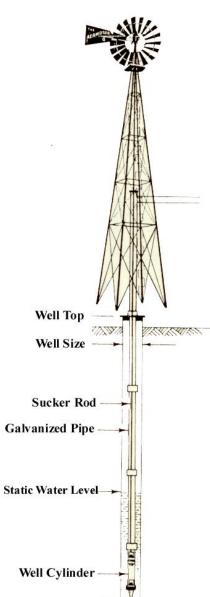
Source: NE (n.y.)

http://climatetechwiki.org/sites/climatetechwiki.org/files/images/extra/solar_pump.gif

Example: Mechanised Pump - Diesel Pump

Sour ... http://img.diytrade.com/cdimg/482442/2911310/0/1162781521/ Diesel water pump.jpg [Accessed: 23.05.2012]

Source: IWMI (n.y.)

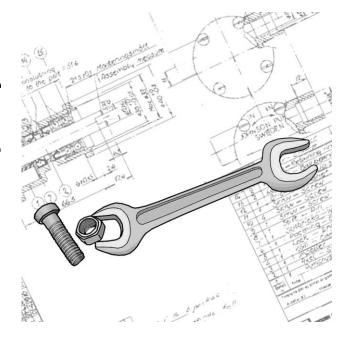


Example: Mechanised Pump - Wind Pump

Source: NSP (n.y.)

Source: http://www.windmill-windmill-system.gif [Accessed: 23.05.2012]

Example: Mechanised Pump - Animal-driven Pump


Source: http://2.bp.blogspot.com/ zHuWL7vjmBA/S92EzCZS-2I/AAAAAAAAAco/1s8oqDGkP2A/s1600/EnRouteGounaSohag9.jpg [Accessed: 09.05.2012]

4. Operation and Maintenance

Maintenance - The Key Factor in every Pump Project

- Every pump system rises and falls with the community's ability for maintenance.
- Manual pumps, particularly the low-cost options, require very
 frequent maintenance. A community operating a human-powered
 pump has to be able to find a way to organise O&M.
- Most mechanised pumps need frequent maintenance. As many parts are moving, lubricants and spares need to be available at all times. Maintenance requires skilled workers or professionals depending on the system.

5. Applicability

Manual Pumps

- Manual pumps mainly suit small, rural communities with limited access to power sources, financial resources and rather low water requirements.
- Many different pump types have been developed, suiting a broad variety of local conditions.
- All in all, manual pumps are a very promising water-lifting technique and capable to significantly improve a water supply system and, hence, the livelihood of a local community.

5. Applicability

Mechanised Pumps

Recently, manual pumps are strongly promoted and many good technologies have evolved. Yet, the use of mechanised pumps can be appropriate:

- If a **high performance** is required (e.g. urban or large community drinking water supply, communities with only one drilled well, which require water for additional needs such as cattle and irrigation);
- If a storage and distribution system is necessary;
- If the **source of energy** (usually electricity) is relatively inexpensive and reliable, and if the availability **of spare parts**, skills, lubricants and fuel is ensured;
- In areas where the only available water is deep-lying groundwater;
- In emergency situations (e.g. rapidly expanding refugee camps).

UNICEF (1999); ROARK et al. 1989)

6. Advantages and Disadvantages

Manual Pumps Put in a Nutshell

Advantages:

- Independence of power sources (e.g. diesel, electricity)
- Adequate discharge capacity to meet the domestic water requirements and small-scale irrigation
- Low-cost options for most pump types available
- Most simple hand pumps can be maintained by appropriately trained local
- Empowerment of women, children and small farmers
- Safety is increased (no direct access with buckets and ropes)

Disadvantages:

- Appropriate and very frequent maintenance is vital
- Disproportional increase of effort to lift water with increasing depth
- Discharge capacity too low for large communities

6. Advantages and Disadvantages

Mechanised Pumps Put in a Nutshell

Advantages:

- Very high performance
- Need for storage tanks if supply depends on availability of wind, sun or if engines/motors are not available continuously
- Independent operation at remote sites (only diesel)
- Less labour-intensive/less physical effort
- Safety is increased (no direct access with buckets and ropes)

Disadvantages:

- Generally expensive in acquisition, operation and maintenance
- Fuels, noise and fumes can pose a health risk, can pollute groundwater and the environment.
- Availability electricity or fuel, spares and lubricant required
- Extensive use (high performance) can cause wells to fall dry
- Very frequent and professional maintenance is vital

7. References

BAUMANN, E. (2011): Low-cost Hand Pumps. St. Gallen: Rural Water Supply Network (RWSN). URL: http://www.rwsn.ch/documentation/prcollector.2009-04-05.2482958002/skatdocumentation.2011-07-01.0268979788/file [Accessed: 02.04.2012].

IWMI (n.y.): Diesel pump in operation. Colombo: International Water Management Institute (IWMI). URL: http://awm-solutions.iwmi.org/motorized-pumps.aspx [Accessed: 25.04.2012].

NE (n.y.): Solar Water Pump. Lahore: National Engineers (NE). URL: http://www.ne.com.pk/uploads/images/Gallery/pump/DSCN0054.jpg [Accessed: 26.04.2012].

NSP (n.y.): Wind mill, pump and storage. Austria: New Solar Pump (NSP). URL: http://www.newsolarpump.com/typo3temp/fl realurl mage/windmill-water-pump-Wi0.jpg [Accessed: 26.04.2012].

OLLEY, J. (2008): Human- and Animal-powered Water Lifting Devices for Irrigation. Rugby: Practical Action. URL: http://practicalaction.org/human-and-animal-water-lifting-devices [Accessed: 02.04.2012].

ROARK, P.; YACOOB, M.; ROARK, P.D. (1989): Developing Sustainable Community Water Supply Systems. Key Questions for African Development Foundation Applicants. Arlington: Water and Sanitations for Health Project (WASH). URL: http://pdf.usaid.gov/pdf_docs/PNACA731.pdf [Accessed: 07.05.2012].

UNICEF (1999): A Water Handbook. (= Water, Environment and Sanitation Technical Guidelines, Volume 2). New York: United Nations Children's Fund (UNICEF). URL: http://www.unicef.org/wash/files/Wat_e.pdf [Accessed: 15.03.2012]

W3W (2011): Taetigkeitsbericht 2011. Oberburg: Wasser fuer die dritte Welt (W3W). URL: http://www.w-3-w.ch/deutsch/TB 2011.pdf [Accessed: 02.04.2012].

WATER CHARITY (n.y.): Deep-well hand piston pump including apron and drain in Wallalan, Upper Badibu District, Gambia. Crestline: Water Charity. URL: http://appropriateprojects.com/images/jorgensen/7.jpg [Accessed: 02.04.2012].

24

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizza

Federal Department of Foreign Affairs FDFA
Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

Water and Sanitation in Developing Countries

