

Water Footprint

Naomi Radke, seecon international GmbH

Copyright & Disclaimer

Copy it, adapt it, use it - but acknowledge the source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. **Those materials are open source.** Following the open-source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0. This agreement officially states that:

You are free to:

- Share to copy, distribute and transmit this document
- Remix to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions:

• Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

Disclaimer

The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.

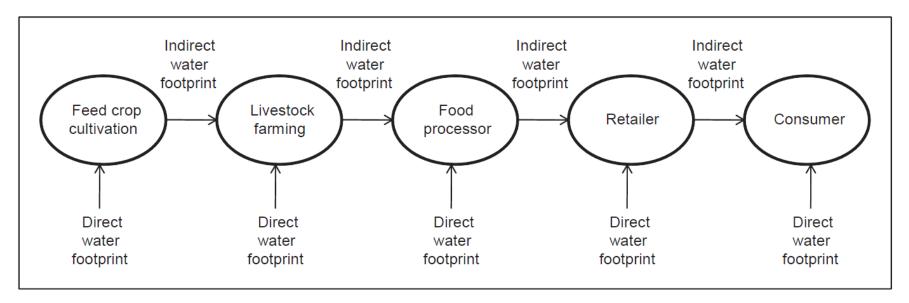

Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

Contents

- 1. Introduction
- 2. Applications of Water Footprints
- 3. Components of Water Footprints
- 4. Virtual Water
- 5. Examples of Water Footprint
- 6. Are We Sustainable? Assessing the Water Footprint
- 7. References

What is a Water Footprint?

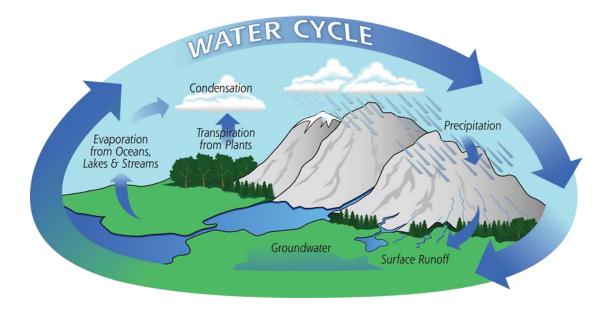
Water Footprint is a multi-dimensional indicator showing:


- HOW MUCH (Volume) ...
- WHEN (Time of the year e.g. dry season) ...
- WHERE (Location)...
- TYPE (Freshwater, rainwater, freshwater needed to dilute water pollution to an acceptable level) ...

... of water is used for the production of a product **over the whole** supply chain.

Adding the indirect water footprints

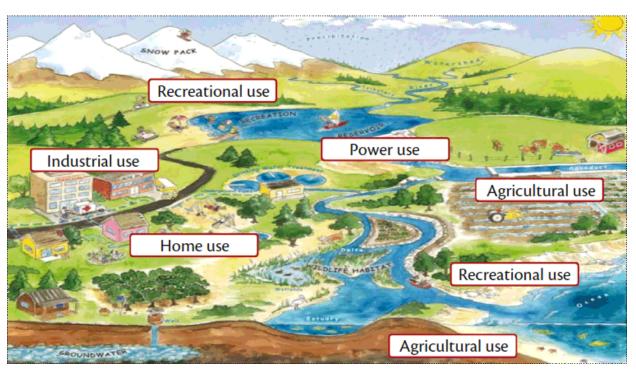
When you consume the product you do not only consume the **direct** water in the product but also the **indirect** water accumulated for producing the product!


Water Footprint in each stage of supply chain of an animal product. Source: HOEKSTRA et al. (2011)

Why doing a Water Footprint? (1/5)

Water is renewable and a constant total amount of water is cycling through the environment...

.... So, why do we bother making a Water Footprint?


The water cycle - Total amount of water on earth is always constant. Source: http://pmm.nasa.gov/education/water-cycle [Accessed: 22.10.2013]

SSWM sustainable sanitation and water management

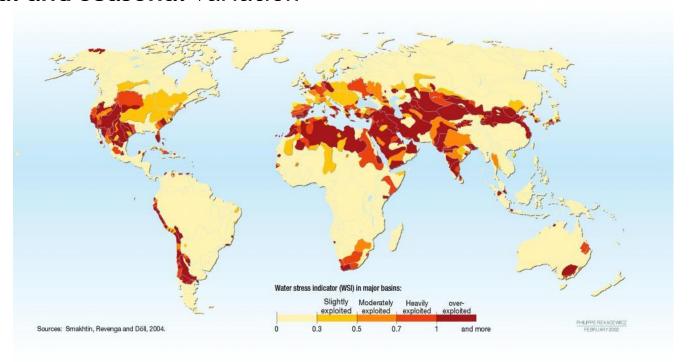
1. Introduction

Why doing a Water Footprint? (2/5)

For almost all human purposes *freshwater* is needed ...

Only about 0,01% of global water resources is directly accessible freshwater!

→ Only a certain amount of water available for all these uses at one moment!


Human water uses. Source: MARTIN&CHRISTEY (2012)

Why doing a Water Footprint? (3/5)

Freshwater resources distribution is characterized by:

- Strong **regional** differences
- Annual and seasonal variation

Freshwater scarcity differs between regions. Source: REKACEWICZ (2009)

Why doing a Water Footprint? (4/5)

- ... Due to the **dependency** and **temporary limitation** of *freshwater* a water footprint can help:
- Identify products that can be risky to produce at a certain location and certain period of time due to water scarcity
- Achieve a more sustainable and equitable use of freshwater

SSWM sustainable sanitation and water management

1. Introduction

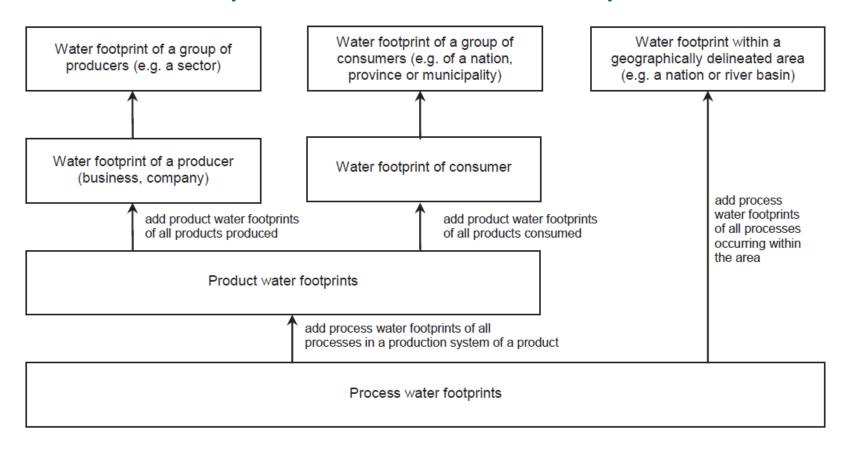
The impact of consumption of cotton products (e.g. T-shirts) in EU25 states on the freshwater resources. About 84% of the water footprint is located outside Europe - mainly in dry regions. Source: CHAPAGAIN et al. (2006)

2. Applications of Water Footprints

Water Footprints can be applied to a:

- Process step
- Product
- Person/consumer
- Community
- Producer/business
- Area
- Nation
- Humanity

A process step is always the basis for the calculations and the process steps are added up respectively.


E.g. Water Footprint for a person

= sum of the water footprints of the products that are consumed by a person; a product water footprint is the sum of the water footprints of all the process steps that make up a product.

2. Applications of Water Footprints

Process water footprints as a basis for other footprints

Applications of water footprint. Process water footprints are the basic building blocks.

Source: HOEKSTRA et al. (2011)

The Global Water Footprint Standard (1/3)

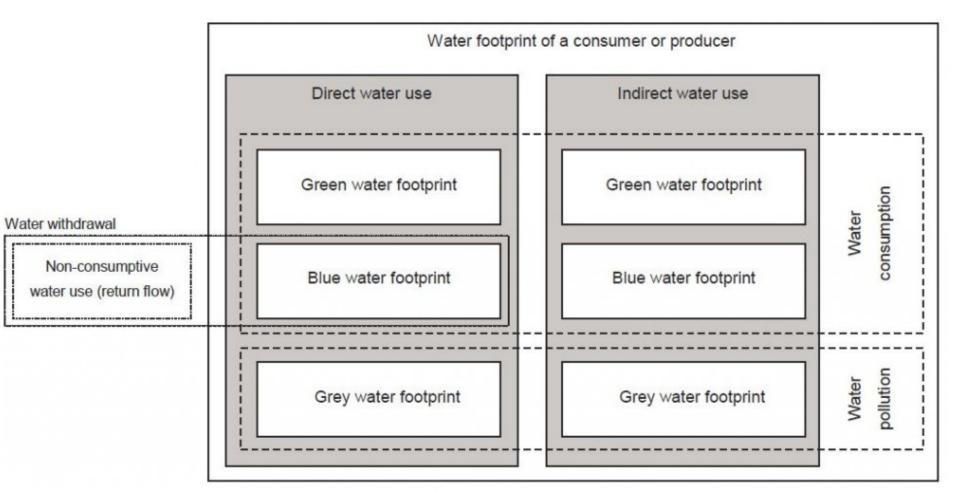
Various standards for Water Footprints exist. Probably the most well-known is the *Global Water Footprint Standard*.

It accounts for:

- Direct and indirect water use
- Water consumption and water pollution
- Water footprint for freshwater (bluewater), rainwater (greenwater) and freshwater required to dilute polluted water to an acceptable quality (greywater)
- Total water footprint is the sum of blue, green and greywater consumption

The Global Water Footprint Standard (2/3)

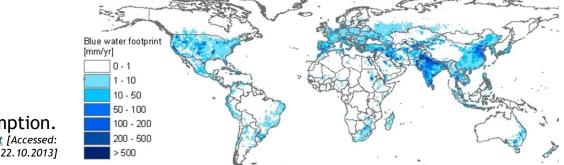
No universally valid standard for Water Footprint exists.


Yet, an ISO standard 14046 is currently under development that provides a norm for Water Footprints and how to integrate them into a

Life Cycle Analysis (LCA).

The Global Water Footprint Standard (3/3)

Components of a water footprint. The non-consumptive part of water withdrawals (return flow) is not part of the water footprint. Source: HOEKSTRA et al. (2011)



Blue water footprint

= Consumption of fresh surface or groundwater.

Taking into account water that:

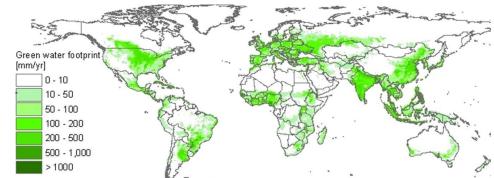
- Evaporates and transpires
- Is incorporated into the product
- Does not return to the same catchment area (but might return to the sea or another catchment area)
- Does not return in the same period (might be withdrawn in a dry period and returned in a wet period)

Global blue water footprint of consumption.

Source: http://www.waterfootprint.org/?page=files/WaterStat [Accessed: 22.10.2012]

Green water footprint

= Consumption of water that refers to precipitation on land that does not run off or recharge the groundwater but is stored in soil ore temporarily stays on top of the soil or vegetation.


Taking into account water that:

Evaporates and transpires from fields and plantations

22.10.2013]

Is incorporated into the harvested crop or wood



Grey water footprint

= Consumption of freshwater that is required to assimilate the load of pollutants based on natural background concentrations and existing ambient water quality standards.

Global grey water footprint of consumption.

Source: http://www.waterfootprint.org/?page=files/WaterStat [Accessed: 22.10.2013]

4. Virtual Water

Differences between Virtual Water and the Water Footprint

	Virtual Water	Water Footprint
Application	Products only	Products, Consumer, Producer, Nation, Humanity, etc.
Dimensions	- Volume of consumed water	 Volume of consumed water Type of consumed water (blue, green, grey) Location of water source Time of water withdrawal

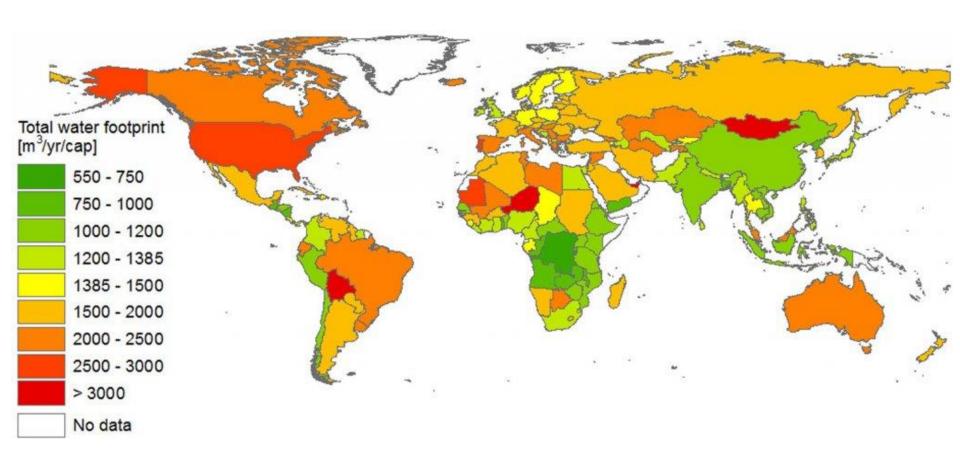
SSWM sustainable sanitation and water management

5. Examples of Water Footprint

Products

Animal products generally have a larger water footprint than crop products.

Primarily, because animals need more time to grown and need to be fed: 98% of animal's water footprint is due to feed.


Cotton: 2495 l/shirt of 250 gram

Product global water footprint and the share of green, blue and greywater. Source: www.waterfootprint.org [Accessed: 22.10.2013]

5. Examples of Water Footprint

National Water Footprint (1/2)

National total water footprint of consumption. Source: MEKONNEN & HOEKSTRA (2011)

5. Examples of Water Footprint

National Water Footprint (2/2)

Consumption of agricultural products largely determines the global water footprint related to consumption (MEKONNEN & HOEKSTRA 2011):

Agricultural products: 92%

• Industrial products: 4,7%

• Domestic water use: 3,8%

Differences in water footprints vary primarily due to differences in consumption patterns:

High bovine meat consumption (highly water intensive production) leads to higher national water footprint.

5. Examples of Water Footprint

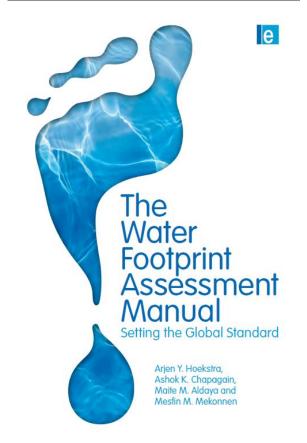
National Water Footprint - Importance

Traditionally, National Water Plan looks only at water used within a nation - saving national water by importing water through products produced in other countries:

→ Water saved in own country, but neglecting that national consumption might be unsustainable on a global level

National Water Footprint shows imported water, too:

→ Formulating policies that protect the world's scarce freshwater sources, too


6. Are We Sustainable? - Assessing the Water Footprint

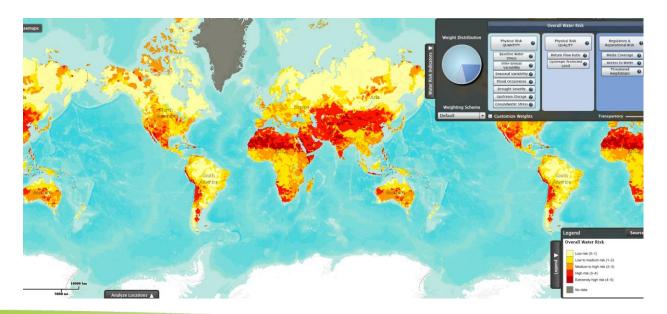
Water Footprint Assessment (1/3)

Water Footprint by itself does **NOT** provide information about whether the activity or product is **sustainable or not!**

→ Water Footprint Assessment

assesses whether the water consumption of a product/person/nation etc. is **sustainable**.

The Water Footprint Assessment Manual by the Water Footprint Network. Source: HOESTRA et al. (2011)


6. Are We Sustainable? - Assessing the Water Footprint

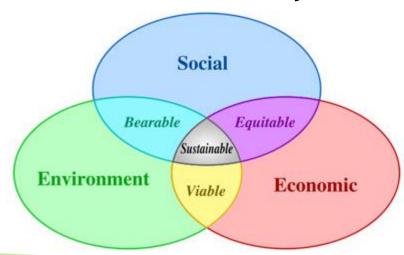
Water Footprint Assessment (2/3)

Environmental sustainability:

Compare water footprint with availability of water in the affected water bodies at the location and time of withdrawal.

Water Risk Maps (including filters for season and different water sources/quality and quantity) are open source available online:

6. Are We Sustainable? - Assessing the Water Footprint


Water Footprint Assessment (3/3)

Next to **environmental** impact, also **social** (basic human needs in the catchment areas and fairness) and **economic** (price of water versus its real economic costs) impact are assessed.

- → Response strategies can be formulated to directly target activities that lead to water scarcity and pollution
- →Improve water source protection and sustainability of water use

Water use should be bearable, equitable and viable. *source*:

http://www.sustainability.umd.edu/content/about/what_is_sustainability.php [Accessed: 22.10.2013]

7. References

HOEKSTRA, A.Y.; CHAPAGAIN, A.K.; ALDAYA, M.M.; MEKONNEN, M.M. (2011): The Water Footprint Assessment Manual. Setting the Global Standard. London/Washington: Earthscan. URL: http://www.waterfootprint.org/?page=files/Publications [Accessed: 22.10.2013]

MARTIN, R. A., CHRISTEY, S.M. (2012): The Software Industry's "Clean Water Act" Alternative. Washington: IEEE Computer Society. URL: http://www.computer.org/csdl/mags/sp/2012/03/msp2012030024-abs.html [Accessed: 22.10.2013]

CHAPAGAIN, A.K., HOEKSTRA, A.Y., SAVENIJE, H.H.G. AND GAUTAM, R. (2006): The water footprint of cotton consumption. An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics Vol. 60, 186-203. Philadelphia: Elsevier. URL: http://www.waterfootprint.org/?page=files/Cotton [Accessed: 22.10.2013]

MEKONNEN, M.M.; HOEKSTRA, A.Y. (2011): National Water Footprint Accounts. The Green, Blue and Grey Water Footprint of Production and Consumption. Delft: United Nations Educational, Scientific and Cultural Organization-Institute for Water Education (UNESCO-IHE). URL: http://www.waterfootprint.org/?page=files/Publications [Accessed: 22.10.2013]

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Foreign Affairs FDFA
Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

