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Materials and membrane technologies for water and energy 

sustainability 

Abstract 

Water and energy have always been crucial for the world’s social and economic growth. Their 

supply and use must be sustainable. This review discusses opportunities for membrane 

technologies in water and energy sustainbility by analyzing their potential applications and 

current status; providing emerging technologies and scrutinizing research and development 

challenges for membrane materials in this field. 
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1. Introduction 

Water and energy are fundamental resources used for economic, social and cultural development. 

These resources have been long presupposed as abundant. With the increase of population and 

the developments brought by the industrial revolution, their demand increased and scarcity is 

now an undeniable result.  

Figure 1 illustrates the total global stock of water for human use [1]. From the global water 

reserve, only 2.5 % is fresh water and the rest is saline. From the 2.5 % the largest part is frozen 

in polar regions and 30 % are also in remote aquifers of difficult access. As a result only 0.007 % 

of the total global water is directly accessible for use. Unfortunately part of this water is poluted 

by industrial plants, mining, oil or gas exploration, fertilizer and pesticide residue used in 

agriculture. In addition, the uneven distribution of water over the globe causes even more severe 

water scarcity in some regions. Desalination and water reclamation are of paramount importance 

in water security, where desalination happens to be one of the main life supports in many arid 

regions. 

 

Fig. 1. The total global stock of fresh water for human use 
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The current global energy problem originates not only from limited fossil energy supplies, but 

also its environmental impacts for its entire energy lifecycle, from mining and processing to 

emissions, waste disposal and recycling. The indicators of energy sustainability include its price, 

environmental impacts and greenhouse gas emissions, availability of renewable energy sources, 

land requirements, water consumption and social impacts [2]. One solution to achieve energy 

sustainability is to develop sustainable technologies to gradually replace non-renewable fossil 

fuels. These include energy conversion from renewable and/or natural resources (e.g. biomass, 

wind, solar and water) into usable energy (e.g. electricity) and energy storage systems for long-

term or remote usage.  

Membrane technologies play a significant role in water and energy sustainability. Some of them 

are already applied in industries at scale. Examples include desalination by reverse osmosis (RO), 

wastewater treatment by membrane reactors (MBR), lithium-ion batteries and membrane-based 

fuel cells. Besides addressing water and energy scarcity, membrane technologies meet 

sustainability criteria in terms of environmental impacts, land usage, ease of use, flexibility and 

adaptability. On the other hand, they still need to be improved in terms of cost and affordability, 

energy consumption and expertise. To achieve these improvements, advances in membrane 

materials are needed. This article aims to analyze opportunities for membrane technologies and 

the revolution and advancement of membrane materials to tackle water and energy sustainability. 

This review may provide membrane researchers with greater clarity in membrane criteria targets, 

provide industrial end-users with emerging membrane technologies and reinforce the 

engagement between research and application aspects.  

2. Membrane technology in water sustainability 

2.1. Desalination 
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Desalination plays an important role in water sustainability for many countries around the world, 

particularly in the Middle East. For instance the water supply for domestic and industrial use in 

Qatar and Kuwait is 100% provided by desalination [3]. Desaldata [4] reported that 63.7% of the 

total capacity of global desalted water is produced by membrane processes, validating the 

importance of membrane technologies in this application. Regarding water sources for 

desalination, seawater contributes for 58.9%, brackish groundwater 21.2%, surface water and 

wastewater for the remaining of 19.9% [4]. Application of membrane desalination to produce 

drinking water from seawater has been comprehensively reviewed [5-15]. Therefore, in this 

review, we focus on desalination for other applications.  Examples are desalination of produced 

water, desalted water for agriculture, desalination in mining, and removal/recovery of heavy 

metals and rare earth elements (REEs) from saline wastewater. 

2.1.1. Produced water 

Produced water is the largest waste generated in oil and gas industries. The global amount of 

wastewater co-produced in oil and gas exploration is about 210 million barrels/day, three times 

higher than the produced oil [16]. Its production increases in an attempt to exhaustedly recover 

oil from matured fields with significant environmental consequences. Produced water 

management is one of the most challenging issues facing the oil and gas industries and protecting 

human health and the environment. Treatment of produced water for reuse and recycling is an 

effective option for its handling, which has the potential to be a harmless and valuable product 

rather than a waste for disposal.  

Produced water is difficult to treat because of its complicated physicochemical composition, 

which may change over the lifetime and well-to-well. Produced water consists of dissolved and 

suspended organics and solids. Membrane technology plays an increasingly important role in 
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produced water treatment to remove all above components. Depending on the reuse purpose of 

produced water, the quality of reused water may vary and the applied membrane techniques may 

be different. External reuse applications, other than for reinjection, require much higher water 

quality. Microfiltration (MF) and ultrafiltration (UF) standalone processes or their hybrid 

integration have been efficiently used to separate suspended particles, macromolecules and oil as 

a pretreatment step while the combination of ultra-low-pressure nanofiltration (NF) and reverse 

osmosis (RO) has been applied to treat produced water for higher water quality standards which 

are potable and for irrigation [17-29]. However, in this review, we focus more on advanced 

membrane technologies for high-salinity produced water sources, such as produced water from 

shale gas wells [30, 31], where the concentration of total dissolved solids (TDS) varies from 

8,000 to 360,000 mg/L [32]. The high value of TDS concentration restricts the choices of 

appropriate desalination technologies. RO, which is commercially employed to desalinate 

seawater (TDS  35,000 mg/L), is not a good choice because of its high hydraulic pressure (high 

energy) required to overcome the osmotic pressure of high-salinity produced water, making the 

process unfeasible. This hydraulic pressure may exceed the allowable pressure of the membrane 

modules and other process equipment, making impractical this application. 

On the other hand, emerging technologies such as membrane distillation (MD) and forward 

osmosis (FO), can be potentially used to treat high-salinity water with low energy consumption. 

In addition, as compared to RO, both MD and FO are expected to have lower fouling propensity 

due to the absence of an applied hydraulic pressure. MD is a membrane-base desalination 

technology which utilize low-grade heat to drive separation. In MD, a hydrophobic and 

microporous membrane is employed to separate the aqueous feed stream and the permeate. The 

transport of liquid feed water across the membrane pores is hindered by the hydrophobic nature 
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of the membrane. The vapor pressure difference, provided by temperature differences in both 

sides of the membrane, drives the transport of water vapor through the pores to the permeate side. 

Different configurations to promote the vapor pressure gradient in MD, such as direct contact, air 

gap, sweeping gas, and vacuum, have been proposed [33-37].  The process has the advantage of 

energy efficiency because it requires only minor auxiliary energy to circulate the solutions. 

However, the complexity in produced water composition is challenging for MD, where small 

organic components and dissolved gases could pass through the membranes with water and 

contaminate the permeate stream; or certain feed compounds such as alcohols and surfactants 

could reduce the feed surface tension and cause membrane wetting, which enables the feed 

solution to penetrate the pores and compromise the permeate quality. Therefore, to address the 

produced water quality, pretreatment to remove these above components or post-treatment to 

remove permeated volatile compounds and gases may be required [35, 38]. In addition, periodic 

membrane cleaning could be essential to preserve the MD productivity [35, 38]. 

In the FO process the water transport is driven by an osmotic pressure difference between the 

feed solution and a concentrated draw solution, which has higher osmotic pressure than the feed. 

The water flow across the membrane dilutes the draw solution and lower the osmotic pressure 

gradient. Consequently, a supplemental draw solution regeneration step is essential to recover the 

draw solute and collect the produced water [39, 40]. Draw solution selection is crucial for FO, 

especially for desalination of high-salinity water, because it must provide a higher osmotic 

pressure than the feed and should be easily recyclable. Draw solutes generating insufficiently 

high osmotic pressures such as magnetic nanoparticles [41], stimuli-responsive hydrogels [42] 

and polyelectrolytes [43], are normally not satisfactory for FO desalination of high-salinity 

produced water. Although dissolved salts can provide high osmotic pressures, the need of RO for 
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their regeneration make them inapplicable for produced water treatment [44-46]. Thermolytic 

salts, which can vaporize via a change in solution temperature, may be the most suitable draw 

solute candidate for this application. Thermal energy such as distillation can be utilized for its 

regeneration. Among thermolytic salts, ammonia−carbon dioxide is the most popular thermolytic 

draw solute studied for FO [47-49]. It was first discovered as a draw solution for water 

desalination in 1964 by Neff [50]. Its solution can produce osmotic pressures greater than 200 

atm and can be regenerated at 60 oC [49]. Besides ammonia−carbon dioxide, other thermolytic 

draw solute such as trimethylamine–carbon dioxide [51] or switchable polarity solvents [52, 53] 

may also be promising for the FO desalination of produced water. However, they are still at early 

stages of investigation and the presence of ammonia even in low concentration can be a problem 

for some applications.  

2.1.2. Desalinated water for agriculture 

In the past, direct sources of fresh water were cheap, not justifying the use of more costly 

desalinated water in agriculture [54]. However, desalinated water is becoming more competitive 

because its cost is decreasing, while the costs of surface water and groundwater are elevating.  It 

is now clear that the use of groundwater is not sustainable and new regulations are expected to 

mitigate their use compared to desalinated water. In spite of this evolution, the cost of 

desalinated water is still too high for its full usage in irrigation. However, it might be affordable 

for intensive horticulture with high-value crops such as vegetables and flowers grown in 

greenhouse or coastal areas (where safe disposal of brines is easier than in inland areas) [54, 55]. 

Moreover, the high quality of desalinated water can cause less negative impact on soils and crops 

as compared to the direct use of brackish water [56]. Other advantages of desalinated water for 

agricultural use are additional and sustainable water resource not depending on the weather 
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(especially important for drought countries), enhancement in productivity and quality of 

agriculture products, less water consumption and recovery of salty soils [56, 57]. Furthermore 

drinking water quality is not needed for agriculture. Partial desalination could be enough in many 

cases, particularly by choosing salt-resistant crops [58]. 

According to Desaldata [59], there is an increasing use of desalinated water in agriculture around 

the world. Spain contributes to the highest proportion of desalinated water use in agriculture, 

where the current desalination capacity is 1.4 million m3/day and 22% is utilized for agriculture. 

Most of Spanish desalination plants for agriculture employ brackish water as the feed and are 

located in coastal areas or within 60 km of the sea. The next country applying high percentage of 

desalinated water for agriculture is Kuwait (13%). Saudi Arabia, despite its highest production of 

desalinated water in the world, uses only 0.5% of its desalination capacity for agriculture. Other 

countries such as Chile, China and Australia are also evaluating the feasibility of desalination 

technologies to support agricultural water supply.  

For agricultural uses, RO is the preferred desalination technology because of its maturity and its 

reduced cost [57] compared to thermal desalination. Both sea and brackish water are used as the 

feed. Seawater has salinity of 35,000 mg/L equivalent with the osmotic pressure of 2800 kPa 

while brackish water has low salinity of 1600 mg/L equivalent with the osmotic pressure of 140 

kPa [57]. Such data imply a significantly higher hydraulic pressure and hence higher energy 

consumption required for RO when applying seawater as the water resource. RO desalinated 

water has reduced amount of calcium and other essential minerals, as well as a slightly acid pH, 

which could damage soil structure [56]. Consequently, this water requires a re-mineralization 

step to adjust the mineral ratios. However, the cost of this post-treatment is virtually negligible as 

compared to the desalination cost [56]. The use of nanofiltration for partial desalination is also 
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under consideration with the advantage of lower hydraulic pressure, delivering water with higher 

mineral content than RO. Another concern of desalinated water for agriculture is its boron 

concentration because boron is toxic to different crops even with its low content of 0.3-4 mg/L 

[60] and it has high permeability across membranes [56]. To reduce boron content to an 

acceptable value, additional treatments such as the use of ion exchange resin might be required 

[56], which increases the capital cost and operational expense of the desalination plants. In 

addition, disposal of the RO retentate stream is challenging for inland desalination plants, which 

adds a supplemental cost to water product.  

2.1.3. Desalination in mining 

Water plays an important role in the mining industry. It is used for flotation, heap leaching of 

copper or gold ores, dust suppression, equipment cooling, slurry transport and human needs at 

mine sites [61]. There are two main water concerns in mining. Firstly, mining requires a 

sustainable supply of water because mines are often located in remote and arid areas [61]. 

Secondly, the contamination of the spent mine water with explosive residues, salts, and acids 

requires treatment before it can be recycled or disposed [62].  

The main water resource for remote and arid mines are groundwater and seawater, both of which 

have high salinity [61]. The salinity of groundwater in mine sites may exceed 100,000 ppm TDS 

or even higher, such as the mines in Western Australia [61]. These water resources alone or 

blended t with mine water runoff from stockpile, waste or mine dewatering can be directly used 

for some processing steps in mining such as copper leaching, flotation or cooling [63-66]. 

However, to alleviate negative impacts on local aquifers, protect the health of miners and to 

minimize corrosion of underground equipment in underground mines, desalinated water 
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produced from seawater and groundwater are preferred [67, 68]. RO is the key desalination 

technology used to treat groundwater in many mines to provide potable and fresh water [61]. 

On the other hand, spent mine water also requires the desalination process before recirculation or 

prior to discharge. Mine waters are classified into two groups, accorsing to their tendency to 

form calcium sulfate scale [62]. The conventional membrane-based desalination processes such 

as tubular reverse osmosis (TRO) and electrodialysis reversal (EDR) have been demonstrated for 

their technical viability in desalinating non-scaling mine water in the early 90’s decade [62, 69]. 

TRO uses a tubular membrane module. This is the only practical mode for desalination of feed 

solutions with high suspended solids concentrations, such as mine water [69]. EDR is the 

desalination membrane process where an electric current is used to migrate dissolved salt ions 

through an electrodialysis stack consisting of alternating layers of cationic and anionic ion 

exchange membranes. The advantages of EDR over RO are its lower sensitivity to effluent 

temperature or pH and lower capital cost [70]. An EDR pilot plant at Beatrix gold mine in South 

Africa achieved 80% salt recovery and recycled 84% water [71]. Recently, advanced membrane 

technology such as vacuum membrane distillation has been studied for mine water desalination 

[72], using a hollow-fiber membrane to remove up to 99.9% of TDS from Appin (New South 

Wales) mine water. However, its long-term operation has been not investigated. 

For scaling mine water, modified RO processes including seeded RO (SRO) and the slurry 

precipitation and recycle reverse osmosis (SPARRO) technology have been proposed [62, 68, 73, 

74]. In SRO, calcium sulfate is removed prior to membrane treatment to reducing the scaling. 

This CaSO4 removal involves a suspension of seed crystals added into the feed via recycling of 

waste slurry. Although SRO provided high salt rejection and water recovery, its high energy 

consumption and poor control of CaSO4 seeds constrained its development. Based on SRO 
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mechanism, SPARRO was developed and patented by the Chamber of Mines Research 

Organization (COMRO) from 1989 to 1993 [74]. The schematic representation of the SPARRO 

pilot plant is shown in Figure 2 and its operational principle can be found elsewhere [74]. It is 

capable to produce a high quality produced water at water recovery of around 95 %. However, 

the fouling of quartzitic suspended materials declines the flux. The capital cost for a 4 ML/d 

SPARRO plant was US$ 1 million, with an estimated operating cost of US$ 0.09 /m3 of 

produced water.  

 

Fig. 2. The schematic representation of the SPARRO pilot plant 

2.1.4. Removal/recovery of heavy metals and rare earth elements (REEs) 

Removal/recovery of heavy metals and REEs from wastewaters contribute to water sustainability 

in two ways. First, removal of toxic metals makes wastewater safe for disposal or reuse [75].  

Second, recovery of expensive metals and especially REEs can save the cost of wastewater 

treatment through metal reuse or sale [76]. Table 1 lists the prices of some heavy metals and 

REE oxides [77, 78]. REE prices have strongly oscilated in the last decade, depending on 
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demand mining restrictions.  In wastewater, the metals exist in their ions and dissolved salt form. 

Conventional treatment technologies for such salts include chemical precipitation, coagulation, 

flocculation, floatation, ion exchange, adsorption and electrochemical processes [79]. Compared 

to these conventional technologies, membrane processes such as ultrafiltration, nanofiltration and 

reserve osmosis have proven their competitiveness in removal/recovery of metals from 

wastewater because of their low energy requirement, small volume of retentate, high selectivity, 

possibility of achieving zero discharge, continuous operation and minimal labor requirement [80-

82]. 

Ultrafiltration (UF) uses a permeable membrane to separate macromolecules based on its pore 

size (5-20 nm) and their molecular weight (1000 – 100,000 Da) at low transmembrane pressures. 

Since the pore size of UF membranes is much larger than that of dissolved metal ions in its 

hydrated ion form or low molecular weight complexes, the metal ions have to bind with large 

molecules of surfactants [83-85] or complex with water-soluble polymers [86-90] to increase 

their size before the treatment. The former succeeded to remove 99 % of Cd(II), Cu(II), Ni(II), 

Pb(II) and Zn(II) from synthetic wastewater while the latter was able to remove 100 % Ni(II), 94 % 

Cu(II) and 100 % Cr(III). Although their recovery is high, a post treatment is essential to recover 

metal ions and reuse surfactants and water-soluble polymers. 
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Table 1. Prices of some metals and rare earth oxides [77, 78] 

Metal Pricea 

(US$/kg) 

Rare earth oxides Prices (US$/kg)b 

2011                       2015 

Sodium 0.13 Lanthanum oxide 20.1 0.6 

Magnesium 2.80 Cerium oxide 50.0 1.4 

Potassium 0.15 Neodymium oxide 11.6 10.0 

Rubidium 79,700 Terbium oxide 48.2 0.9 

Caesium 63,000 Dysprosium oxide 4.7 0.5 

Germanium 1700 Yttrium oxide 1.8 0.1 

a Estimated selling price in 2005 if extracted from RO brine;  

bSource: Arafura Resources Limited (2011 and 2015)  

 

Reverse osmosis (RO) has also commonly been studied for metal recovery. It provided high 

recovery of > 99% for Cu(II), Ni(II), Zn(II) and As(V) [91-94]. However, it has yet to be widely 

applied, mainly because of its high-pressure operation, tendency for fouling and high energy 

consumption. Nanofiltration (NF) is the intermediate membrane process between UF and RO. Its 

pore size is equivalent with the molecular weight of 200 –1000 Da and it operates at pressures of 

150 – 500 psi (10 – 34 bar) (lower than that of RO). It allows partial permeation of monovalent 

salts such as sodium chloride but rejects bivalent salts. Since all heavy metals or REEs are 

bivalent or higher, NF is an effective process to remove/recover them. NF is now a promising 

technology to reject heavy metal ions such as nickel [95], chromium [96, 97], cadmium [98], 

lead [99], copper [100, 101] and arsenic [102, 103] from wastewater. It has benefits from high 

efficiency of metal removal, ease of operation, reliability and comparatively low energy 
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consumption as compared to RO [104].  Membranes with capacity to better separate specific 

metals and salts would be an imporant achievement. 

2.2. Wastewater reclamation and reuse 

2.2.1. Municipal wastewater 

Municipal wastewater refers to sewage, the main wastewater produced in human daily life’s 

activities, including kitchen sink, shower, laundry, etc., and flush toilets sewage. Most municipal 

wastewater contain biodegradable compounds and limited chemicals, which can be treated using 

activated sludge systems. The membrane bioreactor (MBR), which integrates either a 

microfiltration (MF) or UF membrane into conventional activated sludge (CAS) reactor to 

perform the sludge separation. The MBR process has been introduced in 1960s and enabled to 

remove high amount of BOD (Biochemical Oxygen Demand), TOC (Total Organic Compound) 

and completely eliminate TSS (Total Suspended Solid) [105]. Compared to CAS, its product 

effluent has auxiliary advantage of low turbidity and SDI value (Silt Density Index, an index to 

characterize the fouling potential of suspended solids on membrane surfaces), which makes it 

available as the feed water to an RO system. Lozier et al [106] reported moderate success of a 

pilot-scale study using MBR effluent as feed water for RO. MBR is advancing rapidly both in 

R&D and commercial application on around the world. An example of successful MBR plants 

was commissioned by The Public Utilities Board (PUB) of Singapore in December 2006 [107], 

which provides valuable information on design and operation of the MBR systems under tropical 

environment. The plant consumed an energy of about 0.55 kwh/m3 and needed no intensive 

chemical cleaning since the start-up for about 7 months. Currently, over 1,500 MBRs are in 

operation around the world in Japan, Europe and North America [108]. Table 2 summarizes their 

configuration and size of operation [109-114].  
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Table 2. MBR applications in domestic and municipal wastewater treatment 

Country  Size of operation Membrane configuration Ref. 

Japan Full-scale ~ 125 m3/d Plate and frame external [114] 

USA Full-scale 9000 m3/d Hollow fiber submerged [113] 

The 

Netherlands 

Pilot-scale 360-840 

m3/d 

Tubular external [112] 

France Pilot-scale 2.4-4.8 m3/d Tubular external [111] 

Korea Pilot-scale 48 m3/d Cartridge-disc external [110] 

Germany Pilot-scale 6-9 m3/d Hollow fiber submerged [109] 

 

Since 2011, Cranfield University (UK) has been developing waterless hygienic toilet (the Nano 

Membrane Toilet, NMT), supported by Bill & Melinda Gates Foundation for the Water, 

Sanitation & Hygiene program [115, 116]. This NMT design is an innovative sanitation solution 

which can turn human waste into pathogen-free water and encapsulated briquettes for irrigation 

and fertilizer, respectively. It works without external energy or water. Figure 3 shows its 

schematic representation. In this toilet, membrane technology plays a key role. A bundle of 

hollow-fiber membranes is used to separate loosely bound water (mostly from urine) through the 

mechanism of membrane distillation, where water penetrates through the membrane in the vapor 

state. A sweep gas is pumped through the permeate side of the membrane to produce the vapor 

pressure difference between the feed and permeate to drive the water transport [116]. The 

nanostructure of the fibers reject pathogens. Nano-coated beads are subsequently used as a 

“condenser” to recover the permeate water with the efficiency of 90 %. Since the condensed 

water has certain amount of volatile organic compounds (VOCs), it can not be stored. Instead, it 

must be used in the home daily for washing or irrigation. More details on its operation can be 

found elsewhere [115]. A prototype for it is expected to be ready for field testing in January 2016. 
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Fig.3. The schematic representation of the Nano Membrane Toilet 

2.2.2. Industrial wastewater 

Industrial wastewater originates from many sources, including the iron and steel, mining food, 

pulp and paper, textile, pharmaceuticals chemical industries. Most industrial wastewater can be 

efficiently treated by MBR (Table 3) [114, 117-121], which is similar for municipal wastewater 

treatment. However, along with the rapid development of industrialization and urbanization or 

due to the particularity of some industries, many industrial wastewater and municipal wastewater 

sources contain toxic chemicals such as heavy metals and trace organic contaminants (TrOCs). 

These cannot be removed easily by conventional water treatment technologies or MBR alone. 

Removal/recovery of heavy metals from wastewater was reviewed in the section 2.1.4, hence we 

will review membrane-based technologies for TrOC removal in this section. 
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Table 3. MBR applications in industrial wastewater treatment 

Source Country Size of operation Efficiency Ref. 

Wool scouring Japan Pilot-scale ~ 10 m3/d TOD removal > 89% [117] 

Pulp mill Japan Pilot-scale ~ 10 m3/d TOC removal > 85% [118] 

Automotive industry USA Full-scale 113 m3/d COD removal > 94% [119] 

Metal transforming Canada Pilot-scale 0.2 m3/d COD removal > 90% [120] 

Cosmetic industry France Full-scale COD removal > 98% [114] 

Maize/egg processing South Africa Full-scale 500 m3/d COD removal > 97% [121] 

 

TrOCs are a diverse group of compounds including persistent organic compounds (POPs), 

pesticides, pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals 

(EDCs) [122]. TrOC concentration ranges from 100 ng/L to 100 g/L in raw wastewater. Even if 

their content in wastewater is very small, many are biologically active and can cause acute and 

chronic toxicity to aquatic organisms and possible harmful effects on human health. Intensive 

membrane-based technologies have been studied to remove TrOCs, such as MBR, single 

membrane processes (NF, RO, FO), dual membrane processes (UF + RO, FO + RO) and hybrid 

processes (MBR or BR (bioreactor) + NF, RO, FO, MD) [123].  

All the standalone processes have certain inherent advantages and disadvantages and their 

commercial application of TrOC removal is yet to be developed. Previous studies reported from 

virtually complete removal for some TrOCs to almost no removal for some others by MBR [123]. 

Their removal mechanism is governed by the adsorption of the TrOCs on the sludge retained by 

a membrane and subsequent degradation by the biomass in the reactor. As a result, the TrOC 

removal efficiency depends on their intrinsic biodegradability and other physicochemical 

properties affecting their biosorption on the sludge such as hydrophobic interaction, molecular 
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weight, functional groups and electron withdrawing/donating groups [124-128]. Operating 

conditions (temperature [129-131], pH [132-135], hydraulic retention time [136], sludge 

retention time [137-139], dissolved oxygen concentration [140-143]) also have various effects 

depending on the physicochemical properties of TrOCs. For single membrane separation 

processes (NF, RO, FO) [144-160], the separation is accomplished by size exclusion, charge 

repulsion, or sorption diffusion mechanism [122]. Removal efficiency of > 90 % can be achieved 

but it also largely depends on physicochemical properties of TrOCs. In addition, TrOCs cannot 

be degraded in these processes, only concentrated and hence further treatment is required to 

recover or neutralize them. Some dual membrane processes have also studied for TrOCs removal, 

where one membrane process is supplemental to the other. For example, UF was used to reduce 

the foulant concentration for the RO process [161] or RO was employed to recover water from 

the diluted draw solution of the FO process [162-164].  

The complete removal of a broad range of TrOCs by a single process is however hardly feasible. 

Therefore integrated/hybrid processes including MBR and other membrane separation 

technologies are under consideration to efficiently remove TrOCs [152, 165-172]. For example, 

the combination of MBR with NF or RO can improve the removal of both hydrophobic and 

hydrophilic TrOCs. The hydrophobic compounds, which may absorb and subsequently pass 

through NF or RO membranes, can be first retained into the MBR sludge. The hydrophilic 

compounds, which have less interaction with the sludge, can be efficiently removed by the 

following NR or RO.  In addition, MBR can retain bulk organic or colloidal compounds to 

reduce the fouling issue for the NR and RO. Nguyen et al [170] reported that this model can 

remove 90 % to 100 % of 22 diverse TrCOs from the synthetic wastewater. Similarly, Sahar et al 

[171] achieved > 99 % removal efficiency of 11 TrOCs from wastewater by a MBR-RO system.  
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The integration of MBR with FO in an osmotic membrane bioreactor has been demonstrated 

with promising results [39, 162, 173-178]. Figure 4 illustrates this hybrid process, which takes 

the advantages of both technologies. It has low fouling propensities, inheriting from the osmotic-

pressure-difference-driven nature of FO instead of hydraulic pressure. In addition, the FO 

process can keep small and persistent TrOCs in the reactor, increasing their retention time and 

hence improving their biodegradation. Alturki et al [174] reported that this combination obtained 

high removal efficiency of 25 out of 50 TrOCs while Lay et al [178] found that it efficiently 

removed four pharmaceuticals to produce excellent water quality. However, the build-up of 

salinity in the reactor as the result of the FO operation may be toxic to the bioreactor and reduce 

its effectiveness in degrading TrOCs. In addition, FO-related challenges such as water recovery 

from the draw solution, draw solution regeneration and reverse solute leakage need to be targeted. 

 

Fig. 4. FO set-up for water/wastewater treatment 

 

More recently, Phattaranawik et al [179] integrated an MD unit into a bioreactor. The bioreactor 

can first digest the organic matters such as carbohydrates or proteins before they may wet the 

MD membrane pores and deteriorate its performance [180]. On the other hand, the need to 
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operate MD at 30 – 80 oC suggests the use of thermophilic microorganisms for the bioreactor 

may lead to an enhanced biodegradation of organics [181]. Even the salinity was still built up in 

the reactor, Wijekoon et al [182, 183] found that the high overall removal of > 95 % can be 

achieved for all 25 studied TrOCs.  

2.3. Membrane materials for water sustainability and their challenges 

2.3.1. Microfiltration (MF) and ultrafiltration (UF) 

In MBR, several types of membranes are used based on the size of contaminants, such as MF for 

suspended particles (100–1000 nm), UF for bacteria and virus (5–100 nm) and NF for dissolved 

particles (1–5 nm). MF and UF are technically popular than NF regarding the fouling and cost 

factors [184-187]. Both ceramic and polymer materials can be used to fabricate MF and UF 

membranes. Ceramics have advantages of high chemical stability and mechanical strength, ease 

of cleaning, long and reliable lifetime [188-190]. However, it is expensive and difficult to 

fabricate in large scale due to its brittleness [189]. Sealing when integrating in modules can be an 

issue. Polymeric membranes have therefore dominated the market for decades. Common 

commercial polymers used for MF and UF membranes are poly(ether sulfone) (PES), 

poly(vinylidene fluoride) (PVDF),  polyethylene (PE),  polypropylene (PP) and 

polytetrafluorethylene (PTFE).  Except for PES, all the mentioned polymers are very 

hydrophobic.  PE, PP and PTFE are insoluble in organic solvents at room temperature, making 

the manufacture by solution processes difficult. Porous membranes based on PP and PTFE are 

produced by mechanical stretching of extruded films. Thermal induced phase separation (TIPS) 

of polymer solutions is commonly used for the manufacture of porous polyolefin membranes.  

However, the most widely used method for membrane preparation, applied for PES and PVDF 

membranes, is the non-solvent induced phase separation (NIPS). This involves solution casting 
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and immersion in a coagulating water bath. Asymmetric membranes with gradient pore size are 

obtained in this case. Table 4 lists examples of MF and UF membrane types and configurations 

used in MBR systems [191-197].  

 

Table 4. Examples of MF and UF membrane types and configurations used in MBR systems 

Types Configuration Supplier Pore size Wastewater Ref. 

MF ceramic Tubular Adams 

Hydraulics 
0.2 m Food waste [191] 

MF ceramic Tubular Kerasep 0.1 m Municipal [192] 

MF ceramic Tubular - 0.2 m Municipal [193] 

MF alumina Tubular SCT 0.2 m Municipal [194] 

UF  Plate and frame DDS Lab 20 kDa Alcohol distillery [195] 

UF Zircon Tubular SCT 0.05 m Municipal [194] 

UF Tubular Zenon 

Environmental 

75 kDa Sanitary and 

industrial 

[196] 

UF Tubular - 15 kDa Synthetic (fuel 

oil) 

[197] 

 

Fouling is one of the biggest challenges for MF and NF membranes because most of them are 

hydrophobic. The most commonly used strategy to combat fouling is to make membranes 

hydrophilic  by 1) hydrophilically modifying membrane polymers before fabrication, 2) blending 

with hydrophilic agents; and 3) grafting or coating hydrophilic polymers on the membrane 

surface. Although fouling can be minimized, undesirable effects such as narrowing the pore size 

or even blocking the pores of the MF and UF microporous membrane surfaces [198]. In other 

cases, the pore size enlarges, reducing the salt rejection [199, 200]. In addition, many coating 

layers have inadequate mechanical and chemical properties and do not sustain long-term 
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operations [198]. Material challenges to prevent fouling will be further discussed in the section 

2.3.6. 

2.3.2. Nanofiltration (NF) 

Advanced membrane formation technologies have been applied to produce NF membranes with 

high flux and rejection and low fouling tendency. The basic manufacturing method is NIPS. This 

produces an integrated porous asymmetric membrane with a selective layer on the top or a non-

selective porous structure, which can be used as substrate for multilayered membrane preparation. 

Typical polymeric materials for this purpose are PES, PVDF and polyacrylonitrile (PAN). The 

deposition of a selective layer constituted by another polymer, which can be crosslinked or not, 

can be performed by dip-coating [201, 202] or interfacial polymerization [203-216]. Additional 

surface modification by nanoparticle incorporation [217-226] and grafting polymerization [226-

242] can be performed to control selectivity or reduce fouling. Interfacial polymerization 

technique refers to the polycondensation of water-soluble and organic-soluble monomers on a 

porous support to produce thin-film composite (TFC) membranes. The technique is simple, easy 

to apply, and capable of creating a very thin selective layer of < 100 nm, mainly based on 

polyamide. This thin layer determines the overall efficiency of the membranes. Efforts to 

improve NF performance include influencing the selective layer by changing monomers [207, 

208, 212, 213, 216], adding additives into the aqueous or organic solutions [204-206] or 

modifying the surface of the formed polyamide layer [203, 209, 210, 214, 215]. The 

incorporation of nanoparticles into the selective layer during the polymerization has been studied 

to form thin-film nanocomposite (TFN) [224].  TFC membranes are considered the benchmark in 

the field of NF for aqueous separations. On the other hand, grafting polymerization via 

UV/photo-grafting [243-246], electron beam irradiation [227-229], plasma treatment [230-232] 
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and layer-by-layer (LbL) [226, 233-236] technique have been also extensively studied to produce 

NF membranes with high hydrophilicity and low fouling propensity. These techniques are well 

developed in the laboratory scale but their application in the large scale is still limited. 

Although membranes with high permeance and selectivity to salt are available, membranes with 

tailored selectivity, able to distinguish solutes of similar size are needed.  Furthermore the use of 

NF membranes is also growing for applications other than water purification. This is the case of 

chemical and pharmaceutical applications, requiring operation in the presence of organic 

solvents. For this purpose a new class of resistant porous substrates and selective layers is being 

developed. Materials under consideration are polyetherketone, crosslinked polyimide and 

polyazoles [247-251]. 

2.3.3. Reverse osmosis (RO) 

The application of membranes for seawater desalination substantially reduced the cost and 

increased the availability of drinking water. Late in 1980’s, the costs were recorded as about 

US$2.10/m3 [252]. Since then, the desalination market has been increasingly expanded with 

improved technologies to reduce the cost. It was remarked in the last decades that large-scale 

SWRO plants reached US$0.5/m3 for water price [253]. This price depends on many parameters 

such as plant location, feed water quality, plant capacity, local energy and labor costs, political 

and environmental policies and others. The recent captial costs range between US$900 and 

1200/m3/d for a large scale SWRO desalination plant, and can reach about US$2500/m3/d for a 

smaller one [6]. Besides the major costs from captial recovery (41 %) and energy consumption 

(19 %), membrane replacement (16 %) contributes a significant component of the total water 

cost [254]. Other cost components are operation and mantainence (14 %), chemicals for cleaning 

(6 %) and spares (4 %).  
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Polymeric membranes dominate the market for desalination by RO, because of their low-cost 

fabrication, ease of handling, and excellent performance in terms of selectivity and permeability. 

A key breakthrough in RO membrane manufacturing and application in different fields was the 

NIPS process proposed by Loeb-Sourirajan [255].  This allowed production of asymmetric 

membranes (1960s), initially based on cellulose derivatives,  and the fully crosslinked TFC 

membranes (1970s to 1980s) prepared by interfacial polymerization. The mostly used TFC 

membranes are constituted by a porous polysulfone substrate and a thin polyamide layer.  Thin 

cellulose acetate hollow fibers and TFC membranes in the spiral module configuration share the 

market for RO desalination plants. Table 5 provides commercial RO membrane modules in 

seawater desalination [256-259]. Despite of their success, TFC membranes have a key limitation 

– the degradation by chlorine, one of the common disinfectants used in wastewater treatment. 

RO membrane development should focus on chlorine-resistant membranes to eliminate the need 

of de-chlorination for the RO feed and re-chlorination for the RO permeate, reducing the overall 

cost of the system [260-263]. In addition, high-boron rejection membranes should be addressed 

when increasingly stringent water quality standards for which lower boron concentrations are 

required [264-270]. This will help to reduce the number of RO pass in the RO plants to achieve 

the required water quality [271, 272]. In terms of water permeance and salt selectivity, the 

current RO membranes are well advanced and successful in large-scale seawater desalination 

operation.  The future RO development should focus on other regulated and emerging trace 

contaminants such as persistent organic compounds (POPs), pesticides, pharmaceutically active 

compounds (PhACs) and endocrine disrupting chemicals (EDCs).  
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Table 5. Examples of commercial RO membrane modules in seawater desalination 

Brand 

name 

Membrane Module Operation 

condition 

Flux 

(m3/day) 

Salt 

rejection 

(%) 

Location Ref. 

DOW 

FILMTECT

M 8-in. 

SW30HRLE 

TFC 

crosslinked 

membrane 

Spiral 

wound 

32 g/L NaCl, 

55 bar, 25 oC, 

pH 8, 8 % 

recovery 

28.0 99.60-

99.75 

Perth, 

Australia 

[257] 

Hydranautic

s 8-in. 

SWC4+ 

TFC 

crosslinked 

membrane 

Spiral 

wound 

32 g/L NaCl, 

55 bar, 25 oC, 

pH 7, 10 % 

recovery 

24.6 99.70-

99.80 

Lobregat, 

Spain 

[256] 

Toray 8-in. 

TM820C 

TFC 

crosslinked 

membrane 

Spiral 

wound 

32 g/L NaCl, 

55 bar, 25 oC, 

pH 8, 8 % 

recovery 

19.7-

24.6 

99.50-

99.75 

Singapore [259] 

Toyobo 16-

in. 

HB10255 

Asymmetric 

cellulose 

tri-acetate 

Hollow 

fiber 

35 g/L NaCl, 

54 bar, 25 oC, 

30 % recovery 

60.0-

67.0 

99.40-

99.60 

Fukuoka, 

Japan 

[258] 

 

The evolutionary development of polymeric RO membranes is mostly mature. Membranes with 

high salt rejection are available with high water permeance. Even higher permeances would 

reduce the needed membrane area, but would not considerably save energy for RO operation 

[47].  However membranes with higher fouling resistance and higher resistance to chlorine are 

needed.  RO membranes continue to be developed using nanoparticles [206, 273-277]. Two 

major practical challenges need to be overcomes before they can move to the next stage of 

development. The first aspect is cost. The second is the difficulty to scale up.  In addition, health 

and safety aspects particularly in the case of added nanoparticles need to be estimated, especially 

for drinking water desalination. 

There is currently intense interest in biomimetic membranes based on embedded Aquaporin due 

to the expectation of superior permeability and almost absolute salt rejection [278-280]. 
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However, the fabrication of Aquaporin membranes with high packing density would be hardly 

feasible at the large scale, being a complex and expensive technique. Moreover, these bio-

materials are relatively unstable and hence the durability of the membranes is questionable at 

least for mass applications like desalination of seawater for drinking purposes. 

2.3.4. Forward osmosis (FO) 

There are two evolutionary development routes of FO membranes. The first is to modify 

available commercial NF or RO membranes and the second involves the development of new 

membranes with specific design for FO applications.  Fabrication of FO membranes from 

existing NF or RO membranes is considered simple, effective to some extent and cost-efficient. 

Despite the similarity in performance criteria such as high salt retention and high water flux, the 

difference between NF/RO and FO membranes is the balanced relation between high-pressure 

tolerance (or mechanical strength) and  low internal concentration polarization (ICP) of the 

support layer. In FO processes, pressure tolerance is not critical (almost no or low hydraulic 

pressure is applied) while low ICP is important to maintain high water flux and low salt leakage. 

To achieve it, therefore, the mechanical strength of the membranes is reduced to some extent to 

increase porosity and reduce tortuosity. For example, when McCutcheon and Elimelech [281] 

removed the backing fabric support layer (thickness of 80 – 120 m) of the commercial RO 

membranes (overall thickness of 200 m) and the FO water flux of the modified membranes was 

improved by a factor of 5. Another difference between RO and FO membranes is the importance 

of pore wettability. For the FO process, pore wettability must be improved, because the presence 

of un-wetted pore regions may block the water flux and significantly exacerbate ICP. Coating 

with a highly hydrophilic polymer like polydopamine (PDA) has been demonstrated as an 

effective technique to improve wettability, flux, and fouling resistance [282-286]. The water flux 
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can be increased ten folds after PDA coating. Table 6 provides examples of commerical 

membranes used for FO tests [287-292]. Despite the improvement after modification, the 

efficiency of the modified FO membranes is still limited and restricted by the inherent properties 

of their parent NF/RO membranes. Thus, many membrane scientists turn their research scope to 

develop new FO membranes. 

 

Table 6. Examples of commercial membranes for FO tests 

Material Type Supplier Water 

permeability 

10-12 (m/s.Pa) 

Draw 

solute 

Rejection 

(%) 

Ref. 

CA-3000 flat-sheet Toray 3.75 NaCl 98 [292] 

CA flat-sheet HTI 5.69 (NH4)2CO3 > 95 [291] 

CTA flat-sheet HTI 7.10 NaCl > 92 [290] 

TFC (NF) TS80 TriSep 20.0 MgSO4 100 [290] 

TFC (RO) DS-11-AG General 

Electric 

11.91 - 99.5 [289] 

TFC (RO) SW30XLE-

400i 

Dow 3.80 NaCl - [288] 

TFC (RO) SWC1 Hydranautics 5.60 - 100 [290] 

TFC (RO) SW30-HR Dow 4.39 NaCl 98 [287] 

 

A desirable FO membrane should have (1) highly hydrophilic, greatly porous but adequately 

strong support layer to minimize ICP effects, and (2) ultrathin defect-free highly selective layer 

to achieve high water flux, high salt rejection and minimize reverse solute diffusion [293]. These 

two layers are either integrated by the same materials (asymmetric membranes) or prepared 

separately from different materials in a thin-film-composite (TFC) membrane structure. The 

latter has the advantage over the former in its possibility to optimize support and selective layers 
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separately. The development strategy of FO membranes in terms of materials is similar to that of 

RO membranes. Rather than membrane materials, the development for FO also focuses on 

membrane morphologies.  

The ideal support morphology for FO membranes is still under debate. Some studies reported 

that the support with straight finger-like macrovoids is more efficient in mitigating ICP effects 

due to its low pore tortuosity (leading to low structural parameter) that facilitates the transport of 

both water and salt [294]. On the other hand, finger-like structures were considered not essential 

by other authors [257] to achieve low overall structural parameter. For example, Li et al [295] 

and Widjojo et al [296] concluded that even though the support exhibits a sponge-like structure, 

its structural parameter can also be remarkably reduced due to its high hydrophilic characteristics. 

In addition, the significantly low structural parameter (80–100 microns) can be obtained by using 

electro-spun fibers as the support [217, 297, 298]. Although the water flux of the resultant TFC 

membrane is high, however, the mechanical stability of the thin selective layer deposited directly 

on the electro-spun nanofiber support is still questionable.  

Besides membrane materials, the exploration of suitable draw solute materials is of great 

importance in FO process. The key criteria of draw solute selection are (1) high osmotic pressure, 

(2) low reverse diffusion (leakage through the membrane into the feed), (3) easy and economical 

regeneration, (4) non-toxicity and (5) reasonable price. In addition, the draw solution should not 

degrade the membranes or cause membrane scaling/fouling. Numerous draw solutes have been 

proposed, including inorganic [40, 290, 292, 299, 300], thermolytic/volatile [49, 291, 301-305], 

organic [173, 306-308], magnetic and polymer-based solutes [309-313]. Table 7 [40] 

summarizes their examples, recovery methods and drawbacks, which implies that there has been 
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no perfect draw solutes so far.  Different FO objectives and available solute recovery 

technologies determine different draw solutions.  

Despite extensive investigation of FO in the past decade and significant advancement in its 

understanding, questions and challenges of its energy sufficiency remains. Several recent FO 

analyses have disproved the common misguided view that FO is a low energy process and a 

potential altermative of RO in seawater desalination [314-316]. In fact, FO cannot be a single 

separation process, where water spontaneously permeates through a semi-permeable membrane 

(i.e. low energy process), but has to be combined with a subsequent separation of the diluted 

draw solution to recover water (i.e. require further energy). Based on the thermodymanic theories 

and practical kinetic analyses, the theoretical minimal energy of this hybrid process is unlikely to 

compete with that of the standalone RO process [315, 316]. However, FO is still potentially 

promising to desalinate the high salinity feed stream with osmotic pressure exceeding the 

tolerant pressure of RO (as discussed in section 2.1.1) or treat the waste stream with high fouling 

tendency (as discussed in section 2.2.2) [316]. In the former application, the hybrid FO systems 

employing thermolytic draw solutions may be favorable because only relatively small amount of 

the thermolytic draw solute (higher vapor pressure than water) must be vaporised as compared to 

large volume of water having to be recovered in conventional distillation. In addition, the draw 

solutes with high vapor pressures requires less total energy for recovery. Using low-cost thermal 

energy sources (e.g. solar energy, geothermal energy and industrial waste heat) for draw solution 

recovery would reduce the energy cost of the whole FO process.  In the second application, FO 

may be advantageous in the integration with MBR because of its low fouling propensity and high 

reversibility of fouling. Fouling is undesirable because it reduces process performance and 
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increases operation costs. Development of membrane materials with improved fouling properties 

continue to be active areas of research, which will be discussed in the section 2.3.6. 
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Table 7. Draw solutes, their recovery methods and drawbacks 

Group Example Recovery method Drawback 

Inorganic Al2SO4 Precipitation by doping 

Ca(OH)2 

Toxic by-products 

MgCl2 None Not pure water 

Thermolytic/ 

volatile 

SO2 Heating or air stripping Energy intensive, toxic 

NH4HCO3 Moderate heating High reverse draw solute flux, 

insufficient removal of 

ammonia 

Ethanol Pervaporation-based 

separations 

High reverse draw solute flux 

and low water flux 

Organic Glucose–Fructose None Not pure water 

Sucrose NF Relatively low water flux 

Dendrimers Adjusting pH or UF Not feasible 

Albumin Denatured and solidified 

by heating 

Not feasible 

2-Methyl 

imidazole based 

solutes 

MD Materials costly 

Fertilizers None Only applicable in agriculture 

Organic salts RO Low water flux, energy 

intensive 

Magnetic Magnetic particles Captured by a canister 

Separator 

Poor performance, 

agglomeration 

Polymer-

based 

Hydrogels Deswelling of the 

polymer 

Energy intensive, poor water 

flux 

Fatty acid-

polyethylene 

glycol 

Thermal method Poor water flux 

Polyelectrolytes UF Relatively high viscosity 

Hexavalent 

phosphazene salts 

Not studied Not economical and practical 
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2.3.5. Membrane distillation (MD) 

In general, a MD membrane should (1) exhibit high hydrophobicity to prevent pore wettability 

on the feed side (membrane liquid entry pressure of water ranges from 48 to 368 kPa for 

common commercial flat-sheet MD membranes [317]); (2) be thin to achieve high permeation 

flux (the optimum thickness lies between 30 – 60 μm [318], but when composite 

hydrophobic/hydrophilic membranes are used, the hydrophobic layer can be as thin as 5 μm 

[319]); (3) have reasonably small pore size (in the range of 0.1 to 0.6 μm [320]) to prevent liquid 

intrusion but not too small to contribute for mass transfer resistance; (4) have high porosity 60 – 

80 % [321]) and low tortuosity (a value of 2 has been commonly assumed [322] but 3.9 was also 

reported [323]) to favor the water vapor transport; (5) have high heat transfer resistance (the 

thermal conductivity ranges from 0.11 to 0.27 Wm-1K-1 at 23 oC for three common MD polymers 

PVDF, PTFE and PP [324]) but low mass transfer resistance (the reported membrane coefficient 

ranges 3 – 15  10-7 kg/m2pa.s for commerical MD membranes in the direct contact operation 

mode [36]); (6) have adequate chemical and thermal resistances, strong mechanical properties 

and long-term stability; and (7) be cheaply available. Early development stages of MD 

membranes focused on hydrophobic commercial polymers such as PVDF, PTFE and PP, 

analogously to those used for micro- and ultrafiltration. Some commercial membranes used for 

MD are listed in Table 8 [325]. The main advantage of these materials is their commercial 

availability. However, they cannot meet all above requirements of an excellent MD membrane. 

Hence, research on designing and synthesizing new membrane materials for MD processes is 

essential to attain a fully commercial status of MD.  

Novel MD hydrophobic membranes can be fabricated either by newly synthesized hydrophobic 

polymers or by surface modification of hydrophilic membranes. An example of the former is 
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synthesis of copolymers between PVDF with hexafluoropropylene (HFP) or tetrafluoroethylene 

(TFE) [326-330]. Although MD membranes prepared from these materials had lower flux than 

PVDF membranes due to lower porosity, they exhibited excellent mechanical properties with 

100% salt rejection. On the other hand, various surface modifications have been investigated for 

MD, such as surface segregation [319, 331], impregnation and cross-linking [331], co-extrusion 

[332], coating [333], grafting [334], and plasma polymerization [335].  

A promising MD membrane fabrication is the composite hydrophobic/hydrophilic membranes in 

the multilayered structure [37, 319, 335-340]. The advantage of such structure is that high mass 

transport can be achieved by tailoring the thickness of the hydrophobic layer as thin as possible 

while low heat transfer and adequate mechanical properties can still be maintained by controlling 

the thickness of the hydrophilic layer. Other attempts on MD membrane development are use of 

nanofiber membranes prepared by the electrospinning method to achieve high and controlled 

void volume [341]; incorporation of carbon nanotubes [342-346] to increase vapor permeation 

and prevent pore wettability; and adding clay particles to enhance the mechanical strength and 

long-term stability of the membrane [347]. Finally the synthesis of new hydrophobic polymers 

and their manufacture into flat-sheet and hollow fiber membranes for MD has been succesfully 

demonstrated [348, 349]. 
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Table 8. Several commercial membranes studied for MD 

Polymer Trade name Company Mean pore size (m) 

PTFE TF200 Gelman 0.2 

FGLP14250 Millipore 0.25 

M05E0020 GVS 0.2 

Desal K150 Millipore 0.1 

Fluropore Millipore 0.2 

PVDF GVHP Millipore 0.11 

Microza Ashi Chem 0.2 

M09G0020 GVS 0.2 

Durapore Millipore 0.2 

GVHP22 Millipore 0.16 

PP Accurel PP Microdyne 0.22 

Liqui-cel Celgard 0.04 

MD020TP2 N Enka 0.2 

 

2.3.6. Challenges in membrane materials to prevent fouling 

Membrane fouling is an important and inevitable challenge in all membrane processes. Lower 

membrane fouling allows higher water productivity, less cleaning and longer membrane life, and 

reduced capital and operational costs. Membrane fouling can be categorized by the type of 

foulant: inorganic (scaling), organic and biofouling. Table 9 provides their definition and 

common foulants [350, 351], being more severe in pressure-driven membrane processes such as 

RO and NF where high hydraulic pressures are employed.  
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Table 9. Category of fouling 

Category  Definition Foulants 

Colloidal 

fouling 

Fouling occurs due to the accumulation 

of particles on the membrane surface 

and inside the membrane pores, 

forming a cake layer 

Suspended solids and particles such as 

silicate, ferric oxide, iron oxide and 

aluminum oxide 

Inorganic 

fouling 

Fouling occurs through precipitation 

deposits resulting in bulk and 

membrane crystallization 

Inorganic salts such as calcium 

carbonate, calcium sulfate, calcium 

phosphate and sodium chloride 

Organic 

fouling  

Fouling occurs due to adsorption of 

natural organic compounds on 

membrane, causing gel formation 

Natural organic matters such as fulvic 

acid, protein, polysaccharides, and 

polyacrylic polymer 

Biofouling Fouling occurs when biofilm forms on 

the membrane 

Aquatic organisms, such as fungi, 

algae, yeast and bacteria 

 

Classical solutions to membrane fouling are the use of pretreatment technologies, operation 

optimization and periodic membrane cleaning. Table 10 presents their effects, affecting 

parameters and challenges [350]. On the other hand, membrane modification is potentially the 

most sustainable solution to prevent fouling. The characteristics and properties of membranes 

that affect fouling formation are their chemical structure (functional groups, charge and 

hydrophilicity) and morphology (pore size, surface roughness or surface pattern). Generally, high 

hydrophilicity, negative surface charge and low surface roughness are desirable for low fouling 

propensity.  

To achieve above properties, many membrane modifications have been extensively studied such 

as surface coating [352-354], surface grafting [355-359], incorporation of hydrophilic 

monomers/inorganic particles [360-364] and zwitterionic modification [365]. Although 

membrane modifications can effectively enhance anti-fouling capacity, they often affect flux. In 

addition, many of them are costly, complicated or only at the laboratory scale. Furthermore most 
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approaches successfully delay the early stages of fouling, but are not able to hinder it in long 

term. Therefore there is still a need for new membrane materials able to overcome the trade-off 

between anti-fouling capacity and permeability, as well as  advanced methods of membrane 

modification, which are cost-effective and simple.  

Table 10. Classical solutions to membrane fouling 

Solution Methods Effects Affecting factors Challenges 

Pre-treatment Coagulation, 

precipitation, 

media filtration, 

sonication, 

boiling, 

membrane 

filtration, pH 

changes and 

chlorination 

Alter the 

physicochemical and/or 

biological properties of 

the feed water, and 

reduce the foulant 

concentration 

Agent, 

temperature, 

dosing point, 

solution and 

foulant properties, 

and the 

characteristics of 

the membrane 

Ineffective 

pretreatment 

can lead to high 

rates of 

membrane 

fouling 

Operation 

optimization 

Gas bubbling Increase shear rate at the 

surface to intermittently 

remove fouling layers 

Size of bubbles, 

gas flow rate 

Mainly 

effective in 

addressing 

external 

membrane 

fouling 

Temperature and 

flow reversal 

Inhibit the homogeneous 

precipitation of salts and 

disrupt the nucleation of 

salt crystals 

Temperature, flow 

rate 

No in-depth 

explanation on 

the nucleation 

kinetics and 

scale formation 

Chemical 

cleaning 

Rinse with acid 

or base 

Rinsing with acid is 

particularly effective in 

removing inorganic 

scaling while rinsing 

with base is relatively 

effective in reducing 
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3. Membrane technology in energy sustainability 

Renewable energy sources are increasingly becoming a greater part of the global energy picture, 

particularly for power generation. They contributed approximately 58.5% of additions to the 

world’s power generation capacity in 2014 with significant growth in all regions [366]. 

Membrane technology has a great potential to take advantages of renewables to produce energy. 

This review covers several examples including conversion of seawater or wastewater into 

electricity (pressure-retarded osmosis and reverse electrodialysis), energy storage for renewable 

energy sources such as solar, wind or biofuels (fuel cells and batteries) or direct participation into 

energy production processes (biofuels). Other applications in natural gas separations, solvent 

recovery, various refinery and power plant processes (e.g. CO2 capture) are beyond the scope of 

this review. 

3.1. Salinity-gradient energy 

Salinity gradient energy is the power generated by the difference in osmotic pressure between  

aqueous solutions of different salinities, e.g. fresh and salt water. The chemical potential 

difference in this case can be equivalent to the power of a 270-m high waterfall to be converted 

into electrical energy [367-369]. The concept of harvesting such energy was first proposed by 

Pattle [368], and then reconsidered in 1970s by Loeb [370, 371], when the global energy crisis 

urged the need of exploring new alternative energy sources. Salinity gradient energy is estimated 

to be the second largest marine energy source with total estimated global power potential of 1650 

TWh/y [372, 373], equivalent to about half the annual hydropower of 3551 TWh/y [374]. This 

energy is considered clear and sustainable, with no production of CO2 or other emissions and no 

interference with the global climate. Its high potential is supported by the inherent abundance of 

river and seawater. The two promising technologies of capturing salinity gradient energy are 
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pressured-retarded osmosis (PRO) and reverse electrodialysis (RED). Both of them are 

membrane-based technologies and they are used in different salinity conditions. PRO is more 

efficient if using concentrated brines, whereas RED is more favorable with seawater [375]. 

3.1.1. Pressured-retarded osmosis (PRO) 

3.1.1.1. Fundamentals of PRO 

The principle of PRO was first reported by Loeb in 1976 [371, 376]. However, its research 

slowed down in the 80s and 90s due to the lack of membranes with the required performance and 

acceptable cost. Its investigation was resumed in the late 2000s by Skilhagen et al [377], 

Gerstandt et al [378] and Thorsen and Holt [373], bringing the membrane development forward 

enough to allow the implementation of the technology. With further optimization, Statkraft 

(Norway) opened the first PRO power plant prototype in 2009 to prove its concept in generating 

electricity. Figure 5 depicts an idealized arrangement of a PRO plant. On one side of the 

membrane seawater or brine is pumped keeping a constant hydraulic pressure. Concurrently, the 

compartment on the other side of the membrane is fed by fresh or waste water. Water permeates 

through the membrane from the fresh water to the seawater side, moving a turbine to generate 

electricity [370, 379].  

 

Fig. 5. Idealized continuous PRO system 
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3.1.1.2. PRO membrane development and challenges 

A membrane is the important component of a PRO set-up, separating the solutions with different 

salinity and mantaining the chemical potential difference, which will lead to the electricity 

generation. The membrane performance in PRO is characterized by the membrane power density, 

i.e. the power output per area unit, which it would be able to provide. This power density is 

critical because it directly affects the cost of the generated power. The starting membranes for 

PRO were practically those used for RO [380-384]. However it has been recognized that 

concentration polarization [302, 304, 385] greatly impacts osmotically driven processes. The 

requirements for PRO membranes are quite different from those for RO. The thick, dense and 

highly resistant support layer of RO membranes, which is essential to tolerate high pressures, 

causes severe concentration polarization in PRO [39, 292]. Therefore  membranes developed 

exclusively for FO or PRO have a thinner and less dense support layer [385-388].  

To achieve high membrane power density, the PRO membrane should have high water flux and 

pressure tolerance, corresponding to an optimum combination of the membrane properties: A 

(water permeability), B (salt permeability) and S (structural factor). Most PRO studies have not 

focused on exploration of new materials but on the discovery of suitable membrane morphology 

with large A and low B for the active layer and low S for the support.   

3.1.1.3. Economical analyses 

At the present, it is difficult to obtain a cost estimation for osmotic power due to the lack of their 

large scale plants to validate current cost assumption. The world’s only pilot-scale plant was 

commissioned by Statkraft in Norway under “The Osmotic Power Project” funded by the 

European Union [389]. It was reported by Statkraft to have a membrane with the output density 

of 1 W/m2, which is below the target of 5 W/m2. This value is estimated a minimum power 
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density for a PRO business viability [378]. The project was then discontinued in 2014 due to the 

commercial absence of high-performance and cheap PRO membranes. 

Among PRO cost components, according to Loeb’s report [390], capital cost contributes a large 

fraction of more than 60 % while operation and maintenance costs would be a small fraction. If 

the membrane power density is low, a high capital cost is expected because it would require not 

only a large membrane area to overcome the low power density, but also high membrane 

installation cost for the large membrane area. A current study reported the range of installed 

membrane cost for desalination plant from US$20 to US$40/m2 [391]. If the lowest value is 

assumed, the capital cost of the 20-MW capacity power plant with the power density of 1 W/m2 

is estimated US$20,000/kW [392], which is still above those associated with wind power 

(US$1700 - US$2450/kW) [393] and solar (US$6800 - US$7700/kW) [394]. To compete with 

solar power, a minimum power density of 5 W/m2 and a maximum installed membrane cost of 

US$35/m2 would be required [392]. Other than wind and solar, the osmotic power seems to be 

cost-similar or cost-competitive with other ocean energy sources and bio-power sources [392]. 

However, these cost analyses did not consider the costs related to the intake and outfall systems 

and pretreatment of feeding streams which depend on plant location and water sources. With 

inclusion of these cost components, Kleiterp [395] predicted higher capital costs of 

US$32,000/kW and US$29,200/kW for a 25 MW and 200 MW PRO plants, respectively; with 

an assumed power density of 2.4 W/m2. The responsive unit energy costs were estimated $1.21 

kWh-1 and $1.0 kWh-1 for a 25 MW and 200 MW PRO plants, respectively. These unit costs 

could potentially reduce to $0.12 kWh-1 and $0.07 kWh-1 for a 25 MW and 200 MW PRO plants, 

respectively if developments in membrane technology achieve increased membrane power 

density, reduced membrane price and other capital costs. Similarly, Skilhagen [396] predicted 
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the unit energy cost of US$0.16 kWh-1 for a demonstrated 25 MW osmotic power plant when 

cost reductions are gained from technology advancement and economical scale-up. This value is 

higher than the reported value of wind power (US$0.07 to US$0.14 kWh-1) [393] but comparable 

or more economical than that of solar power (US$0.11 to US$0.86 kWh-1) [394, 397, 398].  

In summary, membrane elements are the main fraction of the capital cost of an osmotic power 

plant. Commercially available membranes with high power density and low susceptibility to 

fouling are required to reduce the capital, operation and maintenance costs. With the expectation 

that the PRO membranes would be commercialized and their price abruptly reduced in the 

similar trend observed for RO membranes in last decades, the unit energy cost of PRO could be 

in the range of US$0.065 - US$0.13 kWh-1 by 2030 [399]. PRO is a renewable energy source 

with high environmental advantages.  If it receives government subsidy or incentives the cost 

could drop to US$0.05-US$0.06 kWh-1 [400], which is potentially more cost-effective than wind 

and solar power in the future.  Cost is however only one of the aspects to be considered for PRO 

implementation. This technology depends much more on geographical requirements than most 

other water-based processes.  Special salinity conditions need to be available as prerequisite.  

3.1.2. Reverse electrodialysis (RED) 

3.1.2.1. Fundamentals of RED 

The principle of RED was first applied in the early of 1950s by Pattle [368] and further 

developed during the late 1970s. RED operates with the reverse principle of electrodialysis (ED), 

using the similar stack design and membrane. In contrast to ED where a voltage is applied to 

induce ion flow, in RED electrochemical potential gradient is produced from the concentration 

difference between the feed streams. A full-scale RED system comprises multiple cell pairs, each 

of which is composed of dilute (e.g. river water) and concentrated (e.g. seawater) feed channels, 
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and anion/cation exchange membranes disposed alternatively. This membrane stack has 

electrodes at its two ends to convert the ionic flow into an electric current through oxidation-

reduction reactions (Figure 6).  

 

Fig. 6. Schematic drawing of a RED cell 

Unlike PRO processes that use pressurized water to spin the turbine for electricity production, 

the RED process can convert ionic flow directly into electricity. The produced power is 

determined by the electro-chemical potential drop across the membrane and the external load 

resistance. The potential across the membrane depends on the concentration difference and 

membrane perm-selectivity.   

3.1.2.2. RED membrane development and challenges 

Daniilidis et al [401] emphasized the importance of affordable membrane cost and power 

performance to the success in RED commercialization. Ion exchange membranes (IEMs) are 

essential for RED and are currently 2-3 times more expensive than RO membranes [47, 369]. 

Most commercial IEMs are not specifically designed for RED, but for other applications such as 
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ED, diffusion dialysis, electro-deionization and fuel cells [402]. Table 13 presents commercially 

available IEMs studied for RED [367]. In these studies, rather than the development of 

membranes, the efforts have been made on system design and operation such as stack, cell 

configuration, spacers and electrodes. Although some commercial IEMs exhibit properties 

desirable for RED (e.g. high permeability), they may not meet other RED requirements (e.g. 

physical and electrochemical properties). In addition, the high prices of these membranes also 

disfavor the implementation of power generation by RED.  

IEM membranes are known for high thermal, chemical and mechanical stability. However, these 

properties are not crucial for RED membranes[392, 403-405]. Lower stability than that required 

for fuel cells could be acceptable, especially if it results in lower membrane cost. On the other 

hand, more critical for RED are the membrane swelling degree, ion exchange capacity (IEC) and 

fixed charge density (FCD), i.e. the ratio of IEC and water uptake. Different from other 

applications, where swelling is an adverse effect because it might decrease the membrane 

permselectivity, it can be advantageous for RED to reduce the membrane resistance [406-408]. 

Good RED membranes should have the ideal balance between high permselectivity and low 

membrane resistance to optimize its power generation [407].   
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Table 13. Several commercial IEMs studied for RED 

IEM Power density (W/m2) 

Anion exchange membrane  

Neosepta AFN 1.23-1.30 

Selemion APS 1.23-1.30 

Fumasep FAD 1.16-1.24 

Neosepta AMX 1.02-1.22 

Ralex AMH-PES 0.73-1.12 

Cation exchange membrane  

Neosepta CM-1 1.12-1.30 

Fumasep FKD 0.99-1.19 

Neosepta CMX 1.02-1.30 

Ralex CMH-PES 0.73-1.23 

 

Easy functionalization is expected to increase IEC and hence permselectivity, whereas easy 

processability enables possibility of fabricating low-resistant (thin) membranes with adequate 

mechanical strength. The most considered polymers for RED membranes are polyvinyl alcohol 

(PVA) [409-416], poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) [411, 416-419] and 

polyvinylchloride (PVC) [401, 420-424]. These materials have advantages of good chemical 

resistance, good membrane processability and low cost, but the absence of charged groups in 

their pure chemical structure leads to poor conductivity. Thus, modification of these polymers or 

membranes is required to produce charged groups. Options include introducing negatively 

charged sulfonic groups by crosslinking with sulfosuccinic acid (SSA) or functionalizing with 

sulfonic acid [414, 416, 417], blending with quaternized cationic polymers [413, 422] and 

incorporating with inorganic particles [409-412, 420, 423]. Many efforts have also focused on 

synthesizing new membrane materials for RED membrane. For example, Guler et al [405] 

synthesized anion exchange membranes (AEMs) from polyepichlorohydrin (PECH) and 1,4-
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diazabicyclo-2,2,2-octane (DABCO). The resultant membranes has high IEC, but blending with 

polyacrylonitrile (PAN) is required to increase mechanical strength. Guler’s group [425] also 

synthesized negatively charged coating layers of 2-acryloylamido-2-methylpropanesulfonic acid 

(AMPS) and N,N-methylenebis(acrylamide). Although many studies have reported good power 

density of RED membranes, none of them have been commercialized. Fouling propensity is also 

critical when using seawater and rivers as feed solutions. However, very few fouling studies have 

been conducted so far for RED membranes. Thus, optimization of well-balanced permselectivity 

and membrane resistance and low fouling propensity should be the heart of membrane material 

development and modification for RED application. 

3.1.2.3. Economical analyses 

Similar to PRO, the economic analyses of RED is only at the modelling stage because there is no 

RED plants so far. Membranes are also the major components of the capital, which contributes to 

about 80 % [426] because they are the heart of a RED stack. Membrane related cost parameters 

such as power density, membrane price, membrane lifetime and its annual loss of power density 

remain the decisive factors for the unit energy cost while labor and construction costs have small 

effects [401]. Currently, the maximal power density reported in the literature is about 2.2 W/m2 

at 35 % of energy efficiency when using seawater (~0.5 M NaCl) and river water (~0.01 M NaCl) 

[427]. A higher power density of 4 W/m2 can be obtained if the intermembrane distance is 

reduced and flow rates increase [427]. Including the power required for pumps, a gross power 

density of 2.7 W/m2 can be theoretically achieved in the near future [401]. The current high 

membrane prices (~ US$55/m2) for comparably performing membranes and cheap 

heterogeneous membranes (< US$4.4 /m2) not associated with a high power density suggest that 

all of RED applications are not economically viable at the current. However, future membrane 
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advancement in this technology is expected to develop more affordable ion-exchange 

membranes (< US$4.4/m2) with the current performance (a power density of 2.7 W/m2). If such 

condition can be achieved, the levelized cost of energy can be reduced to US$ 0.17 /kWh-1 [401] 

making RED competitive with conventional and established renewable energy sources. In 2014, 

a RED pilot plant with a capacity of 50 kW was installed in The Netherlands [428]. Its 

performance report is expected to offer more relevant data for cost analyses and further 

development of RED technology. 

3.2. Batteries and fuel cells 

With unprecedented evolution of clean technologies for electricity generation, energy storage 

devices are expected to play an important role in electricity networks. Among many energy 

storage devices, batteries and fuel cells have received great attention because of their high energy 

density [429]. A common feature is their use of a chemical reaction to produce electricity. 

Batteries store chemical energy internally. Thus, when this energy is exhausted, the batteries 

must be recharged. Fuel cells generate electricity through reactants stored externally and hence 

will live as long as fuel is supplied. Polymer electrolyte membrane fuel cells  (PEMFCs) are 

under consideration for transportation and automotive applications because of their rapid start-up 

and shutdown, capability of operating even when they have not reached their operating 

temperature, no thermal shock and no high temperature corrosion [430]. The strongest 

competitors of fuel cells for transportation are currently batteries.  Lithium ion batteries (LIBs) 

have been widely used also in portable electronic devices such as mobile phones, laptops, and 

medical microelectronic devices with advantages of long cycle life and low self-discharging 

[431]. Membranes are critical components both in LIBs and PEMFCs and their performance 

essentially depends on their chemical composition and morphology. Their primary role is to 
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physically separate the anode and cathode, preventing electrical shorting, while serving as 

electrolyte reservoir for ionic transport.  

3.2.1. Lithium ion batteries (LIBs) 

3.2.1.1. Current status 

Lithium ion batteries were first introduced in 1991 [432] and since then they have grown into a 

US$ 4.64 billion market in 2013 [433] charging portable electric devices such as laptops, cell 

phones and digital cameras [432]. More recently, their application has been extended to power 

tools, electric bicycles and hybrid electric vehicles (HEVs) [432, 434]. Moreover, LIBs are 

considered as energy storage for renewable energy sources such as solar or wind. Global sales of 

such energy storage systems are expected to be approximate US$ 2 billion in 2015 and to 

increase to US$ 6 billion by 2020 [435]. Along with the growth of LIB market, that of their 

membrane separator is expected to increase. Its market is estimated to exceed US$ 3 billion by 

2020 and its production is estimated to be > 1000 billion m2 in 2013 [435]. Japan-based Asahi 

Kasei, USA-based Celgard, South Korea-based SKI and Japan-based Toray Tonen have 

occupied major market share of battery separators (Table 12).  
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Table 12. Battery separator market share 

Separator 

manufacturers 

Market 

share* 

Brand name 

Asahi 26 % HiporeTM 

Toray 23 % SetelaTM 

Celgard 19 % Celgard® 

SKI 13 % – 

UBE 7 % Upore® 

Entek 3 % Entek 

Sumitomo 1 % PervioTM 

Others 8 % – 

*: data in 2012 

3.2.1.2. Membrane separator: properties and materials 

A typical LIB comprises an anode, a cathode and electrolyte (Figure 7). During discharging, 

lithium ions move from the anode to the cathode across the electrolyte to produce the current. 

During charging period, an external electrical power is applied to drive the current in the reverse 

direction and make lithium ions re-migrate on the anode. The separator is a must to separate two 

electrodes to prevent short circuit.  
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Fig. 7. Schematic drawing of a typical lithium-ion battery 

 

A LIB separator should have (1) chemical and electrochemical stability to prevent degradation 

and/or loss of mechanical strength during cell reaction or dissolution of electrolyte [436, 437], (2) 

quick wettability for absorption and retention of the electrolyte to smoothen the lithium ion 

transport and to facilitate the process of electrolyte filling during the battery assembly [431, 436-

438], (3) strong mechanical strength to withstand the stress of physical forces or the tension of 

the winding process during battery assembly [431], (4) strong puncture strength to withstand the 

penetration of electrolyte [431, 437, 439], (5) proper thickness to offers both low internal 

resistance and safety [431, 436-438], (6) uniformity of the thickness for stable and long cycle life 

of the batteries [431], (7) small pore size to restrict the permeation of electrode material particles 

and dendritic lithium metal [431, 437], (8) uniform pore size distribution to avoid performance 

loss resulted from uneven current distribution [431], (9) appropriate porosity to keep adequate 

liquid electrolyte inside for sufficient ionic conductivity, low internal resistance, high safety and 

good shutdown capability [431, 437, 439], (10) high porosity and low tortuosity [431], (11) high 
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dimensional stability to keep the separators flat and not curled up when immersed into the 

electrolyte and not shrunk during storage and operation [437], (12) good thermal stability to keep 

the battery safe during the drying process of battery assembly [431] and (13) shutdown capability 

when overheating or short circuit occurs [436, 437]. Table 13 provides target number for certain 

properties of LIB membrane separators. 

 

Table 13. Target properties of a LIB membrane separator [431] 

Characteristic Target number 

Mechanical strength < 2% offset at 6.9 MPa  

Puncture strength > 300 g/25.4 m 

Thickness 20-25 m 

Pore size < 1 m 

Porosity 40-60 % 

Thermal stability > 90 oC 

 

Based on the characteristic requirements of membrane separators, the most commonly used 

materials for membrane separators are PE and PP or their blends with other polymers such as 

polystyrene (PS) and poly(ethylene terephthalate) (PET) [431, 440-447].  However, their poor 

thermal stability, low wettability and poor electrolyte retention limit the battery performance. 

Thus, other polymers such as PVDF [448-455], PAN [456-460], poly(methyl methacrylate) 

(PMMA) [456, 461-463] have also been used for preparing microporous membranes. 

Microporous PDVF membranes have good physicochemical and electrochemical stability, high 

mechanical strength and great wettability. A disadvantage is the potential formation of LiF 

during operation through reaction between lithium ions and the fluorine atoms in PDVF [452]. 

Microporous PAN membranes are an alternative, exhibiting good processability, high electrolyte 
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uptake, high thermal and electrochemical stability with the transport of lithium ions being 

facilitated by interaction with the CN groups. However, PAN membranes face the problem of 

electrolyte leakage during long-term storage [464]. Like PDVF and PAN, PMMA is also used 

for fabricating microporous membrane separators because of its high affinity towards 

electrolytes. PMMA membranes display high conductivity, good thermal and electrochemical 

stability. However, they have poor mechanical strength due to their amorphous structure [465]. 

Other problems linked to PDVF and PAN are their high crystallinity, which is one of major 

obstacle for high ionic conductivity [437, 459, 461, 466, 467]. To overcome this problem, many 

of their copolymers [467-472] and blend polymers [473-487] have been developed for LIB 

membrane separators.  

Optimal mechanical strength, thermal resistance, shutdown capability and electrochemical 

performance are requirements for a good battery membrane, but this is hard to achieve by using a 

monolayer. To tackle this issue, multilayer membranes have been proposed [488-495]. Typical 

examples are multilayer membranes of PE and PP [494, 495].  They combine the advantages of 

PE melting at high temperatures to block the pathway of ions,  hence providing safety assurance, 

and the benefit of strong mechanical properties and dimensional stability of PP for the overall 

structure. Many patents for bi-layer or tri-layer membranes of PE and PP have been filed [494, 

495]. Several multilayer membrane separators, such as Celgard® tri-layer separators, have been 

successfully used in commercial LIBs [431]. However, attempts are still essential to improve 

them in terms of thickness, wettability and ionic conductivity. Important approaches to 

simultaneously enhance multi-properties of membrane separators such as physical and chemical 

properties, thermal stability, wettability and ionic conductivity are grafting [496-499], coating 

[496, 500-506] and filling with nanoparticles [507-523].  
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All microporous membranes discussed above need to be filled with electrolyte to transport 

lithium ions. Electrolyte membranes, on the other hand, have inherent ion conductivity property 

and hence can acts as both separator and electrolyte. In the aspect of materials, these electrolyte 

membranes are made of similar polymer materials with non-electrolyte membranes, but they are 

incorporated with ionically conductive components, e.g. lithium salts to form solid polymer 

electrolytes [524-527] or liquid lithium-based electrolyte such as lithium hexafluorophosphate 

and lithium polyvinyl alcohol oxalate borate to form gel polymer electrolytes [528-536]. 

Recently, ion exchange membranes with lithiated perfluorinated sulfonic groups, swollen with 

organic solvents, have been investigated [537-539], demonstrating high thermal and mechanical 

stability and good interfacial compatibility with the electrodes. High safety standards have been 

achieved. In most cases ionic conductivity and mechanical properties still have to be improved.  

3.2.2. Polymer electrolyte membrane fuel cells (PEMFCs) 

3.2.2.1. Applications and current status 

PEMFCs have been applied in three main areas of transportation, portable and stationary power 

generation. PEMFCs are used in transportation to replace internal-combustion engines (ICEs) 

because of their potentials of obtaining higher efficiency and lower emission of greenhouse gases 

[540]. The typical power of transportation including passenger cars, utility vehicles and buses 

ranges from 20 kW to 250 kW [541]. Many light-weight vehicles using PEMFCs have been 

developed and demonstrated, such as GM Hydrogen 1, Ford Demo IIa (Focus), DaimlerChrysler 

NeCar4a, Honda FCX-V3, Toyota FCHV, Nissan XTERRA FCV, VW Bora HyMotion, and 

Hyundai Santa Fe FCV [540]. Car manufacturers such as Toyota, Honda, Hyudai, Daimler, and 

General Motors (GM) have announced plans of commercializing their PEMFC vehicles by 2015 

[542]. Besides light-weight vehicles, PEMFC buses have been commercialized and their 
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procurement plans have been announced under government funding such as US National Fuel 

Cell Bus Program and Europe’s Fuel Cell and Hydrogen Joint Technology Initiative [543].  

PEMFC’s advantages for portable electronic devices are their high energy power capability and 

short charging time. The global production of portable PEMFC devices grew from 

approximately 2000 units in 2005 to about 10,000 units in 2009 [544]. The typical power of 

portable electronic devices ranges from 5 to 50 W, but the power of < 5 W for micro power 

application or 100-500W has also been considered [541, 545]. Besides mobile phones and 

laptops, portable PEMFCs can also be used for electric toys and utilities such as radio-control 

cars, boats, robot and emergency lights. Several portal PEMFC companies are CMR, Viaspace, 

Jadoo, Horizon MTI micro, Neah, Samsung DSI, SFC, Sony and Toshiba [544].  

Stationary PEMFC power systems can be used for residential applications, where the waste heat 

of fuel cells can be used for household usage [546]. Further significant enhancement in fuel cell 

cost and lifetime is required for this application. However, the cost is already justifiable for 

applications such as back-up power for banks and telecommunication companies, since an 

eventual power breakdown [540] would have extremely expensive consequences. Several units 

like Plug Power GenSys® and Ballard FCgen™ 1020 ACS PEMFC systems have been 

developed in many locations. Several companies working on the stationary PEMFC application 

are Altergy, ClearEdge, Ebara Ballard, Eneos Celltech, Hydrogenics, IdaTech, Matsushita, P21, 

Plug Power and Toshiba FCP [547].  

3.2.2.2. Polymer electrolyte membranes (PEMs) 

Current research of PEMs have focused on two types of PEMFCs, which are hydrogen/air 

(H2/O2) fuel cells and direct methanol fuel cells (DMFCs). Figure 8 depicts the schematic 

drawing of a typical PEM H2/O2 fuel cell. The latter is more applicable for portable power 
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applications because its fuel (methanol) is more easily portable. Properties of PEMs determine 

the efficiency of PEMFCs. Desirable PEMs should have (1) high proton conductivity, (2) low 

electronic conductivity, (3) low fuel and oxidant permeability (4) adequate electrochemical and 

chemical stability, (5) high thermal and hydrolytic stability, (6) good dimensional and 

morphological stability, (7) adequate water transport, (8) high mechanical properties, (9) long 

lifetime and (10) low cost. Table 14 provides target numbers of certain properties for PEMs. 

Generally, based on the respective materials, PEMs can be categorized as perfluorinated 

polymer-based membranes and non-perfluorinated polymer-based membranes. Nafion® 

membranes (perfluorinated polymer) for DMFCs typically have a price in the range of US$600-

1200/m2 depending on the thickness, while the sulfonated poly(ether ether ketone) membranes 

(sPEEK) have a lower price of US$375/m2 [548].  

 

Table 13. Target properties of PEMs 

Characteristic Target numbers 

Proton conductivity > 80 mS/cm [549] 

Electronic conductivity negligible or zero [550] 

Fuel and oxidant permeability < 10-6 molmin-1cm-1 for methanol [549] 

< 2 mAcm-2 for hydrogen/oxygen crossover at 1 atm [551] 

Electrochemical and chemical 

stability 

at > 80 oC [552] 

Long lifetime > 5000 h for transport use [553] 

> 40,000 h for stationary use [553] 

Cost < US$10/kW [554] 
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Fig. 8. Schematic drawing of a PEM fuel cell 

 

The perfluorinated polymer Nafion® is currently the benchmark of PEMs in fuel cell industry. 

This material has high proton conductivity (50-200 mS/cm), moderate water uptake (30-55%), 

excellent chemical resistance at moderate conditions, and high operation temperature range up to 

190 oC [555, 556]. However, Nafion still has several serious drawbacks such as (1) polymer 

chain decomposition by alien cations [557, 558], (2) declined conductivity and water uptake if 

the cell is contaminated with multi-charged ions [559-561], (3) poor chemical and mechanical 

stabilities at high temperatures [562-565], (4) severe degradation in multiple thermal and 

hydration/dehydration cycles [566-568], (5) insufficient resistance to methanol permeation when 

applied for direct alcohol fuel cells [569, 570] and (6) high cost due to its complex processability.  

To explore cheaper alternatives to Nafion®, many non-perfluorinated polymers have been studied, 

including polystyrene, sulfonated polyimide, sulfonated aromatic main-chain polymers (e.g. 

polyphosphazene, poly(arylene ether), polysulfone, poly(sulfone ether), polyphenylsulfone) and 

natural polymers (e.g. pectin, chitin phostphate, gelatin, agar, alginic acid and uracil) [571-575]. 
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However the requirements of high oxidation stability and  high proton conductivity can be hardly 

achieved at low cost to compete with Nafion® in hydrogen fuel cells at least in temperatures up 

to 80oC.  

Operation at temperatures higher than 100oC would be more attractive for different reasons. It 

provides less catalyst poisoning with CO (impurity in H2 fuel), faster electrode kinetics and 

hence higher cell efficiency, and simplified water management due to the absence of biphasic 

water (vapor and liquid) [551].  Operation above 100oC is however challenging for Nafion®  due 

to natural dehydration and loss of conductivity. The search for better polymeric materials able to 

keep high proton conductivity at high temperature and low humidity levels has motivated intense 

activities in the field. Polybenzimidazole (PBI) is the most investigated polymer for this purpose. 

Other functionalized polyazoles have been synthesized and investigated in the laboratory [571, 

572, 574, 575]. The inspiration of using PBI as PEMs originates from the design of phosphoric 

acid (H3PO4) fuel cells (PAFCs), where phosphoric acid is employed as an ion conductor. In 

PAFCs, thin silicon carbide ceramic is used as the matrix to carry H3PO4 [576, 577]. Later on, the 

polymers with ability of chemical interactions with H3PO4 to form acid-base poly salt systems 

are considered as a new class of proton conducting PEMs. Among many polymers tested for 

such ability [578-582], PBI is the most promising candidate because of its high mechanical and 

thermal stabilities [579, 583, 584]. Several PBI/ H3PO4 membranes are commercialized by 

BASF such as CeltecL, CeltecP, and CeltecV [585].  BASF also reported their long-time stability 

such as more than 20000 h for CeltecP1100 and 6000 h for CeltecP2100 for H2/O2 fuel cells at 

160 oC [586]. However, these data are still lower than the lifetime requirement for commercially 

viable stationary fuel cells, which should be higher than 40000 h [551]. 
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3.3. Biofuel production and purification 

The use of liquid (mainly bioalcohols and biodiesel) or gaseous (i.e. biogas) fuels produced from 

biomass for transportation is already an established technology, at least in countries like Brazil 

and Sweden. Biofuels have advantages over fossil fuels such as (1) easy availability from 

common biomass sources, (2) lower  carbon dioxide emission, when considering the whole life 

cycle (3) environmental friendliness, and (4) biodegradability and sustainability [587]. The basic 

problems of biofuel are large areas needed for feedstock cultivation and competition with food 

production.     

3.3.1. Current status 

Although biofuels are growing fast and acquiring global production significance, statistics for 

2008 reported that they represented only about 1.5% of the global transport fuel consumption 

[588]. USA and Brazil are two large bioethanol producers and account for 80 % of its global 

supply with the capacities up to more than 500 million litres per year (2007) [588]. The global 

bioethanol market is predicted to attain approximately 20 % increment from 2015 to 2020 [589]. 

Bioethanol is the most common alcohol used for internal combustion engines because of its 

technical and economical suitability [590]. In Brazil bioethanol is used pure (100%) or blended 

with gasoline in different ratios with comparable performance in cars equipped with “flex” 

motors [591]. 

Different from bioethanol, the large biodiesel producers are from Europe, which accounts for 87% 

of the global supply [588]. Among them, Germany and France are the largest producers. 

However, the total global production of biodiesel is small compared to that of ethanol, 

approximately 4.1 Mtoe in 2006. The global biodiesel market is predicted to increase about 35 % 
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from 2015 to 2020. Biodiesel can be used as a diesel substitute in the blend with conventional 

diesel (up to 5%). Higher biodiesel fuel blends are used for fleet vehicles (e.g. trucks and buses).  

The global biogas production shows an exceptionally rapid increase from 292 PJ in 2000 to 1.1 

EJ in 2011 [592]. In 2011, 90 % of global biogas production and consumption is attributed to 

European Union, China and USA. Two-thirds, one quarter and approximately one-tenth of 

biogas production in Europe are originated from agricultural factories, waste disposal sites and 

sewage treatment plants, respectively. Biogas typically comprises approximately 60% methane, 

40% carbon dioxide and some trace gases. It can be used for diverse end-use applications such as 

heating or combined heat and power (CHP) generation. If biogas is purified and upgraded to 

biomethane, it can be used as natural gas or transportation fuel. Bauer et al [593] reported that by 

the end of 2012, there are 221 biogas upgrading plants in the world.   

3.3.2. Membrane technology in biofuel production and purification 

3.3.2.1. Biodiesel 

Biodiesel, which is as known as fatty acid methyl ester (FAME), is produced from 

transesterification of renewable lipid (vegetable oil or animal fat) by methanol. In this process, 

the membrane plays an important role to remove the byproduct glycerol from the product stream 

(biodiesel) [594] or to retain the unreacted lipid within the membrane [595]. There are two basic 

separation principles of membrane-based biodiesel production, based on oil droplet size (or 

membrane pore size) or perm-selectivity of the membrane. 

In the system based on oil droplet size, a microporous membrane, which is typically a ceramic 

membrane or carbon membrane, is used because its high resistance to degradation and corrosion 

in the harsh environment of biodiesel production, where acid or base is used as a catalyst [595-

597]. Due to the differences in polarity, methanol and lipids are immiscible.  Their mixture exists 
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as a two-phase system, where the lipid/oil micelles or droplets are dispersed in the continuous 

phase of methanol. These droplets have much higher diameter than the product biodiesel, 

byproduct glycerol, reactant methanol and catalyst (acid or base) and can be filtered by a 

membrane. Further water-washing is require to purify the biodiesel from other components in the 

permeate.  

In the system based on membrane selectivity, a non-porous dense hydrophilic polymeric 

membrane (e.g. poly(vinyl alcohol)) is used [594, 597, 598]. The separation is based on the 

interaction between the target components and the membrane. Generally, glycerol and methanol 

have strong interaction with –OH groups of PVA via hydrogen bonding and hence penetrate 

through the membrane. As the result, they are continuously removed from the mixture during the 

reaction whereas the unreacted lipid and the product biodiesel, of which chemical structures are 

different with that of the membrane, are retained in the system. In such separation mechanism, 

the system can be operated under atmospheric pressure. To restrict the permeation of catalysts 

through the membrane, activated carbon is used to carry them during the reaction [595]. By this 

approach, Baroutian et al [595] reported that the oil to FAME conversion reached 93.5 % and 

high-quality biodiesel can be produced without washing or purification steps.  

To combine reaction and separation in a single step, the catalytically active membranes, which is 

the product of catalyst immobilization into the membrane matrix, have been developed. The 

acidic catalyst membranes are fabricated by esterifying the –OH groups of PVA with 5-

sulphosalicylic acid to achieve sulfonic groups in the polymeric matrix [599] or by blending with 

poly(styrene sulfonic acid) containing strong acidic groups [600]. In addition, the heterogeneous 

catalysts, e.g. hydrotalcite Mg6Al2(OH)16(CO3
2-).4H2O [601] or amino-functionalized carbon 

nanotubes (CNTs) [602], can be embedded into the polymeric matrix to form catalyst 
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membranes by dispersing them in the polymer solution. In the case of CNTs, these particles can 

also increase the mechanical strength of the membrane when an appropriate content is used. 

Besides PVA, the polymer polyacrylonitrile (PAN) is also used for biodiesel production. To date, 

however, only one paper reported its membrane for purifying biodiesel by removing glycerol 

[603].  

Similar to other membrane processes, fouling is one of the major challenges. In biodiesel 

production, the fouling is caused by the agglomeration of glycerol – which is favored by the 

presence of excess alcohol, soap (salt of fatty acids) and catalysts – to block the pores of the 

membrane in the system based on the oil droplet size. However, in the typical biodiesel 

production, fouling is not serious because the alcohol concentration in the reaction mixture is 

low. For the system using selective membranes, unfortunately, fouling has been not studied so 

far. In addition, the mechanical properties and surface morphology of the membranes have not 

been fully studied. Therefore, these problems should be addressed before applying in practical 

biodiesel industry. 

3.3.2.2. Bioethanol 

Among bioalcohols, bioethanol is the most practical because of its high content produced from 

the fermentation process. Bioethanol can be divided into three generations based on the origin of 

biomass used as depicted in Table 14 [588]. Higher generation bioethanol requires more steps in 

its production procedure. An overview of third generation bioethanol production with potential 

membrane applications is described in Figure 10 [604], where MF/UF process is applied to 

harvest microalgae as the biomass/substrate for fermentation, MD/NF/RO process is employed to 

concentrate the pre-hydrolyzates and remove microorganism-inhibitors before fermentation, 

UF/NF is used after fermentation to remove some by-products and retain microorganism and 
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MD/pervaporation is integrated to recover and purify the product bioethanol in the final step 

[604].  

Table 14. Bioethanol - definitions and development status 

Generation Biomass source Current status Challenges 

1st  Sugar and starch 

crops 

- Technically 

mature 

- Commercially 

available 

- The profitability heavily 

depends on the prices of both 

fossil oil and the commodity 

feedstock. 

- Compete with food prices 

- The greenhouse gas benefits 

depend on the feedstock and 

process used 

2nd  Lignocellulosic 

biomass such as 

agricultural wastes 

(e.g. straw) and 

energy crops (e.g. 

Miscanthus, poplar) 

- Advanced stage 

of development 

and deployment 

- Demonstration 

stage 

- Cost reduction 

- Availability of 

comparatively low-cost and 

sustainable feedstock 

3rd  Algae - Earlier stage of 

research and 

development 

- Cost reduction 

- Technical challenges 

Algal biomass harvesting is challenging because of their small size (3-30 m), similar density to 

that of water and large volumes of water that must be removed to recover algal cells. Compared 

to conventional techniques such as coagulation/flocculation, flotation, gravity sedimentation, 

centrifugation, membrane filtration (MF/UF) is more advantageous in terms of energy 

consumption, recovery efficiency and non-toxicity. Petrusevki et al [543] reported a biomass 

recovery of 70-89 % when concentrating algae from large reservoirs by membrane filtration. 

Although membrane filtration has many advantages over other techniques, membrane fouling – a 

serious problem – is still under investigation.  
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Fig. 10. Application of membrane processes for 3rd – generation bioethanol production 

Membrane processes can be applied prior to the fermentation process in the production of the 2nd 

or 3rd generation bioethanol to concentrate sugar concentration (it is low due to different 

pretreatment processes and hydrolysis efficiency) and to remove fermentation-inhibitors 

produced during the pretreatment process. The main advantage of membrane processes over 

conventional techniques (e.g. evaporation, solvent extraction, overliming, activated charcoal 

adsorption and ion exchange) is the capability of concentrating sugar and removing inhibitors 

simultaneously [605, 606]. Moreover, the capital investment and operation cost of membrane 

processes are lower than those of the evaporation process [607]. The present membrane 

processes applied in this aspect include MD, NF and RO, depending on the target inhibitors and 

sugar concentration. On the other hand, ultrafiltration can be integrated into this stage to recycle 

valued enzymes (e.g. cellulase) used to hydrolyze the biomass into sugar in the previous step. By 

this way, economic viability of the enzymatic hydrolysis of biomass is improved.  
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Subsequent to the fermentation process, a MD/pervaporation (PV) process is integrated to 

continuously recover bioethanol from the fermentation broth. Generally, the final ethanol 

concentration of the corn-to-ethanol fermentation (1st generation) is more than 10 wt% while the 

microorganisms used for fermentation can tolerate a maximum ethanol concentration of 10 wt%. 

Therefore, ethanol must be removed constantly to prevent the activity loss of microorganisms. 

On the other hand, cellulosic biomass-based fermentation (2nd generation) produces lower 

ethanol concentrations (< 5 wt%). To save energy and costs of the refining process, the ethanol 

should be pre-concentrated. The conventional technique to concentrate fermentation broths is 

distillation. However, this technique has several main drawbacks [608]: (1) the energy 

consumption is remarkably higher to concentrate low ethanol concentration than to concentrate 

high concentration, (2) the mixture of ethanol and water forms an azeotrope at 95.6 % ethanol, 

which cannot be separated by the conventional distillation, and (3) it is technically difficult to 

integrate the distillation into the fermentation to remove ethanol continuously due to that fact that 

high-temperature operation of distillation is lethal to microorganisms. Membrane technologies 

(MD/PV) are therefore more useful to remove ethanol from dilute aqueous fermentation broths. 

By adding membrane systems to the fermentation, productivity and production rate, as well as 

the substrate uptake rate can be improved. 

Ethanol recovery by MD is based on the higher partial pressure of ethanol than that of water, 

which implies ethanol vapor can preferentially transfer through the membrane pores. Both direct 

contact air gap MD are common configurations coupled with fermentation for ethanol production. 

Udriot et al [609] reported that 87 % increase in ethanol productivity was achieved. Although 

this integrated fermentation-MD system can overcome the drawbacks of the conventional batch 

production, its studies have been limited to the lab scale. Larger scale operations need to be 
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investigated. Moreover, the membrane selectivity of current MD materials (PTFE, PVDF and PP) 

is low [604] and hence higher performance MD membranes are needed. However alcohol and 

biological surfactants which might be present in the fermentation reduces the surface tension and 

promote liquid intrusion in the membrane pores,  making MD application challenging.  

Pervaporation (PV) is the most studied membrane technique for ethanol recovery from dilute 

fermentation broths. The separation of this process is based on the chemical potential difference 

generated by either vacuum or a sweep gas on the permeate side of the membrane. The 

separation mechanism predominantly relies on the preferential sorption (solubility) and diffusion 

(diffusivity) of the target component across the membrane. To recover ethanol, the membrane 

should be hydrophobic to possess higher affinity (solubility) towards ethanol that allows ethanol 

to preferentially pass through. Polydimethylsiloxane (PDMS) is the dominant polymeric material 

used to recover ethanol from water because of its superior performance as compared with other 

polymeric materials [610]. From the aspect of energy consumption, the separation factor of 

pervaporation membranes must be larger than 20 to compete with distillation [611]. This is the 

one of the main challenges to restrict the industrialization of polymeric membranes in this 

application. Although inorganic membranes (e.g. zeolite and 1-silicalite) produce the separation 

factor of over 20, they pose problems in processability of large-sized membranes and they are 

often expensive. In addition, performance degradation in practical separation system is another 

issue needed to be solved before the system can be industrialized [612]. This degradation is 

mainly due to the complex compositions in the fermentation broth. Even with very small 

concentration, the present of by-products in the fermentation broth can significantly reduce 

membrane performance. Thus, exploring higher performance and reliable membrane materials 

are critical for pervaporation applications in ethanol recovery. 
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3.3.2.3. Biogas 

Biohydrogen is generated in fermentation processes while biomethane is produced during 

anaerobic digestion of biological waste [613]. Anaerobic membrane bioreactors (AnMBRs) have 

an advantage in producing both biohydrogen and biomethane in a single membrane system 

because in anaerobic digestion, the hydrogen production phase occurs prior to the methanogenic 

phase [614]. Besides biogas, many other gases and volatiles exist in the system in trace amounts 

(ppm) such as nitrogen, oxygen, carbon dioxide, hydro sulfide and volatile siloxanes [615]. They 

must be removed to upgrade biogas because their presence not only reduces the calorific value of 

biogas, but also causes corrosion to the transport and distribution system and reduces the 

possibilities of compression [613].  

Membrane technology are also gaining importance in biogas [613]. Also for this application 

polymeric membranes have clear advantages over ceramic for operation in temperatures below 

150oC. Several companies are currently developing gas separation membranes on commercial 

scale such as Membrane Technology Research, Air Products, UOP, Air Liquide, Praxair, Cynara, 

UBE and GKSS Licensees [616]. Continuous attempts have still been made to improve the 

performance of these polymeric membranes. The two commonly used effective approaches are 

(1) chemical modifications, especially introduction of bulky functional groups such as –Si(CH3)3, 

–C(CF3)2 or bromine groups [617, 618]; which increase permeability without sacrifice of 

selectivity and (2) crosslinking to improve selectivity of highly permeable membranes [619]. 

Although polymeric membranes have high potential for gas separation, they (especially glassy 

polymers) usually pose problems with densification, ageing or plasticization. Plasticization 

occurs when gas molecules are dissolved into micro-voids of the polymeric matrix, leading 

swelling or permanent damage to the matrix and hence drastic increase in gas diffusion and 
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reduced selectivity [620]. To overcome plasticization, considerable attempts have focused on 

membrane modification by heat treatment [621, 622], chemical modification [623] and polymer 

blending [624, 625].  

Also, mixed matrix membranes (MMMs) are promising candidate for gas separation by 

synergistic combination of easy processability from polymeric membranes and high selectivity 

and permeability from inorganic membranes. The attractive inorganic materials for gas transport 

are zeolites, carbon molecular sieves (CMS), carbon nanotubes (CNTs), metal-organic 

frameworks (MOFs) and covalent organic frameworks (COFs). To achieve the improvement of 

MMMs, the problems in their fabrication must be conquered, which are particle sedimentation, 

agglomeration and interfacial voids. Sedimentation causes inhomogeneous filler and polymer 

phase whereas agglomeration and interfacial voids lead to non-selective voids decreasing 

selectivity. These problems are possibly solved by [613] (1) preparing polymer solutions at high 

concentrations to increase viscosity and lessen the particle sedimentation, (2) quickly solidifying 

membranes to offer the fillers less chance to settle, (3) matching the polarity of polymer chains 

and filler structures, (4) subsequently thermally annealing MMMs, (5) developing a priming 

protocol of MMM preparation (e.g. coating an ultrathin layer of the matrix polymer on the 

particle surface) and (6) using melt extrusion technique.  

4. Prospects and conclusion 

Membranes have been long used as sustainable solution for seawater desalination by reverse 

osmosis. The successful use of membrane technology in other applications requires new 

materials and tailored separation characteristics. Although high flux and rejection of salt and 

small neutral molecules can be achieved by commercial membranes, membranes with specific 

functionalities, better defined pores or functionalized transport channels could provide 
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breakthroughs in the separation and recovery of valuable products for instance in mining 

industry, heavy metals and rare elements, as well as in the biotech industry. Membranes could 

supply partial desalinated water and play a more important role for agriculture providing the 

needed water in arid regions. For situations in which drinking water quality is not a requirement 

and alternatives to RO can be used, new membranes with higher flux but lower salt rejection 

may be an option. Providing the right composition of nutrients or selectivity for ions, 

preferentially for crop growth, would require membranes with tailored pore size and 

functionality and is still an open challenge. Industrial effluents treatment will offer more 

opportunities for membrane technology in the future. Membrane materials with good thermal 

and chemical stability would allow their application in chemical processes, which are so far not 

extensively explored with membranes. This is the case of recovery of valuable products such as 

catalysts from reaction medium containing organic solvents.  Membrane materials with better 

resistance to harsh cleaning treatments (chlorine, acid and alkali treatments) would increase the 

membrane life time in chemical separation and also in regular wastewater treatment, for which 

fouling is a serious problem.  This would also facilitate the use of membranes for a separation 

task of growing importance, the treatment of produced water in the oil and gas industry. 

In the energy sector, membranes already play a role in the production of biofuels.  They are also 

the key components in different energy conversion or storage technologies, whose performance 

and competition with other technologies depend on the availability of better materials. For fuel 

cells proton conductivity even above 100oC and low humidity aligned to high chemical and 

oxidative resistance are important specifications to achieve. There has been important 

achievement and innovative approaches in this area in the last decade. More incremental 

improvements in membranes for fuel have been reported in recent years. The technology as a 
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whole has progressed becoming more mature for market penetration.  A combination of other 

characteristics is needed for battery separators, a sector which has grown faster than fuel cell.   

Longer term options, such as osmotic power, are also on the horizon. However, osmotic power 

requires significant advances in the membrane technology, while maintaining cost and 

competitiveness. In summary there is a large number of open challenges and opportunities for 

new materials in membrane technology. With the advent of better materials in this area, new 

sustainable technologies and separation processes will be implemented, a task for the current and 

new generation of material scientists. 

Abbreviations 

AEM    : anion exchange membrane  

AMPS    : 2-acryloylamido-2-methylpropanesulfonic acid  

AnMBR   : anaerobic membrane bioreactors 

BOD    : biochemical oxygen demand 

CAS    : conventional activated sludge  

CHP    : combined heat and power  

CMS    : carbon molecular sieve 

CNT    : carbon nanotube 

COF    : covalent organic framework 

DABCO   : 1,4-diazabicyclo-2,2,2-octane 

DMFC    : direct methanol fuel cell  

ED    : electrodialysis 

EDC    : endocrine disrupting chemical 

EDR    : electrodialysis reversal 
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FAME    : fatty acid methyl ester  

FCD    : fixed charge density 

FO    : forward osmosis 

HEV    : hybrid electric vehicle 

HFP    : hexafluoropropylene  

ICD    : ionic complexation degree  

ICP    : internal concentration polarization   

IEC    : ion exchange capacity  

IEM    : ion exchange membrane 

LbL    : layer-by-layer 

LIB    : lithium ion batteries 

MBR    : membrane reactor  

MD    : membrane distillation 

MMM    : mixed matrix membrane  

MOF    : metal-organic framework 

NF    : nanofiltration  

NIPS    : non-solvent induced phase separation  

PEMFC   : polymer electrolyte membrane fuel cell  

RED    : reverse electrodialysis 

REE    : rare earth element 

RO    : reverse osmosis 

PAFC    : phosphoric acid fuel cell 

PAN    : polyacrylonitrile  
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PBI    : polybenzimidazole 

PDA     : polydopamine  

PDMS    : polydimethylsiloxane 

PE    : polyethylene  

PECH    : polyepichlorohydrin 

PEM     : polymer electrolyte membrane 

PES     : poly(ether sulfone) 

PET     : poly(ethylene terephthalate)  

PhAC    : pharmaceutically active compound 

PMMA   : poly(methyl methacrylate)  

POP    : persistent organic compound 

PP     : polypropylene 

PPO    : poly(2,6-dimethyl-1,4-phenylene oxide)  

PRO    : pressure-retarded osmosis 

PS    : polystyrene  

PTFE    : polytetrafluorethylene 

PV    : pervaporation 

PVA    : polyvinyl alcohol  

PVC    : polyvinylchloride 

PVDF    : poly(vinylidene fluoride) 

SDI    : silt density index 

SPARRO   : slurry precipitation and recycle reverse osmosis  

SRO    : seeded reverse osmosis 
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SSA : sulfosuccinic acid 

TDS    : total dissolved solid 

TFC    : thin-film composite 

TFE    : tetrafluoroethylene 

TFN    : thin-film nanocomposite 

TIPS    : thermal induced phase separation 

TOC    : total organic compound 

TrOC    : trace organic contaminant 

TRO    : tubular reverse osmosis 

TSS     : total suspended solid  

UF    : ultrafiltration  

VOC    : volatile organic compound 
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