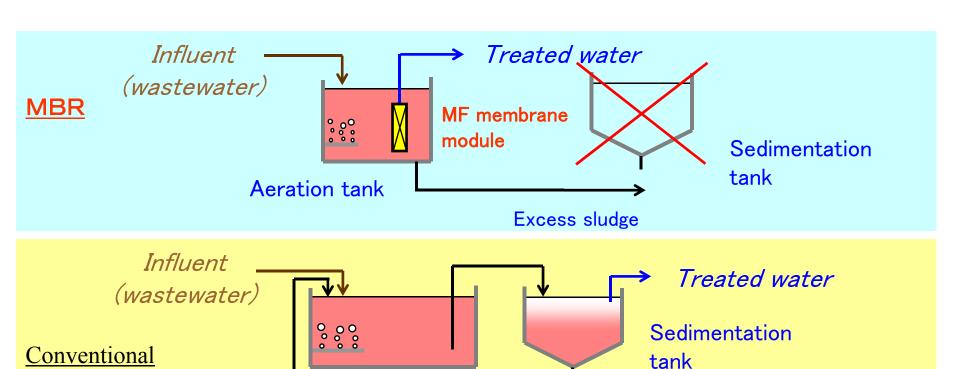
Membrane Bioreactor (MBR)

Asahi Kasei Chemicals Corporation
Microza & Water Processing Division
Technical Marketing Department

Basic concept of MBR

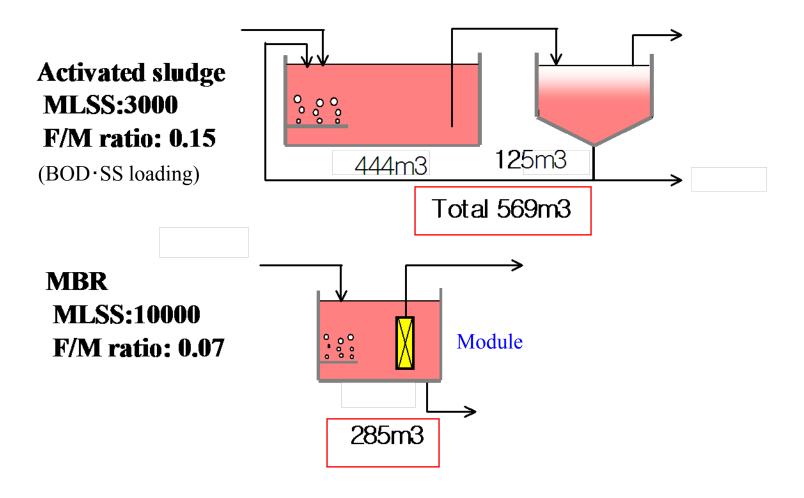

Advantages of MBR process

microza

MBR system can

process

- dispenses sedimentation tank by using MF membranes
- diminishes aeration tank by higher MLSS concentration
- •discharges treated water without SS and colon bacillus and recycle water
- dissolves bulking problem



Excess sludge

Aeration tank

Calculation example -Required tank capacity- MICTOZA


Influent Water: BOD 200mg/l, Treatment capacity 1,000m3/day

MBR system can perform space saving at WWT facilities.

Activated sludge

Aeration tank

Photomicrograph of Activated sludge (*100)

Activated sludge is mixed liquor of microorganism and treated water.

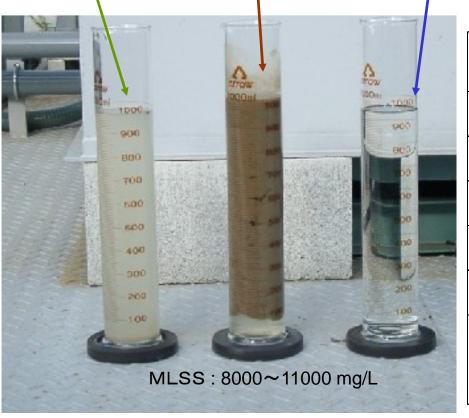
Bulking problem at sedimentation tank

Normal condition

Carry over of activated sludge

<u>Treated water quality of MBR system</u> (<u>Sewage wastewater</u>)

microza


Sewage water

Activated sludge

Treated water

Water quality of MBR and CAS

(mg/l)

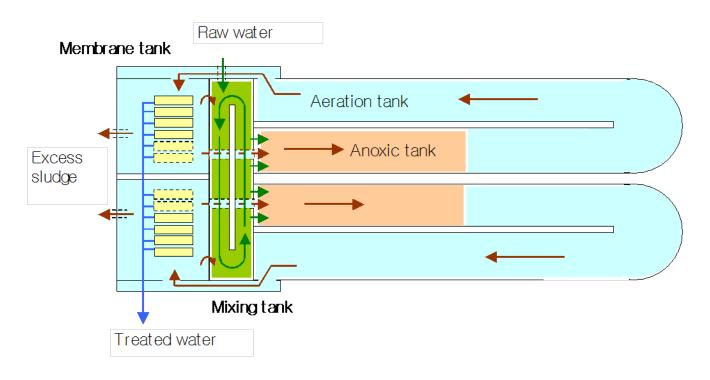
	(1119/1)			
	Influent	Effluent		
		MBR	Typical CAS	
BOD	160	0.7	5-10	
COD-Mn	90	4.5	7-13	
SS	180	<0.4	3-5	
T-N	35	5.5	10-15	
T-P	4	0.2	0.4-0.7	
E.coil	2.3x10 ⁵	<0.3	3-5	
(Number /ml)				

Commercial application of Asahi-kasei MBR Module

Microza Reference for MBR

No.	Raw Water	Capacity	Year	Location
		(m3/day)	Installed	Location
1	Food plant wastewater	600	2004	Japan
2	Food plant wastewater	300	2005	Japan
3	Petrochemical wastewater	25,000	2006	China
4	Sewage	260	2006	Korea
5	Domestic Sewage (Black Water)	1,500	2006	China
6	Petrochemical wastewater	10,800	2006	China
7	Sewage	35,000	2007	China
8	Petrochemical wastewater	6,000	2007	China
9	Food plant wastewater	720	2007	Netherlands
10	Sewage	200	2007	Korea
11	Sewage	1,000	2007	Korea
12	LCD wastewater	4,200	2007	Korea
13	Sewage	1,375	2007	Japan
14	Sewage (River water)	100,000	2007	China


This list excludes less than 200m3/day plants.


MBR projects for Petrochemical waster water

(China 10,800 m3/d, 25,000 m3/d)

MBR project in China

	Hainan	Daya Bay
Type of waste water	Oily waste water	Oily waste water
Capacity(m3/day)	10,800	25,000
Module Number	864	2000
Flux(m3/m2/day)	0.5	0.5
Star of system operation	2006.8	2007.1

Hainan project (10,800m3/day)

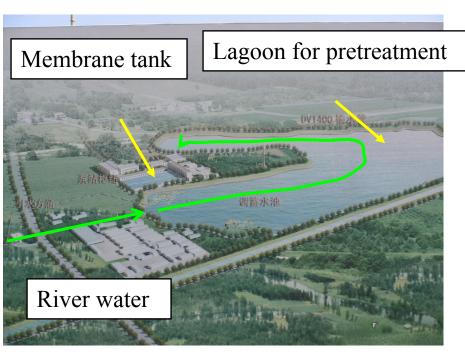
Daya Bay project (25,000m3/day)

microza

Installed example

Sewage water treatment (1500m3/d) in China

Flux: 0.5m/d Number of module: 120


Reconstruction of conventional SBR system

Installed date 2006.4

Sewage plant under construction in China (35,000 and 100,000m3/day)

Sewage treatment plant (35,000m3/day)

Start schedule: '07.8

River water treatment plant by MBR (100,000m3/day)

Start schedule: '07.10

Technical Meeting with Chinese customer

Small scaled MBR system in Australia

Place

Amity point Stradbroke Island

Moor Park Bundaberg

Caravan Park

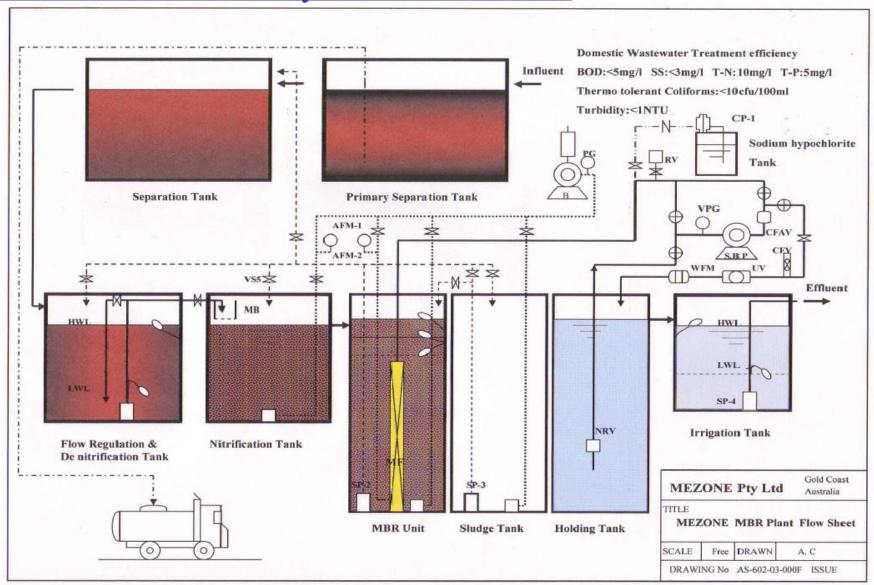
Scale **Module number**

14m3/day **MUNC-620A**

25m3/day MUNC-620A * 2

> 40m3/day **MUNC-**

620A * 3


Small scaled MBR system in Australia

Small scaled MBR system in Australia

Installed example

Apelbaum villa in Giheung Korea (260m3/d)

Outlook of Apelbaum villa

WWT plant at Apelbaum constructed underground

Installed example

Fuel chemistry plant in Netherlands (720m3/d)

Vegetable debris (Raw material)

Methane fermentation tank

A/O treatment for Residue

MBR tank

Introduction Asahi-kasei MBR module for Food factory (900m3/d)

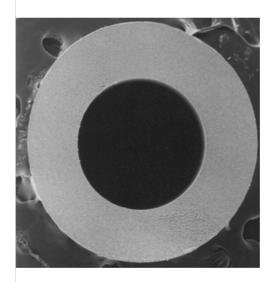
Food factory aspect

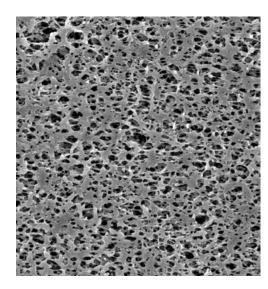
Asahi-kasei MBR rack

Aeration tank

Soaking Asahi-kasei MBR rack in aeration tank

Appearance of module





Specification of ASAHI-KASEI MBR

Specification of MBR module (MUNC-620A)

Cross-section of Hollow fiber

Surface of Hollow fiber

Type of Module	Submerged module	
	MUNC-620A	
Membrane materia	PVDF	
Pore size	0.1 µm	
Membrane area	25m2	
Figure	6inch dia × 2mL	
Weight (WET)	14kg	

Aspect of MBR module

The dependence of crystallinity on Ozone resistance

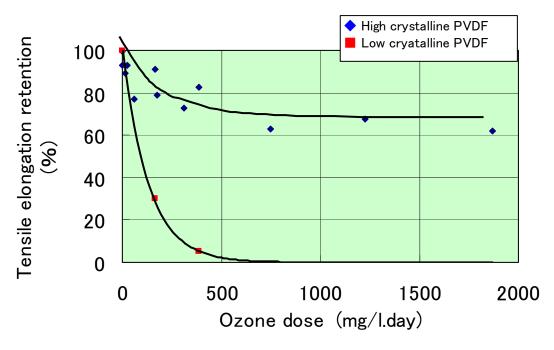
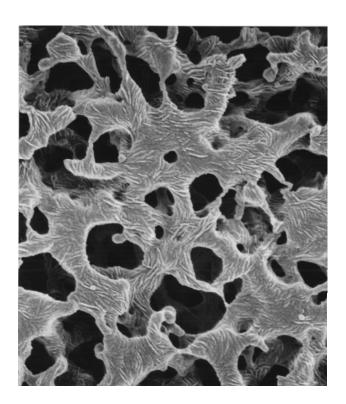



Fig. Ozone resistance of PVDF hollow fiber

SEM images of Microza PVDF H.F. (High Crystalline)

Only ASAHI membrane has ozone resistant.

Specification of MBR module (MUNC-640A,600A)

XMUNC-640A (Membrane length: 1.4m) MUNC-620A (25m²)

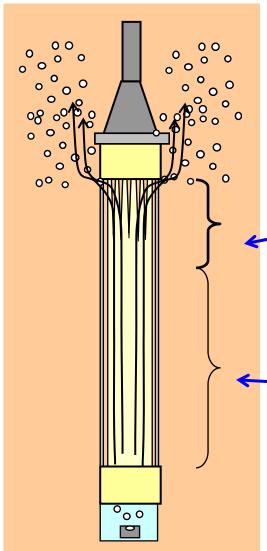
Membrane length: 2.0m

Total length: 2.2m Weight: 14kg

XMUNC-640A (17.5m²)

Membrane length: 1.4m

Total length: 1.6m weight: 11kg


XMUNC-600A (12.5m²)

Membrane length: 1.0m

Total length: 1.2m Weight: 9kg

Hollow fiber alignment of Asahi-kasei MBR module

Dividing multiple bundles of hollow fibers to make path to outside of module

Upper part of module

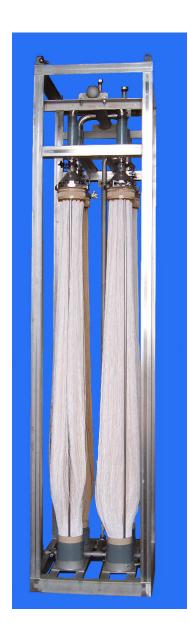
Middle and lower part of module

Uniform dispersion of hollow fibers for not to dissipate aeration and to swing hollow fibers effectively

Parts name of MBR module (Munc-620A)

Accessories of MBR units

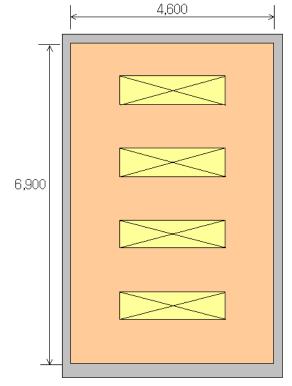
Reducer


Gasket

Crump

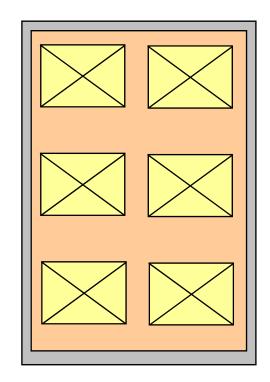
Asahi-kasei MBR rack unit (100m² type)

Specific design

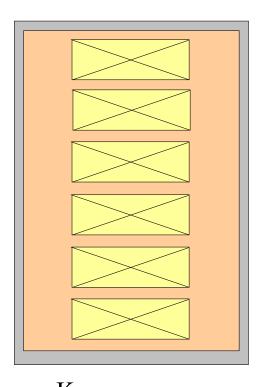

- •Unit size 0.52*0.46*H2.7m
- •Total membrane area 100m²
- •Weight (wet) 185kg

Advantage of Asahi-kasei MBR rack system

- Less aeration volume for membrane(60-70% aeration volume of conventional MBR system)
- Space saving(about 50% space of conventional MBR system)


From Design manual of Japan Sewage Works Agency

Aeration tank and MBR unit for 1000m³/d sewage system - tank depth 4m-


Asahi-kasei (Foot print 5.8m²)

Aeration volume 625Nm3/hr

M company (Foot print 11.5m²)

Aeration volume 958Nm3/hr

K company (Foot print 12.5m²)


Aeration volume 792Nm3/hr

MBR Rack unit (24 Module type)

microza

Aeration line

Permeate line

MBR Rack unit (24 Module type)

microza

Guide Part of rack

Guide Pipe at membrane tank

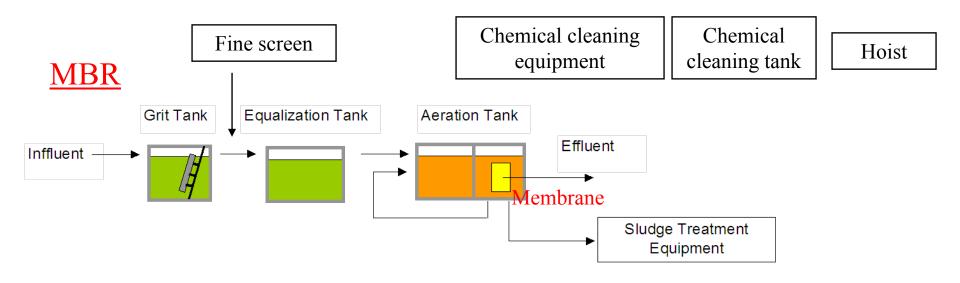
MBR Rack unit

microza

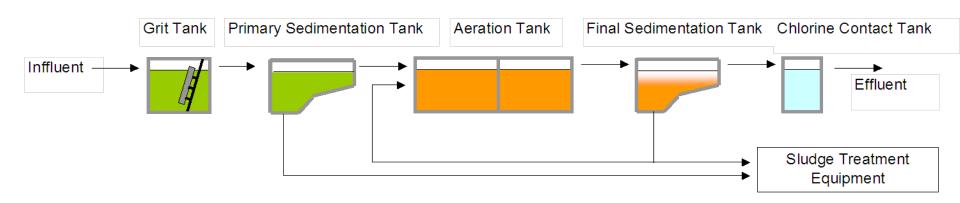
MICCOZa

Installation and setting of MBR modules

Leak check



Installation


Submerging

Operation Mode and considerations of MBR Module

Comparison of MBR and CAS in sewage process

CAS (Conventional Activated Sludge)

MBR operating condition

- 1. Flux $0.4 0.7 \text{ m}^3/\text{m}^2/\text{d}$ (Municipal water) $0.2 0.6 \text{ m}^3/\text{m}^2/\text{d}$ (Industrial water)
- 2. Filtration / Reverse filtration time

F: 9 min. RF: 1min. (Standard condition)

3. Aeration flow rate

For Module : 5 m³/hr/Mo

For Aeration Tank: to keep DO level 1 –2 mg/l

4. EFM

Case1: When TMP reaches 30(or 40)KPa

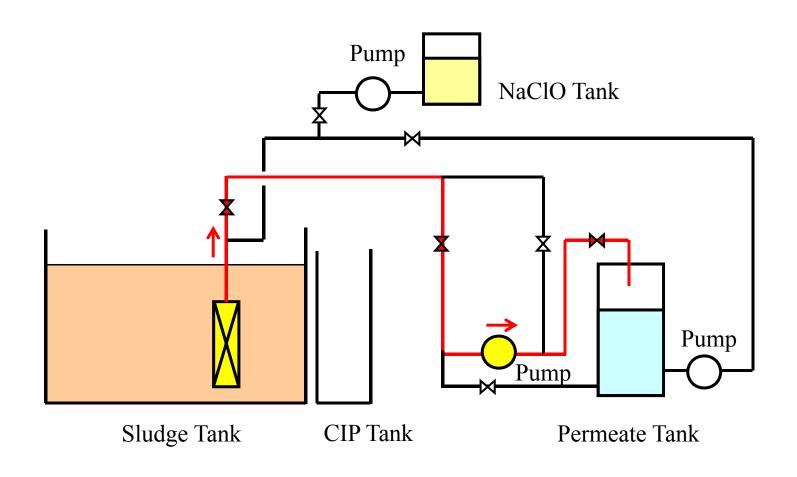
Case2: Frequency 1-2 month

0.3% NaClO sol. 2L/m²(membrane) 90min

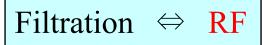
5. CIP

Case: When effect of In Line Cleaning become smaller

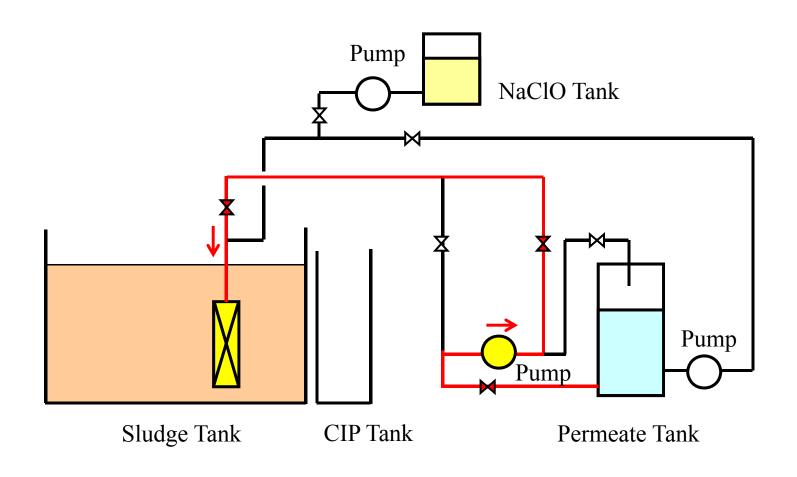
Soak modules in chemical solution tank


0.3% NaClO sol., 8hr< (Standard condition)

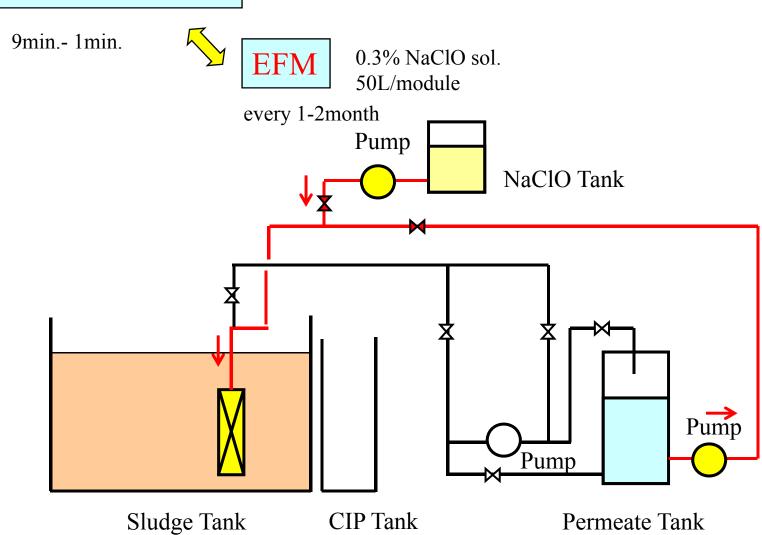
0.5-1% Oxalic acid, 1hr< (Additional condition)



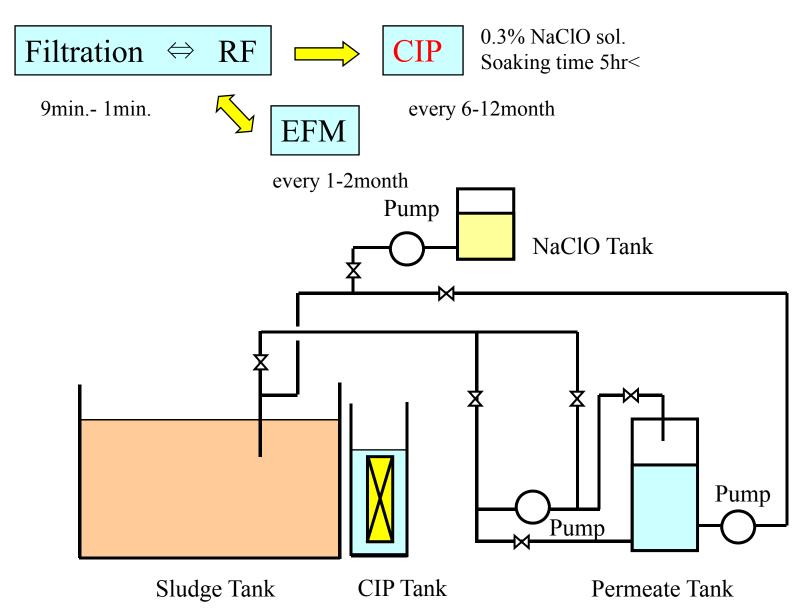
Filtration

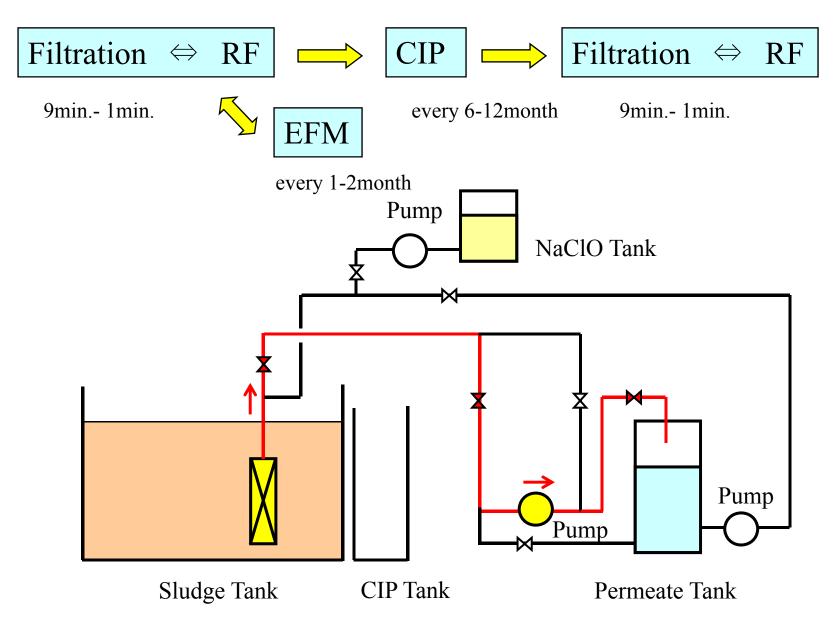

9min.





9min.- 1min.





Design

```
/ Elimination of foreign substances by Grid tank and Screen
/Appropriate BOD loading (< 1 BOD-kg/m3/day)
/ MLSS (8000 - 12000 mg/l)
/ Feed water considerations
  Oil content (Fat oil < 50mg/l, Mineral oil < 3mg/l)
  Antifoam agent (Silicone based antifoam agents are not
   recommended)
  Inorganic material deposition (pretreatment or PH control)
  Toxic substance for microorganism (heavy metal, insecticide etc.)
```


Operations

/ Do not filter with clogging membrane under high vacuum pressure

Appropriate cleaning membrane is required for stable filtration.

/ Do not dry membrane during operation

/ Do not filter without aeration

It is recommended that filtration be stopped when aeration for membrane is not provided.

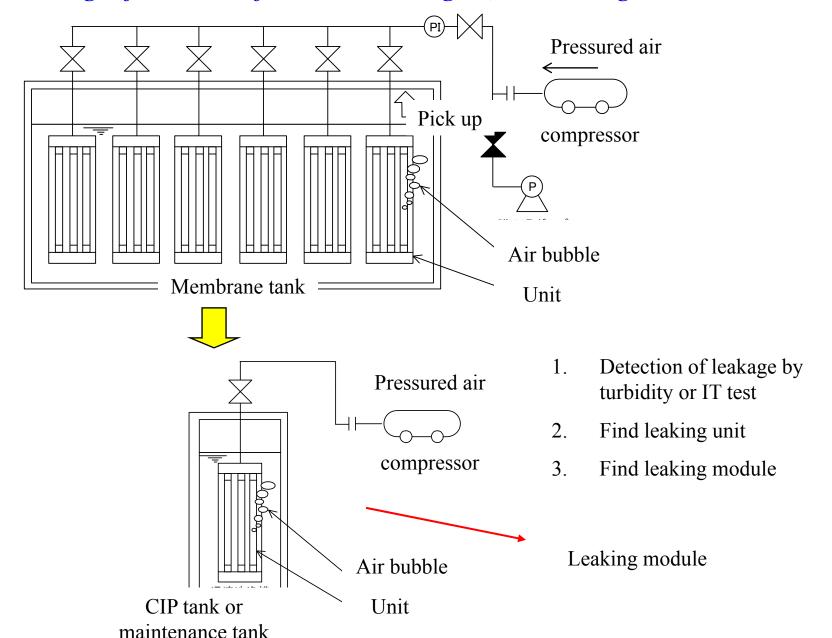
/ Do not freeze membrane during storage

Operating and maintenance considerations

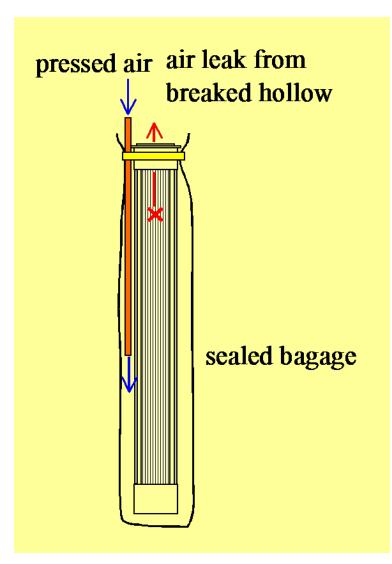
Maintenance

- / Daily checking by check list
 - Filtration pressure, Flow rate, Water temp., MLSS, DO, PH
 - It is recommended to make up time series graph
- / Periodical maintenance by maintenance contractor
 - Discussion about condition by using daily check list
 - Do not leave situation when any conditions are abnormal

COD removal ratio at various waste water field


	Influent COD (mg/l)	Effluent COD (mg/l)	Removal ratio (%)	Remarks
Municipal	330	8.4	97.5	COD_{Cr}
Petrochemical factory	679	99.7	85.3	COD_{Cr}
LCD factory	450	3.6	99.2	COD_{Cr}
Chemical factory	194	40.9	78.9	CODm
Coolant factory	512	56.8	88.9	CODmn
Chemical factory (including PEG)	654	33.2	94.9	CODmn
Food factory (sea food)	324	6.8	97.9	CODmn
Food factory (Japanese pickle)	3490	51.4	98.5	CODmn
Food factory (soybeans)	368	10.9	97.0	CODmn
Food factory (sugar)	778	33	95.8	CODmn
Food factory (tofu)	629	3.4	99.5	COD _{Mn}

COD removal ratio of treated water depends on raw water quality.


Sewage and food factory wastewater are mostly easy to reduce.

Chemical waste water show various removal ratio.

Repairing of hollow fiber breakage (detecting leaked module)

Repairing of hollow fiber breakage

driving a nail into a hollow making knot

Detecting of leaked hollow fiber

Repairing

Field test result

- Title 22 test result at USA, CA-

What is Title22?

- Qualification test by California state in USA for membrane but it affects not only CA but also whole of USA.
- Permeate turbidity (less than 0.1NTU) and Virus removal are examined.
- Some public tender need Title 22 in order to distinguish from unknown membrane.
- Many MBR membrane supplier had passed

First period: ZENON, Kubota, USFilter, Mitsubishi rayon

Second period: Koch, Kruger, Huber, Dynalift, Asahi-kasei

Title22 test in U.S.A

Test site location: Point Loma WWTP, San Diego, CA, USA

Test period : 2006.9 - 2007.2

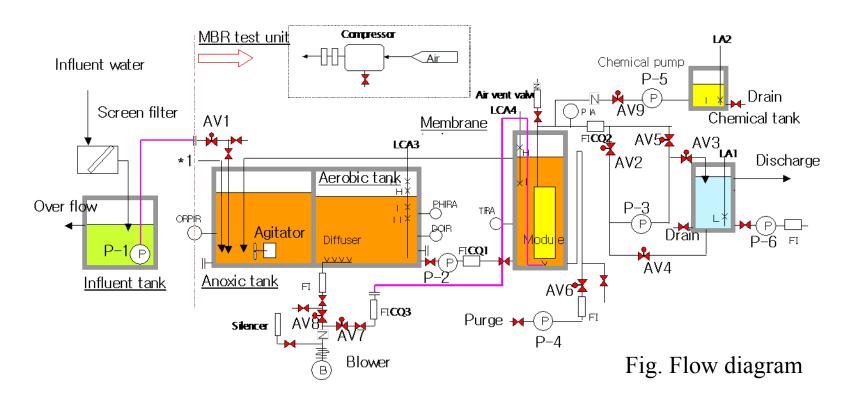
Aspect of Sewage plant

Test rig.

Existing process (San Diego city WWTP)

Sewage ⇒ Dozing FeCl3 ⇒ Sedimentation ⇒ Discharge to Ocean (clear upper portion)

MBR raw water


<Test condition>

Treatment capacity: 15m3/day (normal), 30m3/day (2Q test)

Flux: 0.6m3/m2/d (normal), 1.2m3/m2/day (2Q test)

Treatment system: Anoxic(1.9m3), Aerobic(1.9m3), Membrane tank(1m3)

Analytical item: permeate turbidity, rejection ratio of virus (2Q*6days test)

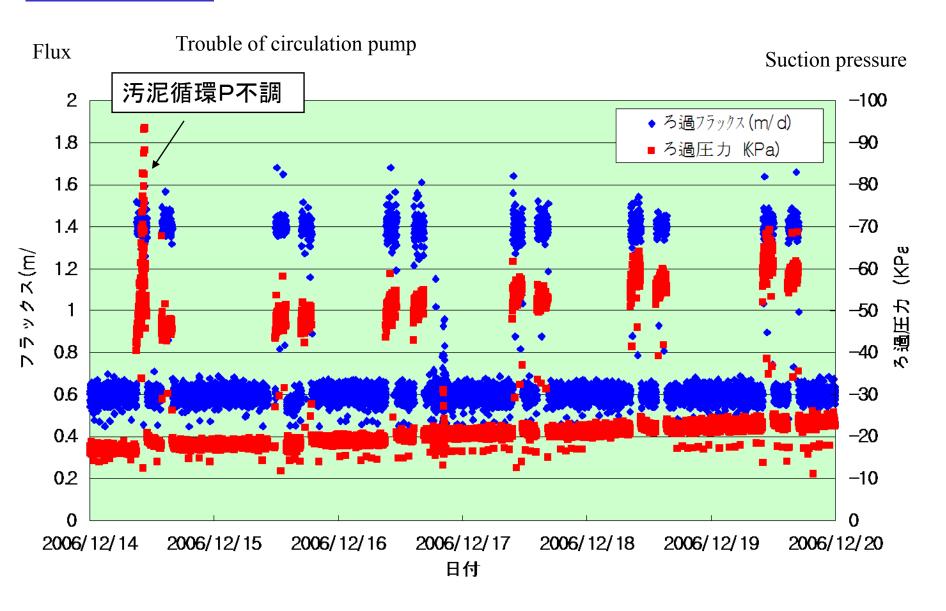
Before use

After 40 days

After 4months use

microza

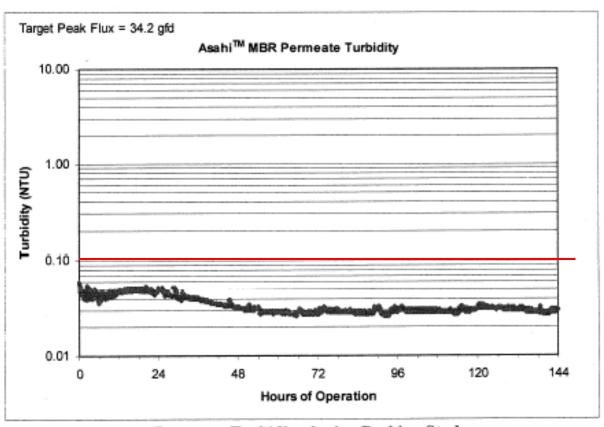
Flashing by 0.1% NaClO from B.K. side



Average Water quality of Influent and Treated water (06.9~07.1)

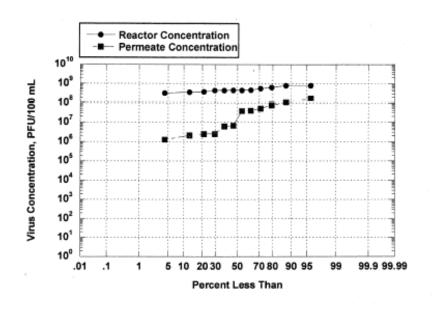
		Influent	Treated water
BOD	mg/l	141	<2
SS	mg/I	128	
TOC	mg/I	60	5
T-N	mg/I	21	5.2
Total Coliforms	CFU/100mL	6.40E+07	<10
Fecal Coliforms	CFU/100mL	5.10E+06	<10

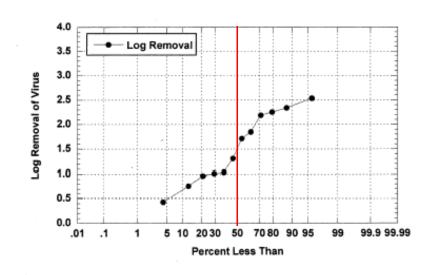
Peak Flow test



Test result of permeate turbidity

MUNC-620A passed Title 22.




Permeate Turbidity during Peaking Study

Virus removal (Challenge test)

1.5log, it is good as MF membrane.

MS-2 Phage Concentration in the Reactor and Permeate of Asahi MBR durin Virus Seeding Experiments

Log Removal of MS-2 Phage by Asahi MBR during Virus Seeding Experiments

No criteria for Virus removal, but membrane with less than llog is evaluated 'insufficient filtration ability'.

Kubota and Mitsubishi membranes are about 0.5log.

State of California—Health and Human Services Agency Department of Health Services

microza

May 8, 2007

Asahi-Kasei Chemicals Corporation Microza Sales & Marketing Department 1 Microza & Water Processing Division Hibiya-Mitsui Bldg., 1-2, Yurakucho 1 - chome, Chiyoda-Ku, Tokyo 100-8440, Japan

Attn. Mr. Atsuo Kubota Deputy General Manager

Subject: Use of the Asahi-MicrozaTM Membrane Bioreactor to comply with California Water Recycling Criteria

Gentlemen:

By transmittal e-mail dated March 20, 2007, Montgomery Watson Harza, Consulting Engineers, requested Departmental acceptance of the Asahi-MicrozaTM Membrane Bioreactor (MBR) treatment unit as an acceptable filtration technology for compliance with the State of California Water Recycling Criteria (Title 22). Accompanying this request was a report prepared by Montgomery Watson Harza entitled "Assessing the Ability of the MicrozaTM Membrane Bioreactor to Meet Existing Water Reuse Criteria", dated March 2007. The report was prepared under a grant from the U.S. Bureau of Reclamation and outlines findings from a study conducted in the City of San Diego, California. The Department has reviewed this report and offers the following comments.

Division of Drinking Water and Environmental Management Technical Programs Branch, Recycled Water Unit 1180 Eugenia Place, Suite 200, Carpinteria, CA 93013-2000 (805) 566-1326; (805) 745-8196 fax Internet Address: jstone1@dhs.ca.gov

The Asahi-MicrozaTM MBR treatment system evaluated utilizes hollow fiber PVDF ultrafiltration membranes with a nominal pore size of 0.1 micron. The membrane piloted during this study is identified as the MicrozaTM MUNC-620A membrane module. The Asahi-MicrozaTM MBR configuration consists of an anoxic tank, aerobic tank and the submerged membrane tank. The membranes are operated under vacuum (-11.6 psi max.) with a maximum transmembrane pressure differential ranging 6.0 psi and an average design flux of 14.6 gallons per square foot per day (gfd).

The California Water Recycling Criteria recognize membrane filtration as an acceptable filtration technology provided prescribed performance requirements (i.e. turbidity) are reliably met. The turbidity performance criteria require that the filtered wastewater not exceed any of the following:

- 0.2 NTU more than 5 percent of the time within a 24-hour period; and
- 2. 0.5 NTU at any time.

The demonstration studies conducted using the Asahi-MicrozaTM MBR treatment system which utilizes the PVDF hollow fiber membrane with a nominal pore size of 0.1 micron have sufficiently demonstrated the ability to produce an oxidized wastewater and the membranes ability to comply with the above stated turbidity performance requirements. In addition, virus seeding experiments demonstrated the processes ability to achieve 1.5-log removal of inherent Total Coliphage at the 50th percentile level. Therefore, the Department of Health Services accepts the use of this membrane, identified as the Asahi-MicrozaTM MBR filtration treatment system utilizing a hollow fiber membrane with a nominal pore size of 0.1 micron (identified as the MicrozaTM MUNC-620A) as a filtration technology for use in compliance with the Water Recycling Criteria.

The acceptance of this technology is specific to the Asahi-Microza $^{\text{TM}}$ MBR filtration treatment system utilizing MUNC 620A hollow fiber membrane. Any proposed changes made in the physical attributes or character of this membrane shall be reviewed in advance by the Department to determine whether the modifications will require additional testing.

The Department will continue to review all proposed projects on a case-by-case basis to determine full compliance with all applicable treatment and reliability features required by the

Water Recycling Criteria. This will include the collective review of all treatment unit processes, operational controls (e.g. loading rates, TMP, type and frequency of integrity tests), 'O&M' procedures, etc.

If you have any questions concerning this letter, please contact the undersigned at (805) 566-9767.

Sincerely,

Jeffrey L. Stone, Chief Recycled Water Unit Division of Drinking Water

cc: Montgomery Watson - James DeCarolis City of San Diego - Larry Wasserman Recycled Water Committee

techlist/KrugerNeosepapprltr.doc

Point Loma Tilte22 Test Summary (1) MICCOZA

	Asahi Kasei	GE/Zenon*	Siemens/ Memcor	Kubota*	Mitsubishi Rayon
Membrane Type	HF	HF	HF	FS	HF
Membrane Material	PVDF	PVDF/R	PVDF	PE	PE
Nominal pore size	0.1um	0.04um	0.04um	0.4um	0.4um
Membrane area/module			409		269
(ft2)	269	340	(B30R)	8.6	(SADF2590A)
Module Type	Submerged	Submerged	Submerged	Submerged	Submerged
Flux (gfd) Q	15 - 24	(22)*		(15)*	
Peak Flux (gfd)	30 - <mark>39</mark>				
Average Flux (gfd)	20 - <mark>27</mark>		14 - 24		12 - 15
Operation Cycle			12min F→		
	9.5min F→	10min F→	0.75 min RL→	9 min F→	12 min F→
	0.5min BW	0.5min RL	0.25 min BW	1 min RL	2 min RL
Cleaning cycle (Hr)					
(CIP)	N/A	1,350	1,608	0	1,176
EFM cycle (Hr)	336	56	None	None	None
Required Air Flow		0.028			
(SCFM/ft2)	0.013	(10/10)	0.021	0.033	0.049
Membrane damage during					
test period	None so far	No. Info.	No. Info.	No. Info.	No. Info.
Rack foot print	430	341		166	223
(Membrane area/rack area)	(Latest design)	(500d)		(EK400)	(SADF2590A)
		10/30 air			SADF2590A
Comments		cycle now			is PVDF
* Feed water of Zenon & Kub	ota test was after	coagulation and	d sedimentation		
(These two suppliers already	had tested on rav	w waste water a	nt different site (San Pasqual))	

Point Loma Tilte22 Test Summary (2)

	Asahi Kasei	Koch/Puron	Kruger/Toray	Huber	Dynalift/ Norit/X- Flow
Membrane Type	HF	HF	FS	FS	Tubular
Membrane Material	PVDF	PES/R	PVDF	PES	PVDF/R
Nominal pore size	0.1um	0.04um	0.08um	0.038 um	0.03um
Membrane area/module (ft2)	269	323	15	8.1	312
Module Type	Submerged	Submerged	Submerged	Submerged	Side stream
Flux (gfd) Q	15 - 24	11	18	15	30
Peak Flux (gfd)	34 - 39	35	35	33	45
Average Flux (gfd)	20 - 27	14	21	18	32
Operation Cycle	9.5min F→ 0.5min BW				
Cleaning cycle (Hr) (CIP)	N/A	?	920	?	?
EFM cycle (Hr)	336	191	None	207	332
Required Air Flow (SCFM/ft2)	0.013	0.019	0.04	0.026	0.019
Membrane damage during					
test period	None so far	After 500 hrs	After 2200 hrs	None	None
Comments					

Test result of permeate turbidity

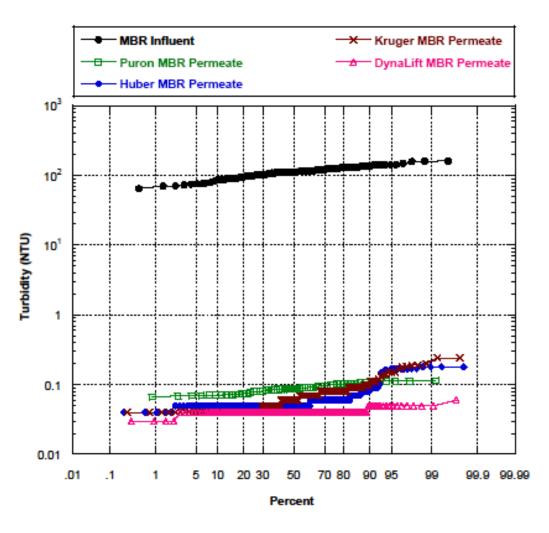


Figure 3 - Particulate Removal by Newly Developed MBR Systems

Test result of Total coliform concentration

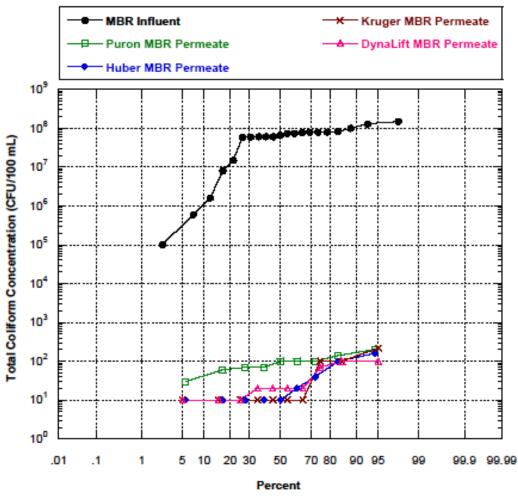


Figure 5 - Microbial Contaminants Removal by Newly Developed MBR Systems

Field test result Sewage research with JSWA 2002-2004

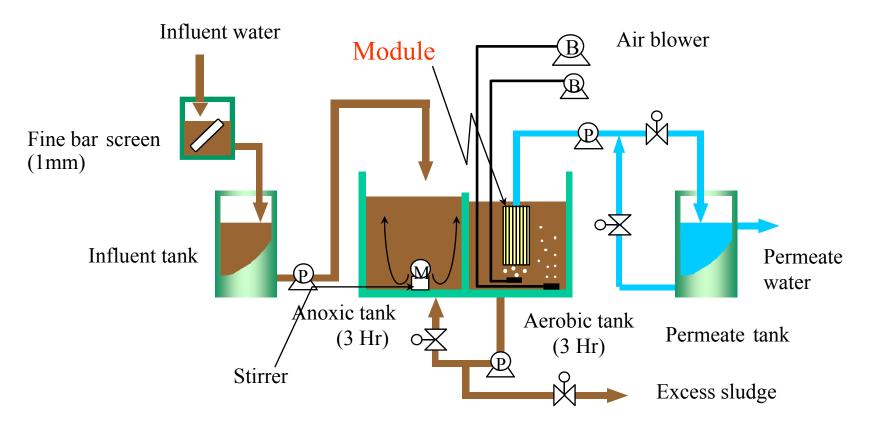
Asahi-kasei MBR system development (No.1)

Municipal wastewater treatment

(Co-operation with Japan Sewage Works Agency at Mooka pilot plant)

- Operation Flux: 0.8m3/m2/d (19.7GFD) (average Flux: 0.72m3/m2/d, 17.7GFD) : TMP stable
- Ratio of aeration volume / permeate water volume reduce to 13.3 (conventional MBR 20)
- The water quality, BOD,T-N,T-P,SS are less than the criteria of permeate water.
- T-P of permeate water is reduced without adding coagulants by biological elimination.
- RO test starting for MBR treated water from '04.8.

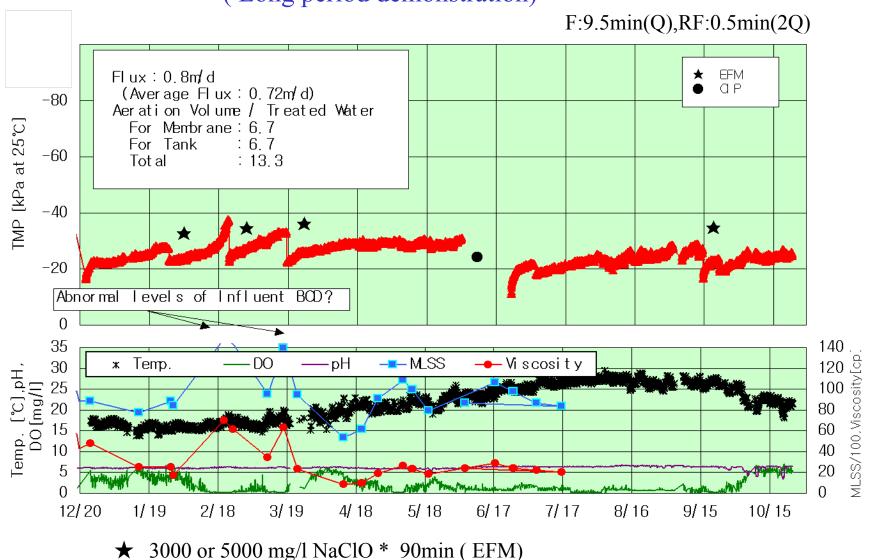
(a) Cooperative influent tank



(b) Asahi-kasei MBR Pilot Plant

Flow diagram of Asahi-kasei MBR Pilot Plant

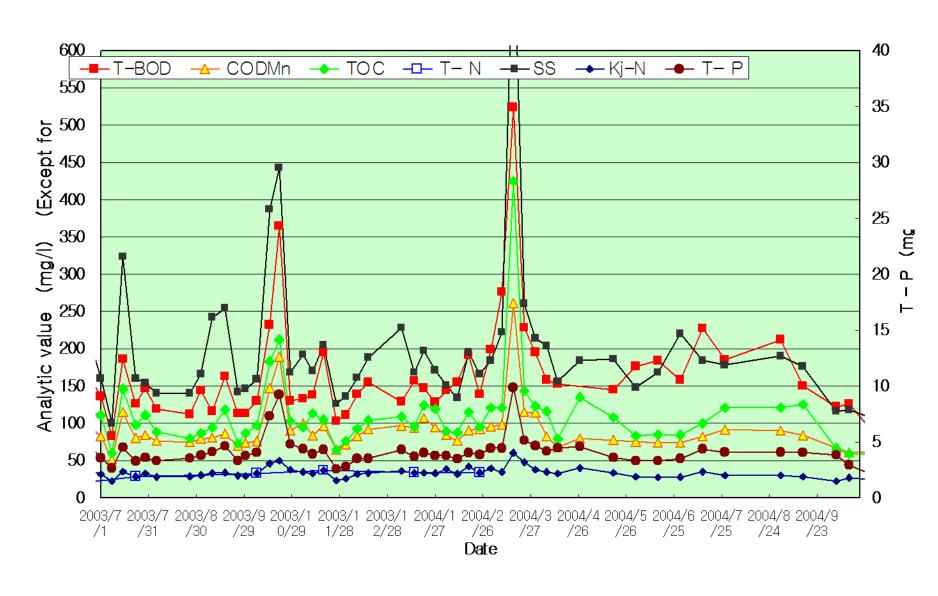
Treatment water capacity: 36m3/day


Tank volume: 9m3 Water level: 4.5m

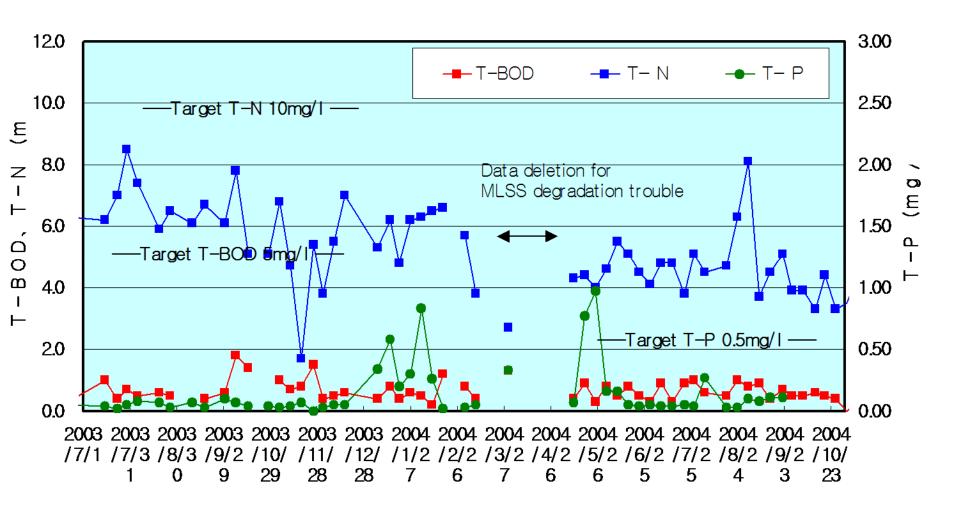
HRT: 6hr (anaerobic 3hr, aerobic 3hr)

TMP data

microza

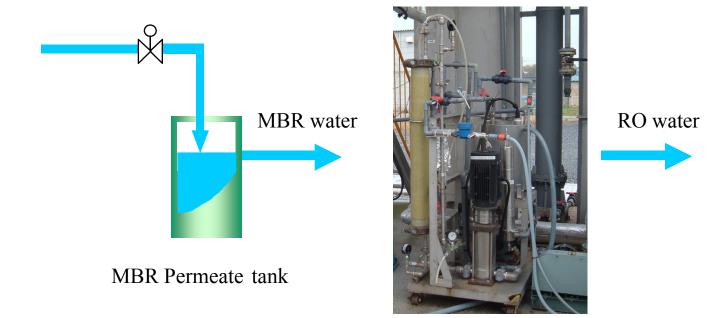

(Long period demonstration)

• 5000mg/l NaClO+ 1% NaOH * 5hr \rightarrow 2% HNO3 *1hr



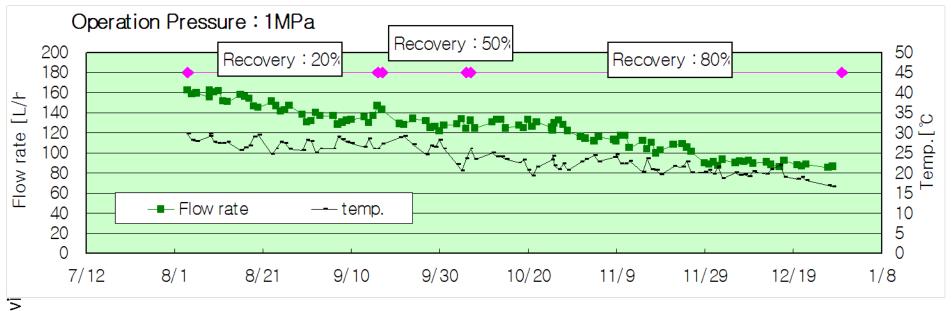
Water quality of Influent water

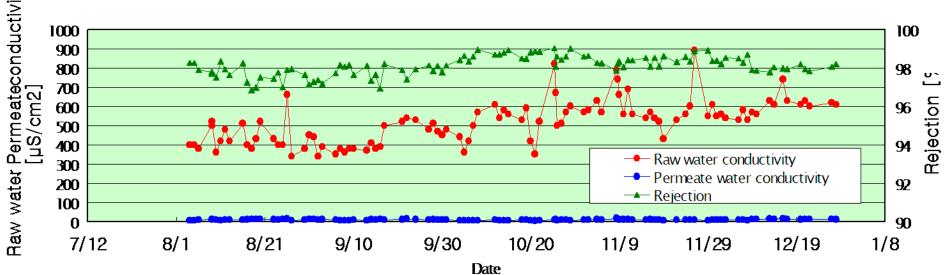
Water quality of treated water



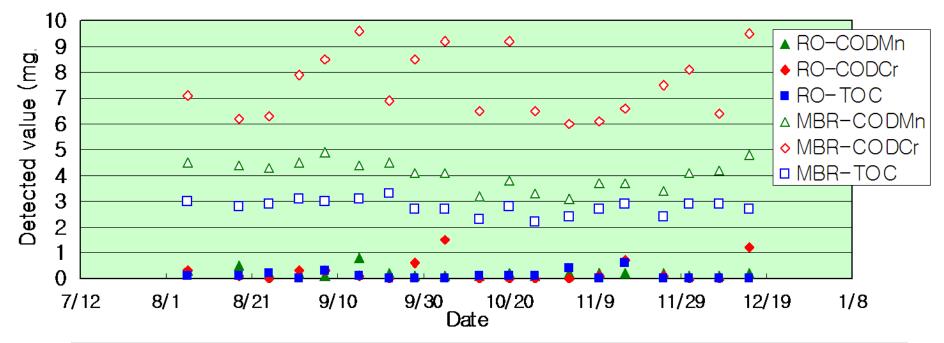
Performance and specification of MBR (Municipal Waste Water)

	Asahi-kasei	Mitsubishi Rayon		Kubota	Zenon		
Membrane Specification	Hollow Fiber	Hollow Fiber		Hollow Fiber		Sheet	Hollow Fiber
Membrane Pore Size	0.1µm	0.4µm		0.4µm	0.1µm		
Membrane Material	PVDF	Hydrophlic PE	PVDF +Reinforceme	Chlorinated PE	PVDF+Brade		
O/I diameter (mm)	1.2/0.7	0.54/0.36	2.8/1.1		2.0/1.5		
Module Structure	Cylinder	Cage &	z Shroud	Box	Cage & Shroud		
Membrane Area (m2/Element)	25	15	25	0.8	46		
Total membrane area / Module foot	1243	274	667	272	669		
Total membrane area / Unit rack	465	377	243	180	343		
Average Flux (m/d)	0.72	0.4	0.8	0.7	0.73		
Ratio of Aeration/Treated water	13.3	20	13-15	19.3	15		
for Module	6.7	20	13-15	15.4	9.5		
for Tank	6.7	0	0	3.8	5.5		


RO combination test



RO: FILMTEC BW30-404FR


RO operating date and water conductivity

microza

Water quality of MBR water and RO water

Other date of RO wate	r	
BOD < 0.1 mg/l T-P 0.01 T-N < 0.1	Coliform bacteria count Standard plate count bacteria Turbidity Chroma Total dissolved solid (TDS)	< 0.02 MPN ave. 277 (Min.2 Max.507) cfu < 0.1 < 0.1 6.9 mg/I

Asahi-kasei MF modules

microza

Asahi-kasei Chemicals manufactures MF membrane 1,500,000 m²/year for drinking water at MF plant. MBR modules are also applied MF membranes manufactured this

plant.

Microza MF plant (Fuji city, Shizuoka, Japan)

Thank you for your kind attention.

