Lecture 7

Membrane Application

High Purity Water Production

Prof. Ir. Dr. Zaini Ujang.

Ph.D., E.Eng. (M), C.Eng.(UK), C.Sci. (UK), C.W.E.M. (UK), MIEM, MIWA, DNS, PPT

Institute of Environmental & Water Resource Management
UNIVERSITI TEKNOLOGI MALAYSIA

Email: zaini@utm.my Homepage: http://web.utm.my/ipasa

Presentation Menu

Part 1: Introduction

Part 2: Membrane configurations

Part 3: Membrane systems

Part 1: Introduction

High Purity Water Production

(Also known as ULTRAPURE water)

- Boiler feed water
- Laboratory
- Process water
- Cleaning / rinse water
 - electronic
 - pharmaceuticals

Applications of High Purity Water Production

(Also known as ULTRAPURE water)

- Boiler feed water
- Electronics
- Metal finishing
- Medical and pharmaceuticals
- Packaging
- Cleaning processes
- Painting materials
- Food industry

Boiler feed water

Steam generator water quality guidelines

Drum pressure	Silica (ppm SiO2)	Total alkalinity (ppm CaCO3)	Specific conductance (µmhos/cm)
0-300	150	350	3,500
301-450	90	300	3,000
451-650	40	250	2,500
651-750	30	200	2,000
751-900	20	150	1,500
901-1000	8	100	1,000
1001-1500	2	0	150
1501-2000	1	0	100

Electronic Industry

Ultrapure water specifications for IM DRAM Manufacture

Parameters	Attainable	Acceptable
TOC (ppb)	<10	<30
Particles/liter by SEM		
0.2-0.3 μm	-	<2,000
0.3-0.5 μm	<200	<200
>0.5 μm	<1	<1
Bacteria/100 ml		
By culture	0	<6
By SEM	<1	<10
By EPI	<5	<50
Silica, dissolved (ppb)	<4	4

Metal finishing industry

- Products: doorknobs, lighting fixture, electrical relay contacts etc.
- Plating materials: gold, copper, cadmium, copper, chrome etc.
- High purity water: 1 10 megohm
- For rinsing operation

Medical & pharmaceuticals

- Medicinal preparations, e.g. lotions & creams
- Pharmaceutical products: eye drops, contact lens, laboratory practice etc.
- Hemodialysis machines use membrane technology (for producing high purity water and separating the blood cells)
- Medical uses: water for procedures, water for cleansing and cleaning

UNIVERSITI TEKNOLOGI MALAYSIA

Conventional treatment flow scheme for ultra pure water production

- Feed water: Tap water
- Quality problems:
 - Residual chlorine
 - Total dissolved solids
 - Organic fractions
 - Microorganisms
- Treatment:
 - Thermal process
 - Chemical and ultraviolet process
 - Membrane

Module on High Quality Water

Conventional treatment flow scheme for ultra pure water production

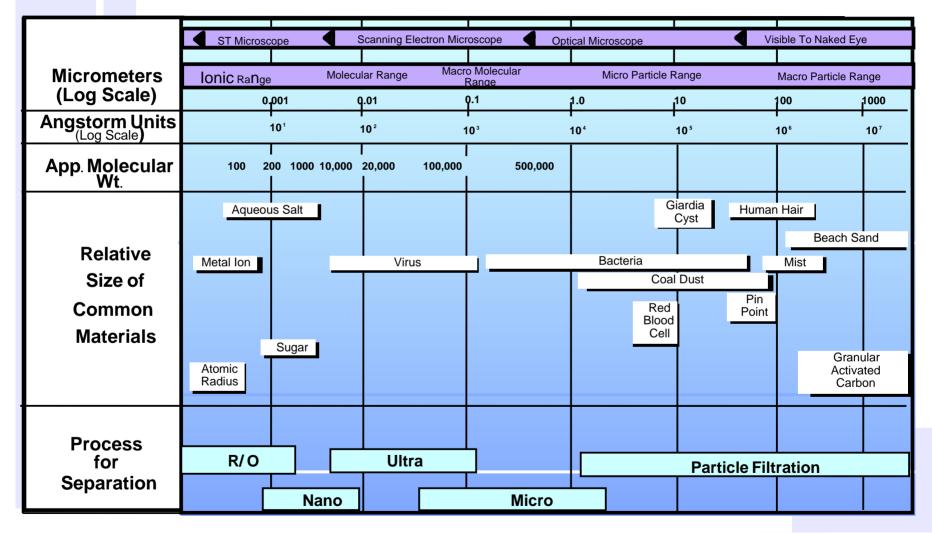
Tab water

Treatment Process

- Thermal
- Chemical
- Membrane

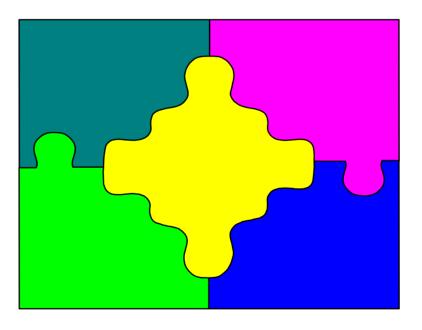
Ultra pure water

Module on High Quality Water



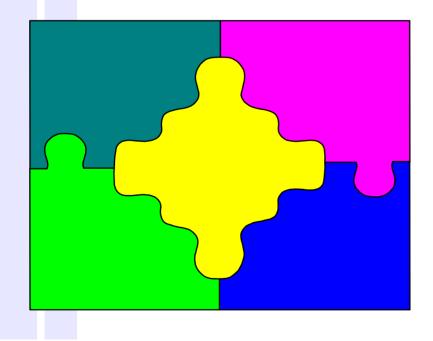
Advanced Water Treatment (4)

Coagulation Solid/liquid separation Solid/liquid separation Organic, taste & odor removal RO NOM removal Disinfection (UV) Bacterial removal


Filtration Spectrum

Module on High Quality Water

Part 2: Membrane configurations, designs, operations



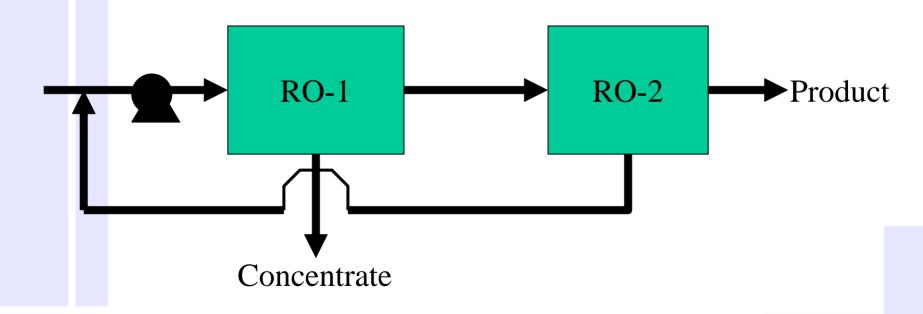
14

Module on High Quality Water

Part 3: Membrane Systems

Reverse osmosis

- Normally used for high purity water in many industries at the moment, coupled with UV
- Purposes:
 - Ionic removal
 - Organic removal
 - Silica removal
 - Particles and bacteria


Problems in high purity water systems

- Post treatment contamination
- Membrane bypass
- Differential passage of silica and carbon dioxide

Double-pass reverse osmosis

Increase rejection level

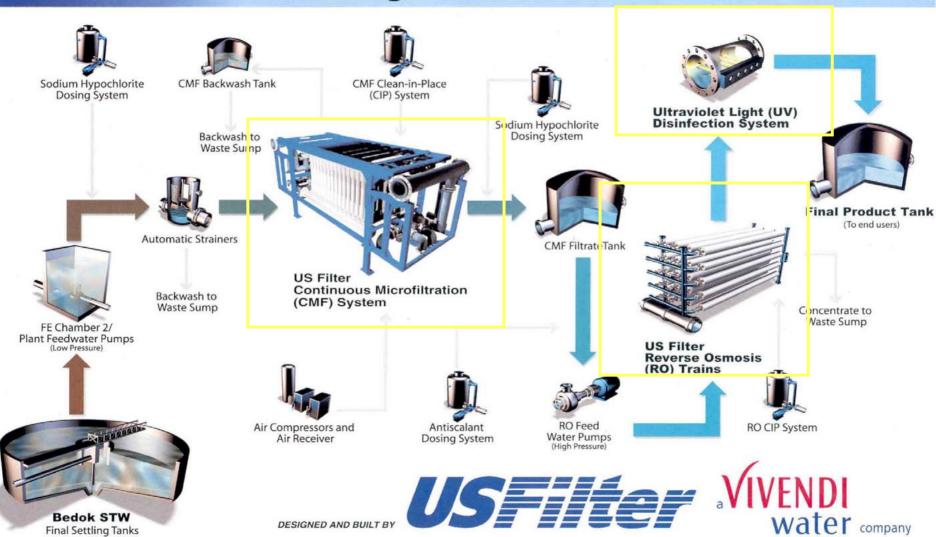
Module on High Quality Water

Pre-treatment and post-treatment

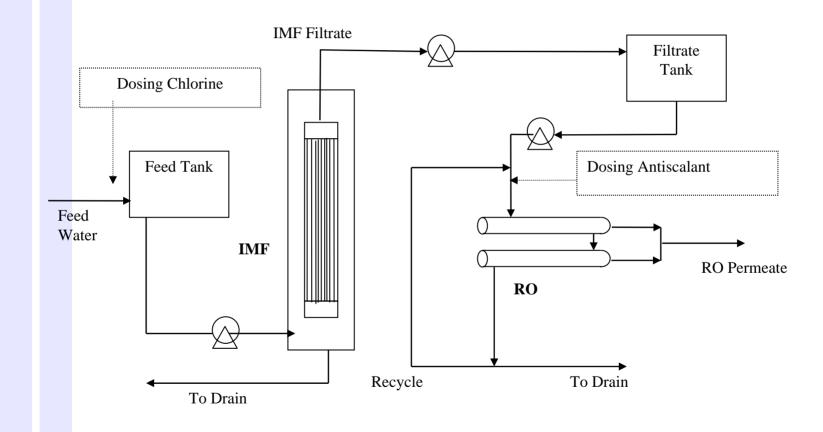
- Particle stabilization
- Ionic stabilization
- Biological control
- Polishing treatment

Module on High Quality Water

Market size and projections


- 2.5% annual growth (global)
- RO is replacing ion exchange
- The more industrial growth in electronic, medical & pharmaceutical industries – the more market for membrane technology

BEDOK NEWATER FACTORY


Water Reclamation Demonstration Plant

NEWater Factory - PROCESS FLOW SCHEMATIC

Final Settling Tanks

The pilot plant

Module on High Quality Water

Membrane Specification

Manufacturer	-	Memcor
Commercial Designation	-	1S10X CMF-s
Active Membrane Area (outside)	m ²	31.3
Flow Direction	-	outside-in
Nominal Membrane Pore size	μm	0.2
Membrane Material/Construction	-	polypropylene, hollow fiber
Membrane Charge	-	slightly negative
Design Flux	L/hr.m ²	31.1

Specification for the IMF

Specification for the RO

Manufacturer	-	Hydranautics
Commercial Designation	-	LFC1-4040
Active Membrane Area (outside)	m ²	7.9 per module
Memrane Material	-	Polyamide (thin film composite)
Operating pH Range	-	2.0-10.0
Maximum Operating Temperature	deg C	45
Free Chlorine Resistance	mg/L	<0.2

IMF operating conditions

Parameters	Value	
IMF Unit		
Filtrate flow rate	0.8 m ³ /hr	
Backwash interval setting	18 minutes/2 minutes	
Filterate temperature	30 − 35 °C	
Backwash liquid flow	2.20-2.25 m ³ /hr	
Feed chlorine level	0.5-1.0 ppm	

RO operating conditions

Parameters Value	
RO Units	
Feed flowrate	28 L/min
Permeate flowrate	4.5 L/min
Rejection flowrate	5.0 L/min
Recycle flowrate	15.5 L/min
Feed pressure	8 – 9 bar
Permeate & rejection pressure 1 bar	
Silt density index	3.7 – 5.5

The pilot plant

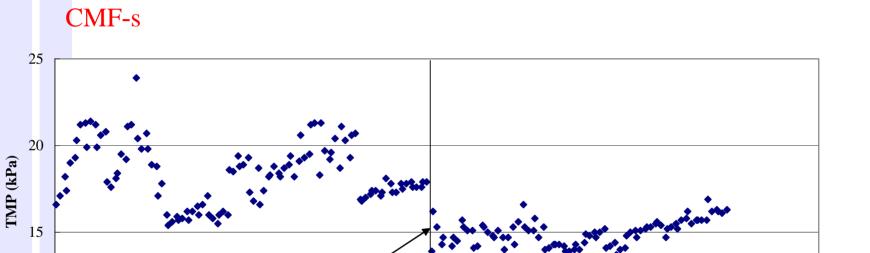
The components

The components

Module on High Quality Water

The experimental results

Parameters	Feed	Effluent	% Rejection
BOD, mg/l	25	1	95
COD, mg/l	70	14	80
Suspended solids, mg/l	20	1	95
Hardness	998	12	88
TOC	20	1	95
Ammoniacal Nitrogen	33	<3	92
Nitrate, mg/l	0.3	0.1	>66
Total Phosphorus, mg/l	5.18	0.46	>90
Iron	0.47	0.03	93
Manganese, mg/l	0.08	0.02	75
Silica, mg/l	8.29	0.54	94
Total plate count	775 x 10 ³ cfu/100mL	291 x 10 ³ cfu/100mL	>62


Module on High Quality Water

CIP Cleaning

200

Experimental results on TMP

300

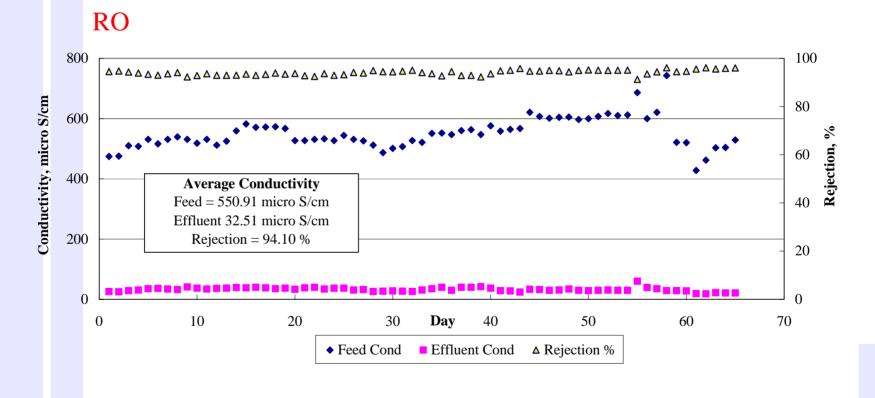
Operating Hour (hr)

400

Module on High Quality Water

Production by Prof. Zaini Ujang

500


600

10

0

100

Experimental results on conductivity

Module on High Quality Water

Discussions

- pH of reclaimed water slightly acidic (pH 6 6.5)
- permeate of RO always slightly acidic (drop by ~0.5) vs influent due to:
 - the removal of silica
 - the usage of acid as RO anti-scalant.
- Ammonical nitrogen in reclaimed water averaging 2.5 mg/L (WHO guideline at 1.5 mg/L)
- Unexpected high ammonical nitrogen in the influent (with 32 mg/L).
- STP should produced effluent with ammoniacal nitrogen down to 5 - 10 mg/L.

Module on High Quality Water

Excellent removal rate of ammonical nitrogen with RO have been achieved (average 90 – 93 %)

Discussions

High plate count in reclaimed water

Theoretically, RO would remove all bacteria and virus. However, the pilot plant is running only 8 hr/day and as such substantial bacteria growth in the post RO piping system as the pilot plant is not equipped with disinfection (UV, chlorination)

The overall results

Meeting the requirement of both effluent Standard A and drinking water

Module on High Quality Water

Rockeffeller Foundation Team Residency: Exploration of the potential of membrane technology for sustainable sanitation

- Politecnico di Milano, Milan, Italy
- April 23-26, 2003
- Only 14 participants representing various global fractions!

