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Summary

This thesis concerns mathematical modelling of membrane separation. The thesis
consists of introductory theory on membrane separation, equations of motion,
and properties of dextran, which will be the solute species throughout the thesis.
Furthermore, the thesis consist of three separate mathematical models, each
with a different approach to membrane separation.

The first model is a statistical model investigating the interplay between solute
shape and the probability of entering the membrane. More specific the transition
of solute particles from being spherical to becoming more elongated as prolate
ellipsoids with the same volume. The porous membrane is assumed isotropic
such that the model reduces to a two dimensional model. With this assumption
ellipsoids with the same volume reduces to ellipses with the same area. The
model finds the probability of entering the pore of the membrane. It is found
that the probability of entering the pore is highest when the largest of the radii
in the ellipse is equal to half the radius of the pore, in case of molecules with
circular radius less than the pore radius. The results are directly related to the
macroscopic distribution coefficient and the rejection coefficient.

The second model is a stationary model for the flux of solvent and solute in a
hollow fibre membrane. In the model we solve the time independent equations
for transport of solvent and solute within the hollow fibre. Furthermore, the flux
of solute and solvent through the membrane is coupled through the boundary
conditions. The model investigates how the true and observed rejection coefficient
depends on the transmembrane pressure, the average inlet velocity, and the
molecular weight. Furthermore, the effect of concentration dependent viscosity on
the rejection coefficients is investigated. The results show that the true rejection
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coefficient is increasing as a function of increasing transmembrane pressure,
increasing inlet velocity, and decreasing molecular weight. Furthermore, it is
found that a concentration dependent viscosity decreases the true rejection. The
observed rejection is increasing for decreasing molecular weight and increasing
inlet velocities. The observed rejection can be either increasing or decreasing
as a function of increasing transmembrane pressure. Moreover, the observed
rejection is reduced when the viscosity depends on the concentration.

The study is a time dependent model of back-shocking. During back-shocking
the pressure difference across the membrane is reversed for a given time. This
implies that the concentration polarization at the membrane surface is flushed
away. When the pressure is reversed back to normal the membrane performs
better resulting in an increased average flux. Two models models of the problem
was made.

In a two dimensional model, limited to capture the dynamics close to the
membrane, a positive effect was observed on both the observed rejection and the
average solvent flux. Furthermore, an analytical upper estimate for the optimal
back-shock time is given. In a three dimensional model, where the flow within the
entire hollow fibre is modelled, the mentioned upper estimate is used to obtain
a positive effect on both the observed rejection and the average solvent flux.
Moreover, the effect of a concentration dependent viscosity was investigated. It
was found that the average flux compared to the steady-state solution increased
when the viscosity depends on the concentration.



Resumé

Denne afhandling omhandler matematisk modellering af membranseparation.
Afhandlingen består af indledende teori omhandlende membranseparation, ligninger
fra fluiddynamik og egenskaber for dextran, som er det stof der ønskes separeret.
Ydermere består den af tre separate matematiske modeller, med hver deres
tilgang til membranseparation.

Den første model er en statistisk model, som undersøger sammenhængen mellem
molekyleform og sandsynligheden for at det givne molekyle penetrerer ind
i membranen. Mere specifikt modelleres molekylers overgang fra sfæriske til
aflange af form som prolate ellipsoider med samme rumfang. Den porøse membran
overflade tænkes at være isotrop, hvorved modellen reduceres til et to dimensionelt
problem med ellipser med samme areal frem for ellipsoider med samme rumfang.
I modellen findes det at sandsynligheden for at penetrere membranen er størst
når den største af radierne er lig halvdelen af poreradius, for molekyler med
mindre cirkuler radius end poreradius. Disse resultater relateres direkte til
absorbtionskoefficienten og sekundært til tilbageholdelseskoefficienten.

Anden model er en stationær model for fluxen af solvent og solut i en hul fiber
membran. I modellen løses de stationære ligninger for solventets og solutets
bevægelse igennem den hule fiber, samtidig med at fluxen igennem membra-
nen beskrives ved randbetingelserne. I modellen undersøges det, hvorledes
både den sande og den observerede tilbageholdelseskoefficient afhænger af det
transmembrane tryk, den gennemsnitlige indløbshastighed, molekyle størrelsen,
samt en undersøgelse af hvorledes disse koefficienter ændrer sig når væskens
viskocitet afhænger af koncentrationen. Resultaterne viser at den sande tilbage-
holdelseskoefficient er stigende med stigende transmembrant tryk, stigende
indløbshastighed og faldende molekylestørrelse. Ydermere vil en koncentra-
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tionsafhængig viskocitet sænke den sande tilbageholdelse. Den observerede
tilbageholdelse er stigende for faldende molekylestørrelser og stigende indløb-
shastighed. Den observerede tilbageholdelse kan være både stigende og aftagende
som funktion af det transmembrane tryk. Ydermere reduceres den observerede
tilbageholdelse når viskociteten er afhængig af koncentrationen.

Den sidste model er en tidsafhængig model af tilbagetryk (back-shocking). Under
denne proces vendes trykforskellen over membranen i en given tid, hvorved
grænselaget ved membranoverfladen skylles væk. Herefter vendes trykket igen
med det resultat at en højere gennemsnitsflux opnås over en periode. To
forskellige modeller er lavet over problemet.

I den to dimensionale model, der afgrænser sig til at se på dynamikken i grænse-
laget, opnås en positiv effekt for både den gennemsnitlige solvent flux og den
observerede tilbageholdelse. Ydermere opstilles analytisk en øvre grænse for
tilbagetrykstiden, der optimerer gennemsnitsfluxen. Dette udtryk afhænger
af de operative paramtre benyttet i en sådan proces. I den tre-dimensionelle
model, hvor hele strømningen i den hule fiber modelleres og antages at være
aksesymmetrisk, benyttes netop det førnævnte overslag til at opnå positiv effekt
for både den gennemnitlige flux og den observerede tilbage holdelse. Ydermere
tillades det viskociteten at afhænge af koncentrationen, hvorved effekten på både
den gennemsnitlige flux og den observerede tilbageholdelse forøges.
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Chapter 1

Introduction

Membrane separation is a process where a solution is forced through a membrane
by a driving force. The membrane divides two distinct domains known as the
retentate and the permeate side of the membrane. The feed solution enters
on the retentate side of the membrane and the driving force forces part of the
solution through the membrane and into the permeate. Membrane separation,
however, differ in various ways and can be subdivided in many ways.

Firstly, a subdivision depending on the phase of the retentate and the permeate.
In gas separation the phase in the retentate and the permeate is in a gaseous
state. In pervaporation the solution on the retentate side is in a liquid state,
whereas the solution on the permeate is in a gaseous state. Other processes have
liquid state on both the retentate and the permeate side of the membrane [45].

Secondly, a subdivision can be made depending of the driving force. In dialysis the
driving force is the concentration gradient across the membrane. In electrodialysis
the driving force is the gradient in electrical potential. In other processes the
driving force is the pressure gradient [45].

The focus in this thesis will be processes with a liquid state on both sides of the
membrane and a pressure gradient as the driving force.

These processes can be further subdivided depending on the characteristics of
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the membrane. The membrane can be considered as a dense material with pores
going through it. The subdivision is usually done by looking at the pore diameter
of the membrane.

In conventional filtration the pore diameter is roughly in the interval 10-100 µm,
for microfiltration the pore diameter lies roughly in interval 1000 Å-10 µm, in
ultrafiltration the pore diameter lies roughly in the interval 30 Å- 1000 Å, for
pore diameters smaller that 30 Å, the process is termed reverse osmosis[15]. It
should, however, be noted that for reverse osmosis the membrane is so dense
that speaking of pores makes little sense.

The feed solution, entering the retentate side, is a solvent containing one or
more solute species. The membrane is capable of retaining some of the solute
species which is essentially how the separation takes place. The pore diameter
that subdivide the membrane processes can also be made in terms of solute
molecules, since the membrane is capable of retaining molecules of size that is
comparable to the pore diameter. Hence, microfiltration is used for separation of
larger solutes such as yeast. Whereas reverse osmosis is used for smaller solutes
such as in desalination.

The focus of this thesis will be on ultrafiltration. The characteristics of solute
and solvent transport through the membrane will be elaborated in the following
section

1.1 Models of flux through the membrane

Mathematical models used for better understanding membrane separation has
been of interest since the very beginning of membrane separation.

The models that describe the flux through the membrane differ as the membrane
considered changes from being very dense to becoming more porous.

Although there is an overlap the models used for very porous membranes are
called pore flow models, whereas the models are used for very dense membranes
are called diffusion models.

The simplest interpretation of the flux through membranes are the pore flow
models. In the simplest pore flow description the solute particles are all circular
and the pores go through the membrane as straight cylinders. Assuming that
the solute particles all have the same radius Rs and assuming different pore
radii, ri, the flux of solvent Jv and the flux of suloute Js, through the membrane
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is given by Poiseuille’s equation [26]. Hence,

Jv = k1∆p+ k2∆p (1.1)
Js = k2cmJv , (1.2)

where cm is the concentration on the membrane surface and k1 and k2 is defined
below. Since the transport through the membrane is directly proportional to
pore area on the membrane surface

k1 + k2 =
∑
i

εr2
i

8η∆x , (1.3)

where η is the viscosity, ∆x is the thickness of the membrane and ε is the
fractional pore area. The solute flux only happens through pores larger than the
size of the molecule. Hence, k2 is given by

k2 =
∑

j,rj>R

εr2
i

8η∆x . (1.4)

In chapter 3 a statistical model is presented that relates the shape of the molecule
to the probability of entering the pores. Surely, pore flow models with a higher
degree of complexity than presented here are available. Information on pore flow
models is widely found in the literature, see e.g. [9, 12, 25, 37, 39, 55, 61, 26].

In the models that assume diffusion through the membrane there are different
approaches, the most widely used is the the approach of irreversible thermody-
namics. Information on irreversible thermodynamics can be found in [6, 4, 5].
Among the models explaining the transport through the membrane using irre-
versible thermodynamics we mention the famous Spiegler-Kedem model [58] and
others [29, 24, 28]. This approach have been used for mathematical modelling
determination of intrinsic membrane characteristics, see e.g. [1, 13, 21]. In the
Spiegler-Kedem model the following expression is derived for the flux through
the membrane

Jv = Lp (∆p− σ∆π) , (1.5)
Js = ω∆c+ (1− σ)c̄Jv . (1.6)

Here, Jv is the solvent flux, Js is the solute flux, Lp is the pure solvent perme-
ability, ∆p is pressure difference across the membrane, ∆π is the difference in
osmotic pressure, c̄ is the average concentration on both sides of the membrane,
ω is the solute permeability coefficient, and σ is the reflection coefficient. In
[26] it has been shown that in the case where σ ≈ 0 the expressions for the flux
in equation (1.6) reduces to the expression for pore flow models. In the other
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limit σ → 1 the model reduce to the solution diffusion model used for very dense
membranes [63]. I.e.,

Jv = A(∆p−∆π) , (1.7)
Jv = B∆c . (1.8)

In a given membrane process the flux through the membrane is often a measure
for the efficiency. There are, however, other measures for efficiency. Among these
are the rejection coefficients. The true, or intrinsic, rejection is a measure of the
membranes ability to retain solute particles and is defined as

Rtrue =
(

1− cp
cm

)
100% , (1.9)

where cp is the concentration on the permeate side of the membrane, and cm is
the concentration on the permeate side of the membrane. Hence, a high true
rejection corresponds to a membrane that is good at retaining the solute.

Another measure that will be widely used in the thesis is the observed rejection,
defined as

Robs =
(

1− cp
cb

)
100% , (1.10)

where cb is the bulk concentration. Whereas the true rejection is a measure on
the membrane the observed rejection is a measure of the process as a whole.
Although the two rejection coefficients are the same in the limits, i.e., if one
is zero so is the other, part of this thesis will concern how one can observed
rejection vary while the true rejection is nearly constant.

1.2 Flux decline in ultrafiltration

As a given membrane process is used a flux decline is observed as a function of
time. The causes can be subdivided into two distinct categories; internal fouling
and concentration polarization.

Internal fouling covers pore blocking, adsorption and deposition of solidified
solutes on the membrane surface. This type of fouling decreases the flux as a
function of time and is usually considered more or less irreversible.

Concentration polarization is the build up of solute on the membrane surface.
This also decreases the flux over time, but is considered a reversible process.
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The build up of concentration on the membrane surface can be described either
according to the cake theory or the thin film theory [62].

In the cake theory a constant concentration on the membrane surface as assumed.
The width of the cake layer grows as a function of increasing permeate volume.
The cake layer adds an additional resistance to the flux through the membrane.
Hence, as the cake layer grows the flux through the membrane decreases.

The models build upon the thin film theory all start with the continuity equation
for the solute

v · ∇c = D∇2c . (1.11)

The continuity equation will be derived in section 1.4.1. When looking only at
the direction normal to the membrane surface (let this be the x-direction) one
gets

vx
dc

dx
−D d2c

dx2 = 0 . (1.12)

When steady state is reached the velocity component perpendicular to the
membrane surface will be constant and equal to the volumetric flux, J , through
the membrane. Hence,

d

dx

(
Jc−D dc

dx

)
= 0 . (1.13)

Or
Jc−D dc

dx
= const (1.14)

A boundary condition for the solute flux is

Jcm −D
dc

dx

∣∣∣∣
0

= Jcp . (1.15)

Hence, a differential equation from equation (1.14) is obtained

Jc−D dc

dx
= Jcp . (1.16)

Or
d

dx
ln (c− cp) = J

D
. (1.17)

Integrating equation (1.17) from −δ to 0 with the boundary conditions c(−δ) = cb
and c(0) = cm gives

ln
(
cm − cp
cb − cp

)
= J

D
δ = J

k
, (1.18)

where k is the mass transfer coefficient, k = D/δ. The solution is illustrated in
figure 1.1.
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cp
cb

Membrane

cm

J · cp

x0−δ

Figure 1.1: Illustration of concentration polarization

Therefore, the mass transfer coefficient is a measure of the back diffusion and the
boundary layer thickness. At a constant volumetric flux, a large value of k means
that either the back diffusion is large or the boundary layer thickness is small.
Hence, concentration polarization will be a minor problem in a mixture with
large diffusion constants, compared to a mixture with small diffusion constants.

Three dominant mathematical models exist to describe the flux decline during
concentration polarization. These will briefly be explained below.

Firstly, there is the resistance models. Here the flux is described as the driving
force divided by the total resistance times the viscosity. I.e.,

Jv = ∆p
ηRtotal

(1.19)

The total resistance is then the sum of of the membrane resistance and the
resistance of the boundary layer. As the boundary layer offers an additional
resistance Rtotal increases with time and as a result the flux decreases.

Jv = ∆p
η (Rbl +Rm) (1.20)

Secondly, there are gel polarization models. Here the concentration builds up on
the membrane until a certain concentration called the gel concentration. When
the gel concentration is reached a gel layer builds up with constant concentration
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cg. The reduction in flux can now be explained by the resistance of the membrane
and the resistance of the gel layer[46].

Jv = ∆p
η (Rg +Rm) (1.21)

Thirdly, there is the osmotic pressure models which will be used throughout
the thesis. As seen from equation (1.6) the solvent flux is decreasing when the
osmotic pressure is increasing. In the next section it is shown how the osmotic
pressure can be expressed through the solute concentration at membrane surface.
Hence, an increase in solute concentration at the membrane surface will cause a
decrease in solvent flux and an increase in solute. Thus, reducing the efficiency
of the membrane.

1.2.1 Osmotic pressure

Consider a semipermeable membrane permeable to solvent but partially imper-
meable to solute. In order for the two sides of the membrane to be in equilibrium
one considers the equilibrium of the chemical potential between the two solutions,
that is

µ(P1, T1) = µ(P2, T2) , (1.22)

where subscripts 1 and 2 denote the feed side and the permeate side of the
membrane respectively. Assuming that the temperature on both sides of the
membrane is the same this reduces to

µ(P1, T ) = µ(P2, T ) . (1.23)

In order for the solution to be in equilibrium across the membrane the chemical
potential of the solvent needs to be in equilibrium. The chemical potential of
the solvent is given by [35]

µ(P, T ) = µ0(P, T )− kBTcs . (1.24)

Thus it is needed that

µ0(P1, T )− kBTcs,1 = µ0(P2, T )− kBTcs,2 (1.25)

Assuming that the pressure difference is not too large a first order Taylor-
expansion of µ0(P2, T ) gives

µ0(P2, T ) = µ0(P1, T ) + ∂µ0

∂P
∆P . (1.26)
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Combining equation (1.25) and equation (1.26) one gets

∂µ0

∂P
∆P = kBT∆cs . (1.27)

Now ∆P is the osmotic pressure usually denoted by ∆π and ∂µ0/∂P is the
molecular volume of pure solvent, v. Therefore we end up with an expression
of the osmotic pressure as a function of the concentration difference of solute
across the membrane, that is

∆π = kBT

v
∆cs = RT∆cs . (1.28)

1.2.2 Virial expression of the osmotic pressure

It has, however, been proposed that the solute concentration at the membrane
surface is so high, that a virial expression for the osmotic pressure would be a
better approximation than the one written above [27].

Let us consider the pressure difference across the membrane to be caused by the
concentration difference in solute across the membrane.

Let us further assume that the pressure in the bulk solution caused by the solute
molecules is given by ideal gas law

Ps,b = ns,bRT

V
= RTcs,b , (1.29)

where subscript b denotes that we are looking at the bulk solution. The osmotic
pressure is then the difference in pressure across the membrane caused by the
difference in solute concentration. Letting subscript f denote that we are looking
at the filtered solution, we get

∆π = Ps,f − Ps,b . (1.30)

If we again assume that we can express the pressure on the filtered side of the
membrane by a Taylor-expansion in cs, we get an approximation to the order K

Ps,f = Ps,b +
K∑
k=1

1
k!
∂kP

∂ck
(∆cs)k . (1.31)

Inserting this into equation (1.30) we get that

∆π = RT∆cs +
k∑
k=2

1
k!
∂kP

∂ck
(∆cs)k . (1.32)
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Notice that to first order equation (1.28) and equation (1.32) are identical.

An expression of this form is presented in section 2.3 for the osmotic pressure of
dextran.

1.3 Techniques to avoid concentration polariza-
tion

There exist techniques to reduce concentration polarization. Of these the present
thesis investigate cross flow and back-flushing.

• Cross flow is widely used in membrane separation, see e.g. [22, 64, 65]. The
main reason for this is the ability to reduce the concentration polarization.
This is done in two ways. The first and most important is that the fluid as
a whole is moving tangential to the membrane. This implies that there
will be a tangential velocity component very close to the membrane. The
tangential velocity component will contribute to the convection in such a
way that it pushes the boundary layer towards the outlet of the membrane.
However, the diffusion will have a component towards the inlet because of
the gradient in concentration tangential to the membrane. Therefore, it
is not clear how large a effect there is extremely close to the membrane
surface. The second reason for its efficiency is that the feed solution is
continuously been refreshed. Hence, compared to dead end filtration one
does not have a concentration polarization growing in time.

• Back-shocking1 is also a technique that has been used extensively, see e.g.
[57, 59, 20, 17, 54, 11]. Back-shocking is a technique that most certainly
changes the concentration at the membrane surface. In normal filtration a
constant pressure difference is applied across the membrane, this lead to a
pressure gradient with a time independent direction. When back-shocking
is used the pressure is changed at a given frequency, amplitude and time
interval. This leads to a change in the direction of the pressure gradient
such that permeate flows from the permeate into the retentate.
On the retentate side this process instantly changes the boundary layer
close to the membrane. This is in such a way that the concentration at the
membrane surface is comparable with the concentration in the permeate.
After a short time interval the pressure gradient is changed back into

1Back-shocking, back-pulsing, back-flushing, or flow reversal essentially covers the same
process. It is, however, common to refer to back-pulsing and back-shocking as shorter periods
of flow reversal, as compared to back-flushing.
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the original direction and separation proceeds. So this method removes
the concentration polarization when the pressure is reversed. When the
pressure is changed back to normal the concentration polarization will
develop again. However, even with the cost of injection of permeate into
the feed stream, the efficiency of the separation process is enhanced.

As explained there are many different things that can reduce the performance
of a given membrane, e.g. pore blocking, etc. [62]. The overall decrease in
membrane efficiency as a function of time is most probably an effect of all
fouling types combined. Nevertheless, in chapter 4 a mathematical model of the
interplay between physical properties of the solute and the effect of crossflow
will be modelled. In chapter 5 the effect of back-shocking will be modelled. In
both chapters, the equations of motion of the fluid will be solved numerically on
the retentate side of the membrane, and the osmotic pressure will determine the
flux decline. Therefore, we proceed to explain the equations of motion for the
solute and the solvent.

1.4 The equations of motion in a fluid

The equation of motion of a fluid is well known and is denoted the Navier-Stokes
equation. A thorough derivation of the equation can be found in any standard
textbook on fluid dynamics (see e.g., [8, 34, 19],Gersten). An in-depth derivation
is beyond the scope of this thesis. It will, however, be presented here along with
the continuity equation for a fluid containing solute particles.

The Navier-Stokes equation is essentially Newtons second law on an infinitely
small fluid parcel. In the case of an incompressible fluid, as considered in this
thesis, the Navier-Stokes equation in vector notation is given by

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ η∇2v , (1.33)

where v is the velocity vector, p is the pressure ρ is the density of the fluid parcel
and η is the shear viscosity. Here the left hand side of the equation represents
the mass times the acceleration and the right hand side represents the forces
acting on the fluid parcel.

To indicate that it is newtons second law the equation is sometimes written as

ρ
Dv

Dt
= ∇ ·Π , (1.34)
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where
DX

Dt
= ∂X

∂t
+ v ·X , (1.35)

is the material derivative of any variable X and Π is the total stress tensor

Π = pI + η
(
∇v + (∇v)T

)
. (1.36)

Here I is the identity matrix. This is the definition of a Newtonian fluid.

The change of mass into a given fixed volume V can be written as

d

dt

∫
V

ρdV = −
∫
S

(n · ρv)dS (1.37)

which indicates that the mass of a given volume changes according to the mass
flux into the volume. Using Gauss’s divergence theorem this can be rewritten as

d

dt

∫
V

ρdV = −
∫
V

∇ · (ρv)dV . (1.38)

Differentiating under the integral, and since the volume was chosen arbitrary we
have

∂ρ

∂t
+∇ · (ρv) , (1.39)

which is the continuity equation for the fluid. In case the density is constant

∇ · v = 0 . (1.40)

1.4.1 Continuity equation for the solute

In absence of diffusion the concentration of each fluid element remains unchanged
this means that

dc

dt
= ∂c

∂t
+ v · ∇c = 0 . (1.41)

Combining equation (1.39) and equation (1.41) one gets

0 = c

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂c

∂t
+ v · ∇c

)
⇔

0 = c
∂ρ

∂t
+ ρ

∂c

∂t
+ c∇ · (ρv) + ρv · ∇c⇔

0 = ∂ (cρ)
∂t

+∇ · (cρv) . (1.42)
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Here equation (1.42) is a continuity equation of one of the components of the
mixture. In integral form equation (1.42) can be written as

∂

∂t

∫
V

ρcdV = −
∫
S

(n · ρcv) · dS . (1.43)

Similar as in equation 1.37 it shows that the rate of change of that component in
any given volume element is equal to the amount of that component transported
through the surface of the volume by the movement of the fluid.

When diffusion is taken into account an additional term accounting for the flux
that occurs from the diffusion must be included in equation (1.43). Denoting the
density of the diffusion flux by i, i.e., i denotes the amount of the component
transported through unit area in unit time, one get

∂

∂t

∫
V

ρcdV = −
∫
S

ρcv · dS −
∫
S

i · dS , (1.44)

or in differential form
∂cρ

∂t
= −∇ · (cρv)−∇ · i . (1.45)

Equation (1.45) can be written as

−∇i = c
∂ρ

∂t
+ ρ

∂c

∂t
+ ρv · ∇c+ c∇ · (ρv)⇔

−∇i = c

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

(
∂c

∂t
+ v · ∇c

)
, (1.46)

using equation (1.42) one gets another continuity equation in the form of

ρ

(
∂c

∂t
+ v · ∇c

)
= −∇i . (1.47)

Neglecting thermal diffusion and barodiffusion i = −ρD∇c where D is the
diffusion coefficient[34]. Thus equation (1.47) can be written as

∂c

∂t
+ v · ∇c = ∇ · (D∇c) . (1.48)

If the diffusion coefficient is independent of the coordinates, equation (1.48)
reduces to

∂c

∂t
+ v · ∇c = D∇ · ∇c (1.49)

The continuity equation for the solute, equation (1.49), the continuity equation
for the solvent 1.40, and the Navier-Stokes equation, equation (1.33), along
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with appropriate boundary conditions, are essentially the equations that solve
the movement of the fluid and the transport of the solute particles in the bulk
solution.

These are often made non dimensional by scaling the equations. This can be
found in appendix A.
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Chapter 2

Physical properties of dextran

in the mathematical models presented in chapter 4 and chapter 5 the Navier-
Stokes equation is solved along with the continuity equation for both solvent
and solute.

As seen from equation equation (1.33) the viscosity enters the momentum equa-
tion. Furthermore, as seen in equation equation (1.49) the diffusion coefficient
enters in the continuity equation for the solute.

In the models presented in chapter 4 and chapter 5 the viscosity will be allowed
to depend on the concentration. Therefore, the expressions for this dependency
and the data found in the literature is presented in section 2.1.

2.1 Viscosity

The viscosity enters the Navier-Stokes equation and determines the fluids resis-
tance to shearing. Hence, for high viscosities a larger force is needed to shear
the fluid. It is well known that the viscosity depends on the concentration. The
aim of this section is to describe this dependency.
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2.1.1 Intrinsic viscosity

The relative viscosity, ηr, of a solution is defined as

ηr = η

ηs
, (2.1)

where η is the measured viscosity of the solution and ηs is the viscosity of the
solvent.

The viscosity may be expanded in a Taylor series in the concentration, such that

ηr = 1 + [η] c+ kH [η]2 c2 + · · · . (2.2)

Here, the intrinsic viscosity, [η], and the Huggins coefficient, kH , is independent
of the concentration.

Rearranging equation (2.2) and taking the limit as c→ 0 gives the definition of
the intrinsic viscosity.

[η] = lim
c→0

ηr − 1
c

= lim
c→0

η − ηs
ηsc

. (2.3)

The intrinsic viscosity will in general depend on the shear rate, γ̇. At very low
shear rates however, the intrinsic viscosity will approach a limiting value [η]0
known as the zero-shear-rate intrinsic viscosity.

It is found that the the relation between [η]0 and the molecular weight can be
given by[8]:

[η]0 = K ′Ma , (2.4)

where K ′ and a will depend on the specific solute and solvent. The parameter a
is known as the Mark-Houwink exponent.

Hence, a simple dependence on the viscosity of concentration and molecular
weight can made by combining equation (2.1), equation (2.2), and equation (2.4).

η = ηs

(
1 +K ′Mac+ k′ (K ′Ma)2

c2
)
. (2.5)

2.1.2 Viscosity of dextran

In this section the viscosity of dextran in water will be determined using data
from the literature.
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As explained in the previous section, the viscosity of a solution depends on the
molecular weight of the solute. However, it also depends on other parameters
such as temperature and chemical properties of the solvent. Therefore, the data
presented here are all approximately at room temperature. Furthermore, the
chemical properties of the solvent can make the solute molecules take different
shapes, from curled up (spherical) to more elongated (rod shaped). In this case
the solution with the elongated molecules will tend to have the highest viscosity
[60]. Therefore, the data presented here will all be with water as solvent.

The data presented here are from [2, 48, 23, 53]. According to equation (2.4) a
double logarithmic plot of the intrinsic viscosity and the molecular weight should
give a straight line. On figure 2.1 a double logarithmic plot of the collected data
and the molecular weight are plotted along with the best fitted line.
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Figure 2.1: Double logarithmic plot of the intrinsic viscosity as a function of
molecular weight along with the best fit through the data.

The values that gives the best fit according to equation (2.4) fit are K ′ = 0.0371
and a = 0.4352.

On figure 2.2 equation (2.4) with the parameter values given above, and the
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data from the literature are plotted.
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Figure 2.2: The intrinsic viscosity as a function of molecular weight along with
the best fit through the data.

In [2, 53] the Huggins coefficient for dextran in water is given to be between 0.495
and 0.58 for molecular weight in the range 10-500 kDa. Using the approximation
that 1wt% ≈ 1g/dl and choosing the Huggins coefficient to be 0.5 the viscosity
plotted as a function of concentration can found. This is shown on figure 2.3.

As expected the viscosity increases more rapidly for larger molecules.
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Figure 2.3: The concentration dependence of the viscosity for different molecular
weights.

2.2 Diffusion coefficient

The diffusion coefficient depends on the size of the molecules in the solution.
Using the Stokes-Einstein relation [34] the diffusion coefficient can be given by

D = kBT

6πηsRH
, (2.6)

where kB is Boltzmann’s constant, T is the temperature, ηs is the viscosity of
the solvent, and RH is the hydraulic radius.

2.2.1 Diffusion coefficient of dextran

Here measurements of RH as a function of average molecular weight for dextran
have been collected from the literature [36, 16, 18, 3, 47]. The diffusion coefficient
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has been calculated from equation (2.6), using the temperature of 293.15 Kelvin
and the viscosity of water.

On figure 2.4 a log-log plot of the diffusion coefficient as a function of molecular
weight, in the range 9.5-2000 kDa, is shown.
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Figure 2.4: Double logarithmic plot of the diffusion coefficient, calculated using
equation (2.6) and using data of the hydraulic radius found in the litereature
[36, 16, 18, 3, 47], and the molecular weight.

It seems that the points lie approximately on a straight line, suggesting that
there is a relationship between the diffusion coefficient and the average molecular
weight given by

D = k1M
k2
w (2.7)

Fitting a straight line to the data points in figure 2.4 gives the following values
for k1 and k2.

k1 = 2.6804 · 10−10 , k2 = −0.4754 (2.8)

On figure 2.5 the diffusion coefficients from the literature and a plot of equation
(2.7) is shown.
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Figure 2.5: The diffusion coefficient as a function of molecular weight. Plotted
with different symbols is the diffusion coefficient calculated from equation (2.6)
using data of the hydraulic radius found in the literature [36, 16, 18, 3, 47]. The
full line is the best fit given by equation (2.7).

As seen there is good agreement between the data points from the literature and
equation (2.7).

Therefore, in the model the diffusion coefficient for different molecular weights
will be given by equation (2.7) with the parameters given in equation (2.8).

2.3 Osmotic pressure

The osmotic pressure for Dextran T10 has been found in [27] to be given by a
third degree polynomial

Π = A1c+A2c
2 +A3c

3 , (2.9)
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where
A1 = 0.1116 , A2 = −0.00491 , A3 = 0.000257 . (2.10)

Here the concentration is given in wt% and the osmotic pressure is measured in
atm, where wt% is defined as

wt% := Weight of solute
Weight of solution . (2.11)

A plot of equation (2.9) is shown in figure 2.6.
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Figure 2.6: The osmotic pressure as a function of concentration as found in [27].

All the expressions presented in this section will be used in the models described
in chapter 4 and chapter 5.



Chapter 3

Statistical model
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a b s t r a c t

The structural conformation of complex molecules, e.g., polymers and proteins, is determined by several
factors like composition of the basic structural units, charge, and properties of the surrounding solvent. In
absence of any chemical or physical interaction solute–solute and/or solute–membrane, it can be
expected that the possibility for a solute particle to enter the membrane pore will only depend upon
the relation between such molecular conformation and pore size. The objective of the present study is
to use geometric and statistical modelling to determine the effect of particle elongation – from spherical
to being increasingly prolate ellipsoidal – on the possibility of entering the pore, and, in turn, on the mac-
roscopic distribution coefficient, K, and overall retention during filtration. The model showed that the
value of K was maximal when the longer of the radii in the prolate ellipsoid was approximately equal
to the radius of the pores, in case the spherical size of the particle was smaller than the membrane pore.
Furthermore, for spherical particles larger than the pore, such a maximum was found to occur after the
smaller of the radii was smaller than the pore radius. Either for spherical particles bigger or smaller than
the pore radius, K was monotonically decreasing towards zero as the particles became more elongated.
When relating the values of K to the friction model, the maximal rejection coefficient was found to reach
a characteristic minimum when changing shape. The results suggested that the retention during porous
membrane filtration can be manipulated when working with solute particles prone to alter conformation
via, e.g., adding proper functional groups to the molecule, or modifying charge density/distribution by
varying pH.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modelling has been applied to a wide range of
membrane separation processes, from the most simple microfiltra-
tion in which practically only pore size has been factored in to
complex nanofiltration operations in which more advanced physi-
cal principles have been considered, e.g., friction forces or charge
effects. The purpose was to use the resulting model as a tool for
interpreting – or even better, predicting – the behaviour of critical
variables, e.g., flux or rejection, or phenomena, e.g., fouling, inher-
ent to separation systems that were, in most of the cases, very
specific.

For many of these models the target has been to describe values
of flux across the membrane, which is one of the most decisive
variables related to the economic feasibility of membrane separa-
tion operations at industrial level. Some of these models recog-

nized the membrane as a porous matrix [1–3], whilst diffusion
was considered as the main principle ruling transmission in others
[4,5]. Several other models have gone further by focusing on the
behaviour of the solute in the bulk solution and treating the mem-
brane as a boundary condition. The common point of such models
has been to work on the fluid dynamics on a macroscopic level,
which enabled to obtain equations for assessing permeate fluxes
[6–8]. Other models have attempted to describe certain membrane
separations from a microscopic point of view, ranging from deter-
mining the lift of a molecule within the pore [9] to directly inves-
tigate total fouling via stochastic models [10–12].

Despite of the fact that the size of the pores and size of the sol-
ute molecules are parameters that will dramatically change the
outcome of most of the above mentioned models, little or no atten-
tion has been paid to the shape of the solute molecules in most of
them. In papers that relates the flux through the membrane and in-
clude solute shape as a parameter, e.g., [13,14], the microscopic
shape of the particle was associated with a macroscopic value,
e.g., diffusion constant, Stokes radius, steric partition factor, which
was in turn related to other parameters describing the flux through
the membrane.

1383-5866/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.seppur.2012.01.032
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It has been reported that the rejection coefficient, related to the
probability of entering a pore, depends on the shape and the size of
the molecule [13–17]. Certain molecules are considered com-
pletely spherical, e.g., Ficoll whereas other particles are more elon-
gated, e.g., polyethylene oxide [18]. There can be many reasons
why the shape of different particles is different. For instance, the
shape of proteins can depend on pH – which regulates the charge
distribution and density – particularly in cases in which other
charge solutes are present in the feed solution or/and the mem-
brane carries some charge groups [19,20]. Accepting the criticism
that states that it is difficult to obtain reliable conclusions on per-
meability-molecular extension relations based on comparisons on
molecules of different nature, pH can be also a factor which can
help to solve this problem. For example, charge density of carboxy-
methylcellulose, which bears a carboxylic group for each glucose
molecule, increases from low to high pH values. The higher the
number of uncharged monomers, the more globular is the confor-
mation, which becomes more linear with increasing charge density
(high pH) [21–23].

The scope of this paper is to investigate the effect of a change in
shape on a microscopic level, in dead end filtration. More specifi-
cally this model investigates the probability of a single molecule
to enter a pore, when the shape of the molecule changes from
spherical to an increasingly prolate ellipsoidal (elongated) shape.
Therefore, this paper will not consider fouling or aggregation of
solute particles on the membrane surface or within the membrane
pore.

The probability of entering a pore will be related to the distribu-
tion coefficient between solute concentration on the membrane
surface, cms, and in the membrane pore, cmp

K ¼ cmp

cms
: ð1Þ

In many mathematical models that describe the flux through por-
ous membranes K is a parameter [1,2,24]. These models also predict
a rejection coefficient. Hence, assuming that other parameters in
these models are not changing when changing the shape of a mol-
ecule, a one to one correspondence is given between the distribu-
tion coefficient and the rejection coefficient.

To investigate the effect of elongation, the molecules in the
model will have the same volume but varying shape. The volume
of an ellipsoid Ve is given by

Ve ¼
4
3
pr1r2r3: ð2Þ

A prolate ellipsoid has r1 > r2 and r2 ¼ r3. The volume of the solute
particle when spherical, Vm;s, is then equal to the volume of the
same particle when this is a prolate ellipsoid, Vm;e. Thus,

Vm;s ¼
4
3
pR3

0 ¼
4
3
pr1r2

2 ¼ Vm;e; ð3Þ

where R0 is the radius of the molecule when considered spherical.
Hence, the following relation is obtained from Eq. (3)

r1 ¼
R3

0

r2
2

: ð4Þ

Letting r1 2 ½R0;1½ one has allowed all elongations for a molecule
with spherical radius R0. Changing R0 allows investigation of differ-
ent sized molecules.

One assumption made in this paper is that the molecules hit the
membrane surface at random. Hence, the centre of mass will be
thought of as an evenly distributed random variable. This is an ap-
proach similar to other models that study solute particles in a
microscopic perspective [11,12,10], when investigating dead end
filtration. Furthermore, it will be assumed that a molecule has no

preferred orientation. Hence, the orientation of the molecules will
also be an evenly distributed random variable.

The porosity is defined as the ratio of the area of the pores, Ap

and the total area of the membrane, Am

n ¼ Ap

Am
: ð5Þ

The membrane will be assumed homogeneous. That is, the pores are
circular with the same radius, rp, and evenly distributed across the
membrane. This assumption reduces the dimension of the mole-
cules by one, because of the symmetry. Thus, instead of prolate
ellipsoids one can look at ellipses.

Under the above assumption the area of the pores is equal to the
number of pores, n, times the area of an individual pore. Hence,

n ¼
npr2

p

Am
: ð6Þ

Furthermore, a characteristic length l ¼ 2rp can be defined such that

n ¼ l
L
; ð7Þ

where L is given from Eq. (6), L ¼ 2Am
nprp

.
In a Cartesian coordinate system aligned with the membrane

surface, the abscissa of the centre of the ellipse is denoted xc . The
angle between the direction of r1 and the y-axis is denoted h. Let-
ting h 2 � p

2 ; p
2

� �
one has allowed all orientations of the ellipsoid.

Letting xc 2 ½0; L� one has allowed all positions of the ellipsoid. This
is illustrated in Fig. 1.

The molecules will be assumed rigid. Under this assumption the
elongated molecules will be able to tilt, as they hit the membrane,
depending on the angle of the molecule. This is similar to an egg
tilting on a table under the influence of gravity. However, in this
situation it is not gravity that tilts the molecule, but the motion
of the fluid as a whole, moving downwards through the membrane.
Therefore, a molecule will tilt, depending on the angle h, ending in
a position where there is a minimal distance between the mem-
brane surface and the centre of mass (horizontal position). This is
illustrated in Fig. 2.

Under these assumption the statistical model can be defined.

2. Statistical model

The interesting part is whether or not the molecule will pass
into the membrane. Denoting success (entering the pore) by one
and failure (not entering the pore) by zero, the sample space is

X ¼ 0;1f g: ð8Þ

The probability of success depends on the two, evenly distributed,
random variables; the position of the centre of mass, xc , and the an-
gle h. Furthermore, it depends on the three parameters R0, r1, and n,
defined in Eqs. (3), (4), and (7).

Both the position of the centre of mass and h are continuous
random variables, where xc belongs to the interval ½0; L� and h be-
longs to the interval ½�p

2 ; p
2�. This corresponds to the molecules hit-

ting the membrane surface at random positions with random
orientations. Thus, for a given set of parameters there exists a prob-
ability that the molecule passes into the membrane. This implies
that a continuous probability function exists as a function of the
parameter r1, where r1 belongs to the interval ½R0;1½, and n and
R0 are kept constant.

Knowing the value of xc , h, r1, and r2 positions of various points
on the ellipse, which are important for success or failure, must be
found. These are the point on the ellipse furthest to the left, xl, the
position of the point on the ellipse furthest to the right, xr , the po-
sition of the contact point molecule-membrane, xb, a given arc
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length on the ellipse, the position of the centre of mass after a pure
rolling ~xc , and the longest chord within an ellipse from a given
point on the ellipse. The geometric calculations needed to find
these quantities are presented in Section 3. However, the statistical
model can be understood without understanding the underlying
mathematics in detail. Therefore, Section 3 serves as an offer to in-
sight in the construction of the numerical method used to obtain
the results of this paper and the possibility to reproduce data.
However, the reader may skip Section 3 and proceed directly, from
the end of this section, to Section 4 for simulation results.

It will be useful to define the interval / where the pore is lo-
cated, that is

/ ¼ L� l
2

;
Lþ l

2

� �
: ð9Þ

The contact point molecule-membrane, xb, can either be within
– or outside the pore, /. There are three situations that lead to suc-
cess when the contact point molecule-membrane, xb, is within the
pore, /, and one situation that leads to success when the contact
point molecule-membrane, xb, is not within the pore, /.

2.1. When the contact point molecule-membrane is within the pore

Success occurs if both the left and the right sides of the mole-
cule are within the pore. In mathematical terms this is expressed
as

xl 2 / ^ xr 2 /: ð10Þ

The other two situations that leads to success will depend on
the sign of the angle h.

For h > 0 success will be defined if the centre of mass is above
the pore and the right side of the molecule is above the pore, cor-
responding to the molecule sliding into the pore. A similar situa-
tion exists when h < 0. In mathematical terms this is written as

h > 0 ^ xc 2 / ^ xr 2 / _ ð11aÞ
h < 0 ^ xc 2 / ^ xl 2 /: ð11bÞ

Furthermore, the molecule can hit the edge of the pore. If h P 0
the molecule will hit the right edge of the hole if and only if xr R /.
In this case the molecule is thought of as tilting around this point.
Therefore, the ability of entering the pore depends on the size of
the molecule. The longest chord, within the ellipse, lc , from the

Fig. 1. An illustration of the molecule and the membrane. The molecule has two radii r1 and r2 with r1 P r2. The angle between the membrane normal and the direction of r1

is h. The length of the membrane segment is L and the width of the pore is l. Also marked is the abscissa of the molecules centre of mass xc , the left and right sides of the
molecule, xl and xr , and the lowest point on the molecule, xc . Furthermore, the coordinate system is illustrated.

Fig. 2. An illustration of where the centre of mass is situated. The distance of the
thick line on the ellipse is equal to the thick line on the x-axis. Therefore, when pure
rolling is assumed the molecule change position in the way illustrated. The initial
position being the ellipse that is drawn with a full line, the final position being the
ellipse drawn with a dotted line.
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point that hits the edge will determine if the molecule enters the
pore or will end in a position lying across the pore. There is a sim-
ilar situation for h 6 0. Hence, success will be given if

h P 0 ^ xb 2 / ^ xr R / ^ lc < l _ ð12aÞ
h 6 0 ^ xb 2 / ^ xl R / ^ lc < l: ð12bÞ

This is illustrated in Fig. 3.

2.2. When the contact point molecule-membrane is not within the
pore

When the molecule hits the membrane surface the vertical
movement of the centre of mass will cause the molecule to tilt
around the point that touches the membrane first. This will lead
to the molecule lying horizontally on the surface of the membrane.
The direction of tilting will depend on the angle. The molecule will
tilt left if h > 0, right if h < 0. h ¼ 0 will correspond to the molecule
maintaining its vertical position after the impact with the
membrane.

For h > 0 success will be defined if the position of the molecule,
after tilting, is positioned in such a way, that the centre of mass, ~xc

is above the pore, and the end of the molecule, that did not initially
touch the membrane, is above the pore. This situation is illustrated
in Fig. 4. In mathematical terms this is defined in the following
way:

h > 0 ^ xb R / ^ ~xc 2 / ^ ~xc � r1 2 / _ ð13aÞ
h < 0 ^ xb R / ^ ~xc 2 / ^ ~xc þ r1 2 /: ð13bÞ

If none of the above criteria are fulfilled, the outcome will be de-
noted by failure. Since there are only two possibilities the probabil-
ity of the molecules not entering the pore is

Pð0Þ ¼ 1� Pð1Þ: ð14Þ

The distribution coefficient given in Eq. (1) is the ratio between
solute concentration within the pore and the solute concentration
at the membrane surface. The solute concentration within the pore
is related to the probability of the molecule entering the membrane
pore. Furthermore, the solute concentration on the membrane sur-
face is related to the probability of the solute molecule not entering
the pore (if the molecule does not enter the membrane pore it will
be retained at the membrane surface. Hence, contribute to the con-
centration). This relation is elaborated in Section 4.1.

The distribution coefficient can be related to the maximal rejec-
tion under the assumption of a high Peclet number [1,2,24]. This is
done in details in Section 4.2, and the validity of the assumption is
discussed in Section 5.

3. Geometric computations

This section contains the parametrization of an ellipse, how to
calculate the various points, the arcs, and the longest chords
needed in the statistical model.

3.1. Parametrization of an ellipse

When defining the angle h as the angle between the y-axis and
the longer of the two radii, r1, every point on the ellipse can be
found by introducing the parameter t 2 ½0; 2p�, such that t is the
positive angle measured from the angle h. This is illustrated in
Fig. 5.

In this case the points on the ellipse are given by

xðtÞ ¼ xc þ r1 cosðtÞ sinðhÞ þ r2 sinðtÞ cosðhÞ; ð15aÞ
yðtÞ ¼ yc � r1 cosðtÞ cosðhÞ þ r2 sinðtÞ sinðhÞ; ð15bÞ

where ðxc; ycÞ is the position of the centre of the ellipse.

3.2. Calculation of xl, xr, and xb

As seen it is of interest where the sides of the ellipse is situated
relatively to the centre of mass. The two sides can be found from
Eq. (15a) as ~t j _xð~tÞ ¼ 0: That is

~t ¼ tan�1 r2

r1

1
tanðhÞ

� �
: ð16Þ

Fig. 3. Illustration of a molecule hitting the edge of the pore. The line inside the
molecule illustrates the longest chord, lc . Success will depend on the length of this
chord relative to the diameter of the pore, l.

Fig. 4. An illustration of a molecule hitting the membrane outside the pore. Success
will depend on the position of the centre of mass after pure rolling, ~xc .

Fig. 5. An illustration the parametrization of an ellipse.

264 F. Vinther et al. / Separation and Purification Technology 89 (2012) 261–269



There will be two solutions to Eq. (16) and in this case both of them
are of interest. Denoting the two solutions by tr 2 ½0; pÞ and
tl 2 ½p; 2pÞ. Then, the right side of the ellipse, xr , and the left side
of the ellipse, xl, will be given by

xr ¼ xðtrÞ ¼ xc þ r1 cosð~trÞ sinðhÞ þ r2 sinð~trÞ cosðhÞ; ð17aÞ
xl ¼ xðtlÞ ¼ xc þ r1 cosð~tlÞ sinðhÞ þ r2 sinð~tlÞ cosðhÞ: ð17bÞ

The point of the ellipse that touches the membrane, is the solu-
tion t̂ of _yð̂tÞ ¼ 0 for which t̂ þ h 2 � p

2 ; p
2

� �
.

The x-coordinate of the point that touches the membrane will
then be given by

xb ¼ xð̂tÞ ¼ xc þ r1 cosðt̂Þ sinðhÞ � r2 sinð̂tÞ cosðhÞ: ð18Þ

3.3. Length of an arc

From the point where the molecule touches down on the mem-
brane surface the molecule will roll towards one of the sides
depending on the value of t̂. The molecule will roll to the right if
t̂ 2 0; p

2

� 	
, and to the left if t̂ 2 3

2p ; 2p
� 	

. The distance that the mole-
cule will roll will depend on the length of the arc, from the xb on
the ellipse the can be derived from elementary differential geome-
try [25].

The length of a an segment of an arc from t0 to t is given by

sðt0; tÞ ¼
Z t

t0

k _cðuÞkdu; ð19Þ

where

_cðtÞ ¼ ð _xðtÞ; _yðtÞÞ: ð20Þ

Denoting the angle of integration by U, U ¼ t � t0, one can eas-
ily show that

sðtÞ ¼ r2EðU; kÞ ¼ r1EðU;mÞ; ð21Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r1

� �2
r

, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r1

r2

� �2
r

. Here Eð/; kÞ, Eð/;mÞ are
incomplete elliptic integrals of the second kind.

3.4. The position of the centre of mass after rolling

Now one is able to define where the centre of mass will be sit-
uated once the molecule has come to rest. The molecule will touch
down on the membrane at the point xðt̂ðhÞÞ. From this point the
molecule will roll to its equilibrium position. The final position of
the centre of mass will be derived in the following. There are
two situations h > 0 and h < 0.

When h < 0 we have t̂ 2 0; p
2

� 	
. This implies that the position of

the centre mass after rolling, ~xc is

~xc ¼ xð̂tÞ þ
Z 3p

2

t̂
k _cðtÞkdt: ð22Þ

When h > 0, t̂ 2 3p
2 ; 2p
� 	

. This implies that the position of the
centre of mass after rolling will be given by

~xc ¼ xð̂tÞ �
Z t̂

3p
2

k _cðtÞkdt: ð23Þ

The first situation is illustrated in Fig. 2.

3.5. The longest chord in an ellipse

The length of a chord in an ellipse is given by

j �cðs;~sÞ j¼j cðsÞ � cð~sÞ j : ð24Þ

Thus, the problem reduces to; given s, what is the value of ŝ, where ŝ
is defined as

ŝ ¼ ~s j ~s 2 ½0; 2p½; j �cðs; ŝÞ j¼max j �cðs;~sÞ j 8~sf g: ð25Þ

The value of ŝ will be found by solving the equation

d
d~s
j �cðs;~sÞ j¼ 0; s–~s: ð26Þ

The relation between s and ŝ is given by the following equation

sinðŝ� sÞ ¼ k2 cosðsÞ � cosðŝÞ½ � sinðŝÞ: ð27Þ

In the specific statistical model this will be used in the following
way. If xb ¼ xð̂tÞ 2 / ^ xr ¼ xðtrÞ R / then there will be an angle
s : t̂ < s < tr ; s 2� � p

2 ; p
2 ½, such that

xc þ r1 cosðsÞ sinðhÞ þ r2 sinðsÞ cosðhÞ ¼ Lþ l
2

: ð28Þ

The angle s then defines the point on the ellipse from where to find
the longest chord. As seen in Eq. (27) there exist an angle ŝ such that
j cðsÞ � cðŝÞ j is the longest chord from cðsÞ. The molecule will be
thought of as tilting around the point specified in Eq. (28). Hence,
success will be defined if and only if lc ¼j cðsÞ � cðŝÞ j< l.

4. Results

First a few remarks on what to expect, from the model, and
why.

The simplest situation is when the molecule is large compared
to the radius of the pore (R0 >

l
2). In this case, when the molecule is

spherical, no molecules will enter the pore. When the molecule be-
comes so elongated that the smaller of the two radii is equal to the
radius of the pore, r2 ¼ l

2, there will exist a possibility of the mole-
cule entering the pore. At exactly this point only molecules that hit
the membrane with centre of mass directly above the centre of the
pore, and an angle of zero, can enter the membrane. This event has
an effective probability of success equal to zero. When the mole-
cule becomes more elongated one would expect the probability
of success to increase. When the molecules become infinitely long
only molecules above the pore and with an angle of zero can enter
the membrane. Thus, the probability of a molecule entering the
membrane will be zero. Hence, a maximum must exist. A simula-
tion of the statistical model can be seen in Fig. 6.

Another possibility is that the solute molecules are small com-
pared to the pore radius (R0 <

l
2). In this case, when the molecules
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Fig. 6. The probability of success as a function of r1, with the parameters R0 ¼ 0:21,
n ¼ 0:2. For each value of r1 106 simulations have been made.
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are spherical the probability of the molecule entering the mem-
brane is equal to the porosity. This is because the probability only
depends on the position of the centre of mass, which in return is a
random variable. When the molecule becomes more elongated
there is a possibility of the molecule tilting into the pore when hav-
ing centre of mass outside the pore. This will in return increase the
probability. As with the larger molecules, the probability must tend
to zero, when the longer of the two radii tends to infinity. Hence,
also in this situation a maximum exist. A simulation of the statis-
tical model showing can be seen in Fig. 7.

Clearly the most interesting part of Fig. 7 is the part where the
maximum exist. A figure illustrating this part more clearly is given
in Fig. 8.

As seen from Fig. 8 the probability of success when the mole-
cule is spherical is equal to the porosity as expected. Furthermore,
the probability is seen to increase as the length of r1 increases. The
increase continues until a peak at approximately r1 ¼ l

2. From a
physical point of view a peak, at exactly this value, can be ex-
plained from the fact, that for values of r1 larger than this value
molecules will be able to lie across the pore. Hence, molecules
landing on the edge of the pore will not enter the pore. Of course,
this effect increases as r1 becomes longer.

The influence of changing the porosity and maintaining the ori-
ginal volume of the molecule is shown in Fig. 9.

As seen from the figure this changes the probability of entering
the pore proportional to the change in porosity. Hence, the maxi-
mum probability of entering the pore is approximately two times
higher on Fig. 7 compared to Fig. 9. Furthermore, the probability
in Fig. 9 is seen to decrease more rapidly after the maximum, as
compared to Fig. 7.

From Figs. 9 and 8, it is seen that there is approximately 20% in-
crease in the probability for entering the membrane when r1 ¼ l

2
compared to r1 ¼ R0. That is

P 1 j r1 ¼
l
2

� �
� 1:2Pð1 j r1 ¼ R0Þ: ð29Þ

4.1. Relation between K and the statistical model

As mentioned K is the distribution coefficient of solute concen-
tration between the membrane surface, cms, and the membrane
pore, cmp, Eq. (1).

Assume that all particles are spherical and R0 <
n
2 and they are

randomly distributed. In this case the concentration in the pore
will be equal to the concentration in the bulk solution. This is
due to the fact that all particles with centre of mass directly above
the pore will enter the pore. Hence, one can think of the column of
fluid directly above the pore as being repeated within the pore.

The statistical model presented in this paper also relates the
shape of the particle to the probability of entering the pore. How-
ever, since no accumulation of solute particles on the membrane
surface is included in the model, it is only possible to relate the re-
sults of the model, to experiments on non-fouled membranes, or at
the beginning of a separation process.

Under these assumptions the concentration in the membrane
pore is related to the probability of a solute particle to enter the
pore, and the concentration at the membrane surface is related
to the probability of the molecule not entering the membrane pore.
If one furthermore assumes that the time interval under consider-
ation is such that all molecules that enter a pore does not exit the
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Fig. 7. The probability of success as a function of r1, with the parameters R0 ¼ 0:01,
n ¼ 0:2. For each value of r1 106 simulations have been made.
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Fig. 9. The probability of success as a function of r1, with the parameters R0 ¼ 0:01,
n ¼ 0:1. For each value of r1 106 simulations have been made.
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pore, and that there is no accumulation of particles in the vicinity
of each individual pore on the membrane surface, the distribution
coefficient will be given by

K ¼ Pð1 j R0; r1; nÞ
Pð0 j R0; r1; nÞ

¼ Pð1 j R0; r1; nÞ
1� Pð1 j R0; r1; nÞ

: ð30Þ

A plot of the distribution coefficient as a function of r1 in the
case presented in the previous section (Fig. 7) is shown in Fig. 10.

As seen, from Eq. (30) the distribution coefficient behaves in a
similar way as the probability of entering the pore behaves. Hence,
the discussions related to the probability of entering the pore, as a
function of r1, can be repeated when explaining the behaviour of
the distribution coefficient, as a function of r1.

4.2. Relation to mathematical models

In [1,2,24], the maximum rejection, Rmax, was found by letting
the flux through the membrane (the Peclet number) tend to infin-
ity. The expression for Rmax is given by

Rmax ¼ r ¼ 1� K
b
; ð31Þ

where b is a friction coefficient,

b ¼ 1� fsm

fsw
: ð32Þ

Here fsm denotes a friction coefficient between the solute and the
membrane and fsw denotes a friction coefficient between the solute
and the solvent.

If one assumes that b is constant when changing the elongation
the statistical model predicts a rejection coefficient, on a non-fo-
uled membrane or at the beginning of a separation experiment,
that varies as a function of elongation.

Using the expression of the distribution coefficient found in the
previous section, Eq. (30), and inserting this into Eq. (31), the max-
imal rejection will be given by

Rmax ¼ 1� Pð1 j R0; r1; nÞ
1� Pð1 j R0; r1; nÞ

: ð33Þ

A plot of this using the same parameters as in Figs. 7 and 10 is
shown in Fig. 11.

5. Discussion

The statistical model showed a relation between the coefficient
of distribution of solute concentration between the membrane sur-
face and the membrane pore, K, measured in terms of probability
of solute entering the pore, and the molecular shape of the solute
particle for a given membrane pore size.

As seen in Figs. 6, 7, and 9 the probability of a solute particle to
pass into a pore was found to follow two tendencies, depending on
the volume of the molecule. For molecules with a large volume
compared to pore area (R0 >

l
2) the coefficient of distribution was

found to be zero until the elongation corresponded to the smaller
of the two radii being equal to the pore radius (r2 ¼ l

2). A further in-
crease in elongation resulted in an increase in probability until a
maximum was obtained. Further elongation implied a monotoni-
cally decreasing probability. This result indicates, when having
large solute molecules compared to pore radius, it would be bene-
ficial to have the solute molecules in a globular shape.

For solute molecules that are small compared to pore radius
(R0 <

l
2) the probability of the solute molecule was found to follow

two tendencies. Initially, when the spherical-shaped particle
(R0 ¼ 0:01) was elongated to a prolate ellipsoidal-shaped particle
with the longer of the two radii equal to the half the pore size of
the membrane, a peak of maximal probability of entering the pore
(approximately 20% higher than the initial value) was observed.
This increase is ascribable to the fact that a higher number of mol-
ecules will have the possibility of tilting into the pore as a function
of elongation, hence a higher probability.

The relation between Rmax and the distribution coefficient, K,
shown in this study, Eq. (31), is based on the assumption that diffu-
sion is negligible as compared to convection (high Peclet numbers).
This is true in microfiltration and ultrafiltration, where fluxes are
high and diffusion coefficients for large molecules small, resulting
in high Peclet numbers. Therefore, the membrane rejection will be
very close to the maximum rejection [1,2]. In Reverse osmosis, the
distribution coefficient is rather a function of the physical–chemical
interactions between membrane and solute, e.g., interaction be-
tween membrane material and salt charges, rather than a function
of the geometry and sizes of pores and solutes, therefore the validity
of the model is doubtful for reverse osmosis applications.

The increase of permeability for slightly elongated solutes
predicted by the model has been confirmed in a previous study
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including four different polymers with increasing Stokes radius
(Ficoll < dextran < pullulan < polyethylene oxide) and similar
molecular weight [18]. The study showed a significant increase
of the sieving coefficient – related to permeability – with increas-
ing Stokes radius, and revealed that permeability could be corre-
lated to slight increases of molecular elongation. The same effect
was observed for 1-propanol and 2-propanol, 1- and 2-butanol,
and 1- and 2-pentanol when studying the rejection on nanofiltra-
tion membranes [13]. Assuming a cylindrical shape for all the spe-
cies and having 1-alcohols a slight higher molecular length in all
cases, the permeability was found to be lower for 2-alcohols. In
[14], rejection data was given for various solute molecules. Fur-
thermore, the molecular shape was fitted to prolate ellipsoids.
Relating solute molecules of similar molecular volume (3-hexanol
and 1,8-octanediol) but different shape, the permeability of 1,8-
octanediol, which was found to be more elongated than 3-hexanol,
was found to be higher at low Peclet numbers, where a random ori-
entation is most valid. Furthermore, for solute molecules having
the same shape but different molecular volume (glucose and glyc-
erol), the permeability was found to be higher for glycerol, which
has the smallest volume. The shape and size of solute molecules
was also studied in [15–17], they found that the most important
parameter was not the shape but the size. As seen from Figs. 7
and 9 this paper also found that the size of molecule, relative to
the size of the pore, has a major influence on the permeability.

The lower permeability of spherical – or globular – conforma-
tions has particular importance during filtration of proteins, e.g.,
albumin, bikunin, catalase, ribonuclease, which commonly have a
structure more close to a rigid sphere as compared to more ex-
tended polymers of similar molecular weight, e.g., dextran, whose
permeabilities are higher [18,26].

A peak of maximal permeability is also observed when the pore
size of the membrane was increased (Fig. 6). Also in this case, the
maximal value of permeability is attained when the radius of the
particle corresponds to half the pore size radius. However, the
main difference is that the permeability increased almost 100%
when the pore size was doubled. In experiments with membranes
of different pore sizes, i.e., NF70 (MWCO = 250), UTC-20 (180), NTR
7450 (600–800), and Zirfon (2000–3000), the tendency of retention
for a group of solutes within a range of molecular weight (32–696)
was quite different. Whilst a gradual increasing curve retention-
solute molecular weight was observed for NTR 7450 and Zirfon
(high pore sizes), a sharply increasing function was observed for
the other two membranes [17]. This indicates that a higher pore
size allows a higher number of molecular conformations (or posi-
tions of the mass centre of particles) to pass through. If this
hypothesis was correct, it would mean that the spatial disposition
of the solute particle – and probably also the flexibility – in the
solution gains importance as confronted to the molecular weight
as the pore size becomes lower. For high pore sizes then, spatial
disposition of the particles loses importance, as particles will
encounter the pore anyway.

The model predicted a sharp decrease of permeability for ellip-
soid-shaped particles whose r1 increases from the size of the mem-
brane pore radius to the diameter (Figs. 7 and 9). After that, the
permeability followed a slow, progressive decrease. Such results
imply that, in general, the separation of totally linear molecules
is much easier than the separation of equivalent molecules –
equivalent meaning that have the same total volume – with a
globular shape. For molecules that change shape with operation
conditions, e.g., pH or ionic strength, the model suggests to manip-
ulate the conditions in such a manner that the molecule becomes
linear when a high rejection is required. For example, increasing
pH during filtration of carboxymethylcellulose results in an in-
crease of negative charges in the molecular structure, which causes
the molecule to be more linear [21]. This would decrease the trans-

mission of the molecule across the membrane, as predicted by the
model. There is scarcity of studies in which the filtration of the
same compound with different conformations have been com-
pared. In those few cases, the interpretation of the observations re-
lated to filtration efficiency is complicated because of the possible
confounding effects of chemical conformation on charge with ef-
fects on size and shape [27]. Ficoll is probably the most studied
molecule to this regard. It is assumed to have an ideal spherical
shape and is used to study pore size distribution and permeability
of membranes [28]. Recent studies have compared the glomerular
permeability of anionic versus neutral ficoll and the enhanced per-
meability of anionic versus neutral ficoll was explained by electro-
static interactions independent of size and conformation [29].
Other studies compared the retention of small molecules, e.g.,
methanol, isopropanol, with bigger ones like benzoic acid or ben-
zylalcohol in nanofiltration membranes, and reported the expected
higher levels of retention for the bigger molecules, albeit molecular
weights were quite different [17]. The same effect was observed for
monodisperse solutions of PEG of increasing molecular weights, in
which the rejection decreased exponentially as the molecular
weight increased from 2 to 35 kDa [30].

The present paper is capable of relating the distribution coeffi-
cient and maximal rejection coefficient to the probability of suc-
cess on a non-fouled membrane, or in an infinitesimal time
interval in the beginning of a separation experiment. Other predic-
tions can be made about the kind of fouling one can expect. When
the molecules are very elongated such that the probability of
entering a pore is very small, one would expect that the solute
molecules accumulate on the membrane surface. Hence, in these
experiments a high concentration polarization, or external fouling
would be expected. Furthermore, this model does not focus on the
interaction between the solute molecules and the membrane pore.
Assuming that the molecule has a tendency to interact with the
membrane within the pore a high internal fouling would be ex-
pected when the probability of the solute molecule entering the
pore is high. If on the other hand there is no interaction between
the solute and the membrane pore a lower rejection is expected
when the probability of the solute molecule entering the pore is
high.

The model also predicts that very large molecules will have
higher probability of entering the membrane pore when prolate
ellipsoidal compared to spherical. This prediction would be fairly
easy to test, if the shape of the molecule depends on a single
parameter, e.g., pH. The predicted consequence would be either
internal fouling or a rejection different from 100%.

6. Conclusions

The main conclusion of the paper is that the shape of the mol-
ecule alters the probability of entering a membrane pore on a non-
fouled membrane. In absence of any kind of interaction solute–sol-
ute or solute–membrane, and assuming the same molecular vol-
ume for all configurations, there were two cases depending on
the ratio between spherical particle size and pore size.

When the radius of the spherical particles were larger than the
pore radius, the probability of entering the pore was found to zero
until an elongation corresponding to the smaller of the two radii in
the ellipsoid was equal to the pore radius. At this point the proba-
bility was found to increase until a maximum was obtained. A fur-
ther increase in elongation resulted in a monotonically decreasing
probability.

When the radius of the spherical particles was smaller than the
pore radius, the probability was found to be equal to the porosity,
when the particle was spherical. An increase in elongation resulted
in an increasing probability of entering the pore, until a maximum
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was obtained. This maximum occurred when the longer of the two
radii in the ellipsoid was approximately equal to the radius of the
pore. A further elongation beyond this maximum resulted in a
probability decreasing monotonically towards zero.

A relation between the probability of a molecule entering the
membrane pore was related to the distribution coefficient, K, and
to the maximal rejection, Rmax. The maximal rejection was found
follow the opposite behaviour than the probability of a particle
entering the membrane pore. Hence, having a characteristic
minimum when the longer of the two radii in the ellipsoid was
approximately equal to the radius of the pore, in case of molecules
with spherical particle size smaller than the pore size. These rela-
tions are considered a good approximation for porous transport
through membranes, where the convective contribution to the flux
is large compared to the diffusive term, i.e., ultrafiltration and
microfiltration.

This means that spherical conformations of molecules, small
compared to pore size, have higher probabilities of passing into
pores of a given membrane as compared to very linear shapes. This
is of particular interest during the filtration of molecules whose
conformation can be manipulated by modifying certain opera-
tional variables, e.g., carboxymethylcellulose at different pH, and
implies that the rejection of such molecules during membrane fil-
tration can be controlled in accordance with the molecular shape.
Furthermore, this could play an important role during the filtration
of spherical-shaped proteins, e.g., catalase and albumin, as small
modifications in the structure, e.g., by changing the charge density,
could result in important decreases of rejection during membrane
purification.

Future versions of the present model will include additional
parameters that factor in likely interactions between different sol-
utes, due to, e.g., charge or hydrogen bonds, beyond the merely
geometrical parameters considered in this version. However, the
present model provides the basic insights and the benchmark
rejection which can be expected before any physical or chemical
interactions affect the filtration.
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Abstract

In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard
numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes.
The flow of solute and solvent within the hollow fibre is modelled by solving the Navier-Stokes equation along with the continuity
equation for both the solute and the solvent. The flux of solute and solvent through the membrane are given by the solution diffusion
model, since ultrafiltration occurs at high rejections. For a given set of parameters describing the characteristics of the membrane,
effect on the observed and the intrinsic rejection of the membrane are investigated for the different working parameters: inlet velocity,
molecular weight, and transmembrane pressure. Furthermore, the model investigates the effect of a concentration dependent viscosity.

The model shows that both the observed and intrinsic rejection increase when the inlet velocity increases. Moreover, the intrinsic
rejection increases as a function of transmembrane pressure, but the observed rejection has a characteristic maximum. Therefore, the
observed rejection can either increase or decrease as a function of pressure.

The influence of a concentration dependent viscosity is to increase the concentration on the membrane surface. This leads to a
decrease in both the observed and the intrinsic rejection, when compared to a constant viscosity.

For small values of the solute permeability the concentration dependent viscosity decreases the volumetric flux through the
membrane at high pressures. This effect is due to a very high concentration at the membrane surface.

The model is related to experimental data. There is a good qualitative and a reasonable quantitative agreement between simulations
and experimental data.

Keywords:
Rejection coefficient, Membrane separation, CFD, Mathematical modelling, Dextran, Ultrafiltration

1. Introduction

Pressure driven, hollow fibre, membranes processes such as
ultrafiltration are useful to separate components, i.e., to purify
solute. In the membrane process we simulate that the feed
solution enters into the hollow fibres and flows in the axial
direction. The separation then takes place through each hollow
fibre membrane in the radial direction, i.e., similar to cross-flow
membranes. The efficiency, however, of the separation process
is limited by the increase of solute concentration on the retentate
side of the membrane surface, i.e., concentration polarization.
The concentration on the retentate side of the membrane surface
increases in the axial direction of the hollow fibre because the
solute is rejected by the membrane. This, in return, causes
the osmotic pressure to increase in the axial direction. Hence,
leading to a decrease in solvent flux through the membrane, an
increase in solute flux through the membrane, and a decrease
in efficiency. The concentration polarization depends on the
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working parameters of the process, i.e., feed velocity, molecular
size of the solute, transmembrane pressure.

Because of the coupling between the flow of the fluid in the
bulk on the retentate (and the permeate) side of the membrane,
and the flux of the solute and solvent through the membrane, nu-
merous models build upon computational fluid dynamics (CFD)
has been used to investigate the effects of concentration polar-
ization [1, 2, 3, 4, 5, 6, 7, 8, 9].

In [4] the Navier - Stokes equation and continuity equation
were solved in a crossflow membrane channel. The flux of
solvent through the membrane was allowed to be dependent
on the concentration on the membrane surface, and the flux of
solute to depend on the true rejection, considered constant. The
focus, however, was only on the concentration and flow on the
retentate side of the membrane.

In [1, 2, 6] a numerical scheme was developed that solved
the Navier - Stokes equation for the fluid in the bulk - crossflow
membrane channel - with permeation of solvent through the
membrane. The model assumed that the solvent flux depended
on the pressure and the concentration - through the osmotic
pressure - on the membrane surface. Furthermore, they allowed
the viscosity to be concentration dependent. However, it is
unknown how well this method will work when permeation of

Preprint submitted to Separation and Purification Technology November 15, 2013



solute through the membrane is allowed.
To the knowledge of the authors, the influence of both solvent

and solute flux through the membrane (without a predetermined
intrinsic rejection) is still to be investigated.

In this paper we use the standard numerical tool - Comsol
Multiphysics - to solve the model. The model consists of the
Navier - Stokes equation, the continuity equation for solvent and
solute in the bulk of the hollow fibre. These are coupled to the
flux through the membrane of both solute and solvent. More-
over, we allow both the diffusion coefficient and the viscosity
to depend on the molecular size of the molecules. This allows
us to investigate the effect of working parameters; inlet velocity,
molecular size, and transmembrane pressure, on the concentra-
tion polarization, the solute and solvent flux, and the true and
observed rejection. Furthermore, we allow the viscosity to be
concentration dependent. In this paper the working parameters
will be varied in the following intervals: the transmembrane
pressure will be varied from 0 to 2 bar, the molecular weight
in the interval 10 to 500 kDa, and the volumetric flux into the
hollow fibre module will be varied from 2 to 6 l/min.

The hollow fibre module considered in this paper consists of
50 hollow fibres. These fibres are bundled together in an inner
casing. The inner casing is then situated in an outer casing. The
hollow fibre module is shown in figure 1.

Figure 1: The hollow fibre module that is modelled. At the top the inner casing
is seen. Within the inner casing, there are 50 hollow fibres. The inner casing is
inserted into the outer casing. A pressure difference is applied from the inside of
the hollow fibres (the retentate) to the outside (the permeate). The separation
takes place radially through the membrane on the edge of each hollow fibre.

The length of the inner casing is 53 cm. There is an inlet into
each hollow fibre where the membrane is impermeable due to
the fibres being fixed in an impermeable material. Similarly,
there is an outlet where the membrane in each hollow fibre is
impermeable. The length of the inlet and the the length of the
outlet is 3.5 cm, leaving a length of permeable membrane of 46
cm. The inner radius of each hollow fibre is 0.7 mm.

An illustration of a single hollow fibre in the rz-plane is shown
in figure 2.

As explained, the separation takes place radially across each
hollow fibre membrane due to a pressure difference across the
membrane - the transmembrane pressure. The pressure can be
measured at the inlet pin and at the outlet pout of the inner casing,
and at the outlet of the outer casing, pperm. The transmembrane

∂m ∂w∂w
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Figure 2: Illustration the hollow fibre tube. The tube has radius R and the
permeable membrane is situated between z1 and z2. The impermeable inlet is
situated between 0 and z1. And, the impermeable outlet is situated between z2
and L.

pressure is defined as

pT MP =
pin + pout

2
− pperm . (1)

Furthermore, the average velocity, Uav, at the inlet is known.
Previous studies have reported that the solution-diffusion

model can be used to describe the transport of solute during
ultrafiltration in case of high intrinsic rejection of solute - in our
case higher than the 98% [10]. This can be confirmed by consid-
ering the convection term of the Spiegler-Kedem model - which
includes terms related to diffusion and convection-, that becomes
negligible as compared to the diffusion term for values of the
reflection coefficient higher than 0.9 [11]. This indicates that
the interaction between solvent and solute at such conditions
is negligible, and the transport can be properly explained by
the diffusion term. Likewise, it has been demonstrated that for
high retention ultrafiltration, the friction model derives into the
solution-diffusion model, for identical reasons [12]. Therefore,
for high values of the intrinsic rejection, the solution-diffusion
model is a good description of the transport of both solute and
solvent through the membrane in ultrafiltration, which is one of
the assumptions in our study.

In all simulations the solvent is water with a temperature of
295.15 K, a density of ρs = 999.62 kg/m3, and a shear viscosity
of ηs = 0.001 Pa · s. The solute in all simulations is dextran with
different molecular weight.

All simulations are made with Comsol Multiphysics, using
only consistent stabilization techniques, i.e., crosswind and
streamline diffusion, using the standard values of the param-
eters.

The mesh used is a mapped mesh. In the axial direction an
element size of 0.04 is used. In the radial direction a geometric
sequence with 200 elements and an element ratio of 0.0005, with
the smallest element size closest to the membrane, is used.

The equations are solved for a total of 15219720 degrees of
freedom. Convergence was achieved when the total error was
less than 10−3.

2. Mathematical model

We will only consider a single hollow fibre and assume that
the separation is the same for each hollow fibre. Furthermore,
the pressure on the permeate side of the membrane will be
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assumed uniform and equal to pperm. The hollow fibre tube will
have an inlet, and an outlet, of 3.5 cm where the membrane
is impermeable. Moreover, the length of the membrane will
be 46 cm. This corresponds to z1 = 3.5cm, z2 = 49.5cm, and
L = 54cm in figure 2.

2.1. Fluxes through the membrane

The flux through the membrane will be given by the solution
diffusion model [13].

Jv = A (∆p(z) − π(∆c(z))) (2a)
Js = B∆c . (2b)

Here Jv is the solvent flux, Js is the solute flux, ∆p is the local
transmembrane pressure, ∆p(z) = p(R, z) − pperm(z). Similarly
∆c(z) = c(R, z) − cperm(z). As explained the pressure on the
permeate side of the membrane will be considered uniform.
Hence, ∆p(z) = p(R, z) − pperm. Furthermore, the concentration
on the permeate side will be considered small compared to
the concentration on the retentate side. I.e, ∆c(z) = c(R, z) −
cperm(z) ≈ c(R, z). This is a good approximation when the true,
or intrinsic, rejection is high since concentration in the permeate
side of the membrane is given by cperm(z) = (1 − Rtrue(z))c(R, z).
Thus, equation (2) reduces to

Jv = A
(
p(R, z) − pperm − π(c(R, z))

)
(3a)

Js = Bc(R, z) . (3b)

The permeability of the solvent depends mainly on the mem-
brane considered. Therefore, the parameter A can vary within
a rather large interval in ultrafiltration. In this paper we have
chosen the value to be A = 192L/m2hbar. The permeability of
solute depends on: the membrane used, the size and shape of
the solute molecules, and chemical interactions between solute
and membrane [14]. In this paper we have chosen B = 0.47L/hm2.
The choice of A and B is, partly, because both are considered
within the range used in ultrafiltration [15, 16, 17]. Partly, be-
cause previous experiments, available to the authors, have shown
similar values of A and B as the ones chosen here.

Throughout this paper the values of A and B will not depend
on the molecular weight of the solute. We would like to em-
phasize that this corresponds to membranes having the same
characteristics towards both solute and solvent, or membranes
having the same intrinsic retention towards solute at a given
transmembrane pressure - considering that there is no concentra-
tion polarization-.

2.2. Osmotic pressure

The osmotic pressure for Dextran has been found in [10] to
be given by a third degree polynomial

Π = A1c + A2c2 + A3c3 , (4)

where

A1 = 0.1116 , A2 = −0.00491 , A3 = 0.000257 . (5)

Here the concentration is given in wt% and the osmotic pressure
is measured in atm. As found in [18] the osmotic pressure
does not depend on the molecular weight in the case on high
concentrations. We will use this expression for the osmotic
pressure throughout the paper.

2.3. Diffusion coefficient of dextran
The diffusion coefficient depends on the size of the molecules

in the solution. Using the Stokes-Einstein relation [19] the
diffusion coefficient is

D =
kBT

6πηsRH
, (6)

where kB is Boltzmann’s constant, T is the temperature, ηs is the
viscosity of the solvent, and RH is the hydraulic radius of the
molecule.

Measurements of RH as a function of average molecular
weight for dextran, have been collected from the literature
[20, 21, 22, 23, 24]. The diffusion coefficient has been calcu-
lated from equation (6), using the temperature of 293.15 Kelvin
and the viscosity of water. A relation between the diffusion
coefficient and the molecular weight has been found to be

D = k1Mk2
w . (7)

Fitting a straight line to the data points in a double logarithmic
plot gives the following values for k1 and k2.

k1 = 2.6804 · 10−10 , k2 = −0.4754 (8)

The data points can be seen in figure 3.
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Figure 3: Double logarithmic plot of the diffusion coefficient, calculated using
equation (6) and using data of the hydraulic radius found in the literature [20,
21, 22, 23, 24], and the molecular weight.

2.4. Equations of motion
Within the bulk of the hollow fibre the equations of motion are

the continuity equation of solute and solvent and the momentum
equation. The continuity equation for the solvent is

∇ · v = 0 . (9)
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The continuity equation for the solute is

v · ∇c = D∇2c , (10)

where D is the diffusion coefficient of the solute.
The momentum equation is

ρv · ∇v = ∇ ·Π , (11)

where ρ is the density of the solvent and Π is the total stress
tensor and is given by

Π = pI + η(c)
(
∇v + (∇v)T

)
, (12)

where I is the 3 × 3 unit matrix and η(c) is the concentration-
dependent viscosity of the fluid.

The concentration-dependent viscosity will be given by

η(c) = ηs

(
1 + αv

([
η
]
c + kH

[
η
]2 c2

))
. (13)

Here ηs is the viscosity of the solvent and αv takes the value 0 or
1 and is used to investigate the effect of the viscosity being either
constant or concentration dependent. The intrinsic viscosity,[
η
]
, and the Huggins coefficient, kH , are independent of the

concentration.
It is found that the the relation between

[
η
]
0 and the molecular

weight can be given by:
[
η
]
0 = K′Ma

w , (14)

where K′ and a will depend on the specific solute and solvent
[25]. The parameter a is known as the Mark-Houwink exponent.

From the literature [26, 27, 28, 29] measurements of the in-
trinsic viscosity are collected. Fitting equation (14) to the data,
gives the parameters K′ = 0.0371 and a = 0.4352. The best fit
in a double logarithmic plot is shown in figure 4. In [26, 29] the
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Figure 4: Double logarithmic plot of the intrinsic viscosity as a function of
molecular weight along with the best fit through the data.

Huggins coefficient for dextran in water is given to be between
0.495 and 0.58 for molecular weights in the range 10-500 kDa.
Therefore, we have chosen kH = 0.5.

Hence, a simple dependence on the viscosity of concentration
and molecular weight can be made by combining equation (13)
and equation (14).

η = ηs

(
1 + αv

(
K′Ma

wc + k′
(
K′Ma

w
)2 c2

))
. (15)

3. Boundary conditions

The boundary conditions in the hollow fibre can be divided
into five distinctive boundaries.

3.1. The inlet

At the inlet of each hollow fibre there is essentially a plug
flow with an average velocity Uin. The flow then gradually
develops into a Poiseuille flow. The distance it takes for the
flow to develop is given by the hydrodynamic entrance length
Lh, usually defined as

Lh = 0.04Red , (16)

where Red is a Reynolds number defined with the hydraulic di-
ameter as the characteristic length Red = Uindh/ν [30]. For the
velocities used in this paper, this corresponds to a hydrodynamic
entrance length between 3.4 and 10.1 cm. Therefore, the flow
can be considered fully developed at the beginning of the mem-
brane for the lowest inlet velocities, and not fully developed
for at most 1/7 of the length of the membrane, for the highest
inlet velocities. We will, however, assume a fully developed
Poiseuille flow at the inlet of each hollow fibre. This is done for
three reasons. Firstly, it enables us to give a good estimate for
the transmembrane pressure. Secondly, simulations made with
a plug-flow and a Poiseuille flow using the same values of the
remaining parameters and the largest velocity did not influence
the results considerably. Thirdly, the convergence time of the
numerical method greatly improved when using a Poiseuille
flow as inlet condition. Therefore, at the inlet, ∂i = {r, z |z = 0 },
the boundary condition on the velocity will be a fully developed
Poiseuille flow with a known average velocity, Uin. Hence,

v(r, 0) = 2Uin

(
1 −

( r
R

)2
)
. (17)

Furthermore, the boundary condition on the concentration will
be uniform and equal to the inlet concentration, i.e.,

c(r, 0) = cin . (18)

3.2. The outlet

At the outlet, ∂o = {r, z |z = L }, there will be a condition on
the pressure

p(r, L) = pout . (19)

Moreover, the boundary condition on the concentration will be

∇c · n = 0 (20)

where n is the outward normal vector.
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3.3. The edge of the hollow fibre

The edge of the hollow fibre ∂e = {r, z |r = R } consists of three
different domains. The inlet ∂w = {r, z |r = R ∧ 0 ≤ z < z1 }, the
membrane ∂m = {r, z |r = R ∧ z1 ≤ z ≤ z2 }, and the outlet ∂w =

{r, z |r = R ∧ z2 < z ≤ L }. At all boundaries vz = 0. At the inlet
and the outlet all velocity components are zero. Furthermore,
the normal derivative of the concentration is equal to zero, i.e.,
for {r, z |r = R ∧ 0 ≤ z < z1 } and {r, z |r = R ∧ z2 < z ≤ L }

v = 0 (21a)
n · ∇c = 0 . (21b)

At the membrane the radial velocity component, vr, is given
by the solvent flux, equation (3a), and the concentration flux is
given by the solute flux, equation (3b). Thus,

v(r, z) · n = A
(
p(R, z) − pperm − π(c(R, z))

)
(22a)

(v(r, z)c(r, z) − D∇c(r, z)) · n = Bc(R, z) , (22b)

where n is the outward unit normal vector.
To avoid discontinuities at z = z1 and z = z2, however, a

continuous hat function, Ψ(z) : z 7→ [0; 1], is introduced. This
function has a smooth transition from zero to one around z1 and
a smooth transition from 1 to zero around z2. The transition
takes place over a length equal to the radius of the hollow fibre,
R. Hence,

Ψ(z) =



0 for 0 ≤ z ≤ z1 − R/2

1 for z1 + R/2 ≤ z ≤ z2 − R/2

0 for z2 + R/2 ≤ z ≤ L
. (23)

In the interval z ∈ (z1−R/2; z1 +R/2) there is a smooth transition
from zero to one. Similarly, there is a smooth transition from
one to zero in the interval z ∈ (z2 − R/2; z2 + R/2).

With this function the boundary conditions, equation (21) and
equation (22), for {r, z |r = R ∧ 0 ≤ z ≤ L } can be written as

v(r, z) · t = 0 (24a)

v(r, z) · n = A
(
p(R, z) − pperm − π(c(R, z))

)
Ψ(z) (24b)

(v(r, z)c(r, z) − D∇c(r, z)) · n = Bc(R, z)Ψ(z) , (24c)

where n is the outward unit normal vector, and t the unit vector
tangential to the surface.

Taking into account, the high length to radius ratio of the
hollow fibre tube, the introduction of the smoothing function Ψ,
should not influence the results significantly.

3.4. Transmembrane pressure

In order to relate the results to a given transmembrane pressure
the boundary condition at the outlet pout is calculated assuming
that there is a fully developed Poiseuille flow, with the viscosity
of the solvent, within the hollow fibre. For a fully developed
Poiseuille flow the average velocity can be expressed as

Uin =
R2

8ηs

pin − pout

L
. (25)

Hence,

pin − pout =
8ηsLUin

R2 . (26)

Furthermore, from the definition of the transmembrane pressure,
(equation (1)), we have

pT MP =
pin + pout

2
− pperm . (27)

Combining equation (26) and equation (27) an expression for
the pressure at the outlet can be found

pout = pT MP + pperm − 4ηsLUin

R2 . (28)

This pressure is used as the boundary condition at the outlet, see
equation (19).

3.5. Observed rejection
The observed rejection is given by the

Robs =

(
1 − c̄p

c̄R

)
100% . (29)

where c̄p is the average concentration in the permeate after
separation and c̄R is the average concentration in the retentate
after separation. The average concentration in the retentate after
the separation is given by the ratio between the total solute flux
and the total solvent flux

c̄R =

∫ R
0

∫ 2π
0 rvz(r, L)c(r, L)dθdr

∫ R
0

∫ 2π
0 rvz(r, L)dθdr

. (30)

Similarly, the average concentration on the permeate side is
given by the ratio between the total solute flux, and the total
solvent flux through the membrane. That is,

c̄p =

∫ L
0

∫ 2π
0 Js(z)dθdz

∫ L
0

∫ 2π
0 Jv(z)dθdz

=

∫ L
0

∫ 2π
0 Bc(z)dθdz

∫ L
0

∫ 2π
0 vr(z)dθdz

. (31)

3.6. True rejection
The true, or intrinsic, rejection is given by

Rtrue(z) =

(
1 − cp(z)

c(R, z)

)
· 100% . (32)

Given that there is a flux of solvent through the membrane, the
concentration on the permeate side of the membrane cp(z) can
be written as

cp(z) =
Js(z)
Jv(z)

=
B(c(R, z) − cp(z))

Jv(z)
. (33)

Hence, isolating cp(z) in equation (33)

cp(z) =
Bc(R, z)
Jv(z) + B

. (34)

Inserting equation (34) into equation (32) we have

Rtrue(z) =

(
1 − B

Jv(z) + B

)
· 100% =

(
Jv(z)

Jv(z) + B

)
· 100% . (35)

Hence, the true rejection in the simulations is given by

Rtrue(z) =

(
vr(R, z)

vr(R, z) + B

)
· 100% . (36)
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3.7. Non dimensional groups, variables and equations of motion
Introducing the scaled variables

x̂ =
x
R
, v̂ =

v
Uin

, p̂ =
p − pperm

Uinρ
, ĉ =

c
cin

. (37)

The continuity equation of the solvent can be written as

∇ · v̂ = 0 . (38)

The continuity equation of the solvent can be written as

v̂ · ∇ĉ =
1

Pe
∇2ĉ , (39)

where the Péclet number is given by

Pe =
UinR

D
. (40)

The momentum equation can be written as

v̂ · ∇v = ∇ · Π̂ , (41)

where, the nondimensional total stress tensor is given by

Π̂ = p̂I +
1

Re
η̂(ĉ)

[
∇v̂ + (∇v̂)T

]
. (42)

Here the Reynolds number is defined by

Re =
UinRρ
ηs

, (43)

where ηs is the viscosity of the solvent. Furthermore, η̂(ĉ) is
given by

η̂(ĉ) = 1 + αv

(
K′Ma

wcinĉ + k′
(
K′Ma

w
)2 c2

inĉ2
)

(44)

4. Results

In section 4.1 and 4.2 the viscosity is considered independent
of the concentration, i.e, αv = 0. In section 4.3 and 4.4 we allow
the viscosity to depend on the concentration, i.e., αv = 1.

4.1. Influence of Péclet and Reynolds numbers on the concen-
tration of solute on the membrane surface

In figure 5 the concentration on the membrane surface is
shown for different Péclet numbers, i.e., different molecular
weight. In figure 5 the dimensionless concentration at the inlet,
ẑ = 0, is 1. As the fluid reaches the permeable membrane a
sharp increase in concentration is observed due to the separation.
Similarly, there is a sharp decrease in the concentration as the
hollow fibre tube becomes impermeable. This sharp decrease
in concentration is caused by back diffusion into the bulk of the
fluid. This is also observed in [1, 2, 6]

As the molecular weight increases, the diffusion coefficient
decreases according to equation (7). Therefore, the larger the
molecular weight, the smaller the back diffusion along the mem-
brane surface, leading to an increased concentration on the mem-
brane surface.
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Figure 5: Concentration on the membrane surface for different Péclet numbers.
The Péclet numbers corresponds to an average volumetric flux into the hollow
fibre module of 4 l/min (Re = 600) and molecular weights of 10, 100, and 500
KDa.

In figure 6 the concentration on the boundary of the hollow
fibre is shown for different Reynolds numbers. The Reynolds
numbers corresponds to an average volumetric flux into the
hollow fibre module of 2, 4, and 6 l/min. The molecular weight
in this particular simulation is 100 kDa.

As seen in figure 6 the concentration on the membrane surface
decreases as the Reynolds number increases. Similar results are
observed in [3, 5]. This is usually explained as an increasing
self-cleaning of the membrane, due to the increased tangential
velocity in the boundary layer. Another explanation commonly
used is that an increase in Reynolds number leads to an increase
in turbulence in the boundary layer, which in return gives rise to
a self cleaning. However, turbulence is not a part of this model
and the flow is laminar. Therefore, the reduced concentration
on the membrane surface is not caused by turbulence. Our
hypothesis is that the reduced concentration is caused by the
change in the streamlines, see e.g. [31]. At a given Reynolds
number the streamline for a fluid parcel with inlet point (r̂, ẑ) =

(r̂∗, 0), where 0 < r̂∗ < 1 will end at the membrane surface at
a point (r̂, ẑ) = (0, ẑ∗). An increase in Reynolds number will
cause a streamline with the same inlet point to end at a point
further down the membrane, i.e, at a point (r̂, ẑ) = (0, ẑ∗∗), where
ẑ∗ < ẑ∗∗. Hence, the larger the Reynolds number the less of the
fluid is transported to a given part of the membrane, resulting
in both a decrease of concentration on the membrane surface,
and a less sharp increase in concentration at the beginning of the
membrane. Both effects are seen in figure 6.

In figure 7 the true rejection is shown for the same set of
parameters as used in figure 5. Since the true rejection, equa-
tion (36), is only properly defined when the flux through the
membrane is different from zero, it is only shown along the
membrane surface. As seen in figure 7 the true rejection is high-
est for small molecular weight, small Péclet numbers. This is
due to the higher back-diffusion from the membrane. Because
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Figure 6: Concentration on membrane surface for different Reynold numbers.

a high concentration on the membrane surface reduces the flux
through the membrane due to an increased osmotic pressure, the
true rejection decreases.

In figure 8 the true rejection is shown for different Reynolds
numbers. As before, the true rejection increases when the con-
centration on the membrane surface decreases. Hence, the true
rejection is highest for large Reynolds numbers.

In figure 9 the observed rejection is shown for the parameters
used in the previous figures. As seen the observed rejection is
highest for the smaller molecules, at the same Reynolds num-
ber, and increases with increasing Reynolds number. Again this
effect is ascribed to the concentration polarization on the mem-
brane surface. A large concentration on the membrane surface
increases the solute flux through the membrane and reduces
the solvent flux through the membrane. Both lead to a higher
concentration in the permeate.

4.2. Influence of different transmembrane pressures

In figure 10 the concentration on the membrane surface is
shown for different transmembrane pressures. The transmem-
brane pressures are 0.5, 1, and 2 bar. Moreover, the molecular
weight used in the simulation is 110 kDa and the volumetric flux
into the hollow fibre module is 6 l/min. As seen, in figure 10,
the concentration on the membrane surface increases when the
transmembrane pressure increases. The increase in concentra-
tion is caused by an increase in advection towards the membrane
surface due to the increase in transmembrane pressure. This
effect is also observed in [2, 6].

In figure 11 the true rejection is shown for the same trans-
membrane pressures. As seen, the true rejection increases as a
function of transmembrane pressure. Hence, even though the
concentration on the membrane surface increases, and thus, the
osmotic pressure increases, the solvent flux through the mem-
brane still increases.

The effect on the observed rejection for different transmem-
brane pressures and different molecular weights are shown in
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Figure 7: True rejection for different Péclet numbers. The Péclet numbers
corresponds to an average volumetric flux into the hollow fibre module of 4
l/min and molecular weights of 10, 100, and 500 KDa.

figure 12. Again the different transmembrane pressures are 0.5,
1, and 2 bar. The molecular weights used in the simulations are
10, 110, and 500 kDa. Furthermore, the volumetric flux into
the hollow fibre module is 6 l/min. As seen, in figure 12, the
observed rejection is decreasing as a function of transmembrane
pressure for the different molecular weights. This reduction is
caused by the interplay between the solute flux and the solvent
flux. From figure 11 we can infer that the solvent flux through
the membrane is increasing as a function of the transmembrane
pressure. In figure 10, however, it is seen that the concentration
on the membrane surface also increases, leading to an increasing
solute flux through the membrane. From figure 12 and the defi-
nition of the true rejection, equation (29), it can be concluded
that, within the interval of molecular weight and transmembrane
pressure used in these simulations, the ratio between the total so-
lute flux and the total solvent flux is increasing when the Péclet
number is decreased, the pressure is increased, or both.

The observed rejection, however, will be zero for very low
transmembrane pressures. Therefore, there must be an inter-
val of transmembrane pressure where the observed rejection is
increasing. This will be investigated in more detail in section
4.4.

4.3. Influence of concentration dependent viscosity

In this section we present simulations where the viscosity is
concentration dependent, i.e., αv = 1 in equation (44). Using
the same working parameters, these simulations will be com-
pared to simulations where the viscosity is independent of the
concentration, i.e, αv = 0 in equation (44).

In figure 13 the concentration on the membrane surface is
shown for different Reynolds numbers, a transmembrane pres-
sure of 0.5 bar, and a molecular weight of 10 kDa. As seen, in
figure 13, the concentration on the membrane surface increases
when the viscosity is concentration dependent. This increase can
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Figure 8: True rejection for different Reynolds numbers but constant Schmidt
number.

be explained by a decrease in axial velocity within the bound-
ary layer. The decrease in axial velocity perpendicular to the
membrane surface is shown, halfway down the membrane, for
molecular weights of 10 and 500 kDa, in figure 14. The decrease
in axial velocity close to the membrane surface is more obvi-
ous for large molecules. This is due to both the smaller back
diffusion which cause a larger concentration in the boundary
layer and the increased dependence of the viscosity for the larger
molecules.

In figure 15 the concentration perpendicular to the membrane
surface is shown halfway down the membrane. As seen, the
introduction of a concentration dependence on the viscosity both
increase the concentration on the membrane surface and increase
the width of the boundary layer. Both effects are more obvious
for the larger molecules. For the larger molecules, an increase
in concentration to 30 times the inlet concentration corresponds
to an increase in viscosity by a factor of 6.4, as compared to the
solvent viscosity. Similar results are found in [2, 1].

Thus, introducing a concentration dependent viscosity in-
creases the concentration on the membrane surface. Therefore,
the solvent flux trough the membrane will decrease and reduce
the true rejection. Furthermore, the solute flux will increase as
the concentration on the membrane surface increases. Thus, the
observed rejection decreases. The decrease in observed rejection
is shown in figure 16. This effect is more obvious for larger
molecules because of the higher concentration dependence on
the viscosity and the higher concentration in the boundary layer
caused by the smaller back diffusion.

4.4. Observed rejection for different transmembrane pressures
and different values of B

As mentioned previously, the observed rejection has to be
increasing an function of the transmembrane pressure in a cer-
tain interval. Furthermore, the value of the parameter B will
have a huge effect on the observed rejection. In this section we
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Figure 9: Observed rejection for different values of Reynolds number and
Schmidt number.

therefore present the observed rejection as a function of trans-
membrane pressure in the interval pT MP ∈ [0, 2] bar. Moreover,
we present the results for three different values of B. Namely,
B = 0.47, 0.047, 0.0047l/h·m2. Furthermore, we present the re-
sults with and without a concentration dependent viscosity.

In figure 17 the observed rejection is shown for different trans-
membrane pressures. As seen the effect of decreasing the value
of the parameter B is to increase the observed rejection. This is
simply because of the smaller sorption of solute into the mem-
brane, or the smaller diffusion of solute through the membrane,
or both - increasing the membranes capability of retaining the
solute particles. Furthermore, it is seen that introducing a con-
centration dependent viscosity reduces the observed rejection.
This effect increases as the transmembrane pressure increases
due to the increasing concentration on the membrane surface.

As expected the observed rejection is increasing for very small
values of the transmembrane pressure. At these low pressures
the advective transport towards the membrane is so small that
there is no significant boundary layer. As the transmembrane
pressure increases, however, the concentration on the membrane
surface increases rapidly causing the osmotic pressure and the
solute flux to increase. The increase osmotic pressure and in
solute flux reduces the observed rejection.

In figure 18 the observed rejection is plotted against the volu-
metric flux through the membrane.

As seen for low values of the parameter B the volumetric flux
through the membrane decreases rapidly for high transmembrane
pressures. This is due to of the high concentration polarization
caused by the high retention of the membrane, leading to a high
osmotic pressure.

4.5. Relating the model to experimental results

Using the experimental hollow fibre module, mentioned in
the introduction, a set of experiments at different pressures have
been performed.
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Figure 10: Concentration on the membrane for different transmembrane pres-
sures. The Reynolds number corresponds to a volumetric flux into the entire
module of 6 l/min. The Péclet number corresponds to a molecular weight of 110
kDa.

The experiments were performed using an UFM membrane
from X-Flow, with a water permeability A = 245.65L/m2hbar.
The solute was dextran T500 and the solvent was water. In all
experiments the volumetric flux through the inlet was 3.87 l/min.
For each experiment the concentration in the feed solution, c f ,
was measured. Moreover, the concentration in the permeate was
measured. For each experiment the separation took place for
approximately 50 seconds until steady state was obtained. The
five experiments were performed at five different pressures. The
observed rejection S , was calculated from

S =

(
1 − c̄p

c f

)
· 100% . (45)

The results of the experiments are presented in table 1.

Exp pT MP J̄v c f c̄p S
i [bar] [L/m2h] [wt%] [wt%] [%]
1 0.51 31.54 0.1452 0.0508 64.97
2 0.74 35.04 0.1414 0.0700 50.46
3 1.00 41.77 0.1389 0.0968 30.36
4 1.23 48.01 0.1381 0.1072 22.39
5 2.10 53.64 0.1367 0.1139 16.71

Table 1: Experimental data.

From the data presented in table 1 it is possible to give an
estimate of the parameter B.

4.5.1. Estimation of B
In order to calculate the value of B, we used the following

method:
The concentration difference across the membrane is approxi-

mated by a constant concentration on the membrane surface, ĉm.
Thus, ĉm − c̄p,m ≈ ĉm
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Figure 11: True rejection for different transmembrane pressures. The Reynolds
number corresponds to an inlet velocity to the hollow fibre module of 6 l/min.
The Péclet number corresponds to a molecular weight of 110 kDa.

Hence, for each experiment, denoted by subscript i, J̄v is given
by

J̄v,i = A
(
pT MP,i − π(ĉm,i)

)
, (46)

where ĉm,i is the constant concentration on the membrane surface
and π(ĉm,i) is the osmotic pressure given by equation (4). From
equation (46) ĉm,i can be calculated as

ĉm,i = π−1
(
pT MP,i − J̄v,i

A

)
. (47)

The average concentration in the permeate, c̄p,i can be given
by the ratio between the solute and solvent flux or expressed in
terms of the observed rejection. I.e,

c̄p,i =
Biĉm,i

J̄v,i
= (1 − S i) c̄in,i (48)

Solving equation (48) for Bi, one has

Bi =
(1 − S i) c̄in,i J̄v,i

ĉm,i
=

(1 − S i) c̄in,i J̄v,i

π−1
(
pT MP,i − J̄v,i

A

) . (49)

Using the data from table 1, values for ĉm and B are estimated
in table 2.

Exp. ĉm [Wt%] B [l/m2h]
1 3.8811 0.4132
2 9.3145 0.4339
3 6.4406 0.3811
4 11.4333 0.4500
5 17.6737 0.3457

Table 2: Calculated values of ĉm and B.

In order to simulate this specific experiment a single value for
the inlet concentration and B is needed. Therefore, the average
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Figure 12: Observed rejection for different transmembrane pressures. The
Reynolds number corresponds to an inlet velocity to the entire module of 6 l/min.
The Péclet numbers corresponds to molecular weights of 10, 110, and 500 kDa.

of the above values is chosen, i.e., cin,av = 0.1401 [Wt%] and
Bav = 0.4048 [l/m2h].

Hence, the values of A and B deviates slightly from the values
used in the previous sections.

4.5.2. Comparison between experiment and simulations
Using the parameters given in the previous section we present

the results from the simulations, as well as the experimental
results in this section.

In figure 19 the volumetric flux through the membrane is
shown together with the experimental results. As seen there is a
good agreement between the experiment and the simulation.

In figure 20 the permeate concentration is shown for the sim-
ulations and the experiments. As seen the concentration in
permeate is lower in the experiments than in the simulations.

In figure 21 the observed rejection is shown. As seen from
the figure the observed rejection is lower in the simulations than
in the experiments.

The main reason for the deviation from the experiments is the
determination of B using the approximation that the concentra-
tion on the membrane surface is constant. The concentration on
the membrane surface depends on the axial position. Therefore,
the parameter B should be determined by a least error fit. This,
however, is beyond the scope of the current paper.

Nevertheless, there is a good qualitative agreement between
the experiment and the simulations, and a reasonable quantitative
agreement.

5. Discussion

Back diffusion of solute from the membrane surface to the
bulk decreased for increasing molecular weights (increasing
Péclet numbers), which resulted in higher concentrations of
solute on the membrane surface (Figure 5). Albeit the differences
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Figure 13: Concentration on the membrane surface for different Reynolds
numbers. The Reynolds numbers correspond to an inlet velocity in the entire
module of 2, 4, and 6 l/min. The Schmidt number correspond to a molecular
weight of 10 kDa. The transmembrane pressure is 0.5 bar. The blue lines
corresponds to the viscosity being constant and equal to the solvent viscosity.
The black lines corresponds to the viscosity being concentration dependent.

in concentration were obvious for different Péclet numbers, such
concentration varied along the length of the membrane. After an
initial sharp increase, a maximal, almost stable value of solute
concentration along the remaining length of the membrane was
observed. Such trend has been reported to be typical in cross
flow filtrations in which the variation of solute concentration and
diffusive transport along the tangential direction can be assumed
to be small [32].

Considering the important role of the molecular diffusion of
solute particles to the bulk solution, the clear influence of the
Reynolds number on the solute concentration on the membrane
surface was expected (Figure 6). The higher the axial velocity
(high Reynolds numbers), the lower was the solute concentration
on the membrane surface.

Solute concentration on the membrane surface plays a major
role for the total performance of the membrane, as selectivity,
retention and flux through the membrane are directly dependent.
The ratio between solute concentration on the membrane surface
and solute concentration in the permeate (true retention) depends
on both the flux of solvent and the solute through the membrane.
Higher Péclet numbers contributed to decrease the permeate
flux, which resulted in a reduction of true retention along the
length of the membrane (Figure 7). The effect of decreasing
true retention due to low permeate fluxes was more obvious
when Reynolds numbers decreased (Figure 8). High Reynolds
numbers contributed to increase the permeate flux, which in turn
contributed to increase the true retention - due to the decrease
in the permeate concentration. The increasing values of true
retention for increasing cross-flow velocities was also reported
for cross-flow filtration of aqueous solutions of PEGs through
polyamide ultrafiltration membranes [33].
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Figure 14: Axial velocity in the boundary layer, perpendicular to the membrane
surface half way down the hollow fibre, for different Péclet numbers. The
Reynolds number corresponds to an inlet velocity in the entire module of 4 l/min.
The Péclet numbers corresponds to a molecular weight of 10 and 500 kDa. The
transmembrane pressure is 0.5 bar. The blue lines corresponds to the viscosity
being constant and equal to the solvent viscosity. The black lines corresponds to
the viscosity being concentration dependent.

5.1. True versus observed retention: Influence of transmem-
brane pressure

The values of observed retention in the simulation were lower
than the ones corresponding to true retention (Figure 9). This
was explained by two phenomena that take place when the con-
centration of solute on the membrane surface increases. On
one hand, high solute concentrations decreases the solvent flux
through the membrane, which contributes to increase the so-
lute concentration in the permeate. On the other hand, high
concentrations of solute favours the diffusion of solute through
the membrane, which contributes to enhance the solute concen-
tration in the permeate. These phenomena explains the lower
values of observed retention, for low Reynolds numbers, or high
Péclet numbers, or both.

There are many examples in literature reporting the effect of
decreasing observed retention, particularly for increasing values
of transmembrane pressure or permeate flux - as observed in our
simulations (Figure 12). For instance, a sharp decrease in the
observed retention was observed during ultrafiltration of dextran
and PEG when permeate flux increased, and the decrease was
more dramatic for higher values of molecular weight [34]. The
decreasing observed retention trend has been also reported for
other molecules with quite different chemically e.g. copolymers
of dimethyl aminoethyl acrylate (CoAA) or humic acid [35].
The latter study also confirmed that such effect does not seem to
depend much either on the membrane material - in this particular
case polyethersulfone and cellulose - what make us infer that it
is mainly the difference of solute concentration on both sides of
the membrane that is controlling this phenomenon, beyond the
possible chemical or physical interactions between the solute
and membrane material. To this regard, it has been reported
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Figure 15: Concentration in the boundary layer, perpendicular to the membrane
surface half way down the hollow fibre, for different Péclet numbers. The
Reynolds numbers corresponds to an inlet velocity in the entire module of 4
l/min. The Péclet numbers corresponds to a molecular weight of 10 and 500
kDa. The transmembrane pressure is 0.5 bar. The blue lines corresponds to the
viscosity being constant and equal to the solvent viscosity. Whereas, the black
lines corresponds to the viscosity being concentration dependent.

that the decrease in observed retention can also occur for ionic
solutes [36]. The differences between true and observed reten-
tion have been previously explained on the basis of convection
and diffusion, the two phenomena that determines the values
of Péclet number. Whilst for low Péclet numbers (small solute
and large diffusion) the retention is low and both the true and
the observed retention follow the same tendency, for high Péclet
numbers, the convection and concentration polarization become
more important. As a consequence, the concentration on the sur-
face of the membrane increases (low true retention), and the pass
of solute through the membrane causes the solute concentration
in the permeate to increase, which in turn results in a decrease
of the observed retention [37].

5.2. Effect of Viscosity

While the axial velocity or transmembrane pressure have a
noticeable effect on the solute concentration on the membrane
surface, the physical-chemical properties inherent to the nature
of the solute molecules, particularly viscosity, can also influence
to a great extent the performance of the membrane in terms of
retention. When the variation of viscosity for increasing dextran
concentrations was considered in the simulations, an increase
of solute concentration on the membrane surface was observed
(Figure 13). The higher the molecular weight of the dextran
considered, the more dramatic was the increase of viscosity for
increasing concentrations, which in turn resulted in higher solute
concentrations on the membrane surface (data not shown).

The dependence of viscosity with solute concentration is a
common phenomenon which depends on both the molecular
weight of the solute and the chemical features of the molecule.
For instance, it has been reported an increase of viscosity of 1.7
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Figure 16: Observed rejection for different Schmidt and Reynolds numbers. The
Reynolds numbers corresponds to an inlet velocity in the entire module of 2, 4,
and 6 l/min. The Schmidt numbers corresponds to a molecular weight of 10 and
500 kDa. The transmembrane pressure is 0.5 bar. The blue markers corresponds
to the viscosity being constant and equal to the solvent viscosity. Whereas, the
black markers corresponds to the viscosity being concentration dependent.

and 2.7 times when solutions of sucrose and BSA were concen-
trated 20 times, respectively. For the same increase of concen-
tration, the viscosity of a dextran solution increased 29.2 times
[38]. Other studies have also found that the increase of solute
concentration on the membrane is dependent on time, increasing
as time passes, until a certain concentration is reached at steady
state [39]. A previous study has compared the solute concentra-
tion on the membrane surface for different solutions of sucrose -
0.2, 2, and 4%- concluding that the concentration-dependent vis-
cosity has a higher influence on the solute concentration than the
concentration-dependent diffusivity, which results in an increase
of such concentration [40].

Viscosity increases, besides causing increases of solute con-
centration on the membrane surface, also resulted in increases in
the thickness of the boundary layer. This effect was more promi-
nent for larger molecular weight solutes (Figure 15). Therefore,
it could be said that the effect of considering a viscosity that de-
pends on concentration is similar to the effect of decreasing the
axial velocity or the Reynolds number. To this regard, significant
increases of permeate flux for increasing axial velocities during
filtration of Dextran T20 have been reported, which demon-
strated that high axial velocities contributed to sweep off the
layer of solute formed on the surface of the membrane. For low
values of axial velocity, the permeate flux attained a stable value
that was independent of the transmembrane pressure for high
values of pressure - limiting flux [10].

Although such behaviour could in principle be explained by
the formation of a constant gelling concentration, a previous
study based on a simulation of dextran ultrafiltration at different
applied pressures demonstrated that even if the solute concen-
tration on the membrane surface increases and the permeate ve-
locity decreases along the crossflow (due to viscosity increases),
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Figure 17: Observed rejection as a function of transmembrane pressure for three
different values of B. For each value of B the red symbols corresponds to a
constant viscosity. Whereas, thee blue symbols corresponds to a concentration
dependent viscosity.

reaching a limiting flux does not necessarily mean a constant
solute concentration on the membrane surface [6]. This suggests
that the solute concentration on the membrane surface always
increases, at least in the case of dextran, but that there are other
factors influencing the permeate flux.

Since the permeate flux through the membrane decreased
when the viscosity became concentration-dependent, the true
retention is also expected to decrease. Along with the decrease
in permeate flux, the solute flux is assumed to increase - due to
the increased concentration on the membrane surface- which in
turn resulted in reductions of the observed retention (Figure 16).

5.3. Effect of solute permeability coefficient (B)

The solute permeability coefficient, which is directly depen-
dent on the sorption and diffusivity of solute through the mem-
brane, had a significant effect on the values of the observed
retention (Figure 17). Higher values of B meant lower values of
solute concentration on the membrane surface (high sorption)
and easy diffusion of solute through the membrane, which re-
sulted in increases of solute concentration in the permeate - and
thus lower observed retentions.

Whilst the solvent permeability coefficient A, is characteristic
of the membrane used, B values can be modified by changing
the membrane material, as both sorption and diffusion depend
on the physical-chemical affinity between membrane material
and solute nature. Even for solutes with same molecular weight,
values of B can change dramatically depending on the chemical
nature of the solute [41, 42]. Therefore, depending on the appli-
cation, the observed retention can be tailored in order to obtain
more or less solute in the permeate. Hence, a careful selection of
the membrane material will have a direct effect on the retention
of a particular solute.
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Figure 18: Observed rejection as a function of the non-dimensional volumetric
flux through the membrane for three different values of B. For each value of B
the red symbols corresponds to a constant viscosity. Whereas, the blue symbols
corresponds to a concentration dependent viscosity.

It is also necessary to mention that values of B will normally
decrease during filtration, particularly in cases in which a de-
posited gel/polarized layer is formed as a consequence of concen-
tration polarization and fouling. In those cases, the formed layer
acted as a secondary membrane layer, modifying the sorption
and diffusion capacity of the solute through the membrane [9].
As a result, observed retention values are expected to increase.

For extreme cases in which B attains a very low value - so
solute transport through the membrane is very small- and the
transmembrane pressure is high (Figure 18), the concentration
in the boundary layer caused the viscosity to be so high that
the volumetric flux almost ceased to increase. In the case of
the highest transmembrane pressure and the smallest value of
B, the viscosity at the membrane surface increases to 60 times
the viscosity of the pure solvent. In this limit the concentration
dependent viscosity forms a gel layer where the self cleaning of
the membrane is almost negligible. This caused the volumetric
flux through the membrane to have almost half the value when
comparing a concentration dependent viscosity to a constant
viscosity. Moreover, this tendency seemed to increase even
further when the transmembrane pressure was increased even
more.

5.4. Relating the model to experiment
The model was examined against an experiment made with

the hollow fibre module. The results showed a good qualitative
agreement and a reasonable quantitative agreement with these
data. The quantitative agreement, however, showed that the
concentration in the permeate was higher in the simulations than
observed in the experiments. This resulted in a lower observed
rejection in the simulations than observed in the experiments.

The parameter B was determined assuming a constant con-
centration on the membrane surface of each hollow fibre. This
assumption is obviously not valid and the parameter B should
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Figure 19: Volumetric flux through the membrane. Red circles corresponds to
experimental data and blue stars corresponds to numerical simulations.
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Figure 21: Observed rejection for both the experiments and the simulations. Red
circles corresponds to experimental data and blue stars corresponds to numerical
simulations.

be fitted to each particular experiment. It is the belief of the
authors that a finer ’tuning’ of B would give simulations that can
reproduce the observed rejection better. From the investigation
of the parameter B, figure 17, it is seen that a smaller value of B,
results in a higher observed rejection.

There are, however, other quantities that influence the results
of the simulations. The virial coefficients in the expression
for the osmotic pressure have been observed to depend on the
molecular weight [43]. The osmotic pressure will effect both
the solvent flux and the solute flux and thereby the observed
rejection.

Moreover, it is well known that the solvent flux time is depen-
dent - decreasing with time [9]. Therefore, the steady state will
have a lower retention than in the beginning of the experiments.
Thus, the steady state solution, give rise to a lower observed
rejection than the experiment.

6. Conclusions

In this paper we presented a mathematical model capable of
modelling the velocity field, concentration field, and pressure
field in the bulk solution of a hollow fibre tube. The model was
able to model both solvent and solute flux through membrane.

This has allowed us to investigate the effect, on the true re-
jection and the observed rejection, of the working parameters:
inlet velocity, molecular size, and transmembrane pressure, for
a given set of membrane parameters typical for ultrafiltration of
polysaccharides.

It can be concluded that an increasing inlet velocity decreases
the concentration on the membrane surface, due to a higher axial
velocity. This in return, increases both the true and the observed
rejection.

An increase in molecular weight resulted in an increase in
concentration on the membrane surface, due to a lower backdif-

fusion. This in return, decreased both the true and the observed
rejection.

An increase in transmembrane pressure gave rise to a higher
solvent flux through the membrane and a higher concentration on
the membrane surface. The increase in solvent flux, resulted in
an increase in true rejection. Since, both the solute flux and the
solvent flux increased, the concentration in the permeate, defined
as the ratio between the two, had two distinct behaviours. At low
transmembrane pressure an increase in transmembrane pressure
resulted in a relative increase in solvent flux as compared to
solute flux, which led to an increased observed rejection. For
larger transmembrane pressure, an increase in transmembrane
pressure led to an increasing solute flux as compared to solvent
flux, resulting in a decrease in observed rejection. The decrease
in observed rejection for high transmembrane pressures must be
ascribed by the high increase in concentration polarization and
osmotic pressure.

Decreasing the coefficient determining the solute permeability,
B, led to an increase in observed rejection. Furthermore, it led
to a decrease in solvent flux due to an increased concentration
on the membrane surface.

In all cases, a concentration dependent viscosity, decreased
both the true and the observed rejection. The reason being a
decrease in tangential velocity near the membrane.

The model was related to experimental data. The simula-
tions showed a good qualitative agreement and a reasonable
quantitative agreement.
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Chapter 5

Back-shocking

5.1 Introduction

As explained previously concentration polarization diminishes the performance
of a given membrane separation process. In a time-dependent study, the build up
of the concentration polarization decreases both the volumetric flux through the
membrane and the observed rejection. These effects arise from two phenomena.
Firstly, the build up of concentration polarization causes an increase in osmotic
pressure, which in return decreases the volumetric flux through the membrane.
Secondly, the increased concentration on the membrane surface will result in a
larger transport of solute through the membrane. A schematic illustration of
this is shown in figure 5.1.

In membrane processes without back-shocking the pressure difference across
the membrane, ptmp is such that the solute flux and solvent flux is directed
from the retentate to the permeate. Back-shocking is a process where the flux
through the membrane is reversed for a period of time, known as the back-shock
period, tbs. The flux is reversed due to an increase in the pressure on the
permeate side of the membrane. The pressure difference across the membrane
during the back-shock period, pbs, causes the driving force to be directed from
the permeate to the retentate. This negative flux immediately decreases the
concentration on the membrane surface which causes a decrease in the solute flux
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Figure 5.1: Illustration of the different fluxes as a function of time.

through the membrane. After a period of back-shocking the pressure difference
is again reversed for a period of time, known as the time between back-shocking,
tbbs, causing the flux of both solute and solvent to be from the retentate to
the permeate. The benefit of this process is that in the time of back-shocking
the concentration polarization is convected into the bulk. Therefore, when
the pressure is reversed the concentration polarization builds up towards the
steady-state solution. Hence, in this period of time the membrane performs
better as compared to the steady-state solution. A schematic illustration of this
is shown in figure 5.2.

In the literature many examples can be found which demonstrates the benefit
of operating with back-shocking [38, 52, 56, 57, 33, 54, 31, 59, 20]. Of these
[38, 52, 33, 54, 31, 59, 20, 30, 7] are on ultrafiltration.

In [38] an increase in flux of 3.9 times compared to the steady-state was reported
when using a dextrin solution in a spiral wrap membrane.

In [52] back-shocking was used with an impermeable membrane and an albumin
solution. The results showed a maximum increase in the solvent flux of 3.8 times
the flux without back-shocking.

In [54] wastewater is treated using ultrafiltration, here the increase in the solvent
flux when using back-shocking was as high as 17 %.

In general a larger effect is observed in microfiltration. [56, 57] reports a flux
of five times the steady-state solution when back-shocking is applied. This is
assumed to be due to the formation of a cake layer on the membrane surface.
This cake layer greatly reduces the flux through the membrane. In [32] a flux
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Figure 5.2: Illustration of the different fluxes as a function of time during
back-shocking.

increase of up to ten times the flux without back-shocking is reported.

Several mathematical models describing back-shocking have been made [44, 49,
51, 50, 40]. Of these [49] models the dynamics of an osmotic backwash cycle.
Whereas [51, 50, 40] all model microfiltration where a cake-layer is assumed.
This assumption is well supported. Firstly, by the good agreement between the
models and experiments. Secondly, by visual observations [41, 42, 43].

The general approach of the models presented in [51, 50, 40] is that the flux
during forward filtration through the membrane is given by dead end filtration.
In [51] the forward filtration happens immediately after the back-shock. In [50]
the continuity equation for the solute in the bulk during and after back-shocking
is solved. During forward filtration the continuity equation is solved until the
concentration on the membrane reaches the maximum packing density. Until
this value is reached the flux through the membrane is given by the pure water
flux to account for the delay in cake formation. After the maximum packing
density is reached the solvent flux decreases according to dead end filtration. In
[40] an additional function is added that is a measure of the amount of the cake
layer which is removed as a function time.

This chapter concerns mathematical modelling of back-shocking in the hollow
fibre module presented in chapter 4. We will not model internal fouling of the
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membrane. As a consequence the long time performance of the membrane will be
determined by the steady-state solution presented in chapter 4. In this chapter
two models will be presented that investigate the effect of back-shocking. As
in the stationary model presented in section 4 the characteristics of the solute,
D, η(c), will influence the results of the model. This chapter, however, only
concerns the modelling of a solute having the same properties as Dextran T500.
Moreover, it is obvious that the operating parameters - the inlet velocity, the
transmembrane pressure, the back-shock pressure, the back-shock time, and the
time between back-shocking - will influence the efficiency of back-shocking. The
aim of the models presented in this chapter is therefore to find the parameter
set that optimizes the volumetric flux, or the observed rejection, or both, when
back-shocking is applied as compared to the steady-state solution.

We will assume that the characteristics of the membrane do not change with
working parameters. Hence, we have a multi-parameter problem of finding the
parameter set such that we maximize the observed rejection, the volumetric flux,
or both. I.e., we want to find the parameter set such that we have

Robs,max = maxRobs(t; tbs, tbbs, ptmp, pbs, uin,av), (5.1)

Jv,max = max Jv(t; tbs, tbbs, ptmp, pbs, uin,av). (5.2)

It will, however, be necessary to confine the parameters to certain intervals.
These intervals are chosen for two reasons. Firstly, the model should reflect
physically possible scenarios. E.g. infinite transmembrane pressure, back-shock
pressure, or inlet velocity are unrealistic. Secondly, a finite set of parameters
results in a finite amount of simulations. Therefore, the parameters will be varied
in the following intervals

tbs ∈ [0.1; 2]s , tbbs ∈ [5; 10]s ,
pbs ∈ [0.5; 3]bar , ptmp ∈ [0.5; 2]bar , uin,av ∈ [0.86; 1.29]m/s . (5.3)

The inlet average inlet velocities corresponds to Reynolds numbers in the hollow
fibre, of which this model is a simplification. Therefore, in order to relate this
model with both the previous and the following model it should be noted that
uin,av = 0.86m/s correspond to Re = 600 and uin,av = 1.29m/s corresponds to
Re = 900.

Since there is a huge computational effort involved when solving the time
dependent Navier-Stokes equation along with the continuity equation for the
solute, it has been necessary to introduce two models.

The simplest model is a two dimensional model, presented in section 5.2, Here
the continuity equation will be solved in a two dimensional domain. The domain
will be the length of the membrane times several widths of the boundary layer
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thickness. The velocity component perpendicular to the membrane is given by
the flux through the membrane and the velocity component in tangential to the
membrane will be assumed linear and given by a first order Taylor expansion of
a fully developed Poiseuille flow. This model will be referred to as the 2D-model.

In the three dimensional, axial symmetric, model presented in section 5.7, the
full Navier-Stokes equation, as well as the continuity equation for both solvent
and solute, is solved within the hollow fibre. As compared to the 2D-model this
model allows a concentration dependent viscosity. The computational effort in
solving this model, however, restricts the simulations to a hollow fibre with a
membrane length of 14 cm. Moreover, we will confine the simulations of the
full three dimensional model around the parameter set, determined from the
knowledge gained from the 2D-model. This model will be referred to as the
3D-model.

In both models we restrict the simulations to membranes where the intrinsic
rejection is high, such that the solution diffusion model is a good approximation
for the flux of solute and solvent through the membrane. Furthermore, the
same values of the solvent permeability and the solute permeability used in
chapter 4 will be used. I.e., A = 192L/m2hbar and B = 0.47L/hm2. This allows
us to investigate the influence of back-shocking on both the solvent flux and
the observed rejection. Moreover, the flux through the membrane during back-
shocking will be pure solvent.

5.2 2D model

In this model we will solve the continuity equation for the solute in two dimensions
close to the membrane surface.

We will assume that for a given average inlet velocity into the hollow fibre,
uav, the velocity in the axial direction is well approximated by a Poiseuille flow.
Furthermore, it will be assumed that this velocity does not depend on time.
Thus,

vx(r) ≈ 2Uav
(

1−
( r
R

)2
)
. (5.4)

Moreover, we will assume that we are so close to the membrane surface that the
axial velocity is well approximated by a first order Taylor expansion. Defining a
new variable y = R− r we have, by inserting the expression for y into equation
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(5.4), that

vx(y) = 2uav
(

1−
(

1− y

R

)2
)
. (5.5)

A first order Taylor expansion for small values of y gives

vx(y) ≈ vz(0) + dvz
dy

∣∣∣∣
y=0

y = 4uin,av
R

y . (5.6)

The velocity normal to the membrane will be considered independent of y and
equal to the flux through the membrane. Hence,

vy(x, t) = −A(p(x)− (ptmp + pbs) Φn(t)− π(c(x, 0, t))) , (5.7)

where p(x) is the pressure that varies in the axial direction, ptmp is the trans-
membrane pressure and pbs is the back-shock pressure, Φ(t) is a smoothed hat
function defined as being one when there is a back-shock applied and zero when
no back-shock is applied.

More specific all simulations will be made such that there is an initial time
Ti followed by the first back-shock tbs,1 followed by a the first time between
back-shock tbbs,1. Hereafter comes the second period and so forth. Thus, denoting

Tn = Ti + (n− 1)(tbs + tbbs), (5.8)

Φn(t) is defined as

Φn(t) =

 0 for t < Tn − ε/2
1 for Tn + ε/2 < t < Tn + Tbs − ε/2
0 for t < Tn + tbs + ε/2

(5.9)

where ε is a time small compared to tbs where the Φn(t) continuously changes
from zero to one or one to zero. The osmotic pressure π(c(x, 0, t)) depends on
the concentration on the membrane surface, which depends on both the time
and the axial position. The osmotic pressure will be given by equation (2.9).

Notice that the fluid is incompressible since ∇ · v = 0.

The pressure on the membrane surface will be assumed linear and given by the
Poiseuille pressure profile. Hence,

pin − pout = 8ηsLmuin,av
R2 . (5.10)

Furthermore, the average transmembrane pressure is given by

ptmp = pin + pout
2 (5.11)
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The assumption that the pressure is linear gives

p(x) = pin −
pin − pout

Lm
x . (5.12)

Combining equation (5.10), equation (5.11), and equation (5.12) we get the
following expression for the pressure as a function of x

p(x) = ptmp + 8ηsLmuin,av
R2

(
1
2 −

x

Lm

)
. (5.13)

The continuity equation for the solute is given by

∂c

∂t
+ vx(y) ∂c

∂x
+ vy(x, t) ∂c

∂y
= D

(
∂2c

∂x2 + ∂2c

∂x2

)
, (5.14)

whereD is the diffusion coefficient given by equation (2.7) with a molecular weight
of 500 kDa. The continuity equation is solved with the boundary conditions

c(0, y) = cin , (5.15a)

c(x, ymax) = cin ∧
∂c

∂y
|ymax

= 0 , (5.15b)

vy(x, 0, t)c(x, 0, t)−D∂c(x, 0, t)
∂y

= Bc(x, 0, t) , (5.15c)

∂c(Lm, y, t)
∂x

= 0 . (5.15d)

5.2.1 Scaling the equations

The equations of motion and the boundary conditions will be scaled using the
scaled variables

ĉ = c

cin
, x̂ = x

Lm
, ŷ = y

δ
, v̂x = vx

J̄v,av
, v̂y = vy

J̄v,av
, t̂ = t

δ/Jv,av

.

(5.16)
As seen in appendix A.3 this gives the following expression for the continuity
equation

∂ĉ

∂t̂
+ λv̂x

∂ĉ

∂x̂
+ v̂y

∂ĉ

∂ŷ
= 1

Pebl

(
λ2 ∂

2ĉ

∂x̂2 + ∂2ĉ

∂ŷ2

)
, (5.17)
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where Pebl = J̄v,avδ/D and λ = δ/Lm. The boundary conditions become

c(0, ŷ) = 1 , (5.18a)

c(x̂, ŷmax) = 1 ∧ ∂ĉ
∂ŷ
|ŷmax

= 0 , (5.18b)

v̂y(x̂, 0, t̂)ĉ(x̂, 0, t̂)− 1
Pebl

∂ĉ(x̂, 0, t̂)
∂ŷ

= B̂ĉ(x̂, 0, t̂) , (5.18c)

∂ĉ(1, ŷ, t̂)
∂x̂

= 0 , (5.18d)

where B̂ = B/J̄v,av.

The values of the various scaling constants are

δ = 18µm , Lm = 46cm , J̄v,av = 6µm/s ,
δ

J̄v,av
= 3s . (5.19)

The equations above will be solved in the domain given by [0, 1]× [0, ŷmax] where
ŷmax = {5, 10} depending on the parameter values. This is done to ensure that
the boundary condition at ymax is a good approximation.

For both values of ŷmax a mapped mesh is used to ensure a high resolution close
to the boundary layer. The mesh has 100 elements in the x̂-direction. When
ŷmax = 5 there are 100 elements in ŷ-direction. The element size is decreasing
towards the membrane surface using a geometric sequence with an element ratio
of 0.05. This leads to 10201 degrees of freedom.

Dependence of the solution on the mesh has been tested. In all simulations
made the mesh has the same number of elements in both directions and the
element ratio given above. Denoting the solution to the simulations with n× n
elements by Sn, computations were made with n = {25, 50, 100, 200, 400}. These
simulations were simulated over the same period of time and having five back-
shock periods. The solver gave an output for the same time-step ∆t. It should,
however, be noted that the solver solves the equations for internal time-steps
much smaller than this time. It is, however, only desirable to have the solution
for certain time-steps due to size of each data-set. Thus, the discrete time is
given by t1 = 0, t2 = ∆t, ..., ti = (i− 1)∆t.

The main interest of the simulations is the concentration on the membrane
surface, as this influences the flux of both solute and solvent. As the amount
of data points on the membrane surface is increasing with the number of n a
direct comparison was not possible. Instead a comparison between the integral
over the membrane surface has been made. Since the time step is the same for
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Figure 5.3: Investigation of relative error for different number of mesh elements:
a) Comparison between the solution with the coarsest mesh and the finest mesh,
b) Relative error for different number of mesh elements.

all values of n, the solution to every time-step can be compared. Hence, the
following vectors are defined

sn : sn,i =
∫ 1

0
Sn(x, 0, ti)dx . (5.20)

Here i refers to the i’th element of the vector sn. Comparing the solutions with
the densest mesh, n = 400, we define the following norm

Nn : Nn,i = |sn,i − s400,i|
|s400,i|

. (5.21)

One could fear that division with zero would be a problem. It turns out, however,
that this is not the case. The smallest values in s400 is 7.2 · 10−4. Hence, the
relative norm is well defined. In figure 5.3a s400 and s25 is plotted as a function
of time. As seen the solution for the two meshes follow the same tendency.
There is, however, a rather large difference. Furthermore, it is seen that during
back-shocking the concentration on the membrane surface tends to zero. Hence,
the introduction of ε in equation (5.21). In figure 5.3b the relative error is shown
for each time and for the different values of n.

As expected the relative error decreases for an increasing number of mesh
elements. There is, however, rather large errors for all values of n. When
comparing to figure 5.3a these are confined to when the concentration on the
membrane surface is very small. Hence, these relative errors will not contribute
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Figure 5.4: The mesh used when ŷmax = 5.

significantly to the results presented. Besides the error when the concentration
is close to zero, the error for n = 100 is within one percent of the solution with
n = 400. Thus, in order to reduce simulation time n = 100 has been chosen.

When ŷmax = 10 there are 250 elements in ŷ-direction. The element size decreases
towards the membrane surface using a geometric sequence with an element ratio
of 0.05. This leads to 25321 degrees of freedom. The mesh used for ŷmax = 5 is
shown in figure 5.4.

5.2.2 Simulations and measured quantities

For each parameter set θ = (ptmp, uin,av) a steady-state simulation is made
giving the steady-state flux of both solvent and solute, Jv,ss(θ) and Js,ss(θ).

For all simulations the initial condition on the concentration will be ĉ = 1.
We will simulate for a time given by Ts = ti + 5(tbs + tbbs). If nothing else is
mentioned the initial time ti will be equal to the time between back-shock tbbs.
The initial time is necessary to approach the steady state solution. Hereafter, the
periodic back-shock is applied and the solution will converge towards a periodic
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solution.

Since this is a two dimensional model there will be an average flux for each time
instant. This is defined as

Jv,av(t̂) =
∫ 1

0
Ĵv(x̂, t̂)dx̂ , (5.22)

and similarly for the solute flux

Js,av(t̂) =
∫ 1

0
Ĵs(x̂, t̂)dx̂ . (5.23)

Moreover, we define the steady-state average solvent flux as

Jv,ss =
∫ 1

0
Ĵv,ss(x̂)dx̂ , (5.24)

and similarly for the steady-state solute flux

Js,ss =
∫ 1

0
Ĵs,ss(x̂)dx̂ . (5.25)

In all simulations the periodic solution is obtained after two back-shock cycles.
Therefore, the average flux is calculated only from the data of the last three
back-shock cycles. I.e.,

〈Jv〉 =

∫ t̂i+5(t̂bs+t̂bbs)
t̂i+2(t̂bs+t̂bbs)

∫ 1
0 Ĵv(x̂, t̂)dx̂dt̂

3(t̂bs + t̂bbs)
(5.26)

and

〈Js〉 =

∫ t̂i+5(t̂bs+t̂bbs)
t̂i+2(t̂bs+t̂bbs)

∫ 1
0 Ĵs(x̂, t̂)dx̂dt̂

3(t̂bs + t̂bbs)
(5.27)

The observed rejection will be given by

Robs =
(

1− 〈Js〉
〈Jv〉

)
. (5.28)

5.2.3 Results

The results of the simulations are presented in this section.
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Figure 5.5: Average solvent flux as a function of time for: a) different transmem-
brane pressures, b) different inlet velocities.

5.2.3.1 General results

When there is no back-shock applied the average solvent flux through the
membrane decreases towards the average solvent flux of the steady-state solution.
This is illustrated for different transmembrane pressures in figure 5.5a. As seen
both the initial average solvent flux and the steady-state average solvent flux
increase for increasing transmembrane pressures.

In figure 5.5b the average solvent flux through the membrane is shown for
different transmembrane pressures and different inlet velocities. As seen the
steady-state average solvent flux through the membrane is higher for higher inlet
velocities at the same transmembrane pressures.

Before investigating the effect of varying different parameters during back-
shocking the qualitative features of the simulations will be illustrated.

In all simulations with back-shocking there is an initial time needed to obtain
a periodic steady-state. When this is obtained all simulations have the same
qualitative behaviour. This will be illustrated using a simulation with tbs = 0.6s,
ptmp = pbs = 2bar, and Re = 900. To ease the illustration we define a variable,
tabs - the time after back-shock. In figure 5.6 the concentration polarization, just
before the back-shock is applied, is shown. Furthermore, the contour line where
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Figure 5.6: Concentration field just before the back-shock is applied, tabs = 0.

the concentration is 1.1 illustrates the width of the boundary layer.

When the back-shock is applied the concentration polarization gets convected
into the bulk of the hollow fibre. This is seen as an area of high concentration
compared to the bulk concentration. This area is now confined within the contour
line. The highly concentrated area gets convected into the bulk and tangentially
along the membrane during the back-shock period. This is illustrated in figure
5.7.

When the pressure is reversed the highly concentrated area is convected towards
the membrane. Furthermore, there is a build up of concentration close to the
inlet. After a given time the highly concentrated area is in contact with the
membrane again. This is illustrated in figure 5.8.

In figure 5.9 the concentration profile perpendicular to the membrane is shown
at the end of the membrane x̂ = 1 and half way down the membrane, x̂ = 1.
The concentration profile corresponds to the concentration field shown in figure
5.6-5.8. For a better illustration the graph has been cut off at ĉ = 40. It
should, however, be noted that the concentration on the membrane surface at
ĉ(tabs) ≈ 108. This also seen in figure 5.6. As before, just before the back-shock
is applied tabs=0 there is a high concentration polarization. The concentration
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(a) Concentration field during
back-shocking, tabs = 0.3s.

(b) Concentration field just before the
pressure is reversed, tabs = 0.6s.

Figure 5.7: Concentration field during back-shocking.

(a) Concentration field during
forward filtration, tabs = 0.9s.

(b) Concentration field when the highly con-
centrated area has contact with the mem-
brane, tabs = 1.2s.

Figure 5.8: Concentration field during forward filtration.
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Figure 5.9: Concentration perpendicular to the membrane surface for different
times after the back-shock. The parameters used in this simulation is pbs =
ptmp = 2bar, Re = 900.

is then convected away from the membrane. The maximum of the concentration
profile decreases and the width of the concentration profile increases as a function
of time due to diffusion. Furthermore, it should be noted that the pure solvent
flux that is injected during back-shocking causes the concentration to be zero
near the membrane surface. Moreover, the passing of the highly concentrated
area is seen in figure 5.9a for time tabs = 0.9s (see figure 5.8). This is seen as the
concentration profile disappearing as compared to figure 5.9b where the profile
is still well defined. When the non-zero concentration reaches the membrane the
concentration starts to build up on the membrane surface. For times larger than
the times shown here the concentration continues to builds up on the membrane
surface until the concentration profile shown for tabs = 0 is reached.

In figure 5.10a the typical behaviour of the average solvent flux along with
the solution without back-shocking is shown. As seen the two solutions are
identical in the initial period, ti. When the back-shock is applied the flux
becomes negative. Moreover, at the instant the back-shock is applied there is a
concentration on the membrane surface which increases the negative flux due to
the osmotic pressure. The concentration, however, is removed and the negative
flux attains a constant value. When the pressure is reversed the flux attains the
value of a clean membrane. As time increases the concentration builds up on the
membrane surface causing the flux to decrease towards the steady-state solution.
Furthermore, it is seen that the solution enters a periodic solution. This can be
seen from the fact that there is no difference between the last three periods.

In figure 5.10b the typical behaviour of the average solute flux along with the
solution without back-shock is shown. Again the two solutions are identical
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Figure 5.10: Average fluxes: (a) solvent flux, (b) solute flux.

in the initial period. From the moment where the back-shock is applied the
concentration on the membrane surface decreases towards zero, causing the solute
flux to decrease. When the pressure is reversed, the concentration approaches the
steady-state solution. It should be noticed that the solute flux with back-shocking
is always lower than the steady-state solution.

Besides the inlet velocity, the parameters that will be varied are the transmem-
brane pressure, the back-shock pressure, the time between back-shocks, and the
back-shock time.

In figure 5.11a the effect of varying the back-shock pressure is illustrated. As
seen the negative flux increases with increasing back-shock pressure during the
back-shock period. Moreover, the concentration boundary layer will be pushed
further away from the membrane when a higher backshock pressure is applied.
This results in a higher flux when the pressure is reversed or a longer time where
the flux maintains a high value, or both.

In figure 5.11b the effect of varying the transmembrane pressure is shown. As
seen the higher the transmembrane pressure the higher the initial flux after
back-shock can be obtained as compared to the steady-state flux. The negative
flux during back-shock is the same. The steady-state flux, however, is higher
for high transmembrane pressures. This can be seen from the ratio between the
flux and the steady-state flux having a higher value for high transmembrane
pressures. Furthermore, it is seen that the average flux tends faster towards the
steady-state solution for high transmembrane pressures.
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Figure 5.11: Average solvent flux for: (a) different back-shock pressures, (b)
different transmembrane pressures.

In figure 5.12a the average solvent flux is shown for different back-shock times.
As seen the flux is higher for longer times when the back-shock time is high.
This is comparable to the back-shock pressure where the same tendency was
seen.

In figure 5.12b the average flux is seen for different times between back-shocking.
The longer the time between back-shocking the closer the flux comes to the
steady-state solution when the back-shock is applied.

5.2.3.2 Time averaged values

In this section the effect of varying the parameters on the time averaged solvent
flux, solute flux as compared to the steady-state solution, e.g, the integral over
the last three periods in figure 5.10-5.12, will be investigated. Furthermore, the
effect on the observed rejection will be presented. The parameter of interest will
be varied whereas the other parameters will be fixed. In all figures the effect of
varying the parameter will be shown as a function of the back-shock time.

In figure 5.13 the effect of changing the transmembrane pressure is shown.

The normalized solvent flux is shown in figure 5.13a. As seen, for transmembrane
pressures larger than 0.7 bar the time averaged flux attains a value higher than
the steady-state flux. Moreover, there is a characteristic maximum for each
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Figure 5.12: Average solvent flux for: (a) different back-shock times, (b) different
times between back-shocking.

transmembrane pressure. This maximum becomes shifted towards higher back-
shock times for higher transmembrane pressures. Furthermore, the curves follow
each other until they bend of. Here the curves with the smallest transmembrane
pressures bend of first. Hence, there is a larger effect for high transmembrane
pressures. This can be explained by the higher ratio between the pure solvent
flux and steady-state flux. It is noted that the time averaged flux becomes
negative for high back-shock times.

In figure 5.13b the time averaged solute flux is shown. As seen the solute flux is
decreasing for all transmebrane pressures as a function of the back-shock time.
Furthermore, it is noted that the solute flux is higher for higher transmembrane
pressures. This is expected since a high transmembrane pressure leads an increase
in concentration polarization during forward filtration and a higher solute flux.

In figure 5.13c the observed rejection is shown along with the steady-state
observed rejection. It is seen that there is a positive effect of back-shocking for
all transmembrane pressures. Here it should be noted that even for a decrease
in solvent flux, the observed rejection can increase as seen for a transmembrane
pressure of 0.5 bar. The highest values of the observed rejection are obtained
for low transmembrane pressures. The increase compared to the steady-state,
however, is largest for high transmembrane pressures. Here an increase from
approximately 20% to 50 % is observed, whereas an increase from approximately
50% to 70% is observed for a transmembrane pressure of 0.5bar. The maximum
of the observed rejection is shifted towards higher back-shock times for higher
transmembrane pressures. If compared to figure 5.13a the maximum of the
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Figure 5.13: Normalized flux and observed rejection as a function of back-shock
times for different transmembrane pressures, using the parameters pbs = 2bar,
tbbs = 5s, and Re = 900. The figures represent: (a) The solvent flux, (b) The
solute flux, (c) The observed rejection.
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observed rejection is observed for higher back-shock times than the maximum of
the solvent flux.

In figure 5.14 the effect of varying the back-shock pressure is shown.

As seen in figure 5.14a the maximum of the solvent flux is shifted towards
smaller back-shock times for larger transmembrane pressures. Furthermore, the
maximum value is increasing for shorter back-shock times.

In figure 5.14b it is seen that the solute flux is higher for smaller values of the
back-shock pressure.

From figure 5.14a and 5.14b the behaviour of the observed rejection, shown in
figure 5.14c is rather obvious. For small back-shock pressures the solute flux
decreases almost linearly, whereas the solvent flux maintains an almost constant
value. Hence, the observed rejection increases linearly. For high back-shock
pressures the solvent flux attains a maximum value within the interval of back-
shock times shown here. This implies that a maximum in the observed rejection
is obtained as well. Since all simulations are with the same transmembrane
pressure the observed rejection of the steady-state is the same. An increase in
observed rejection of approximately 30% is observed for all back-shock pressures
except the smallest bac-shock pressure. At this back-shock pressure, however,
the observed rejection is still increasing. Thus, it is not possible to say how high
an effect can be obtained.

In figure 5.15 the effect of increasing the time between back-shocking is shown.

As seen in figure 5.15a there seems to be no difference in the maximum solvent
flux for different times between back-shocking. There is a tendency that for
back-shock times smaller than the optimal back-shock time there is a higher
effect when the time between back-shocking is short. This tendency is opposite
for back-shock times longer than the optimal back-shock time, where the gradient
is smaller for longer times between back-shocking. For longer times between
back-shocking the concentration field is closer to the concentration field of the
steady-state solution. Hence, a higher concentration polarization should be
expected, which in the case of small back-shock times influence the forward
filtration in a negative way when the pressure is reversed. This can explain the
difference in the solvent flux for small back-shock times. That the maximum value
does not change significantly suggests that the concentration fields immediately
before the back-shock is applied are similar. Hence, at back-shock times of
tbbbs = 5s the concentration field is rather close to the steady-state solution.
This also implies that the gradient after the maximum is obtained is smaller
for high back-shock times due to the relatively longer integration over the
steady-state solution.
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Figure 5.14: Normalized flux and observed rejection as a function of back-shock
time for different back-shock pressures, ptmp = 1bar, Re = 900, tbbs = 5s. The
figues show: (a) The solvent flux, (b) The solute flux, (c) The observed rejection.
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Figure 5.15: Normalized flux and observed rejection as a function of back-shock
times for different back-shock pressures, ptmp = pbs = 2bar, Re = 900, tbbs = 5s:
The figures show: (a) The solvent flux, (b) The solute flux, (c) The observed
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5.2 2D model 71

The average solute flux shown in figure 5.15b shows an increasing solute flux for
long times between back-shocking. This is also expected from the arguments
above, as the solute flux attains its highest value at the steady-state.

In figure 5.15c the observed rejection attains its maximum value for the same
value of back-shock time, for all three times between back-shocking. The value,
however, decreases for increasing time between back-shocking. This is also
expected from operating close to the steady-state solution for longer periods of
time.

In figure 5.16 the effect of changing the inlet velocity is shown.

As seen in figure 5.16a the normalized time averaged solvent flux attains a higher
maximum value for higher inlet velocities. Furthermore, the maximum seems to
be shifted towards smaller back-shock times for a high inlet velocity. Moreover,
for high back-shock times the gradient of the two curves are similar.

In figure 5.16b the normalized solute flux is shown. Here the two curves more
or less follow each other. The curve for highest inlet velocity, however, has the
highest value for large times between back-shocking.

In figure 5.16c the observed rejection is shown for the two different inlet velocities.
As seen a substantial increase is obtained. The increase is similar in size, with a
larger observed rejection for the highest inlet velocity. The observed rejection in
steady-state, however, is also larger for the highest inlet velocity. Furthermore,
the maximum value is attained for lower back-shock times when the velocity is
higher. This must be ascribed to the maximum in the solvent flux also attaining
its maximum at lower back-shock times.

The interplay between the various parameters and the back-shock times can be
understood from looking at the path-lines during the back-shock period. This
will be elaborated in the following section.
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Figure 5.16: Normalized flux as a function of back-shock times for different
back-shock pressures, ptmp = 2bar, pbs = 3bar, tbbs = 5s. The figures shows: (a)
The solvent flux, (b) The solute flux, (c) The observed rejection.
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5.3 Upper estimate for the optimal back-shock
time

In this section two upper estimates for the optimal back-shock time, as function
of the parameters pbs, ptmp, Lm, uin,av, and ηs, are given.

The hypothesis behind the estimates is that the path-line from the beginning of
the membrane surface, during a back-shock cycle, should end at the other end of
the membrane surface.

We will assume that the time-dependent solution has reached a periodic steady-
state and confine ourselves to only one period, i.e., t ∈ [0 : tbs + tbbs]. Under this
assumption a given concentration profile will exist when the back-shock is applied,
c(x, y, 0). This concentration profile will be polarized towards the membrane
surface with the largest value at the membrane surface and exponentially decaying
into the bulk of the hollow fibre. The width of the boundary layer, δ, will be
determined by the operating conditions.

Neglecting diffusion for now, the concentration in the boundary layer will be
pushed into the bulk of the hollow fibre, forming an area of high concentration
with a width comparable to the width of the boundary layer and a length equal
to the length of the membrane. This area is convected away from membrane
surface and downstream tangential to the membrane surface. Between the
membrane and the highly concentrated area, the concentration is zero, due to
the pure solvent flux into the hollow fibre. This is illustrated in figure 5.7. When
the pressure is reversed the concentration field will be given by c(x, y, tbs) and
the area of high concentration will be convected towards the membrane and
downstream tangential to the membrane until the area of high concentration has
contact with the membrane surface. From here on the concentration polarization
will build up on the membrane surface. This is illustrated in figure 5.8.

An upper estimate for the most beneficial set of parameters is then given when
the path-line from (0, 0) pass through (Lm, 0). Notice, that path-lines from (0, 0)
that passes through (L̂m, 0), where L̂m > Lm will have been moved further away
from the membrane surface, i.e., a larger amount of solvent is needed to be
flushed into the hollow fibre during the back-shock period. This extra amount,
however, will not result in any gain during forward pressure period, since the
highly concentrated area will not have any contact with the membrane surface.
Hence, this is an upper estimate.
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5.3.1 Analytical calculations of path-lines

The tangential velocity component close to the membrane surface is approximated
by a linear function

vx(x, y) = ky . (5.29)

Here, k is given by the first order Taylor expansion presented in equation (5.6).
I.e,

k = 4uin,av
R

(5.30)

During the back-shock period the velocity component perpendicular to the
membrane surface close to the membrane is given by

vy(x, y, t) =
{

A(pbs − p̃(x) + π(c(x, 0, t))) for 0 ≤ t ≤ tbs
−A(ptmp + p̃(x)− π(c(x, 0, t))) for tbs < t ≤ tbs + tbbs .

(5.31)
Here, p̃(x) is the pressure drop needed to obtain a velocity tangential to the
membrane surface, i.e., equation (5.13).

At the instance where the back-shock is applied the osmotic pressure will have an
influence on the velocity. The concentration boundary layer is, however, removed
fast compared to the back-shock time. Therefore, the osmotic pressure is
neglected during back-shocking. When the pressure is reversed the concentration
on the membrane surface is clean under the highly concentrated area until the
time T , tbs < T < tbs + tbbs, where the highly concentrated area is convected to
the membrane surface. Since, we are interested in times less than or equal to this
time, t ≤ T the osmotic pressure can be neglected in equation (5.31). Hence,

vy(x, y, t) =
{

A(pbs − p̃(x)) for 0 ≤ t ≤ tbs
−A(ptmp + p̃(x)) for tbs < t ≤ T . (5.32)

From equation (5.13) we have

p̃(x) = 8ηsLmuin,av
R2

(
1
2 −

x

Lm

)
= β

(
1
2 −

x

Lm

)
. (5.33)

Inserting this into equation (5.32) and rearranging we get

vy(x, y) =
{

Aβx
Lm

+ (Apbs − Aβ
2 )) for 0 ≤ t ≤ tbs

Aβx
Lm
− (A(ptmp + Aβ

2 )) for tbs < t ≤ T . (5.34)
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Denoting γ = Aβ
Lm

, C1 = (Apbs− Aβ
2 ), and C2 = −(A(ptmp+ Aβ

2 ), equation (5.34)
can be written as

vy(x, y) =
{
γx+ C1 for 0 ≤ t ≤ tbs
γx+ C2 for tbs < t ≤ T . (5.35)

Using the expressions for the velocity given in equation (5.29) and equation (5.35)
the path-line from (0,0) can be calculated. During back-shocking, 0 ≤ t ≤ tbs,
the path-line is determined by the solution to the system of ordinary differential
equations given in equation (5.36)(

ẋ
ẏ

)
=
(

0 k
γ 0

)
+
(

0
C1

)
. (5.36)

Here, the dot represents the derivative with respect to time. From standard
ODE-theory[10] the solution is given by a solution to the homogeneous equation
plus a particular solution to the inhomogeneous equation.

The solution to the homogeneous equation is given by(
xh(t)
yh(t)

)
= c1

(
1√
γ/k

)
e
√
kγt + c2

(
1

−
√
γ/k

)
e−
√
kγt . (5.37)

A particular solution to the inhomogeneous equation is given by(
xp(t)
yp(t)

)
=
(
−C1/γ

0

)
. (5.38)

The solution to equation (5.36) is then given by the sum of equation (5.37) and
equation (5.38). Thus,(

x(t)
y(t)

)
= c1

(
1√
γ/k

)
e
√
kγt+ c2

(
1

−
√
γ/k

)
e−
√
kγt−

(
C1/γ

0

)
. (5.39)

Since we are interested in the path-line from (0,0) the constants c1 and c2 are
determined from (x(0), y(0)) = (0, 0). Hence,

c1 = c2 = C1

2γ . (5.40)

Inserting the values from equation (5.40) into equation (5.39) we have(
x(t)
y(t)

)
= C1

2γ

[(
1√
γ/k

)
e
√
kγt +

(
1

−
√
γ/k

)
e−
√
kγt −

(
2
0

)]
. (5.41)
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Especially, we have at the end of the back-shock period(
x(tbs)
y(tbs)

)
= C1

2γ

[(
1√
γ/k

)
e
√
kγtbs +

(
1

−
√
γ/k

)
e−
√
kγtbs −

(
2
0

)]
.

(5.42)

When the pressure is reversed, t > tbs we define a new variable τ = t − tbs.
The system of ordinary differential equations written from equation (5.29) and
equation (5.35) is given by(

ẋ
ẏ

)
=
(

0 k
γ 0

)
+
(

0
C2

)
. (5.43)

Here, the dot represents differentiation with respect to τ . This has the same
functional form as equation (5.36) and therefore the general solution is the same.
Thus,(

x(τ)
y(τ)

)
= c3

(
1√
γ/k

)
e
√
kγτ + c4

(
1

−
√
γ/k

)
e−
√
kγτ +

(
−C2/γ

0

)
.

(5.44)
The constants c3 and c4 are to be determined from
(x(τ = 0), y(τ = 0)) = x(tbs, y(tbs)). Calculations reveal that

c3 =
C1

(
e
√
kγtbs − 1

)
+ C2

2γ (5.45)

and

c4 =
C1

(
e−
√
kγtbs − 1

)
+ C2

2γ . (5.46)

Hence, the solution as a function of τ is given by

(
x(τ)
y(τ)

)
= 1

2γ

{[
C1

(
e
√
kγtbs − 1

)
+ C2

]( 1√
γ/k

)
e
√
kγτ

+
[
C1

(
e−
√
kγtbs − 1

)
+ C2

]( 1
−
√
γ/k

)
e−
√
kγτ −

(
2C2

0

)}
.

(5.47)

We now seek the path-line that as a function of the parameter tbs passes through
the point (Lm, 0). Denoting the time it takes to reach the point as τ0 we solve
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the system of equations(
Lm
0

)
= 1

2γ

{[
C1

(
e
√
kγtbs − 1

)
+ C2

]( 1√
γ/k

)
e
√
kγτ0

+
[
C1

(
e−
√
kγtbs − 1

)
+ C2

]( 1
−
√
γ/k

)
e−
√
kγτ0 −

(
2C2

0

)}
.

(5.48)

Solving the equation for y(τ0) = 0 gives

τ0 = 1
2
√
kγ

ln

C1

(
e−
√
kγtbs − 1

)
+ C2

C1

(
e
√
kγtbs − 1

)
+ C2

 (5.49)

Inserting this in the equation x(τ0) = Lm and solving for tbs, tedious calculations
reveal there are several solutions. We are, however, only interested in the one
solution that gives a positive real number. This solution is given by

tbs = 1√
kγ

2 ln
[

1√
2

(
ξ +√χ

C1 (C1 − C2)

)1/2
]
, (5.50)

where
ξ = − (Lmγ)2 − 2C2Lmγ + 2C1 − C1C2 (5.51)

and

χ = (Lmγ) (Lmγ + 2C2) (Lmγ + 2C1) (Lmγ − 2C1 + 2C2) . (5.52)

This relatively simple expression gives an upper estimate for the optimal back-
shock time needed to maximize the volumetric flux. Hence, given the parameters
R, Lm, A, ptmp, pbs, ηs and uin,av the back-shock time can be calculated.

5.3.2 Results

In this section the back-shock times calculated from equation (5.50) are presented.
We will vary one parameter at a time and show how the path-line and the back-
shock time vary when this parameter is varied, and all other parameters are
constant. Notice, however, that in principle the estimate for the back-shock time
is a hyper-surface in Rn, where n is the number of parameters allowed to be
varied. In the end of this section a back-shock estimate for the parameters used
in the simulations presented in section 5.2.3 will be calculated and related to the
simulations.
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Figure 5.17: Estimate for the back-shock time and path-lines for different inlet
velocities.

In figure 5.17a is shown how the estimate for the back-shock time varies as a
function of the inlet velocity.

As seen in figure 5.17a the back-shock time decreases as the inlet velocity is
increased. This is because the velocity component tangential to the membrane
surface is increased. Hence, the path-line from (0, 0) to (Lm, 0) reaches a smaller
y-value, i.e., perpendicular to the membrane surface. Hence, a smaller back-shock
time is needed. This is illustrated in figure 5.17b.

In figure 5.18a the estimate for the back-shock time is shown for different
transmembrane pressures. As seen a higher transmembrane pressure requires
a higher back-shock time. Again this can be explained by looking at the path-
lines. In figure 5.18b the path-lines are shown for two different transmembrane
pressures. When the transmembrane pressure is higher, the path-line towards
the membrane after back-shocking is steeper. Hence, a higher back-shock time is
needed for the path-line to coincide with the membrane surface at (Lm, 0). Also,
it is seen that the path-lines follows the same path during back-shocking. The
path-line for the lowest transmembrane pressure is, however, extended further
due to the increased back-shock time.

In figure 5.19a the estimate for the back-shock time is shown for different back-
shock pressures. As seen the back-shock time decreases when the back-shock
pressure is increased. This is because the velocity away from the membrane is
higher when the back-shock pressure is higher. Hence, the path-line moves faster
away from the membrane surface. Thus, a shorter back-shock time is needed.
This is illustrated in figure 5.19b.
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Figure 5.18: Estimate for the back-shock time and path-lines for different
transmembrane pressures.
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Figure 5.19: Estimate for the back-shock time and path-lines for different back-
shock pressures.
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Figure 5.20: Estimate for the back-shock time and path-lines for differerent
membrane permeabilities.

In figure 5.20a the estimate for the back-shock time is shown for different values
of the solvent permeability.

As seen the back-shock time decreases when the solvent permeability increases.
Again this is due to the increased velocities both during back-shock and dur-
ing forward separation. Two path-lines with different values of the solvent
permeability is shown in figure 5.20b.

In figure 5.21a we show the estimate for the back-shock time as a function of
the viscosity.

As compared to solving the Navier-Stokes equation the viscosity does not appear
directly in the equations that govern the velocity field. It does, however, appear
implicitly in the pressure drop down the axial length of the hollow fibre. Hence,
a higher solvent viscosity requires a larger pressure drop in order to maintain a
given average inlet velocity. Since the pressure drop is symmetric around Lm/2
an increased pressure drop implies a smaller velocity away from the membrane
during back-shocking and a smaller velocity towards the membrane during
forward separation. Hence, longer back-shock times are needed. This is indeed
also what is seen in figure 5.21a. The longer back-shock time implies that the
path-lines travel further away from the membrane, i.e., to larger values of y.
This is illustrated for two different viscosities in figure 5.21b.
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Figure 5.21: Estimate for the back-shock time and path-lines for different solvent
vicosities.

5.4 Simplified analytical calculations

For the parameter values used in this thesis, the axial pressure drop needed to
maintain a given average inlet velocity into the hollow fibre, is small compared
to both the transmembrane pressure and the back-shock pressure. Therefore, it
is a reasonable approximation to neglect this pressure. This greatly simplifies
the solution to the path-lines from (0, 0) to (Lm, 0). With this approximation
we have the velocity component tangential to the membrane given by equation
(5.29)

vx(x, y) = ky , (5.53)

and the velocity component perpendicular to the membrane surface given by

vy(x, y, t) =
{

Apbs for 0 ≤ t ≤ tbs
−Aptmp for tbs < t ≤ T . (5.54)

Hence, during back-shocking the y-coordinate is simply given by

y(t) = Apbst , (5.55)

and the x-coordinate is given by

x(t) = 1
2kApbst

2 . (5.56)
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Especially, the position after the back-shock is given by(
x(tbs)
y(tbs)

)
= Apbs

(
k
2 t

2
bs

tbs

)
. (5.57)

Again we define the variable τ = t − tbs. When the pressure is reversed the
y-coordinate as a function of τ is given by

y(τ) = y(tbs) +
∫ τ

0
vyds = A(pbstbs − ptmpτ) . (5.58)

Furthermore, the x-component as a function of τ is given by

x(τ) = x(tbs) + k

∫ τ

0
y(s)ds = kA

2
(
pbst

2
bs − ptmpτ2 + 2pbstbsτ

)
. (5.59)

Thus, we have(
x(τ)
y(τ)

)
= A

(
k
2
(
pbst

2
bs − ptmpτ2 + 2pbstbsτ

)
pbstbs − ptmpτ

)
. (5.60)

We seek the time τ0 such that (x(τ0), y(τ0)) = (Lm, 0). Hence,

τ0 = pbs
ptmp

tbs , (5.61)

and

Ak

2

(
pbst

2
bs − ptmp

(
pbs
ptmp

tbs

)2
+ 2pbstbs

pbs
ptmp

tbs

)
− Lm = 0 . (5.62)

Calculations reveal
t2bs = 2Lm

kApbs (1 + pbs/ptmp) , (5.63)

and since we are only interested in the positive root

tbs =

√
2Lm

kApbs (1 + pbs/ptmp) . (5.64)

The time it takes for the fluid parcel starting at (0, 0) and following the path-line
described above will be given by T = tbs + τ0. Hence, from equation (5.61) we
have

T =
(

1 + pbs
ptmp

)
tbs, (5.65)
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inserting the expression for tbs, equation (5.64), we have

T =

√
2Lm (1 + pbs/ptmp)

kApbs
. (5.66)

The total time is obviously decreasing for increasing values of k and A and
decreasing for decreasing values of Lm. It is, however, also decreasing for
increasing values of ptmp and pbs which can be seen from

∂T

∂ptmp
= −Lm
kAp2

tmp

1√
2Lm(1+pbs/ptmp)

kApbs

< 0 , (5.67)

and
∂T

∂pbs
= −LmkA√

2Lm(1+pbs/ptmp)
kApbs

< 0 . (5.68)

5.4.1 Flux regain

If diffusion is neglected one can give an estimate of the amount of solvent that is
regained as pure solvent flux during a period of back-shocking.

Since there is a flux of pure solvent into the hollow fibre during back-shocking,
the concentration of the fluid between the membrane surface and the highly
concentrated area during back-shocking is zero (see, e.g. figure 5.8). When the
pressure is reversed there will be a pure solvent flux through the membrane as
long as there is no concentration on the membrane. Essentially, this means that
the area underneath a given path-line returns through the membrane as pure
solvent flux.

The amount of pure solvent that flows into the hollow fibre during back-shocking
is well approximated by

φl = LmApbstbs . (5.69)

The regain as pure solvent flux given by the area under the path-line, i.e.,

φg =
∫ Lm

0
y(x)dx . (5.70)

As shown in appendix D the ratio between the gain and the loss when the velocity
field is given by equation (5.53) and equation (5.54) is given by

φg
φl
≤ 2

3 . (5.71)
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Here, the equality holds when the back-shock time is given by equation (5.64).

Essentially, this means that in order to have a positive effect during a back-shock
cycle, the remaining one third must be recovered during the concentration build
up on the membrane surface.

So far the diffusion has been neglected. In the next section we will discuss the
effect of diffusion in relation to the estimate.

5.4.2 Diffusion

Essentially the diffusion takes place in two dimensions. The diffusion, however,
depends on the concentration gradients which are much larger in the direction
perpendicular to the membrane. Therefore, the diffusion can be expected to be
reasonably explained by diffusion of a point mass in one direction.

As shown in appendix C the diffusion of a point mass in one dimension with
with constant velocity u is given by

ĉ(ŷ, t̂) = M̂√
4π 1

Pebl
t̂

exp

−
(
ŷ − Ĵv t̂

)2

4 1
Pebl

t̂

 . (5.72)

Here
ĉ(0, 0) = Mδ(ŷ), (5.73)

where δ(ŷ) is the Kronecker delta function.

At steady-state the concentration profile perpendicular to the membrane surface
is reasonably approximated by the solution to the one dimensional continuity
equation for the solvent with average values used as boundary conditions and
for the velocity component perpendicular to the membrane surface,

dĉss
dŷ

+ 1
PeblJv,ss

d2ĉss
dŷ2 = 0 . (5.74)

with the boundary conditions css(0, x̂) = ĉm,av and limy→∞ css(ŷ, x̂) = 1. Here,
Jv,ss is the average solvent flux and ĉm,av is the average concentration on the
membrane surface.

The solution to equation (5.74) with the boundary conditions described above is
given by

ĉss(ŷ) = 1 + (ĉm,av − 1) exp
(
− ŷ

PeblJv,ss

)
(5.75)
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The extra mass within the boundary layer due to the concentration polarization
can then be approximated by

M̂ ≈
∫ ∞

0
(ĉss(ŷ)− 1)dŷ = (ĉm,av − 1)PeblJv,ss . (5.76)

Inserting equation (5.76) into equation (5.72) we have

ĉ(ŷ, t̂) = (ĉm,av − 1)√
4πPeblJv,sst̂

exp

−
(
ŷ − Ĵv t̂

)2

4 1
Pebl

t̂

 . (5.77)

Taking Jv = Apbs during back-shocking and −Aptmp during forward filtration
we can relate this expression to the simulations.

This is done for a the simulation with Re = 900, ptmp = pbs = 2bar, and
tbs = 0.6s. From the simulations the steady-state average concentration on the
membrane surface and the steady-state average solvent flux is calculated to be
ĉm,av = 109 and Ĵv,ss = 2.84. Notice that the average volumetric flux can be
measured, and the average concentration can be found given a known expression
for the osmotic pressure, in an experiment.

In figure 5.22 we show the analytical estimate given here compared to the result
from the simulation perpendicular to the membrane at x̂ = 1. Because of the
influx of pure solvent during back-shocking the concentration distribution in
the simulations tends to zero towards the membrane and to one away from the
membrane. The expression for the diffusion given here tends to same value on
both sides. Therefore, in figure 5.22a the calculated distribution that tends to
zero is shown, i.e., equation (5.77), and in figure 5.22b the distribution that
tends to one is shown, i.e., the expression in equation (5.77) plus one.

As seen there is a reasonable agreement between the analytical result and
the simulations. It seems, however, as if the diffusion is slightly faster in the
simulation compared to the analytic expression. This is probably due to two
things. Firstly, the simulations are done in a two dimensional domain, and small
gradients could be present in the direction parallel to the membrane. This is
definitely the case for the concentration in the fluid parcel that has position (0,0)
just before back-shocking. Secondly, some shear induced diffusion is present.

Nevertheless, it is seen that the concentration remains more located for shorter
times. This indicates that the estimate of the back-shock time will be a better
approximation when the path-line is completed in short time compared to longer
times. I.e., small times in equation (5.66). As mentioned short times will
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Figure 5.22: Analytical expression for the diffusion against simulation. The full
lines are results of the simulation whereas the dotted lines are the analytical
expression. The simulation used has the parameter values Re = 900, ptmp =
pbs = 2bar, and tbs = 0.6s, and the concentration is shown perpendicular to
the membrane at x̂ = 1. In both figures tabs is the time after the back-shock is
applied.
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corresponds to to high back-shock pressure, high transmembrane pressure, and
high inlet velocities.
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5.5 Relation between the back-shock estimate
and the simulations

In this section the estimate for the back-shock time is given for the simulations
made in section 5.2.3.2. Here the inlet velocity was given by 0.8661 and 1.2992
m/s, corresponding to a Reynolds number of 600 and 900 respectively. For each
inlet velocity the transmembrane pressure was given by ptmp = (0.5, 1, 2)bar and
the back-shock pressure was given by pbs = (0.5, 1, 2, 3)bar.

Therefore we present two tables, one for each time estimate. In both tables, we
present two tables, one for each inlet velocity. For all four tables, the back-shock
pressure is increasing in the vertical direction and the transmembrane pressure
is increasing in the horizontal direction. In the centre of the table is given the
back-shock estimate.

The back-shock time estimate from equation (5.50) is given in table 5.1.

When comparing table 5.2a with table 5.1a, and table 5.2b with table 5.1b, it is
seen that there is almost no difference between the two estimates. As mentioned,
this is because the pressure drop needed to maintain a tangential velocity is small
compared to both the transmembrane pressures and the back-shock pressures
used in the simulations. It should be noted, however, that the estimate from
equation (5.64) is smaller than the estimate from equation (5.64). This is because,
when we neglect the pressure drop in the axial direction there is a larger lift for
x < Lm/2 during backshocking. Moreover, there is a larger velocity towards the
membrane for x > Lm/2. Both contribute to a smaller estimate for the back-shock
time.

Since, the two estimates are so close to each other the relation to the simulations

pbs

ptmp 0.5 1 2

0.5 1.92 2.21 2.42
1 1.09 1.34 1.54
2 0.60 0.77 0.94
3 0.41 0.54 0.69

(a) Estimate of tbs from equation (5.50),
uin,av = 0.8661m/s (Re=600).

pbs

ptmp 0.5 1 2

0.5 1.59 1.83 2.00
1 0.90 1.10 1.27
2 0.49 0.63 0.77
3 0.34 0.44 0.56

(b) Estimate of tbs from equation (5.50),
uin,av = 1.2992m/s (Re=900).

Table 5.1: Estimate for the back-shock time from equation (5.50) using the
parameters used in section 5.2.3.2.
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pbs

ptmp 0.5 1 2

0.5 1.87 2.16 2.36
1 1.08 1.32 1.52
2 0.59 0.76 0.93
3 0.41 0.54 0.68

(a) Estimate of tbs from equation (5.64),
uin,av = 0.8661m/s (Re=600).

pbs

ptmp 0.5 1 2

0.5 1.52 1.76 1.93
1 0.88 1.08 1.24
2 0.48 0.62 0.77
3 0.33 0.44 0.56

(b) Estimate of tbs from equation (5.64),
uin,av = 1.2992m/s (Re=900).

Table 5.2: Estimate for the back-shock time from equation (5.2.3.2) using the
parameters used in section 5.64.

can be done as one.

In figure 5.13a it is seen that the back-shock time increases as a function of
transmembrane pressure as predicted by the estimate. Moreover, the optimal
back-shock time is slightly lower than the estimate. It should, however, be
remembered that it is an upper estimate. Therefore, this is in good agreement
with the predictions. Furthermore, the optimal back-shock time and the upper
estimate are comparable. Moreover, it can be argued that a decrease should be
seen for back-shock times larger than the upper estimate. In fact the decrease
should be proportional to the additional back-shock time. This is because
back-shock times larger than the estimate, will correspond to an influx into
the hollow fibre that has no effect on the forward filtration, and this extra
influx is proportional to the back-shock time. This is also seen in figure 5.13a.
Furthermore, a similar argument holds for the solute flux. For back-shock times
larger than the estimate, the total amount of solute that passes through the
membrane during forward filtration is a constant, C1. Hence, the time averaged
concentration would be given by

〈Js〉 = C1

tbbs + tbs,e + tadditonal
, (5.78)

where, tbs,e is the back-shock estimate and tadditional is additional back-shock
time. Since, tadditional is small compared to tbbs + tbs,e a first order expansion
will give a linearity in the time averaged solute flux.

〈Js〉 ≈
C1

tbbs + tbs,e
− C1

(tbbs + tbs,e)2 tadditonal . (5.79)

This is also seen in figure 5.13b.

In figure 5.14 the effect of different back-shock pressures was investigated. The
optimal time was decreasing for increasing back-shock pressures. This is also
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Figure 5.23: Normalized flux as a function of back-shock times for different
back-shock pressures, ptmp = 2bar, tbbs = 5s. The figures shows the effect for
two different inlet velocities: (a) Re = 600, (b) Re = 900.

predicted by the back-shock time estimate. As argued the estimate should be
more precise for high back-shock pressures. This is also seen; the simulation
showed an optimal back-shock time of 0.3s using a back-shock pressure of 1bar
and an inlet velocity corresponding to Re = 900. For these values the upper
estimate is 0.44s. Moreover, the linearly decreasing effect in both solute and
solvent flux is seen for back-shock times higher than the estimated back-shock
times.

In figure 5.16 the effect of different inlet velocities was investigated. As predicted
by the back-shock time seems decreasing for increasing velocities. Furthermore,
the characteristic straight lines are seen for back-shock times higher than the
back-shock estimate.

The knowledge obtained from the analysis made so far in this chapter gives a
reasonable idea as to where the optimal back-shock time is to be found. I.e., use
the estimate and go to smaller back-shock times. To illustrate this additional
simulations have been made, where the transmembrane pressure is 2bar and
the inlet velocity and the back-shock pressure is varied. Using the back-shock
estimates the maximum is easily found. This can be seen in figure 5.23.

Lastly, it should be mentioned that it has been observed that when combining
the parameters tbs and pbs into a single parameter α = pbstbs an approximate
collapse of the curves has been observed. The parameter α is a measure of the
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Figure 5.24: Normalized flux as a function of α, ptmp = 2bar, tbbs = 5s. The
figures show the effect for two different inlet velocities: (a) Re = 600, (b)
Re = 900.

total solvent flux into the hollow fibre during the back-shock period. This is
illustrated by scaling the figures in figure 5.23 and seen in figure 5.24. As seen
there is an excellent collapse for Re = 900 whereas for Re = 600 the collapse is a
bit less obvious. This tendency has been observed throughout the simulations.

It should be noted that the shape of the curves presented in figure 5.24 is similar
to those showing the effect of changing the transmembrane pressure presented
in figure 5.13a.

5.6 Discussion and conclusions on the 2D-model

The 2-dimensional model presented here was a relatively simple model. We ap-
proximated the velocity tangential to the membrane surface as linearly increasing
as a function of distance. Moreover, we defined the velocity field perpendicular to
the membrane such that it only depended on the pressure and the concentration
on the membrane. Neither of these two things are expected to be true in a model
that solves the full Navier-Stokes equation.

The model was able to produce a positive effect on both the volumetric flux
and the observed rejection when measured against the steady-state solution. It
was seen that the greatest effect was obtained for high back-shock pressures,
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high transmembrane pressures, high inlet velocities. Moreover, the optimal
back-shock time decreased for increasing inlet velocities, increasing back-shock
pressures and increasing transmembrane pressure. Furthermore, when combining
the back-shock time and the back-shock pressure into a single variable, α, the
curves of the flux seemed to follow the same curve. On this curve, however,
smaller values of the transmembrane pressure would bend of earlier, giving the
highest effect for high transmembrane pressures.

Furthermore, it was possible to conclude that an increase in time between
back-shocking had very little effect on the average solvent flux and the optimal
back-shock time. It did, however, have a significant decreasing effect on the
observed rejection. From this it could be deduced that already after a time
between back-shocking of 5s the concentration field is close to the concentration
field of the steady-state solution. We can, however, not say if a higher effect
could be obtained for smaller values of the time between back-shocking.

Moreover, an analytical expression that predicts an estimate for the optimal
back-shock time was introduced. This estimate was build on the assumption
that the back-shock time should be chosen such that the path-line, that a fluid
parcel in (0, 0) at the initiation of the back-shock, would return to the membrane
at (Lm, 0). It could be argued that this is an upper estimate, since longer times
would result in an additional loss due to transport of pure solvent through the
outlet. It was seen that this estimate was most accurate when the time it took
to follow the path-line was smallest.

This could be understood by looking at the diffusion. The diffusion of the highly
concentrated solute area was reasonably described by diffusion of a point mass
in one dimension, when the point mass was calculated from the steady-state
solution. Therefore, the concentrated area is more confined and having a higher
peak-value when returning to the membrane for shorter times compared to longer
times.

5.7 3D model

In the 3D-model the incompressible Navier-Stokes equation is solved along with
the continuity equation for the solute and the solvent, where axial symmetry is
assumed. Moreover, the viscosity will be allowed to depend on the concentration.
Because of the increased computational effort it has been necessary to restrict
ourselves to a hollow fibre with a membrane length of 14 cm. In addition to this
we model an inlet and an outlet of 3.5cm. An illustration of a single hollow fibre
in the rz-plane is shown in figure 5.25, where z1 = 3.5cm and z2 = 17.5cm.
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Figure 5.25: Illustration the hollow fibre tube. The tube has radius R and the
permeable membrane is situated between z1 and z2. The impermeable inlet is
situated between 0 and z1. And, the impermeable outlet is situated between z2
and L.

Furthermore, it has been necessary to confine ourselves to simulating only one
back-shock period. Therefore, we will solve the steady-state equation and use
this result as the initial condition for the time-dependent study. Hence, these
simulations are an approximation to the periodic solution that will occur after
a few back-shock cycles. This approximation is best when the time between
back-shock is so long that the concentration field just before a back-shock is
applied, in the periodic solution, is close to the steady-state solution. From the
2D-model it was shown that a for a time between back-shocking of tbbs = 5s this
seemed to be the case. Hence, all simulations in this section have been done
with this value of the time between back-shocking.

5.7.1 Equations of motion

Within the bulk of the hollow fibre the equations of motion are the continuity
equation of solute and solvent and the momentum equation. The continuity
equation for the solvent is

∇ · v = 0 . (5.80)

The continuity equation for the solute is

∂c

∂t
+ v · ∇c = D∇2c , (5.81)

where D is the diffusion coefficient of the solute.
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The momentum equation is

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ ·Π , (5.82)

where ρ is the density of the solvent and Π is the total stress tensor and is given
by

Π = pI + η(c)
(
∇v + (∇v)T

)
, (5.83)

where I is the 3×3 unit matrix and η(c) is the concentration-dependent viscosity
of the fluid.

The concentration-dependent viscosity will be given by equation (2.5), presented
in section 2.1.1 using a molecular weight of 500 kDa. I.e.,

η = ηs

(
1 + αv

(
K ′Ma

wc+ k′ (K ′Ma
w)2

c2
))

. (5.84)

Here, αv = {0, 1} and is used to simulate either a concentration dependent
viscosity or a constant viscosity. I.e., when αv = 0 the viscosity is constant
and equal to the solvent viscosity, and for αv = 1 the viscosity is concentration
dependent.

5.7.2 Boundary conditions

The boundary conditions in the hollow fibre can be divided into five distinctive
boundaries.

5.7.2.1 The inlet

At the inlet of each hollow fibre there is essentially a plug flow with an average
velocity uin,av. The flow then gradually develops into a Poiseuille flow. As in the
stationary model presented in chapter 4 we assume a fully developed Poiseuille
flow at the inlet. Hence, at the inlet, ∂i = {r, z |z = 0}, the boundary condition
on the velocity will be a fully developed Poiseuille flow with a known average
velocity, uin,av. I.e.,

v(r, 0, t) = 2uin,av
(

1−
( r
R

)2
)
. (5.85)

Furthermore, the boundary condition on the concentration will be uniform and
equal to the inlet concentration, i.e.,

c(r, 0, t) = cin . (5.86)
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5.7.2.2 The outlet

At the outlet, ∂o = {r, z |z = L}, there will be a condition on the pressure

p(r, L, t) = pout . (5.87)

Moreover, the boundary condition on the concentration will be

∇c · n = 0 (5.88)

where n is the outward normal vector.

5.7.2.3 The edge of the hollow fibre

The edge of the hollow fibre ∂e = {r, z |r = R} consists of three different
domains. The inlet ∂w = {r, z |r = R ∧ 0 ≤ z < z1 }, the membrane ∂m =
{r, z |r = R ∧ z1 ≤ z ≤ z2 }, and the outlet ∂w = {r, z |r = R ∧ z2 < z ≤ L}. At
all boundaries vz = 0. At the inlet and the outlet all velocity components are
zero. Furthermore, the normal derivative of the concentration is equal to zero,
i.e., for {r, z |r = R ∧ 0 ≤ z < z1 } and {r, z |r = R ∧ z2 < z ≤ L}

v = 0 (5.89a)
n · ∇c = 0 . (5.89b)

At the membrane the radial velocity component, vr, is given by the solvent flux
and the concentration flux is given by the solute flux. Thus,

v(r, z, t) · n =
A [p(R, z, t)− pperm − (pbs + ptmp − pperm)Φ(t)− π(c(R, z, t))] (5.90a)
(v(r, z, t)c(r, z, t)−D∇c(r, z, t)) · n = Bc(R, z, t) , (5.90b)

where n is the outward unit normal vector and Φ(t) is a smooth hat function
defined as

Φ(t) =

 0 for t ≤ ε/2
1 for 3ε/2 ≤ t ≤ Tbs − ε/2
0 for t ≤ tbs + ε/2

(5.91)

where ε is small compared to tbs. In the interval t ∈ (ε/2; 3ε/2) there is a smooth
transition from one to zero. Similarly, there is a smooth transition from zero
to one in the interval t ∈ (tbs − ε/2; tbs + ε/2) To avoid discontinuities at z = z1
and z = z2, however, a continuous hat function, Ψ(z) : z 7→ [0; 1], is introduced.
This function has a smooth transition from zero to one around z1 and a smooth
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transition from 1 to zero around z2. The transition takes place over a length
equal to the radius of the hollow fibre, R. Hence,

Ψ(z) =

 0 for 0 ≤ z ≤ z1 − R/2
1 for z1 + R/2 ≤ z ≤ z2 − R/2
0 for z2 + R/2 ≤ z ≤ L

. (5.92)

In the interval z ∈ (z1 − R/2; z1 + R/2) there is a smooth transition from zero
to one. Similarly, there is a smooth transition from one to zero in the interval
z ∈ (z2 − R/2; z2 + R/2).

With this function the boundary conditions, equation (5.89) and equation (5.90),
for {r, z |r = R ∧ 0 ≤ z ≤ L} can be written as

v(R, z, t) · t = 0 (5.93a)
v(R, z, t) · n =
A (p(R, z, t)− pperm − (pbs + ptmp − pperm)Φ(t)− π(c(R, z, t))) Ψ(z) (5.93b)
(v(R, z, t)c(R, z, t)−D∇c(R, z, t)) · n = Bc(R, z, t)Ψ(z) , (5.93c)

where n is the outward unit normal vector, and t the unit vector tangential to
the surface. Taking into account, the high length to radius ratio of the hollow
fibre tube, the introduction of the smoothing function Ψ, should not influence
the results significantly. The same argument holds for the function Φ(t) when ε
is small compared to the back-shock time.

5.7.3 Transmembrane pressure

In order to relate the results to a given transmembrane pressure the boundary
condition at the outlet pout is calculated assuming that there is a fully developed
Poiseuille flow, with the viscosity of the solvent, within the hollow fibre. For a
fully developed Poiseuille flow the average velocity can be expressed as

uin,av = R2

8ηs
pin − pout

L
. (5.94)

Hence,
pin − pout = 8ηsLuin,av

R2 . (5.95)

Furthermore, from the definition of the transmembrane pressure, we have

ptmp = pin + pout
2 − pperm . (5.96)
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Combining equation (5.95) and equation (5.96) an expression for the pressure at
the outlet can be found

pout = ptmp + pperm −
4ηsLuin,av

R2 . (5.97)

This pressure is used as the boundary condition at the outlet, see equation (5.87).

5.7.4 Observed rejection

The observed rejection is given by the expression

Robs =
(

1− c̄p
cin

)
100% . (5.98)

where c̄p is the average concentration on the permeate after separation.The
average concentration on the permeate side is given by the ratio between the
total solute flux, and the total solvent flux through the membrane. That is,

c̄p =
∫ tbs+tbbs

0
∫ L

0
∫ 2π

0 Js(z, t)dθdzdt∫ tbs+tbbs

0
∫ L

0
∫ 2π

0 Jv(z, t)dθdzdt
=
∫ tbs+tbbs

0
∫ L

0
∫ 2π

0 Bc(R, z, t)dθdzdt∫ tbs+tbbs

0
∫ L

0
∫ 2π

0 vr(R, z, t)dθdzdt
.

(5.99)

5.7.5 Non dimensional groups, variables and equations of
motion

Introducing the scaled variables

x̂ = x

R
, v̂ = v

uin,av
, p̂ = p− pperm

uin,avρ
, ĉ = c

cin
. (5.100)

The continuity equation of the solvent can be written as

∇ · v̂ = 0 . (5.101)

The continuity equation of the solvent can be written as

v̂ · ∇ĉ = 1
Pe
∇2ĉ , (5.102)

where the Péclet number is given by

Pe = uin,avR

D
. (5.103)
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The momentum equation can be written as

v̂ · ∇v = ∇ · Π̂ , (5.104)

where, the non-dimensional total stress tensor is given by

Π̂ = p̂I + 1
Re

η̂(ĉ)
[
∇v̂ + (∇v̂)T

]
. (5.105)

Here the Reynolds number is defined by

Re = uin,avRρ

ηs
, (5.106)

where ηs is the viscosity of the solvent. Furthermore, η̂(ĉ) is given by

η̂(ĉ) = 1 + αv

(
K ′Ma

wcinĉ+ k′ (K ′Ma
w)2

c2inĉ
2
)

(5.107)

5.7.6 Mesh

The mesh used in the 3D-model is a mapped mesh. The dimensionless length
between the nodes in the axial direction is ẑm = 0.02. In the radial direction
there are 40 elements that decrease exponentially in size towards the membrane
with an element ratio of 0.0006. The mesh used in shown in figure 5.26 for
a total length of 3 times the radius. When simulating the hollow fibre with
Lin = Lout = 3.5cm and Lm = 14cm the mesh consists of 600000 domain
elements and 30160 boundary elements. The system has 2460164 degrees of
freedom.

As compared to the two dimensional model no analysis of mesh dependence
on the solution has been made. The number of degrees of freedom is so large
that the simulation time with this mesh is approximately three days, running in
parallel on 8 nodes on the hpc-cluster. Therefore, it was simply not possible to do
any comparison between different meshes. By trial and error this is the coarsest
mesh that does not show oscillations in the concentration. Such oscillations occur
when the mesh is not fine enough where large gradients exist. Furthermore, the
solutions have been tested for physical properties such as volume conservation.

5.7.7 Simulations

Due to the large computational effort of solving the equations of motion for both
the solvent and the solute it is important to confine ourselves to a minor part of
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Figure 5.26: The mesh used in the simulations of the 3D-model.
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tbs
Re = 600 0.38 s
Re = 900 0.31 s

Table 5.3: Upper estimates for the backshock time.

the parameter space. To do this we use the results from the 2D-model. Here
we found that the positive effect on the volumetric flux was highest for high
transmembrane pressures, high back-shock pressures, and high inlet velocities.
Moreover, the effect on a concentration dependent viscosity will be highest for
high transmembrane pressures as the concentration polarization is highest in
this limit.

Therefore, we choose ptmp = 2bar and pbs = 3bar, and inlet velocities corre-
sponding to Reynolds numbers of 600 and 900.

As in the 2D-model we investigate the effect of changing the back-shock time.
We will use the estimate for the back-shock time given in equation (5.64) with
the changed length of the membrane and the parameter values given above. This
gives the upper estimates for the optimal back-shock time given in table 5.3.

Since this is a upper estimate we start the simulations with tbs = 0.37s for
Re = 600 and tbs = 0.3s for Re = 900 and do simulations for decreasing values of
the back-shock time. For all the simulations made the viscosity has been allowed
to depend on the concentration. Hence, for each different back-shock time there
is a simulation with αv = 0 and a simulation with αv = 1. The time after the
back-shock period is 5 seconds in all simulations. For Re = 600 the investigated
back-shock times are tbs = (0.25, 0.3, 0.37)s and for Re = 900 the back-shock
times are tbs = (0.2, 0.25, 0.3). Moreover, it has been necessary to compute two
additional simulations. These are with αv = 1 and tbs = 0.4 for Re = 600 and
tbs = 0.33 for Re = 900 in order to illustrate that the maximum was found when
the viscosity depends on the concentration.

5.8 Results

In order to relate the 3D-model to the 2D-model a set of simulations have been
made with the 2D-model where the length of the membrane is set at 14 cm.
It is of course only possible to relate the 2D-model to the 3D-model when the
viscosity is concentration independent. In figure 5.27 the average flux is plotted
using the same back-shock time. To compare the simulations the results have
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Figure 5.27: Comparison between the solution of the 2D-model and the 3D-model,
tbs = 0.3s and Re = 900.

been rescaled into real dimensions. For the 2D-model only the last period is
plotted and the time has been scaled such that both graphs start at 0. As seen
there is a good agreement between the two models.

In figure 5.28 the normalized average flux is shown for the 2D-model and the
3D-model

There is a reasonable agreement between the two models. It does, however, look
as if the normalized average flux is shifted slightly towards higher back-shock
times for the 2D-model. Moreover, it is seen that the optimal back-shock time
estimate is good approximation to the optimal time back-shock time seen in the
simulations. Hence, there is no reason to believe that the tendencies presented
regarding the 2D-model should not hold for the 3D-model in case the viscosity is
concentration independent. Therefore, the next part of the results will concern
the effect of the viscosity being concentration dependent.
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Figure 5.28: Normalized flux as a function of back-shock time for the 2D-model
and the 3D-model and for Re = 600 and Re = 900.

In figure 5.29 the non-dimensional solvent flux through the membrane is shown
with and without a concentration dependent viscosity.

As seen the the curves follow each other during the back-shock and initially after
the pressure is reversed. When the concentration builds up on the membrane
the concentration dependent viscosity makes the flux decrease more rapidly,
due to the decrease in axial velocity in the boundary layer. Hence, the average
flux when the viscosity is concentration dependent is lower. This is seen in all
simulations but the effect is larger for small back-shock times as illustrated as
the difference between figure 5.29a and figure 5.29b

The steady-state flux, however, is also lower when the viscosity depends on
the concentration. Therefore, the normalized average flux is higher when the
viscosity depends on the concentration. This is seen in figure 5.30a and 5.30b.
As compared to the steady-state solution an increase of 22% is seen for Re = 600
and a concentration independent viscosity. The increase in solvent flux for the
same value of the inlet velocity and a concentration dependent viscosity is 36%.
For Re = 900 there is an increase in solvent flux compared the steady-state
solution of 22% when the viscosity is constant. Whereas there is an increase of
42.5 % when the viscosity depends on the concentration.

Moreover, it is seen that the back-shock time that gives the maximum solvent
flux when the viscosity does not depend on the concentration is lower than the
estimated time as expected. When the viscosity depends on the concentration
this time increases. This can be understood since, a higher viscosity decreases
the axial velocity when the concentration is higher than the bulk concentration.
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Figure 5.29: Dimensionless flux as a function of time, Re = 900.
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Figure 5.30: Normalized flux as a function of back-shock time.
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Figure 5.31: Observed rejection a function of back-shock time.

Therefore, a higher back-shock time would be expected in order to move the
highly concentrated area down the length of the membrane.

In figure 5.31 the observed rejection is shown as a function of back-shock pressure.
As seen in figure 5.31 the there is a significant increase in the observed rejection
when back-shocking is applied as compared to the steady-state solution. This
increase is more pronounced when the viscosity depends on the concentration.
There is an increase in observed rejection of approximately 40 % when the
viscosity depends on the concentration, whereas the increase is approximately
25 % when the viscosity does not depend on the concentration. Moreover, the
highest values of the observed rejection are found for the highest inlet velocities.

5.9 Conclusions on the 3D-model

Because of the long computational times needed to solve the 3D-model it was
important to know where in the parameter space a positive effect should be
found. This and the fact that it was not possible to simulate the full hollow fibre
made the back-shock estimate presented in the 2D-model the point of reference
in the simulations.

Using this approach it was possible to find the optimal back-shock time given
the parameters of the problem. The optimal back-shock time is higher when the
viscosity depends on the concentration, as compared to a constant viscosity. This
can be explained by a decrease in axial velocity due to an increase in viscosity.
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A substantial increase in observed rejection was found when applying back-shock
as compared to the steady-state solution. This increase is highest when the
viscosity depends on the concentration.

5.10 Relating the results to the literature

Relating the model to the literature has been somewhat difficult. There are
plenty of examples on the effect of back-shocking in the literature. Many are for
microfiltration where the models presented to explain the flux all build upon the
formation of a cake layer. Since this model does not consider cake formation a
relation to these results seems irrelevant.

Different papers consider back-shocking in ultrafiltration [30, 20, 54, 33, 52, 59, 7].
Relations between the model and the results presented in these papers are given
below.

In [30] dextran with a molecular weight of 10000 kDa was fractionized from
hemoglobin in a hollow fibre module. Here an increase in flux was reported and
a decrease in rejection coefficient of dextran was observed. This is, however, not
contrary to what is reported here since hemoglobin was acting as a secondary
membrane, and the molecular weight cutoff of the membrane used was 30000 kDa.
Hence, the membrane would have little or no rejection to a solution containing
only dextran molecules. Therefore, the rejection for hemoglobin would have been
of more interest when comparing to this model. Unfortunately, these data are
not reported.

In [20] bovine serum albumin filtered in cross-flow. An increase in flux is observed
when using back-shocking as compared to not using back-shocking. The effect
was seen to increase as a function of transmembrane pressure. In this model an
increasing effect of increasing transmembrane pressure is observed. The back-
shock time and time between back-shocking was 2 min. Remaining parameters
such as the membrane dimensions and the cross-flow velocity is not reported,
which makes it hard to relate. It should, however, be said that obtaining a
positive effect using back-shock times of 2 min seems to be highly unlikely in
this model.

In [54] wastewater treatment was investigated. An increase of 17 % on the flux
through the membrane was observed when applying back-shocking as compared
to not applying back-shocking. An increase of this magnitude is within what is
observed in this model. Furthermore, a back-shock time of 0.5 s every min is
comparable to the results in this model. Moreover, they used a tubular membrane
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with an inner diameter of 7 mm and a lenght of 25 cm which is comparable to
the hollow fibre modelled here. Moreover, a transmembrane pressure of 1.8 bar
was used, which is within the range of what has been investigated here. They
do, however, operate the system under turbulent conditions which decreases
the degree of comparison between the experimental results and this model.
Furthermore, a decrease in retention was observed when applying back-shocking.
As explained that is not possible in this model. The decrease in retention could,
however, be explained by the amount of different solutes (six main wastewater
components) which could behave as secondary membranes.

In [33] transmembrane pressure of 1 bar and a back-shock pressure of 4 bar, a
back-shock time of 1s every 2 min gave the largest increase in permeate flux.
There is, however, no reference steady-state flux given, nor is the membrane
length given. Moreover, a Reynolds numbers in the range 27000-38500 was used.

In [52] pressure pulsing was used to enhance the flux. A very good description
of the experimental method allows to calculate the back-shock estimate. The
estimate calculated is of the order 10s. The pulse duration used is, however,
of the order 10−1s. Furthermore, a pulse frequency in the interval 0.5-5 Hz
is used. Surely, the order of magnitude of both the frequency and the pulse
duration does not reflect that the boundary layer concentration is transported
down the length of the membrane, nor is the concentration polarization close to
the steady-state when back-shocking is applied. Rather the concentration build
up is disturbed and maintains a value low enough such that a positive gain is
seen. A very interesting observation and one that this model would be capable
of investigating. This has, however, not been done.

In [59] a tubular membrane with inner diameter of 7 mm and a length of 250
mm was operated at a transmembrane pressure and a back-shock pressure of 3
bar, and an inlet velocity of 0.94 m/s, assuming that the pure water permeability
is similar to the one given in the model, the back-shock times should be similar
to the ones given by the model. The optimal back-shock operating conditions
was found to be 1 min of forward filtration, which should be long enough that
the concentration profile is close to fully developed, and a back-shock time of 0.7
s. These times are comparable to the back-shock times predicted by the model.

In [7] apple juice clarification was investigated. Here, the filtration was made in
two different tubular membranes with inner diameter of 3 mm and 2.8 mm. All
the variables needed to calculate the back-shock time estimate as approximately
1.8 s for both membranes. The time between back-shocks was 2 to 5 min,
which must be considered long enough to be relatively close to a fully developed
concentration polarization. Back-shock time for both membranes was 2-5 s. A
positive effect on the permeate flux was obtained for the first membrane, whereas
no effect was observed for the second membrane. the observed effect was 50 %
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higher with back-shocking as compared to no back-shocking This is in reasonable
agreement with the model.

For the reasons given above no experimental results found in the literature can
verify, nor can they falsify the model. Therefore, experimental results would be
highly appreciable.

5.11 Conclusions

Two models concerning back-shocking in a hollow fibre were presented. Both
models assumed that the decrease in flux due to concentration polarization
was caused only by the osmotic pressure. In both models a positive effect as
compared to the steady-state solution was obtained.

In the two dimensional model an estimate for the back-shock time was deduced
from the hypothesis that the path-lines gave an upper limit for the back-shock
time.

This upper limit was used in the three dimensional model to predict the back-
shock time. A good agreement between the estimate and the optimal back-shock
time was found.

As a consequence of the model an increase in solvent flux would automatically
lead to an increase in observed rejection. It was, however, also found that
the observed rejection could increase even with solvent fluxes lower than the
steady-state solvent flux.

In the three dimensional model, simulations were done with a constant viscosity
and a concentration dependent viscosity. The solvent flux was highest when the
viscosity was constant. The ratio between the average flux and the steady-state
flux was, however, substantially higher when the viscosity depended on the
concentration.

It has been hard to find literature which can either confirm the validity of the
model, or falsify the approach.
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Appendix A
The equations of motion in

non-dimensional form

A.1 Incompressibility

The equation for incompressibility of a fluid is given by

∇ · v = 0 . (A.1)

Introducing the scaled variables

x′i = xi
L

v′i = vi
U
, (A.2)

and inserting these into equation (A.1) gives

U

L
∇′ · v′ = 0⇔ ∇′ · v′ = 0 . (A.3)

A.1.1 The incompressible Navier-Stokes equation

The Navier-Stokes equation for an incompressible fluid is given by

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ η∇2v . (A.4)
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In order to give the equation in non-dimensional form, we introduce the non-
dimensional scaled variables

t′ = t

t̄
x′i = xi

L
v′i = vi

U
p′ = p− p0

p̄
. (A.5)

Inserting these variables into equation (A.4) gives

ρ
U

T̄

∂v′

∂t′
+ ρ

U2

L
v ·′ ∇′v′ = − p̄

L
∇′p′ + η

U

L2∇
′2v′ . (A.6)

Choosing T̄ = L/U, and dividing through with ρU2
/L in equation (A.6) gives

∂v′

∂t′
+ v′ · ∇′v′ = − p̄

ρU2∇
′p′ + η

ρLU
∇′2v′ . (A.7)

Thus, choosing p̄ = ρU2 gives

∂v′

∂t′
+ v′ · ∇′v′ = −∇′p′ + η

ρLU
∇′2v′ . (A.8)

The Reynolds number is defined as Re = ρLU/η. Hence, equation (A.8) can be
written as

∂v′

∂t′
+ v′ · ∇′v′ = −∇′p′ + 1

Re
∇′2v′ . (A.9)

A.1.2 The continuity equation

The continuity equation where the diffusion coefficient is assumed independent
of the concentration is given by

∂c

∂t
+ v · ∇c = D∇2c . (A.10)

Again, choosing the scaled variables as

t′ = t
L/U

x′i = xi
L

v′i = vi
U

c′ = c

c0
, (A.11)

and inserting into equation (A.10) we have

c0U

L

∂c′

∂t′
+ c0U

L
v′ · ∇′c′ = Dc0

L2 ∇
′2c′ . (A.12)

Dividing through with c0U
L , in equation (A.12), gives

∂c′

∂t′
+ v′ · ∇′c′ = D

UL
∇′2c′ . (A.13)
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The Péclet number is defined as Pe = UL/D. Hence, equation (A.13) can be
written as

∂c′

∂t′
+ v′ · ∇′c′ = 1

Pe
∇′2c′ . (A.14)

Thus, the equations of motion in non-dimensional form is given by the equation
(A.3), equation (A.9), and equation (A.14).

A.2 Using multiple scales

In this section the incompressible, steady state, and viscous, Navier-Stokes
equation and the continuity equation, will be scaled using different length scales,
in cylindrical coordinates.

In cylindrical coordinates the incompressible, viscous, Navier-Stokes equation is
given by

vz
∂vz
∂z

+ vr
∂vz
∂r

+ vφ
r

∂vz
∂φ

= −1
ρ

∂p

∂z
+ ν∇2vz (A.15a)

vz
∂vr
∂z

+ vr
∂vr
∂r

+ vφ
r

∂vr
∂φ

= −1
ρ

∂p

∂r
+ ν

(
∇2vr −

vr
r2 −

2
r2
∂vφ
∂φ

)
(A.15b)

vz
∂vφ
∂z

+ vr
∂vφ
∂r

+ vφ
r

∂vφ
∂φ

+ vrvφ
r

= −1
ρr

∂p

∂φ
+ ν

(
∇2vφ + 2

r2
∂vr
∂φ
− vφ
r2

)
.

(A.15c)

The incompressibility is given by

∇ · v = ∂vz
∂z

+ vr
∂r

+ vr
r

+ 1
r

∂vφ
∂φ

= 0 . (A.16)

The Laplace operator is given by

∇2 = ∂2

∂z
+ 1
r

∂

∂r
+ ∂2

∂r2 + 1
r2

∂2

∂φ2 . (A.17)

The continuity equation is given by

vz
∂c

∂z
+ vr

∂c

∂r
+ vφ

r

∂c

∂φ
= ∇ ·

 D 0 0
0 D 0
0 0 D

 ∂c
∂z
∂c
∂r

1
r
∂c
∂φ

 . (A.18)
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For tubular separation vφ and ∂
∂φ vanishes. Hence, equation (A.15c) vanishes

and equation (A.15a) and equation (A.15b) reduces to

vz
∂vz
∂z

+ vr
∂vz
∂r

= −1
ρ

∂p

∂z
+ ν∇2vz (A.19a)

vz
∂vr
∂z

+ vr
∂vr
∂r

= −1
ρ

∂p

∂r
+ ν

(
∇2vr −

vr
r2

)
. (A.19b)

Equation (A.16) reduces to

∇ · v = ∂vz
∂z

+ vr
∂r

+ vr
r

= 0 . (A.20)

The Laplace operator reduces to

∇2 = ∂2

∂z
+ 1
r

∂

∂r
+ ∂2

∂r2 . (A.21)

And the continuity equation reduces to

vz
∂c

∂z
+ vr

∂c

∂r
= ∇ ·

[(
D 0
0 D

)(
∂c
∂z
∂c
∂r

)]
. (A.22)

A.3 Scaling the equations of motion with two
different lengths

In this section the equation of motion will be scaled using two different lengths in
the axial and radial direction. Hence, we introduce the non-dimensional variables
presented in equation (A.23)

r̂ = r

R
, ẑ = z

L
, v̂r = vr

U
, v̂z = vz

U
p̂ = p

P
, ĉ = c

C
. (A.23)

Inserting these vaariables into equation (A.19a) and equation (A.19b) one obtains

U2

L
v̂z
∂v̂z
∂ẑ

+ U2

R
v̂r
∂v̂z
∂r̂

= −P
ρL

∂p̂

∂ẑ
+ ν

(
U

R2
1
r̂

∂

∂r̂

(
r̂
∂v̂z
∂r̂

)
+ U

L2
∂2v̂z
∂ẑ2

)
(A.24a)

U2

L
v̂z
∂v̂r
∂ẑ

+ U2

R
v̂r
∂v̂r
∂r̂

= −P
ρR

∂p̂

∂r̂
+ ν

(
U

R2
1
r̂

∂

∂r̂

(
r̂
∂v̂r
∂r̂

)
+ U

L2
∂2v̂r
∂ẑ2 −

U

R2
v̂r
r̂2

)
.

(A.24b)
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Dividing through be U2
/R on obtains

R

L
v̂z
∂v̂z
∂ẑ

+ v̂r
∂v̂z
∂r̂

= −P
ρU2

R

L

∂p̂

∂ẑ
+ ν

UR

(
1
r̂

∂

∂r̂

(
r̂
∂v̂z
∂r̂

)
+ R2

L2
∂2v̂z
∂ẑ2

)
(A.25a)

R

L
v̂z
∂v̂r
∂ẑ

+ v̂r
∂v̂r
∂r̂

= −P
ρU2

∂p̂

∂r̂
+ ν

UR

(
1
r̂

∂

∂r̂

(
r̂
∂v̂r
∂r̂

)
+ R2

L2
∂2v̂r
∂ẑ2 −

v̂r
r̂2

)
.

(A.25b)

Defining the non-dimensional groups and P as

λ = R

L
, Re = UR

ν
, P = ρU2 . (A.26)

And inserting these into equation (A.25a) and equation (A.25b) one gets

λv̂z
∂v̂z
∂ẑ

+ v̂r
∂v̂z
∂r̂

= −λ∂p̂
∂ẑ

+ 1
Re

(
1
r̂

∂

∂r̂

(
r̂
∂v̂z
∂r̂

)
+ λ2 ∂

2v̂z
∂ẑ2

)
(A.27a)

λv̂z
∂v̂r
∂ẑ

+ v̂r
∂v̂r
∂r̂

= −∂p̂
∂r̂

+ 1
Re

(
1
r̂

∂

∂r̂

(
r̂
∂v̂r
∂r̂

)
+ λ2 ∂

2v̂r
∂ẑ2 −

v̂r
r̂2

)
. (A.27b)

Similarly equation (A.20) becomes

λ
∂v̂z
∂ẑ

+ v̂r
∂r̂

+ v̂r
r̂

= 0 . (A.28)

Equation (A.22) in the scaled variables becomes

λv̂z
∂ĉ

∂ẑ
+ v̂r

∂ĉ

∂r̂
= D

UR

[
1
r̂

∂ĉ

∂r̂
+ ∂2ĉ

∂r̂2

]
+ DR

UL2
∂ĉ

∂ẑ
. (A.29)

Defining the Péclet number as Pe = UR/D, equation (A.29) can be written as

λv̂z
∂ĉ

∂ẑ
+ v̂r

∂ĉ

∂r̂
= 1
Pe

[
1
r̂

∂ĉ

∂r̂
+ ∂2ĉ

∂r̂2

]
+ λ2

Pe

∂ĉ

∂ẑ
. (A.30)

Let the gradient, the divergence, and the Laplace operator in the scaled variables
be defined as follows

∇̂u =
[
∂ur
∂r̂

,
∂uz
∂ẑ

]T
, ∇̂·u = 1

r̂

∂

∂r̂
(r̂ur)+

∂uz
∂ẑ

, ∇̂2u = 1
r̂

∂

∂r̂

(
r̂
∂ur
∂r̂

)
+∂2uz
∂ẑ2 .

(A.31)
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Appendix B
The maximal length of a

chord in an ellipse

Given two points on an ellipse

P = γ(s) = (r2 sin(s),−r1 cos(s)) , (B.1)

and
P = γ(ŝ) = (r2 sin(ŝ),−r1 cos(ŝ)) . (B.2)

The vector joining the two points is given by

γ̄(s, ŝ) = γ(s)− γ(ŝ) . (B.3)

The length of this vector is the length of the chord between the two points and
is given by

‖γ̄(s, ŝ)‖ =
√
r2
2 (sin(s)− sin(ŝ))2 + r2

1 (cos(s)− cos(ŝ))2
. (B.4)

Thus for a fixed s the maximal length of the chord is given by solving the
equation

d

dŝ
‖γ̄(ŝ)‖ = 0 . (B.5)

As we shall see this equation can have up to three solutions. However, the trivial
solution that gives the minimal length, s = ŝ is of no interest. Therefore, the
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assumption that s 6= ŝ will be used in the following. Reducing the number of
possible solutions to two.

0 = d

dŝ
‖γ̄(ŝ)‖ ⇔ (B.6a)

0 = −r
2
2 [sin(s)− sin(ŝ)] cos(ŝ) + r2

1 [cos(s)− cos(ŝ)] sin(ŝ)
‖γ̄(ŝ)‖ ⇔ (B.6b)

0 = − [sin(s)− sin(ŝ)] cos(ŝ) +
(
r1

r2

)2
[cos(s)− cos(ŝ)] sin(ŝ) . (B.6c)

Using the relation

sin(s− ŝ) = sin(s) cos(ŝ)− cos(s) sin(ŝ) (B.7)

in equation (B.6c) one obtains

sin(s− ŝ) + cos(s) sin(ŝ)− sin(ŝ) cos(ŝ)

=
(
r1

r2

)2
[cos(s)− cos(ŝ)] sin(ŝ)⇔ (B.8a)

sin(s− ŝ) =
((

r1

r2

)2
− 1
)

[cos(s)− cos(ŝ)] sin(ŝ)⇔ (B.8b)

sin(ŝ− s) =
(

1−
(
r1

r2

)2
)

[cos(s)− cos(ŝ)] sin(ŝ)⇔ (B.8c)

sin(ŝ− s) = k2 [cos(s)− cos(ŝ)] sin(ŝ) (B.8d)

A few special situations can be mentioned.

If r1 = r2, meaning that k2 = 0 equation (B.8d) reduces to

sin(ŝ− s) = 0 . (B.9)

When ŝ 6= s the solution is ŝ− s = π as expected.

If s = 0 equation (B.8d) reduces to

sin(ŝ) = k2 [1− cos(ŝ)] sin(ŝ) . (B.10)

Since k2 ≤ 0 this equation has only one solution, namely ŝ = π. This is of course
expected as this represents the major axis of the ellipse.

If s = π/2 equation (B.8d) reduces to

cos(ŝ) = k2 sin(ŝ) cos(ŝ)⇔ cos(ŝ)
[
1− k2 sin(ŝ)

]
= 0 . (B.11)
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This special case has one solution for −1 ≤ k2 ≤ 0 that is ŝ = 3π/2. For k2 < −1
there are two solutions. Namely the two solutions that fulfil the equation

sin(ŝ) = 1
k2 . (B.12)

There will be two solutions to this equation. One in the third quadrant and one
in the fourth quadrant. This is expected because of the symmetry in the x-axis.



118 The maximal length of a chord in an ellipse



Appendix C
Diffusion of a point mass in
one dimension with constant

velocity

The derivation of diffusion of a point mass can be found in many textbooks on
fluid dynamics (see, e.g., [14, 34]). Here, the solution to the one dimensional
continuity equation for solute with velocity u = 0,

∂c

∂t
= D

∂2c

∂x2 , (C.1)

is given by

c(x, t) = C0√
4πDt

exp
(
− x2

4Dt

)
(C.2)

Assuming that a mass M of solute is placed at origin at time t = 0. I.e.,

c(0, 0) = Mδ(x), (C.3)

the constant C0 is determined from the conservation of mass,∫ ∞
−∞

c(x, t) = M . (C.4)

Hence, C0 = M .
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In the case of a constant velocity, u, the continuity equation can be written as

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2 , (C.5)

one can introduce the scaled variable

η = x− ut , (C.6)

and change variables from x, t to η, t Using the chain rule one has

∂c

∂t
= ∂c

∂t
+ ∂c

∂η

∂η

∂t
= ∂c

∂t
− u ∂c

∂η
, (C.7)

and
∂c

∂x
= ∂c

∂η
(C.8)

Hence, equation (C.5) can be written as

∂c

∂t
= D

∂2c

∂η2 . (C.9)

Again, solution is the given by

c(η, t) = M√
4πDt

exp
(
− η2

4Dt

)
(C.10)

Substituting the expression for η

c(x, t) = M√
4πDt

exp
(
− (x− ut)2

4Dt

)
. (C.11)

Scaling the variables reduces equation (C.1) to

∂ĉ

∂t̂
+ û

∂ĉ

∂x̂
= 1

Pe
∂2ĉ

∂x̂2 , (C.12)

Obviously 1/Pe enters equation (C.12) in the same way as D does in equation
(C.5). Therefore, the solution presented above can be repeated and the solution
to equation (C.12) is given by

ĉ(x̂, t̂) = M̂√
4π 1

Pe t̂
exp

(
−
(
x̂− ût̂

)2
4 1

Pe t̂

)
. (C.13)



Appendix D

Integration under path-lines

In this appendix the ratio between the gain and the loss of pure water flux during
a back-shock cycle is calculated. The ratio is calculated for a back-shock time
given by equation (5.64), corresponding to the path-line from (0, 0) to (Lm, 0).
Thereafter, it is possible to argue that this is the supremum of this ratio.

The amount of pure solvent injected into the hollow fibre during back-shocking
is well approximated by

φl = LmApbstbs . (D.1)

The regain as pure solvent flux is given by the area under the path-line, i.e.,

φg =
∫ Lm

0
y(x)dx . (D.2)

During back-shocking the x and y-coordinate as a function of time is given by

y(t) = Apbst , (D.3)

and the x-coordinate is given by

x(t) = 1
2kApbst

2 . (D.4)
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Since, we are looking at positive t, during back-shocking y(x) can be expressed
by

y(x) =
√

2x
kApbs

. (D.5)

Hence, the integral under the path-line during back-shocking is given by∫ x(tbs)

0

√
2x

kApbs
dx = 1

3

√
8Apbs
k

(x(tbs))
3/2 = 1

3k (Apbs)2
t3bs . (D.6)

Here, the last equality arrives using equation (5.57), i.e.,

x(tbs) = k

2Apbst
2
bs . (D.7)

When the pressure is reversed x(τ) is given by equation (5.59)

x(τ) = x(tbs) + kA

2
(
−ptmpτ2 + 2pbstbsτ

)
. (D.8)

Hence,
2
kA

(x− x(tbs)) + ptmpτ
2 − 2pbstbsτ = 0 . (D.9)

Thus,

τ(x) =
2pbstbs ±

√
(2pbstbs)2 − 4ptmp 2

kA (x− x(tbs))
2ptmp

. (D.10)

Since τ(x(tbs)) = 0 we have

τ(x) =
2pbstbs −

√
(2pbstbs)2 − 4ptmp 2

kA (x− x(tbs))
2ptmp

. (D.11)

Inserting this into the equation for y(τ), equation (5.60), it follows that

y(x) = Apbstbs −Aptmp

2pbstbs −
√

(2pbstbs)2 − 4ptmp 2
kA (x− x(tbs))

2ptmp


= A

2

√
(2pbstbs)2 − 4ptmp

2
kA

(x− x(tbs)) = A

2
√
α− βx (D.12)

Hence, ∫ Lm

x(tbs)
y(x)dx =

∫
x(tbs)L

m

A

2
√
α− βxdx (D.13)

= − A

3β (α− βx)3/2 |Lm

x(tbs) . (D.14)
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From equation (D.12) it is clear that

α− βx(tbs) = (2pbstbs)2 . (D.15)

In order to evaluate the other limit we use equation (5.64)

Lm = k

2Apbs
(

1 + pbs
ptmp

)
t2bs , (D.16)

Inserting the expression from equation (D.7) and equation (D.16) into D.12 we
have

α− βLm = (2pbstbs)2 − 4ptmp
2
kA

(Lm − x(tbs))

= (2pbstbs)2 − 4ptmp
2
kA

(
k

2Apbs
(

1 + pbs
ptmp

)
t2bs −

k

2Apbst
2
bs

)
= (2pbstbs)2 − 4p2

bst
2
bs = 0 . (D.17)

Inserting the values in the limit into equation (D.14) we have∫ Lm

x(tbs)
y(x)dx = A

3
kA

8ptmp
(2pbstbs)3 = k

3
pbs
ptmp

(Apbs)2
t3bs . (D.18)

We can now evaluate φg

φg =
∫ Lm

0
y(x)dx =

∫ x(tbs)

0
y(x)dx+

∫ Lm

x(tbs)
y(x)dx

= 1
3k
(

1 + pbs
ptmp

)
(Apbs)2

t3bs . (D.19)

Using equation (D.16) φg can be written as

φg = 2
3LmApbstbs . (D.20)

This means that the ratio between the gain and the loss is given

φg
φl

= 2
3 (D.21)

That this is the highest ration that can be achieved can be deduced by the
following two geometric arguments.

The ratio presented in this section is essentially the the ration between the area
under the path-line from (0, 0) to (L̃m, 0) and the area of the square y(tbs)Lm.
In this section we have solved for L̃m = Lm.
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In the case where the back-shock time is shorter than the time given in equation
(5.64), then L̃m < Lm Hence, the area under this path-line will be 2

3 L̃mApbstbs.
The loss, however, will still be LmApbstbs. Thus, the ratio decreases.

In the case of back-shock times longer than the one presented here. The loss
will increase increasing the gain. This is because no gain will be achieved for
path-lines that hit the membrane at L̃m > Lm.

Hence, one can conclude that
φg
φl
≤ 2

3 , (D.22)

for all values of the back-shock time.
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