وما توفيقي إلا بالله

Global Maintenance Management – Level 1 (Maintenance Planning & Control)

Dr. Attia Gomaa

Industrial Engineering Professor & Consultant
Mechanical Eng. Department – Shoubra Faculty of Eng. - Benha University
& Engineering and Science Services - American University in Cairo

Facebook: Attia Gomaa & Group: Maintenance Management - Dr. Attia

January 2020

Global Maintenance Management – Level 1 (Maintenance Planning & Control)

Contents:

- 1. Maintenance & Reliability Culture
- 2. Maintenance Types & Policies
- 3. Maintenance Management
- 4. Maintenance Planning
- 5. Spare Parts Planning
- 6. Shutdown Planning
- 7. Maintenance Control & KPIs
- 8. Case Studies

Rules of the Course

This is an Open Discussion Course:

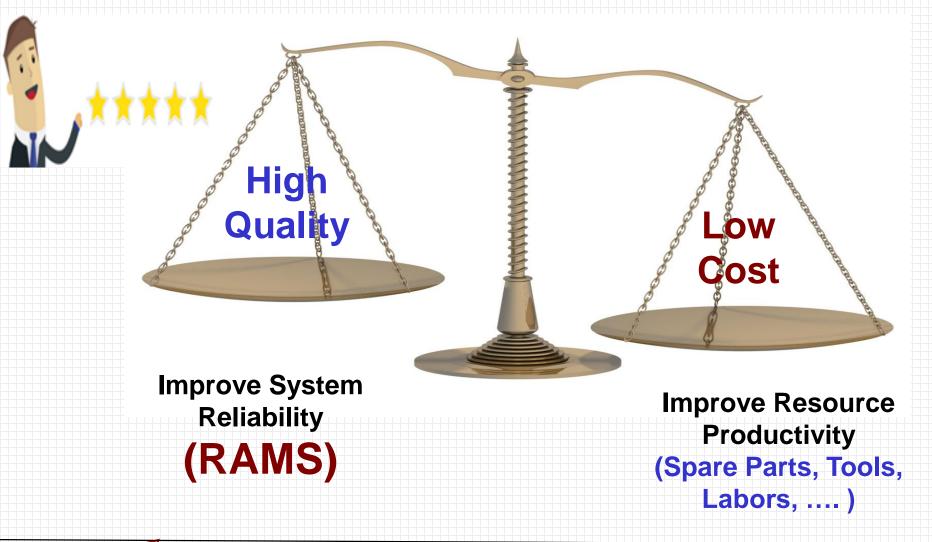
Share Knowledge

- تبادل المعرفة

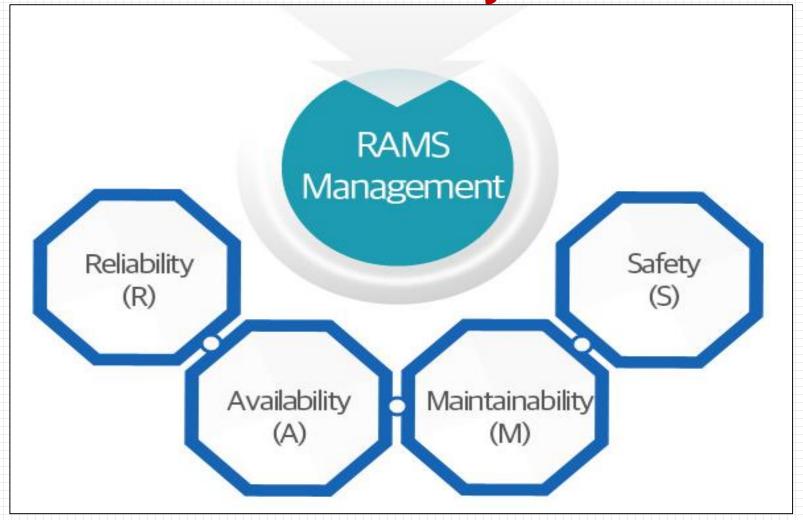
Share Experiences

- _ تبادل الخبرات
- Share Best Practices تبادل التجارب الجيدة
- Share Questions

_ تبادل الأسئلة



Remember ... You can't do it alone!


Let us be a teamwork.

Core Objective:

RAMS Analysis

Reliability is the probability of zero failures during standard time according to standard working conditions.

Reliability is Performance Over Time

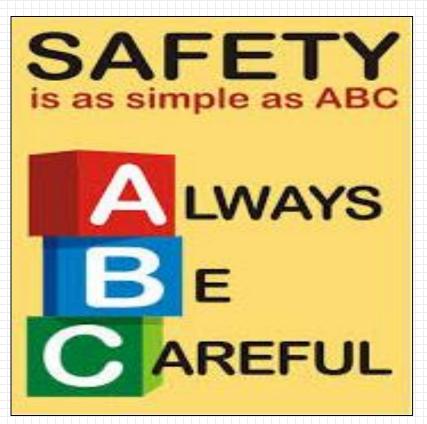
Reliability is measured by Mean Time Between Failure MTBF

Availability is the probability of **zero downtime** during standard time according to standard working conditions.

Availability = (Total Time – Total Downtime) / Total Time

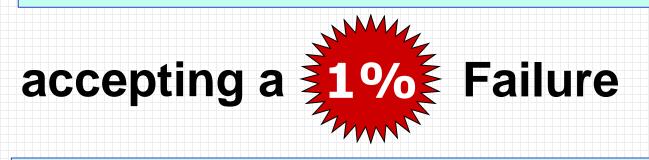
Maintainability is the probability of performing a maintenance action during certain time.

Maintainability is measured by Mean Time To Repair MTTR



Safety:

Safety is No Accidents



Warning

> 30% of Accidents due to Maintenance for SCE

Achieving a 99% level of Reliability means

1% failure rate would mean everyday

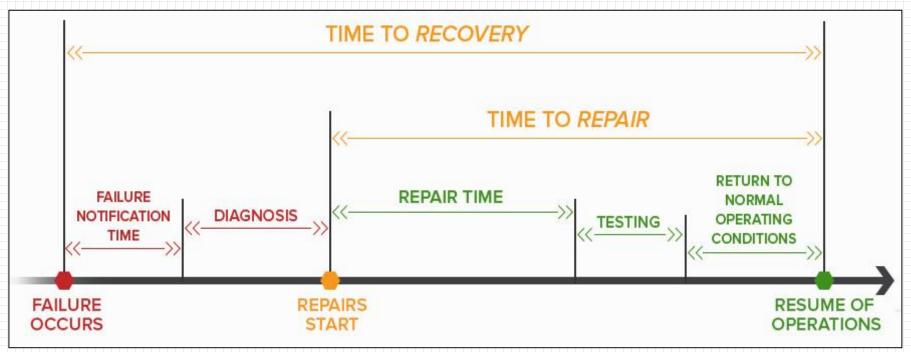
14.4 minutes without water or electricity

(0.01 * 24 hours/day * 60 minutes)

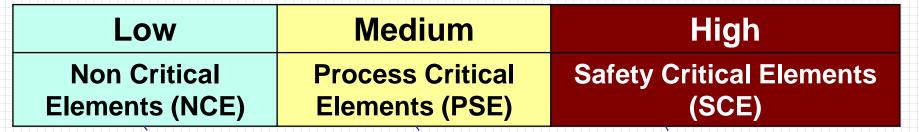
 Two bad landings at Cairo airport (0.01 * 200)

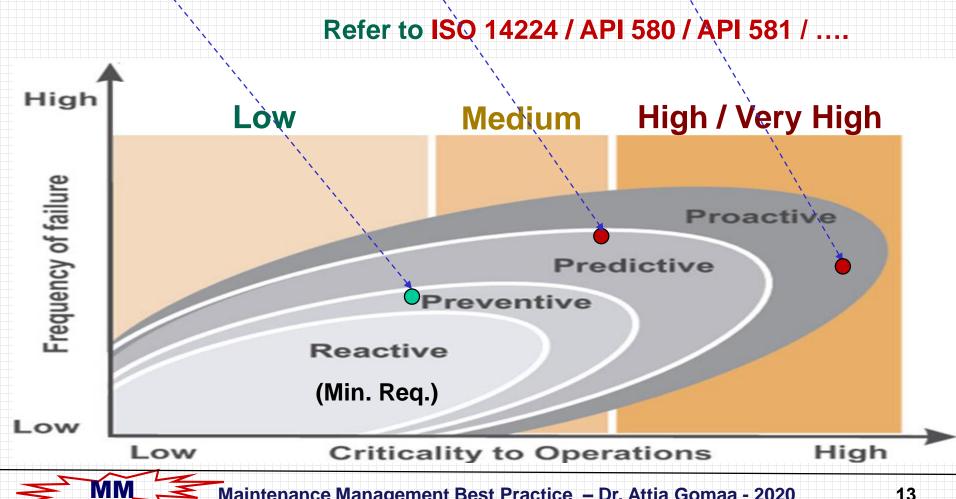
To Improve Process Stability Minimize Variance

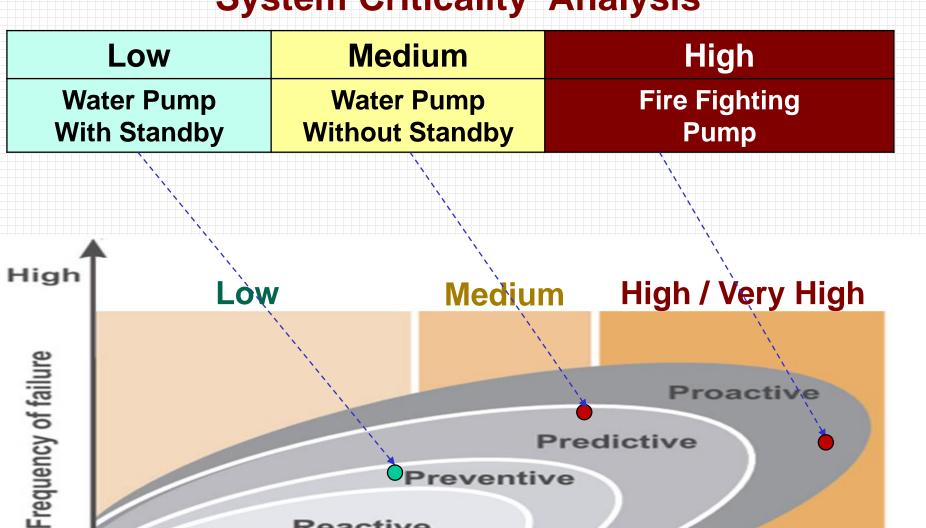
Bearing Repair Time #1	8 Hours
Bearing Repair Time #2	4 Hour
Bearing Repair Time #3	16 Hours
Bearing Repair Time #4	Forecasting MTTR?


High Variance % "Process Not Stable"

What is the difference between:


- 1. Maintenance Time
- 2. Repair Time
- 3. Logistic Time
- 4. Downtime

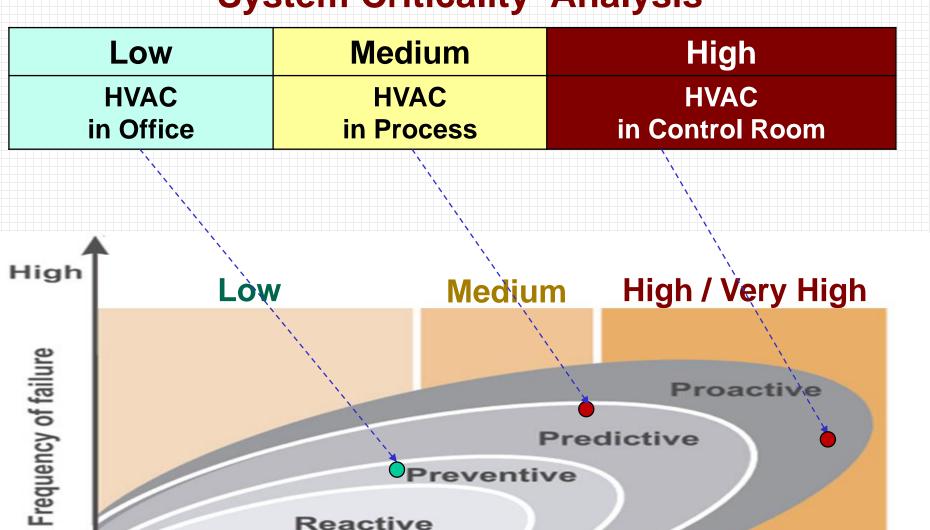




System Criticality Analysis

Element	High	Medium	Low
	Safety Critical Elements (SCE)	Process Critical Elements (PSE)	Non Critical Elements (NCE)
Car	Tires System	Cooling System	Lighting System
Pump Station	Fuel Pump	Water Pump Without Standby	Water Pump With Standby
HVAC System	Control Room	Process	Offices
Server	Banking System	Process	Training
UPS	Control Room	Process	Lighting System

Reactive

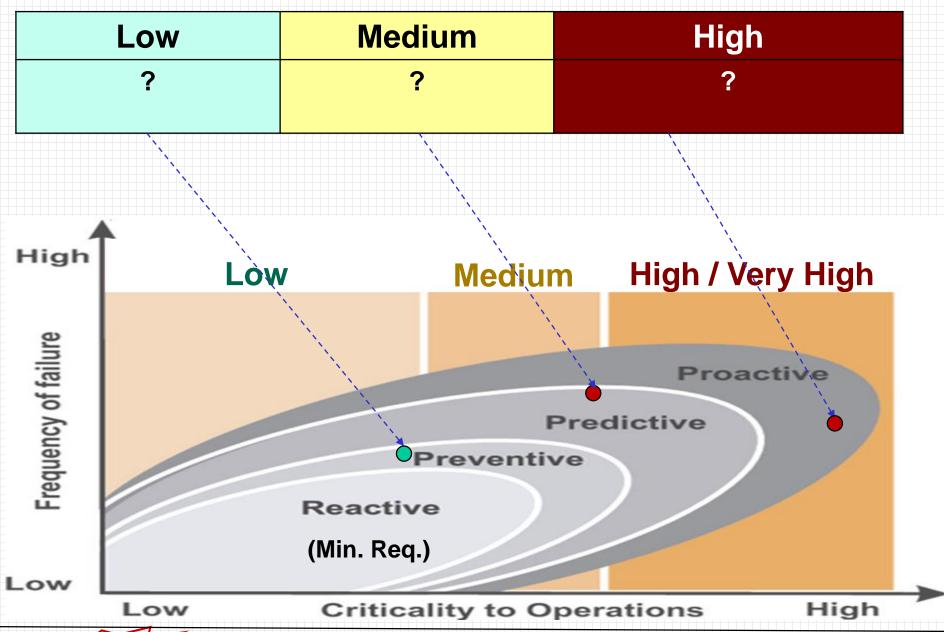

(Min. Req.)

Criticality to Operations

High

Low

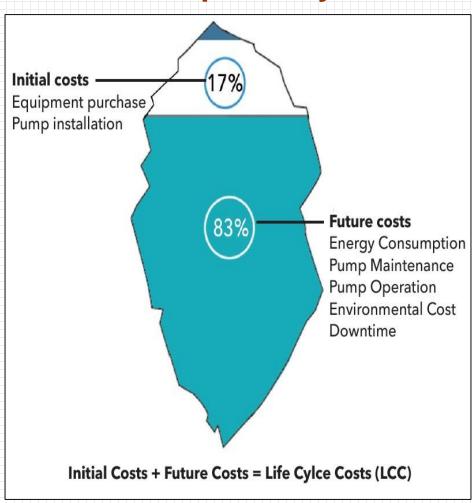
Low

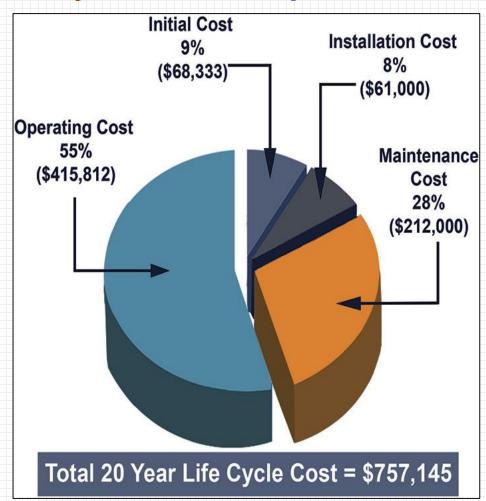


Low

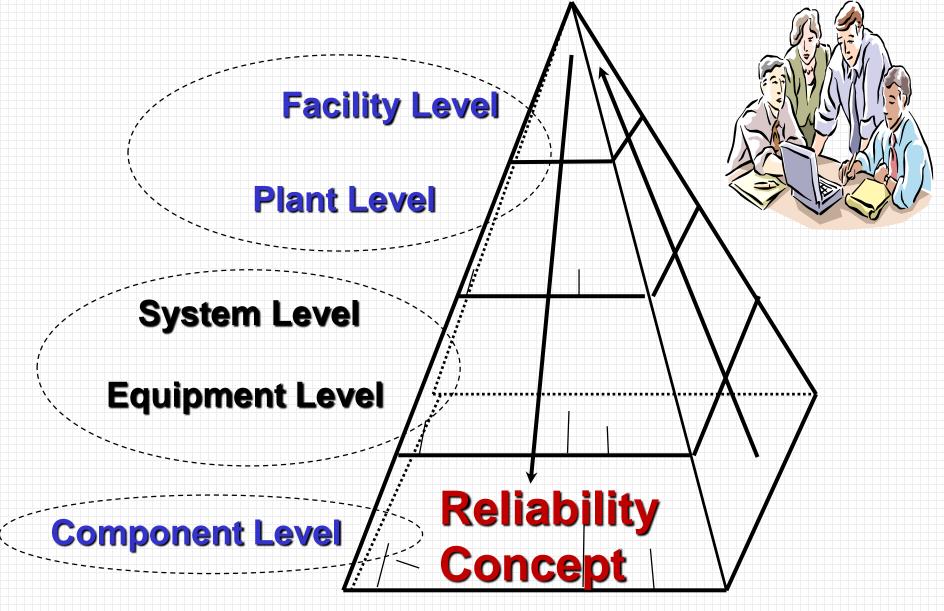
Low

(Min. Req.)




MM

Root Causes of Pump Failures


- Lack of maintenance (clean, check, Replace, ... etc.) > 30%
- Operating Conditions (flow rate, head, speed, ... etc.) > 20%
- Human errors (not qualified, under stress, ... etc.) > 10%
- Unsafe conditions (Near-miss) > 5%
- No Information (references, manuals, history, ... etc.) > 5%
- Poor quality of spare parts (low cost, ... etc.) >20%
- Poor design (selection, location, ... etc.) >10%
- Others <10%

Pump Life Cycle Cost Analysis; for example:

Maintenance Cost = (20% to 30%) from Life Cycle Cost

KPIs for top management

Process: Petrochemical Industry

Improving Reliability through Culture Change

Annual Information (2017):

= 8760 hours/year Annual Standard Time

Performance Rate

Annual Production

= 15 ton/hour

= 100,000 ton

"Data Source"

(Process)

(Process)

(Process)

Operation Efficiency = ? %

KPIs for top management

Process: Petrochemical Industry

Improving
Reliability
through
Culture
Change

Annual Information (2017):

Annual Standard Time = 8760 hours/year

Performance Rate = 15 ton/hour

Annual Production = 100,000 ton

Unit Price Per ton = 800 \$/ton

Planned Downtime = 3 days/year

Unplanned Downtime = 4 days/year

Direct Maintenance Cost = 200,000 \$

"Data Source"

(Process)

(Process)

(Process)

(Market)

(Maintenance)

(Maintenance)

(Financial)

KPIs for top management

Process: Petrochemical Industry

Improving
Reliability
through
Culture
Change

Annual Information (2017):

Annual Standard Time

Performance Rate

Annual Production

Unit Price Per ton

Planned Downtime

Unplanned Downtime

Direct Maintenance Cost

= 8760 hr/year

= 15 ton/hour

= 100,000 ton

= 800 \$/ton

= 3 days/year

= 4 days/year

= 200,000 \$

1) Process Downtime Losses

= 7 * 24 * 15 = 2520 ton/week

= 2520 * 800/2 = 1,008,000 \$

2) S/D Cost = 200,000 / 1,008,000

= 20% Downtime losses

3) Planned Ratio = 43 %

4) Operation Efficiency = 76 %

5) Process Availability = 98.1 %

6) Process Reliability = 98.9 %

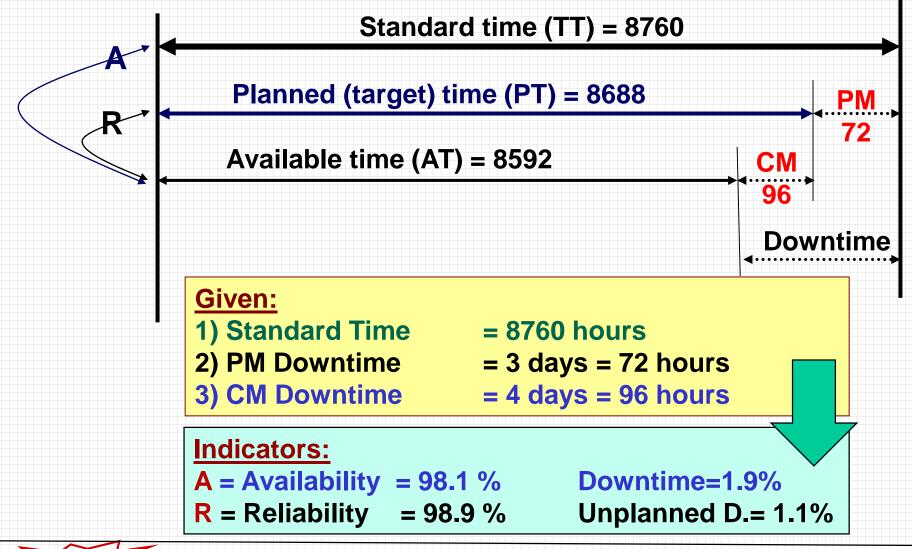
KPIs for top management

Operation Efficiency =

Actual Capacity / Standard Capacity

Given:

- 1) Standard Time = 8760 hours
- 2) Performance Rate = 15 ton/hour
- 3) Actual Capacity = 100,000 ton


Indicators:

Operation Efficiency = 76 %

Unused Capacity = 24%

KPIs for top management

Operational Availability & Reliability

KPIs for top management

Process: Cement Industry

Improving
Reliability
through
Culture
Change

Annual Information (2017):

Annual Standard Time = 8760 hr/year

Performance Rate = 5,000 ton/day

Annual Production = 1,500,000 ton

Unit Price Per ton = 700 LE/ton

Planned Downtime = 10 days/year

Unplanned Downtime = 4 days/year

Direct Maintenance Cost = 1,000,000 LE

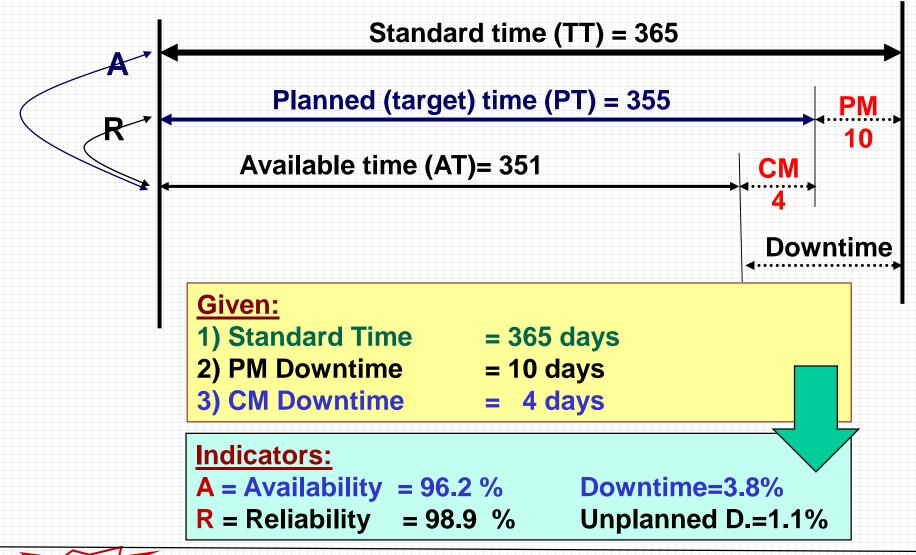
1) Process Downtime Losses

= 14 * 5000 = 70,000 ton

=

2) S/D Cost =

=


3) Planned Ratio = **71.4%**

4) Operation Efficiency = 82.2%

5) Process Availability = 96.2%

6) Process Reliability = 98.9%

Operational Availability & Reliability

KPIs for top management

Process: Steel Furnace

Improving
Reliability
through
Culture
Change

Annual Information (2017):

Annual Standard Time = 8760 hr/year

Performance Rate = 140 ton/hour

Annual Production = 1,500,000 ton

Unit Price Per ton = 10,000 LE/ton

Planned Downtime = 12 day/year

Unplanned Downtime = 2 day/year

Direct Maintenance Cost = 12,000,000 LE

1) Process Downtime Losses

=

2) S/D Cost = = --- % Downtime losses

3) Planned Ratio = --- %

4) Operation Efficiency = --- %

5) Process Availability = --- %

6) Process Reliability = --- %

KPIs for top management

مصنع تجميع ثلاجة :Process

Improving
Reliability
through
Culture
Change

Month Information (2017):

Annual Standard Time = 624 hr/month

Performance Rate = 90 units/hour

Annual Production = 35,000 ton

Unit Price Per ton = 10,000 LE/unit

Planned Downtime = 78 hours/month

Unplanned Downtime = 10 hours/month

Direct Maintenance Cost = 200,000 LE

- 1) Process Downtime Losses
 - =
- 2) S/D Cost =
 - = --- % Downtime losses
- 3) Planned Ratio = --- %
- 4) Operation Efficiency = --- %
- 5) Process Availability = --- %
- 6) Process Reliability = --- %

Vidoe

Maintenance Strategy

Common Maintenance Strategy (CMS)

Strategy is a systematic method to achieve a certain objective

Strategy is a high level plan to achieve one or more goals

Your success as a manager depends on making a common strategy to be aware with everything on the organization like a standard strategy for each department.

Five steps in the Common Maintenance Strategy (CMS):

- 1- Optimum Maintenance Strategy
- 2- Planning and Scheduling
- **3- Optimize Resource Levels (Critical Resources)**
- **4- Key Performance Indicators (KPIs)**
- 5- Benchmarking (Internal / External)

Six important elements to the CMS:

- 1- Leadership & Organization Structure
- 2- Facility Availability
- 3- Work Management
- **4- Materials Management**
- 5- Change Management (Proactive)
- **6- Continuous Improvement**

Terms To Understand

- 1.Quality & Reliability
- 2. Availability & Maintainability
- 3. Maintenance Insurance
- **4.Cost Effective**
- **5.Maintenance Cost 25% Operation cost**
- **6.Optimize (continuous improvement)**
- 7.Planning & Schedule
- 8. Planning (What, When, How)
- 9. Critical Failure
- 10.Risk (Safety, Financial)
- 11. Facility Availability
- 12. Equipment Reliability
- 13. Mechanical Integrity
- 14. Sharing Information & Experience

- 15. Proactive & Reactive
- 16. Inventory Analysis
- 17. KPIs (Key Performance Indicators)
- 18. Benchmarking (Internal / External)
- 19. Operation efficiency%
- 20. Critical Equipment Reliability %
- 21. Planned v Unplanned 95%
- 22. Facility Availability%
- 23. Spare Parts Inventory Control
- 24. Insurance / consumable
- 25. Safety Stock (min. stock level)
- 26. Insurance Stock (Strategic for SCE)
- **27. OEE** (Overall Equipment Effectiveness)
- 28. etc.

Maintenance Management - Key Objective: Improve Maintenance Quality (RAMS) at Low Cost **Improve** Improve Res. **Improve Improve Improve** Reliability **Productivity** Safety **Availability Maintainability Minimize Minimize Minimize** Improve Labor **Improve Productivity MTBF MTTR Overdue SCE Downtime To Improve Mean Time Between Failure:** To Minimize Mean Time to Repair: **Criticality Analysis (SCE / PCE / NCE) Troubleshooting (Failure List) Critical Equipment / Parts / Failures Maintenance Shutdown Planning Root Cause Failure Analysis (RCFA)** 3) 9) Spare Parts Analysis & Control 10) Common Maintenance Strategy **Failure Mode Effect Analysis (FMEA) Reliability Analysis & Improvement** 11) Total Productive Maintenance **Condition Based Maintenance** 12) Maintenance Motivation Programs

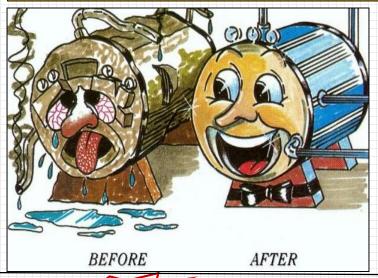
- 1) Critical Equipment
- 2) Maintenance Programs
- 3) Work Orders (PM & CM)
- 4) Feedback & RCFA
- 5) KPIs Report
- 6) Improve RAMS at Low Cost
- 7) Gap Analysis
- 8) Improvement Recommendations

Maintenance Types & Policies

Maintenance

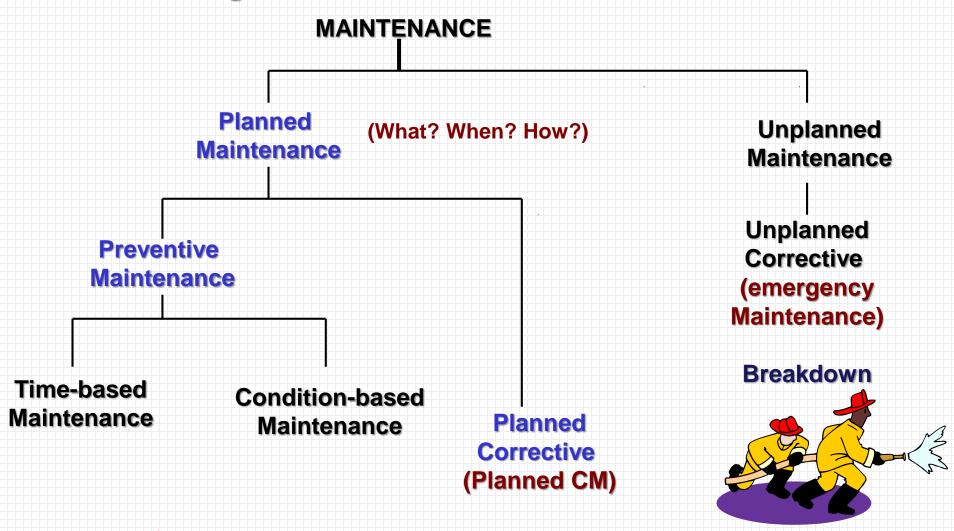
All activities involved in keeping a system in working order

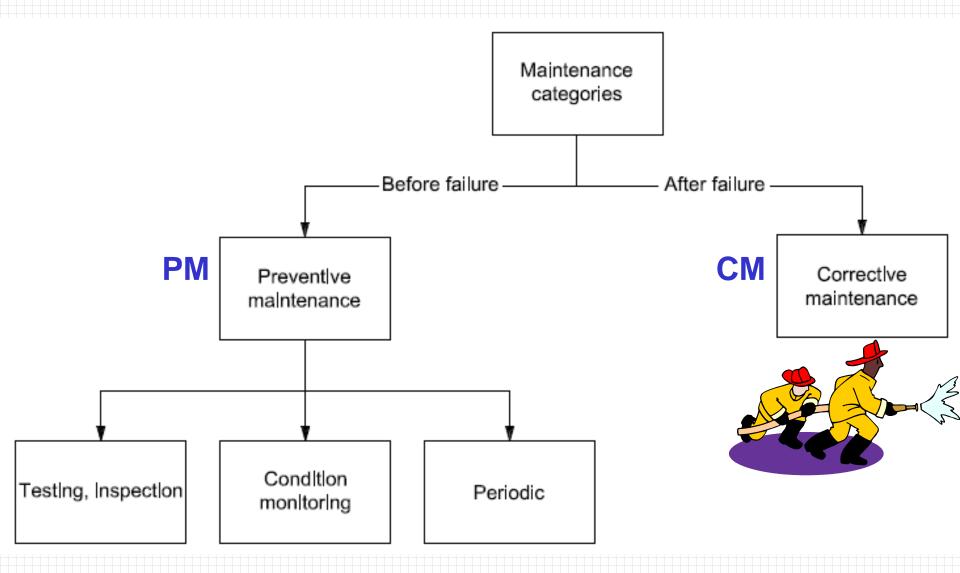
☐ Preventive Maintenance (Planned Maintenance)


A plan that involves routine inspections, servicing, and keeping facilities in good repair to prevent failure

□ Breakdown Maintenance (Unplanned Maintenance)

Remedial maintenance that occurs when equipment fails and must be repaired on an emergency or priority basis





TYPES OF MAINTENANCE

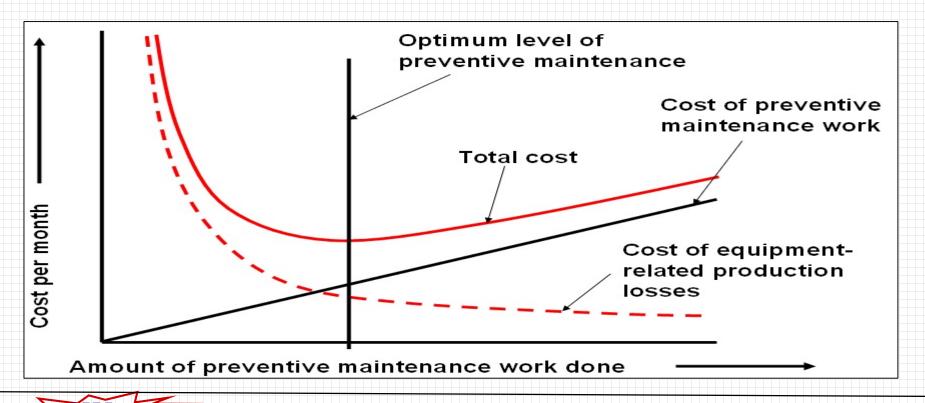
British Standard (3811:1993) classified maintenance types as the followings:

Refer to (ISO 14224:2016):

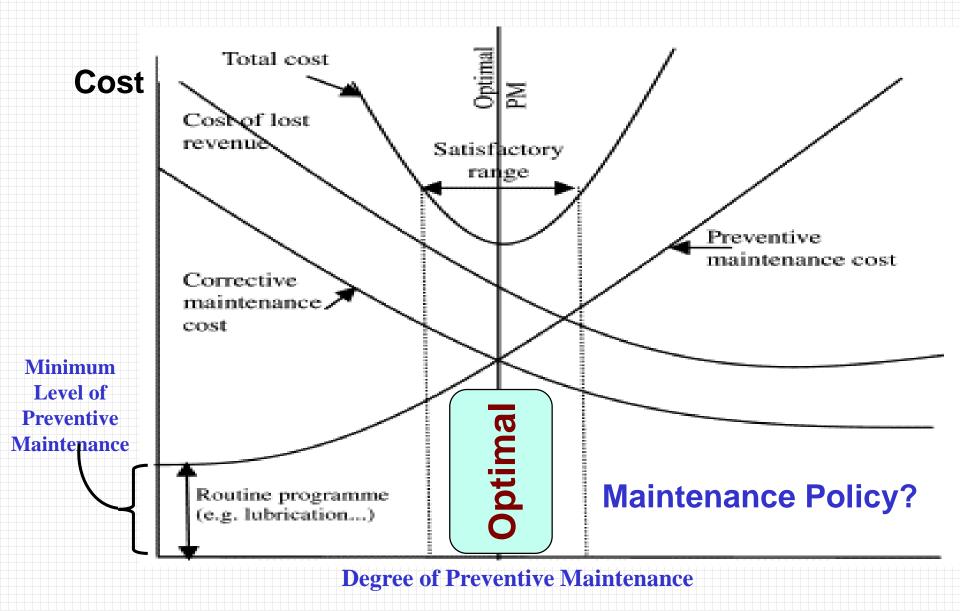
Maintenance Policy?

Maintenance / Failure Cost Analysis

Direct costs


- Material
- Manpower
- Tools

Overhead costs


- Technical o/h
- Office o/h

Downtime losses

- Process Losses
- Quality Losses
- Safety Losses

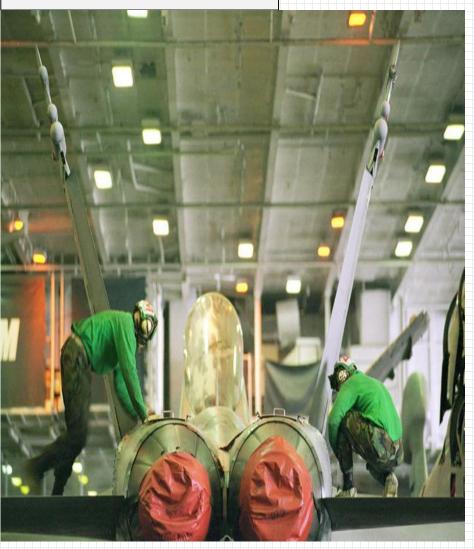
Tradeoff Between Repairs and PM

Preventive Maintenance Tasks: S, L, OC, HT, FF

- <u>S (Servicing Task)</u> Replenishment of consumable materials depleted during normal operations
- <u>L (Lubrication Task)</u> Replacement of a lubricant based on manufacturer's predicted or measured life of the lubricant
- OC (On Condition Task) Periodic or continuous inspection designed to detect a potential failure condition prior to functional failure
- <u>HT (Hard Time Task)</u> Scheduled removal of an item or a restorative action at some specified age limit to prevent its functional failure
- <u>FF (Failure Finding Task)</u> A preventive maintenance task performed at a specified interval to determine whether a hidden functional failure has occurred.

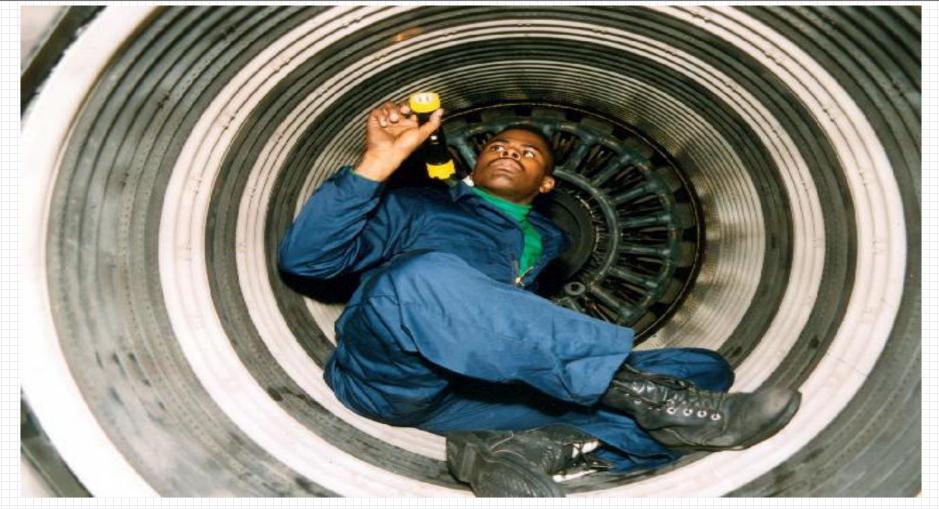
Servicing:

The replenishment of consumable materials that are depleted during normal operations

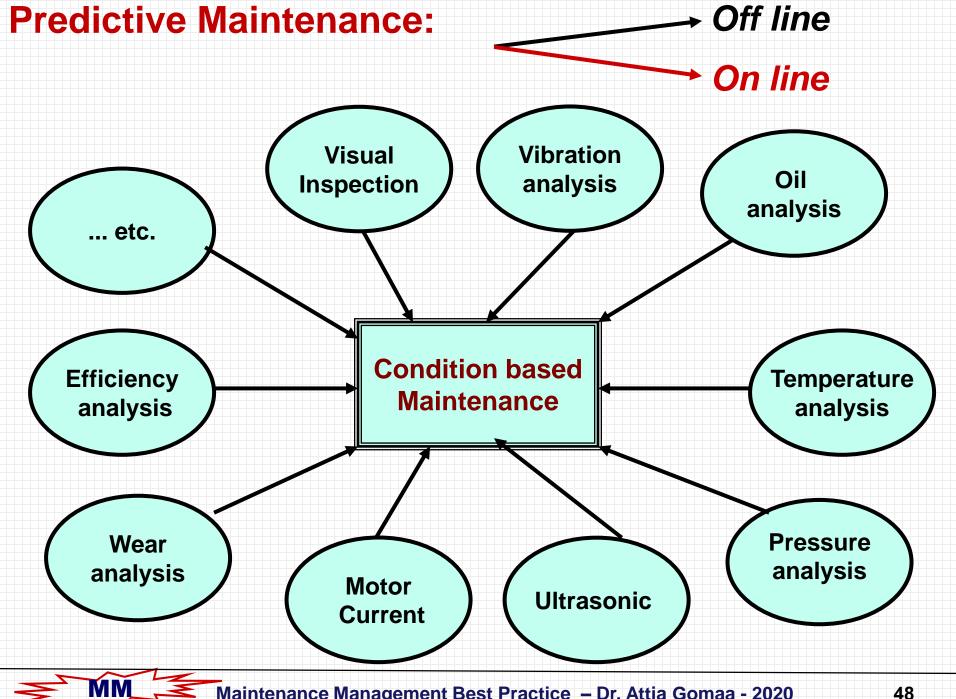

Lubrication:

The scheduled lubrication of a component (usually based on the manufacture's recommendations) where the item's design requires a non-permanent lubricant for proper operation

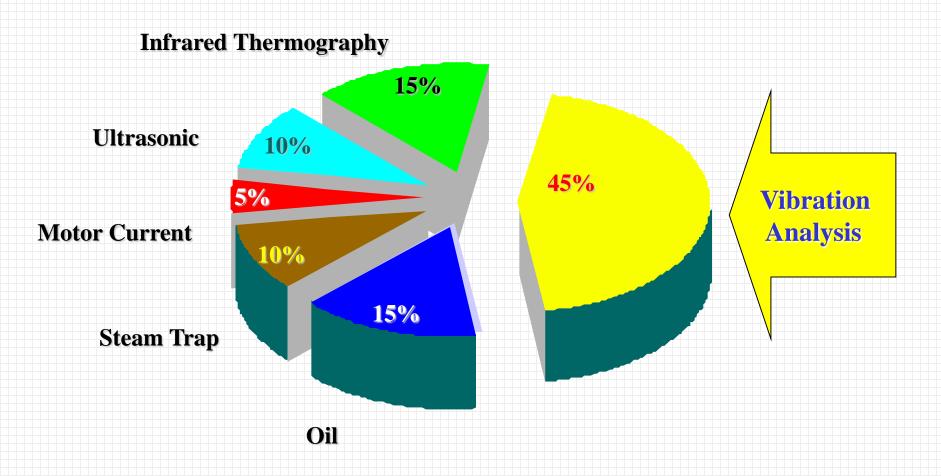
On-Condition


Periodic or continuous inspection designed to detect a potential failure condition prior to functional failure

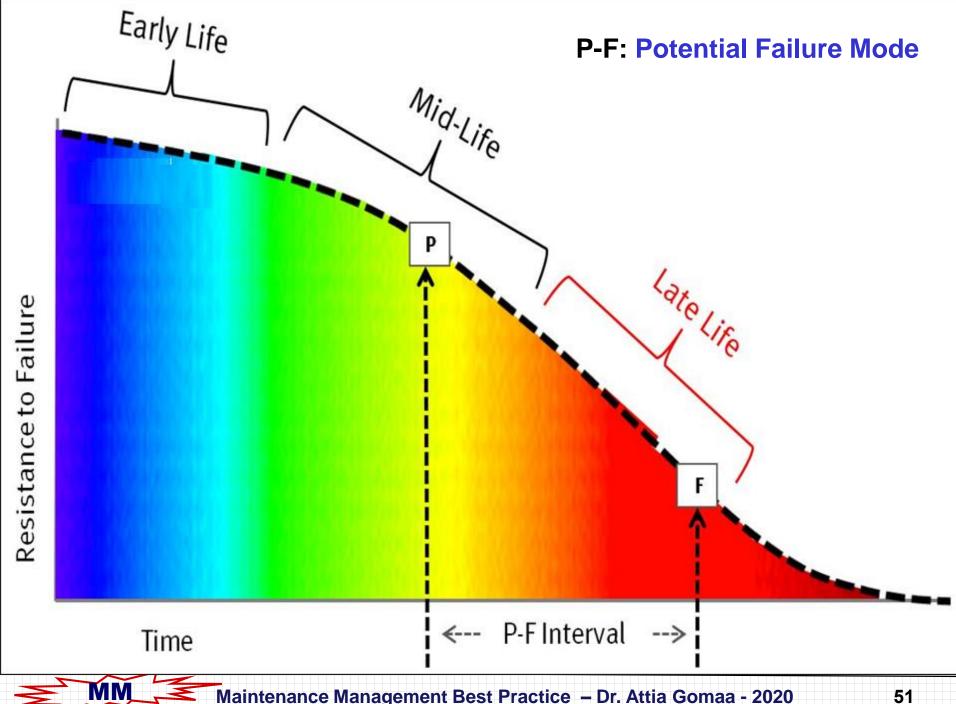
Hard Time Task:



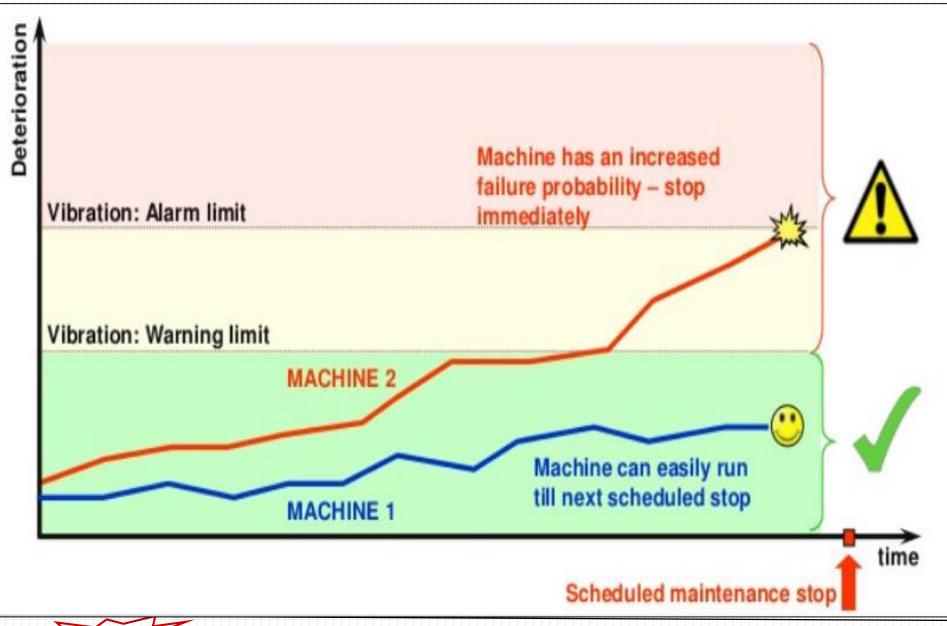
Scheduled removal of an item or a restorative action at some specified age limit to prevent its functional failure

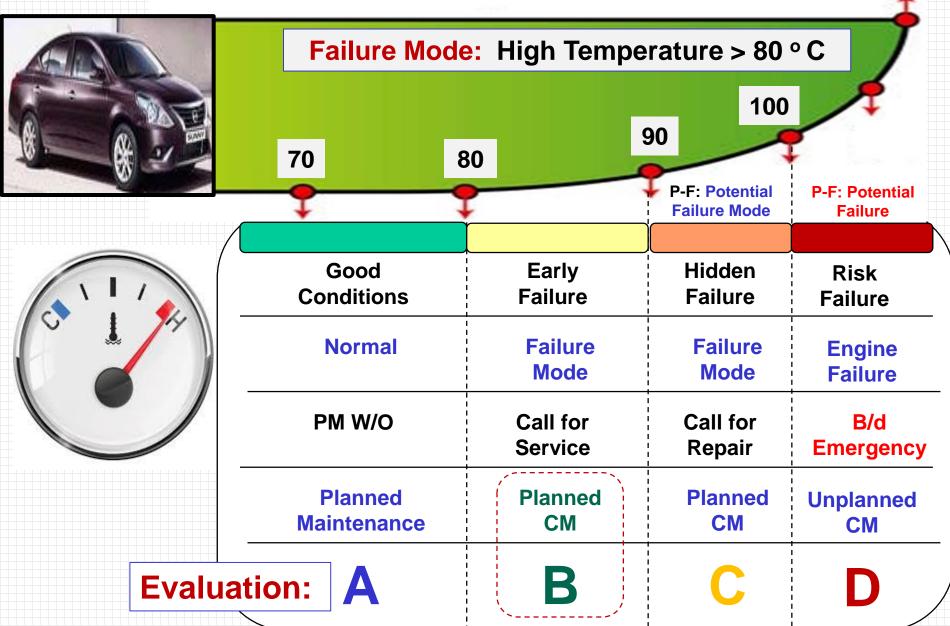

Failure Finding (special tools):

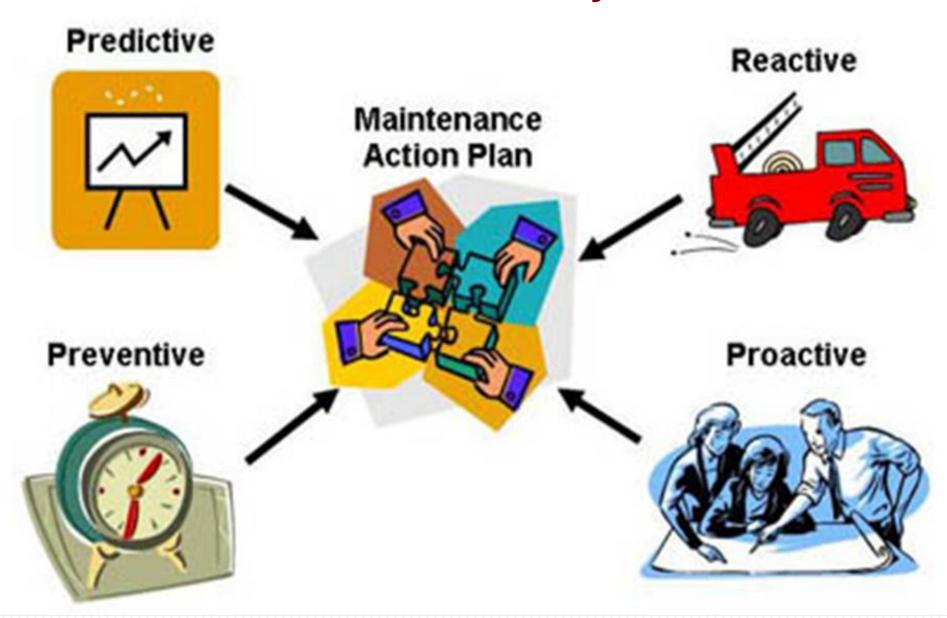
A preventive maintenance task performed at a specified interval to determine whether a hidden functional failure has occurred

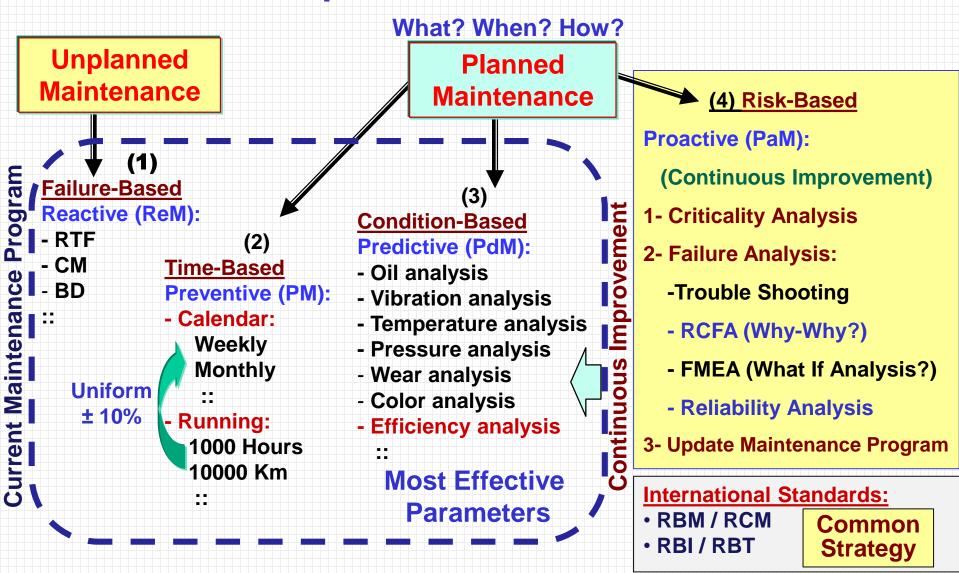

Which Technology offers the best return?

Of all the various maintenance technologies, Vibration Analysis provides the greatest percentage of payback when adopting a predictive maintenance program


Predictive Maintenance




Failure Analysis Concept: (Failure & Failure Mode)


Failure Analysis Concept: (Failure & Failure Mode)

Maintenance Policy?

Road Map for Maintenance Policies

Long Term Continuous Improvement (Improve RAMS at Low Cost → KPIs)

ISO 14224:2016

"Collection and exchange of reliability and maintenance data for equipment"

- Scope
 - Standardized data format to facilitate exchange reliability and maintenance (RM) data between operator and owner, etc.
 - Provide key definitions
 - Basis for communicating equipment experience «reliability esperanto»
 - Normative terminology e.g.
 - Failure modes (per equipment class)
 - Failure mechanism and failure cause (generic across all equipment classes)
 - Key Performance Indicators (KPI)
 - Applicable for all type of oil & gas facilities and operation, and all phases.
 - Guidance for analysis of reliability and maintenance data

INTERNATIONAL STANDARD

ISO 14224

> Third edition 2016-09-15

Corrected version 2016-10-01

Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability and maintenance data for equipment

Important standard also with respect to digitalization and LCI.

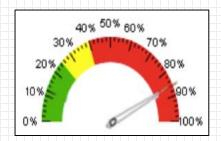
CEN version approved July 2016: EN ISO 14224
(Per April 2018: Adopted by 37 CEN-member countries)
e.g. adopted in Norway as Norwegian standard 1 Jan 2017: NS-EN ISO 14224:2016
Edition 2 was adopted in USA as ANSI/API Std 689 in July 2007. Ed. 3 pending?

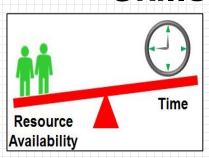
Maintenance Leaders / Managers

Leadership

is the ability to move teamwork towards certain objectives

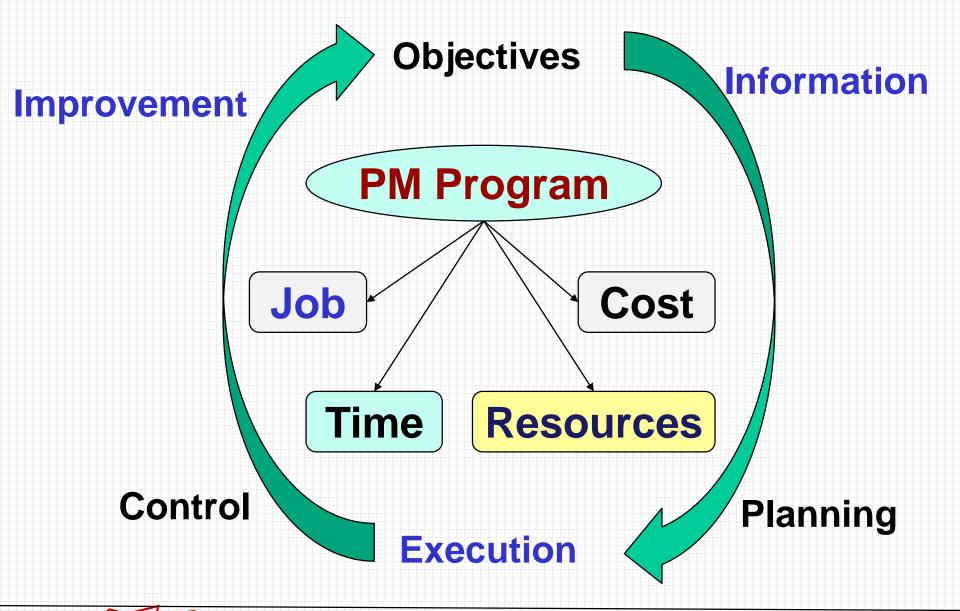
القيادة هي القدرة نحو تحريك وتحفيز فريق العمل باتجاه أهداف محددة

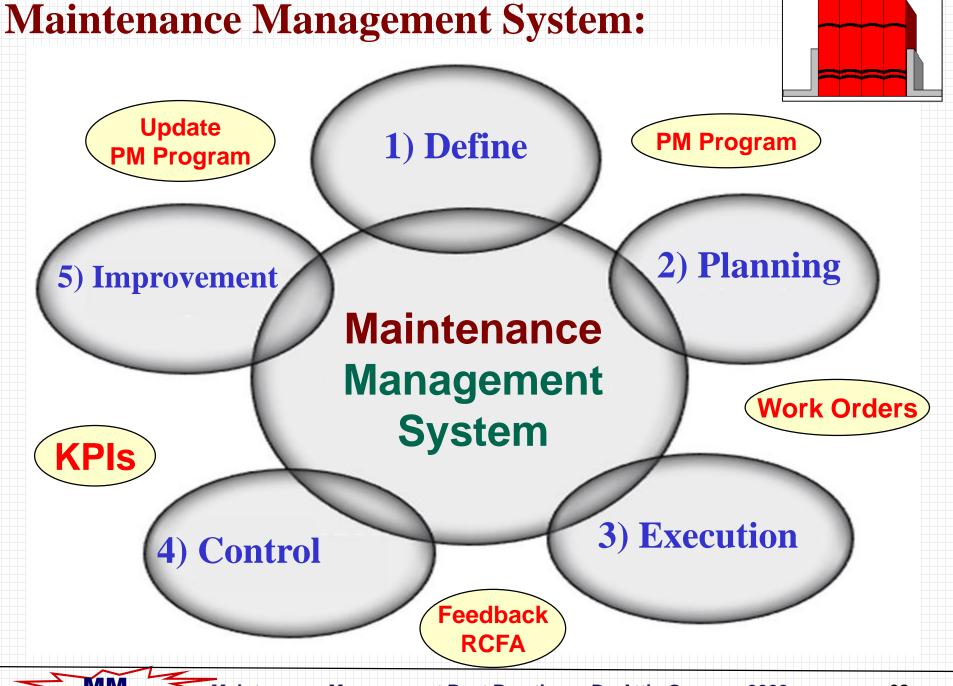


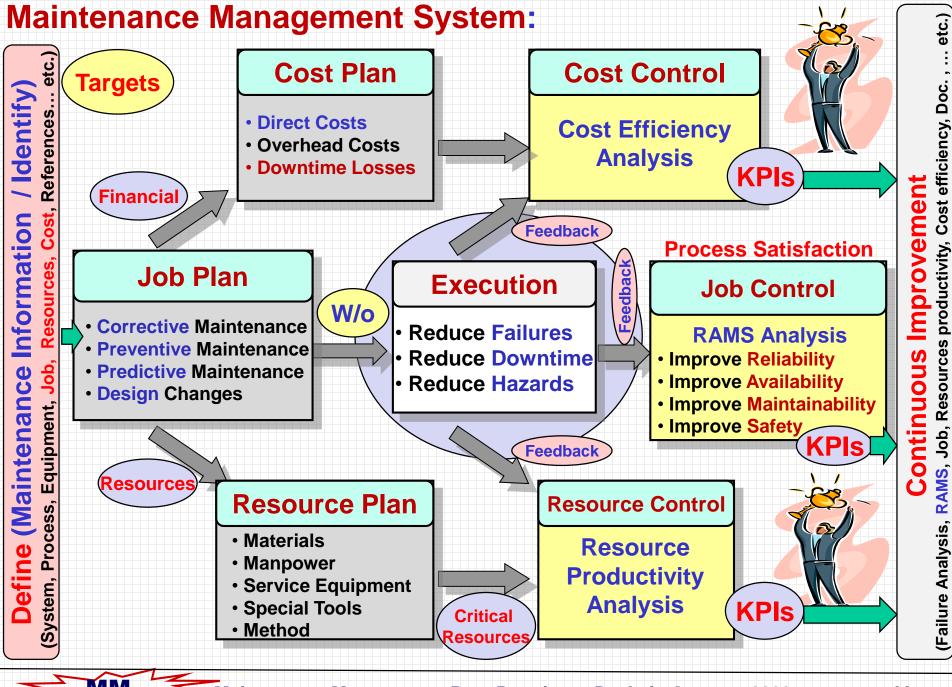

Maintenance Leader Skills

3 Skills

Management Skills



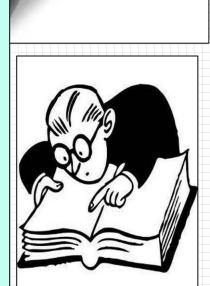


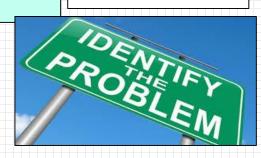


Maintenance Management

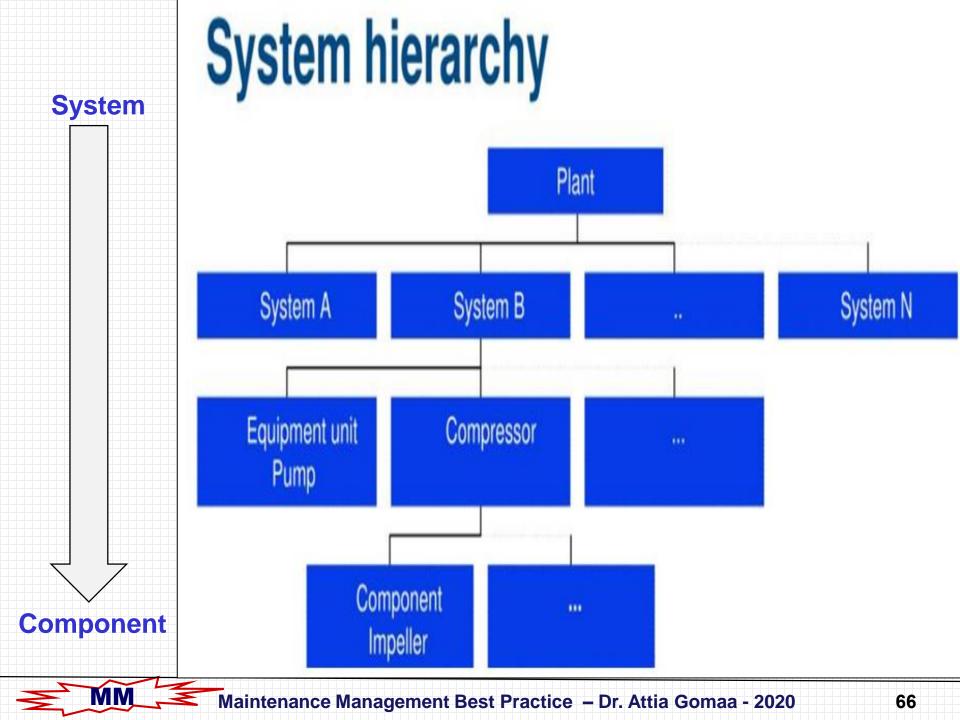
Maintenance Management Cycle

Maintenance Planning

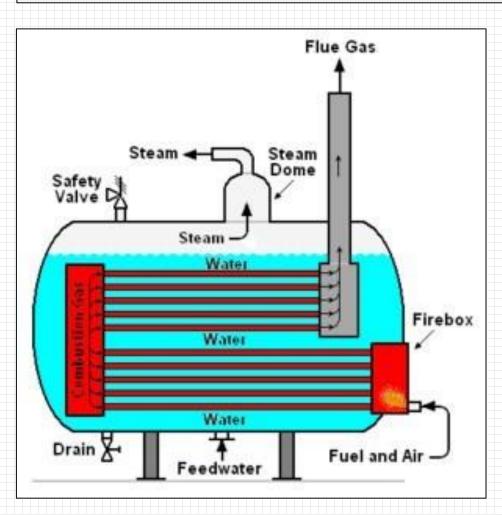

1) Define (Identify)


(Maintenance Information)

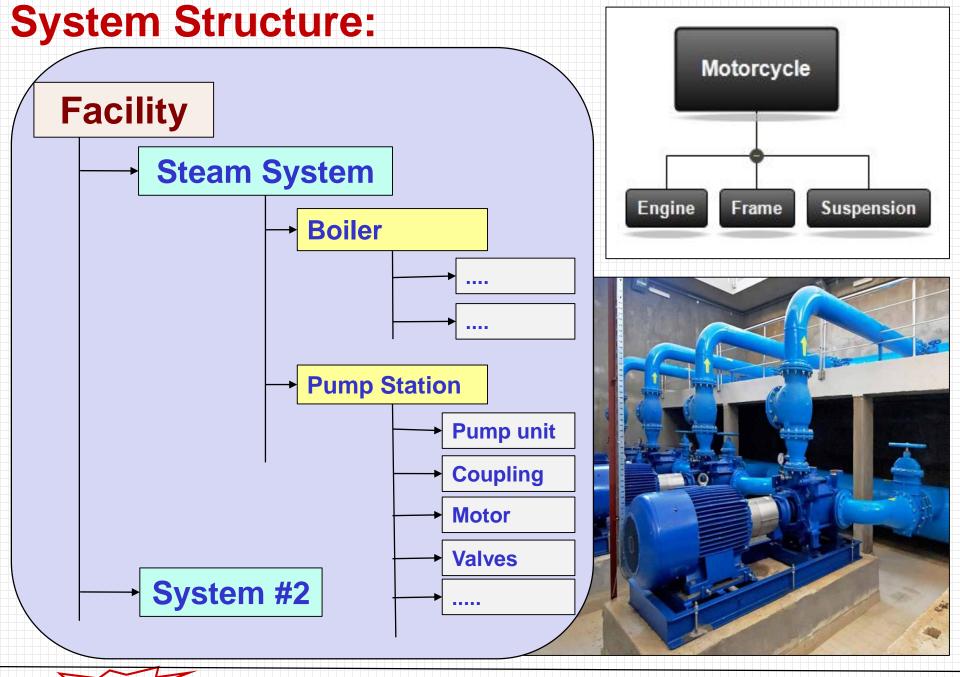
- 1. System Structure (Tree)
- 2. Equipment List
- 3. Criticality Analysis
- 4. Equipment Data Sheet
- 5. PM Program (Job, Time, Resources, Cost)
- 6. Maintenance Manuals
- 7. References, ... etc.



Bad Data = Bad Outputs

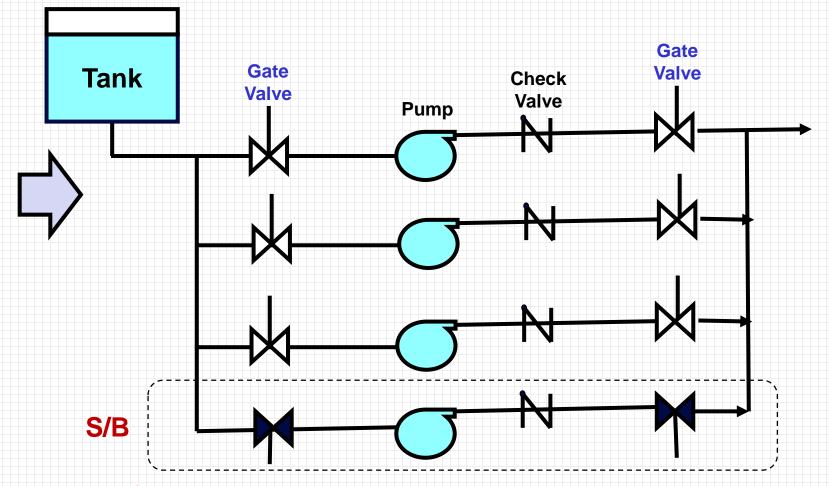

System Selection; for example

(2014)


• System: Steam Boilers (3 units)

Criticality: High

• Equipment: Feed Water Pumps (4 units 3 Running & 1 Standby)



Equipment: Feed Water Pumps (4 units 3 Running & 1 Standby)

Process Flow Diagram (PFD) "Layout":

Main Items

Equipment List (Tree):

#	Equipment Type	Short Description	Main Function Parameters	Number of Equipments	TAG No.
1	Feed Water Pump	Centrifugal	Flow rate: 44 m3/hr Discharge Pressure: 10 kg/cm2	4	410-P-01 to 410-P-04
2	Gate Valves				
3	Check Valves				
	•••				

TAG No. Structure; For Example:

Location/Area - Type/Model - Serial Number

XXX - XX - XXX

Equipment Criticality List (SCE, PCE, NCE)

Safety Critical Elements (SCE)		Process Critical Elements (PSE)		Non Critical Elements (NCE)	
Equipment	Tag No.	Equipment	Tag No.	Equipment	Tag No.
Feed Water Pumps	410-P-01/04				

Equipment Record (Data Sheet)

Reference Data:

• Area / Location: 410

• System: Steam Boilers

• TAG No.: 410-P-001

• Criticality: High

• Equipment Type: Pump

• Number of Units: 4 units

• Working Conditions: 24 hours/day

(3 Running & 1 Standby) (A/B/C/D)

Maintenance Resp.: Outsource (XX)

Details: (Main 10 parameters required to identify the equipment)

Pump Type: Centrifugal
 Geometric: Horizontal
 Fluid: Water

Number of Stages: Single Stage - Suction Pressure: ATM

• Flow Rate: 44 m3/hour Discharge Pressure: 10 Kg/cm2

• Design Speed: 3000 RPM Power: 22 Kilowatt Available NPSH: 5.66 m

Functional Block Diagram:

Inputs:

Fluid: Water

Speed: 3000 RPM

Power: 22 Kilowatt

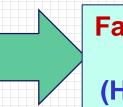
Available NPSH: 5.66 m

Control system:

- -
- _

xxx Pump Station

Environment:


_

Outputs:

Fluid: Water

Flow rate (44 m3/hour)

Pressure (10 Kg/cm²)

Failure Mode List (High / Low)

PM Program / Unit (Maintenance Manual & Experience); for example

PM Program / Unit (Maintenance Manual & Experience); for example

	PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Job	Check (Replace if required)	Cleaning Check operation Check seals Check noise	Cleaning Check operation Check seals Check noise Check valves	Cleaning Check operation Check seals Check noise Check valves Check bearing	Cleaning Check operation Check noise Check valves Check bearing Check coupling Check impeller Check casing Check strainers Check motor	Cleaning Check operation Check noise Check valves Check coupling Check impeller Check casing Check shaft Check strainers Check motor
-	Replace	-	-	-	Replace seal	Replace seal Replace bearing
	Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Time	Downtime (hours/order)	-	-	-	8	12
Ti	Maintenance Time (hours/order)	1	2	3	10	15
es	Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.
Resources	Effort (Man-Hour)	2	4	6	30	60
SO 1	Tools / Special					
R	Service Eq.					
Cost	Cost (outsource) (LE/order/unit)	200	500	1,000	4,000	10,000

Annual PM Program (Shutdown Work Order)

Routine Maintenance (Check List):

Note:

60% of failures due to Bad Routine Maintenance

Equipment: XXX Centrifugal Pump

Weekly PM:

- 1- Visual inspection
 - Detect any abnormal operations:
 - Check Bearing Oil, add oil (ISO VG-68) if required
 - Check Bearing Temperature (from 70 to 90 °C)
 - Check Flow rate (44 m3/hour)
 - Check Pressure (10 kg/cm²)
 - Check Leakage from mechanical seal or pump
 - Check Noise

Specific \

2- House keeping

Bearing Temperature							
Limit	Status						
70-90 °C	Good condition						
90-100	Call for service						
100-110	Call for repair						
>110	Breakdown						

Maintenance Program Matrix – Item Level

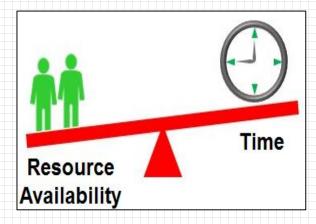
System: Steam System

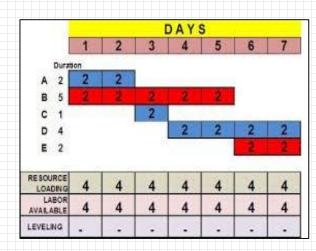
Equipment: Feed Water Pumps

Criticality: High

Dollow	#	Maintainable Items				PM L	evels	
Policy	#	Maintainable Items	W	M	Q	6M	A	Disciplines
РМ	1	Mechanical Seals	С	С	С	R	R	M
PIVI	2	Bearing			С	С	R	M
	3	Shaft Sleeve					С	M
	4	Shaft					С	M
	5	Coupling				С	С	M
	6	Impeller				С	С	M
	7	Casing				С	С	M
RTF	8	Strainers				С	С	M
	9	Electric Motor				С	С	E
	10	Valves		С	С	С	С	I.
	11	Oil & Grease		С	С	С	R	M
	12	Instruments			С	С	С	I

C: Check R: Replace M: Mechanical E: Electrical

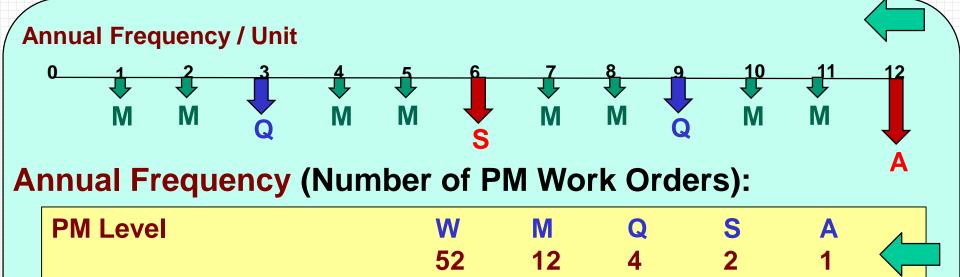

lectrical I: Instrumentations



2) Planning

- 1. Estimation (Targets)
- 2. Work Orders
- 3. Job Plan
- 4. Resources Plan
- 5. Cost Plan
- 6. Shutdown Planning
- 7. Standard Templates, ... etc.

System: A Water Pumping Station (4 units 3 Running & 1 Standby)


PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Maintenance Cost LE/order/unit	200	500	1,000	4,000	10,000

Based on this information; discuss the annual cost estimation

Annual Maintenance Cost

40

Cost / Order/unit 200 500 1000 4000 10000

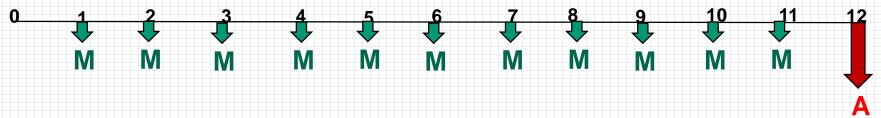
Annual Cost Per Unit = 28,000 LE/unit

Annual Maintenance Cost = 28,000*4 = 112,000 LE

Annual Frequency / Unit

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:


PM Level	Weekly	Monthly	Annual
Maintenance Cost (out source) LE/order/unit	200	500	10,000

Based on this information; discuss the annual cost estimation

Annual Frequency / Unit

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	Α	
	52	12	1	
Annual Frequency / Unit	40	11	1	

Annual Maintenance Cost

÷					
	Cost / Order/unit	200	500	10000	
-					

Annual Cost Per Unit = 23,500 LE/unit

Annual Maintenance Cost = 23,500*4 = 94,000 LE

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Annual	2 Years	3 Years
Maintenance Cost LE/order/unit	200	500	10,000	20,000	50,000
Maintenance Type	R	R	S/D	S/D	S/D

Based on this information; discuss the annual cost estimation

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Annual	2 Years	3 Years		
Maintenance Cost LE/order/unit	200	500	10,000	20,000	50,000		
Maintenance Type	R	R	S/D	S/D	S/D		
Frequency over 3 years	40*3=120	11*3= 33	1	1	1		
Cost over 2 veers	24,000	16,500	10,000	20,000	50,000		
Cost over 3 years	120,500 LE/unit * 4 units = 482,000 LE						
Annual Cost		482,000 / 3 years = 160,667 LE/year (Average → Annual Schedule ??)					

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Maintenance Time (hours/order)	1	2	3	10	15
Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.

Annual Working Hours = 2000 hours/man

Based on this information; discuss the Labor effort.

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual	
Maintenance Type	Running	Running	Running	Shutdown	Shutdown	
Maintenance Time (hours/order)	1	2	3	10	15	
Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.	
PM Level	Weekly	Monthly	Quarter	Semi- Annual	Annual	
Annual Frequency	40	8	2	1	1	
	2*1*40= 80	2*2*8= 32	2*3*2=12	3*10*1= 30	4*15*1 = 60	
Total Effort	214 1		4 units = 856 man Labor Productivity		3 < 4	
	1*1*40= 40	1*2*8= 16	1*3*2=6	2*10*1= 20	3*15*1= 45	
Mech. Effort	127 1	man-hours / unit * 4 units = 508 man-hours/2000 = 0.25 < 3 = 3 Workers > Labor Productivity = 0.25/3= 8.5%				
	1*1*40= 40	1*2*8= 16	1*3*2=6	1*10*1=10	1*15*1= 15	
Elec. Effort	87 n		4 units = 348 man Labor Productivity		7 < 1	

System: A Water Pumping Station (60 units 45 Running & 15 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Maintenance Time (hours/order)	1	2	3	10	15
Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.

Annual Working Hours = 2000 hours/man

Based on this information; discuss the Labor effort.

System: A Water Pumping Station (60 units 45 Running & 15 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Maintenance Time (hours/order)	1	2	3	10	15
Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.

Annual Working Hours = 2000 hours/man

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Annual Frequency	40	8	2	1	1
Total Effort					
Total Ellort		8 Workers (La	bor Productivity	$76.2\% \le 80\%$	
Mech. Effort					
Wicell. Effort		5 Workers (La	bor Productivity	$76.6\% \le 80\%$	
Elec. Effort					
Elec. Ellort		3 Workers (La	bor Productivity	$87.0\% \le 80\%$)	

Maintenance Labor Force:

(PM + 20% CM)

System / Area	Craft	P	M Week	ly Load (man-ho	ur)
System / Area	Crait	Week #1	Week #2	Week #3	Week #4	•••
	Mech.	80	70	60	55	
Area #1	Elec.	45	50	30	40	
	Inst.	15	20	10	30	
	Mech.	10	90	120	70	
Area #2	Elec.	55	35	70	40	
	Inst.	30	30	30	25	
	Mech.	70	85	70	100	
Area #3	Elec.	45	50	50	50	
	Inst.	25	20	20	15	
•••	•••	•••	•••	•••	•••	•••

Standard Working Hours (Policy) = 200 man-hour/month

Based on this information, calculate the maintenance labor force.

Maintenance Labor Force:

(PM + 20% CM)

System / Area	Craft	PN	M Weekly	Load (mai	n . hour)	
System / Area		#1	#2	#3	#4	•••
	Mech.	80	70	60	55	
Area #1	Elec.	45	50	30	40	
	Inst.	15	20	10	30	
	Mech.	10	90	120	70	
Area #2	Elec.	55	35	70	40	
	Inst.	30	30	30	25	
	Mech.	70	85	70	100	
Area #3	Elec.	45	50	50	50	
	Inst.	25	20	20	15	
•••	• • •	•••	•••	•••	•••	•••
	Mech.	160	245	250	225	
Weekly Totals	Elec.	145	135	150	130	
	Inst.	70	70	60	70	
	Mech.	880 man-hr / (20	0 hr/month	a) = 4.4 *1.2	= 6 worker	rs (3)
Monthly Totals	Elec.	560 man-hr / (20	0 hr/month	(1) = 2.8 *1.2	= 4 worker	rs (2)
	Inst.	270 man-hr / (20	00 hr/montl	h) = 1.4 *1.2	2 = 2 worke	ers (1)

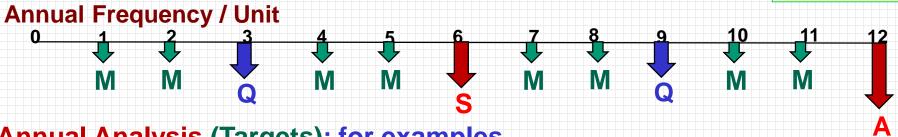
System: A Water Pumping Station (4 units 3 Running & 1 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Quarter	Semi-Annual	Annual
Check	Check	Check	Check	Check	Check
Replace	-	-	-	Change seal	Change seal Change bearing
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Downtime (hours/order)	-	-	-	8	12
Maintenance Time (hours/order)	1	2	3	10	15
Manpower	Mech.+Elec.	Mech.+Elec.	Mech.+Elec.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.
Effort (Man.Hour)	2	4	6	30	60
Cost (LE/order/unit)	200	500	1,000	4,000	10,000

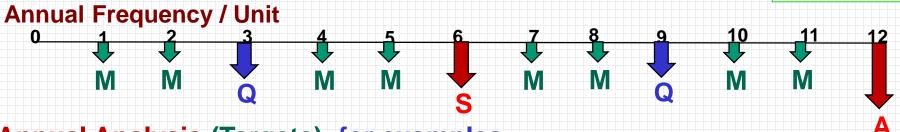
Labor Availability: 4 workers (3 Mech. + 1 Elec.) & 2000 hours/y

Based on this information; discuss the annual estimation for the following


(Cost, PM downtime, Maintenance time, Planned Availability, Labor, Labor Productivity).

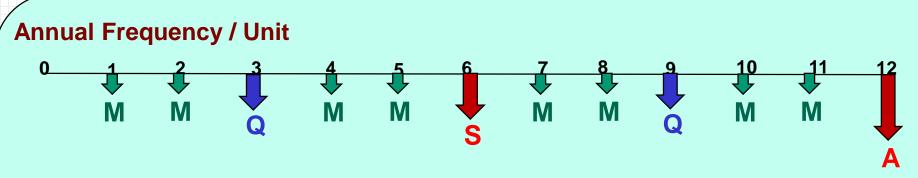
PM Information Importance:

Annual Estimation


Annual Analysis (Targets); for examples

Leve	əl	Indicator	Base	Unit	Target
Тор	st	Annual Cost	PM	LE/year	
1	S				
a)		Equipment Down time	PM	Hours / Equip.	
Middle	Time	Average Operating Time	PM	Hours/year	
Aio	∣≓	Equipment Availability	PM	%	
		Maintenance time	PM	hours	
=	(0	Workers	PM+20%CM	Man-hours	
tions	urces	Labor Productivity	4 workers 2000 hours/y	%	
Operational	Resources	Spare Parts	PM+20%CM	Bearing Kit Mechanical Seal	

PM Information Importance:



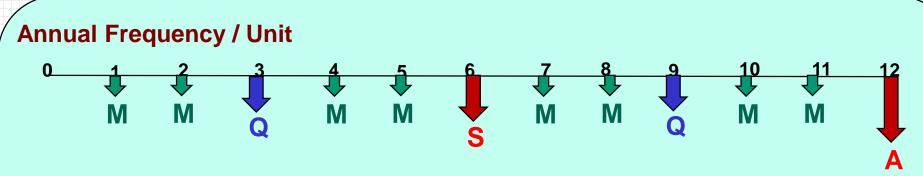
Annual Estimation

Annual Analysis (Targets); for examples

Leve	el	Indicator	Base	Unit	Target
Тор	st	Annual Cost	PM LE/year		112,000
ĭ	S				
4)		Equipment Down time	PM	Hours / Equip.	20
 	Time	Average Operating Time	PM	Hours/year	6570
Middle	∣≓	Equipment Availability	PM	%	99.7 %
		Maintenance time	PM	hours	348
_	10	Workers	PM+20%CM	Man-hours	1028
tional	urces	Workers Labor Productivity	PM+20%CM 4 workers 2000 hours/y	Man-hours %	1028 13 %
Operational	Resources		4 workers		

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	Q	S	A	
Annual Frequency / Unit	40	8	2	1	1	


Annual Maintenance Cost

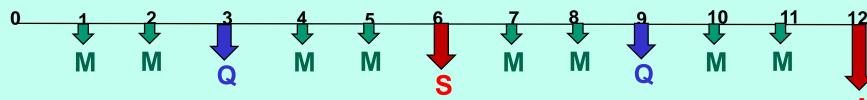
Cost / Order/unit	200	500	1000	4000	10000	

Annual Cost Per Unit = 28,000 LE/unit

Annual Maintenance Cost = 28,000*4 = 112,000 LE

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	Q	S	A	
Annual Frequency / Unit	40	8	2	1	1	


Equipment Availability = (Total Time – Downtime) / Total Time

Downtime / Order/unit - - 8 12

Average Running Time = 8760*3/4 = 6570

Equipment Availability = (6570 - (8+12)) / 6570 = 99.7 %

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	Q	S	A	
Annual Frequency / Unit	40	8	2	1	1	

Maintenance Labor Effort = PM + 20% "CM"

Man . hours/Order/unit 2 4 6 30 60

Maintenance Labor Effort = 214 *1.2 = 256.8 man . hours / unit

Total Maintenance Labor Effort = 1028 man . hours

Labor Productivity = Labor Effort / Labor Availability = 1028 / (4*2000) = 13 %

System: A Water Pumping Station (3 units 2 Running & 1 Standby)

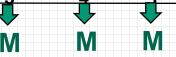
PM Program / Unit:

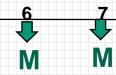
PM Level	Weekly	Monthly	Annual
Check	Check	Check	Check
Replace	-	-	Change pump seal Change pump bearing
Maintenance Type	Running	Running	Shutdown
Downtime (hours/order)	-	-	12
Maintenance Time (hours/order)	1	2	15
Manpower	Mech.+Elec.	Mech.+Elec.	3 Mech. + 1 Elec.
Effort (Man.Hour)	2	4	60
Cost (LE/order/unit)	200	500	10,000

Labor Availability: 4 workers & 2000 hours/year

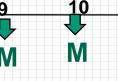
Based on this information; discuss the annual estimation for the following

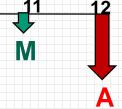
(Cost, PM downtime, Maintenance time, Planned Availability, Labor, Labor Productivity).


PM Information Importance:



Annual Estimation





Annual Analysis (Targets); for examples

Leve		Indicator	Base	Unit	Target
Top		Annual Cost	PM	LE/year	70,500
Tc	0)				
3		Equipment Down time	PM	Hours / Equip.	12
alpi	Time	Average Operating Time	PM	Hours/year	5,840
Mio	Average Operating Time PM Ho Equipment Availability PM		%	99.86%	
_		Maintenance time	PM	hours	231
al	9	Workers Effort	PM+20%CM	Man-hours	662
ıtiona	Operational Resources	Labor Productivity	4 workers 2000 hours/y	%	8.2%
pera	Resou	Spare Parts	PM+20%CM	Bearing Kit Mechanical Seal	4
O					

System: A Water Pumping Station (8 units 6 Running & 2 Standby)

PM Program / Unit:

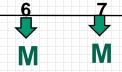
PM Level	Weekly	Monthly	Annual
Check	Check	Check	Check
Replace	-	-	Change seal Change bearing
Maintenance Type	Running	Running	Shutdown
Downtime (hours/order)	-	-	12
Maintenance Time (hours/order)	1	2	15
Manpower	Mech.+Elec.	Mech.+Elec.	3 Mech. + 1 Elec.
Effort (Man.Hour)	2	4	60
Cost (LE/order/unit)	200	500	10,000

Labor Availability: 4 workers & 2000 hours/y

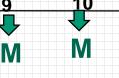
Based on this information; discuss the annual estimation for the following

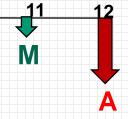
(Cost, PM downtime, Maintenance time, Planned Availability, Labor, Labor Productivity).

PM Information Importance:



Annual Estimation





Annual Analysis (Targets); for examples

Level tso		Indicator	Base	Unit	Target
		Annual Cost	PM	LE/year	188,000
<u> </u>	ပိ				
a)		Equipment Down time	PM	Hours / Equip.	12
Middle	Time	Average Operating Time	PM	Hours/year	6570
Mid	∣≓	Equipment Availability	nent Availability PM		99.9
		Maintenance time	PM	hours	616
<u> </u>	S	Labor Effort	PM+20%CM	Man-hours	1767
ıtion	urces	Labor Productivity	4 workers 2000 hours/y	%	22%
Operationa	Resou	Spare Parts (items)	PM+20%CM	Bearing Kit Mechanical Seal	10 10
O					

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	A	
Annual Frequency 1 Equip.	40	11	1	
Annual Frequency 8 Equip.	320	88	8	

Annual Maintenance Cost

Cost / Order/unit	200	500	10,000

Annual Maintenance Cost = 188,000 LE

Annual Cost Per Unit = 188,000/8 = 23,500 LE/unit

System: A Water Pumping Station (8 units 6 Running & 2 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	5000 RH
Check	Check	Check	Check
Replace	-	-	Change seal Change bearing
Maintenance Type	Running	Running	Shutdown
Downtime (hours/order)	-	-	12
Maintenance Time (hours/order)	1	2	15
Manpower	Mech.+Elec.	Mech.+Elec.	3 Mech. + 1 Elec.
Effort (Man.Hour)	2	4	60
Cost (LE/order/unit)	200	500	10,000

Labor Availability: 4 workers & 2000 hours/y

Based on this information; discuss the annual estimation for the following

(Cost, PM downtime, Maintenance time, Planned Availability, Labor, Labor Productivity).

Annual Running Hours = 8760 hours/year * 6 Running =

52560 Equipment-hours

Annual Frequency for 5000 RH = 52560/5000 = 10.5 = 11 turns

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	5000

Annual Frequency 8 Equip. 320 85 11

Annual Maintenance Cost

Cost / Order/unit	200	500	10,000
			·

Annual Maintenance Cost = 216,500 LE

Annual Cost Per Unit = 216,500/8 = 27,062 LE/unit

System: A Water Pumping Station (8 units 6 Running & 2 Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Annual	2 Years
Check	Check	Check	Check	Check
Replace	-	-	Pump seal Pump bearing	Pump seal Pump bearing Motor bearing
Maintenance Type	Running	Running	Shutdown	Shutdown
Downtime (hours/order)	-	-	12	36
Maintenance Time (hours/order)	1	2	15	48
Manpower	Mech.+Elec.	Mech.+Elec.	3 Mech. + 1 Elec.	3 Mech. + 1 Elec.
Effort (Man.Hour)	2	4	60	144
Cost (LE/order/unit)	200	500	10,000	30,000

Labor Availability: 4 workers & 2000 hours/y

Based on this information; discuss the annual estimation for the following

(Cost, PM downtime, Maintenance time, Planned Availability, Labor, Labor Productivity).

Annual Frequency (Number of PM Work Orders):

PM Level	W	M	A	2 Y
Annual Frequency 1 Equip.	80	22	1	1
Annual Frequency 8 Equip.	640	176	8	8

Annual Maintenance Cost

Cost / Order/unit	200	500	10,000	30,000
-------------------	-----	-----	--------	--------

2 Year Maintenance Cost = 536000 LE

Annual Maintenance Cost = 268000 LE

Annual Cost Per Unit = 268000 /8 = 33500 LE/unit

Information For Maintenance Planning:

The maintenance information for a water pumping station is as follows:

System: A Water Pumping Station

(4 units 3 Running & 1 Standby)

Working Conditions: 24 hours/day

Maintenance: Outsource (Subcontractor)

Job Information:

PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)	
Maintenance Task	Check	Check	Check	Check Change seal	Check Change seal Change bearing	
Maintenance Type	Running	Running	Running	Shutdown	Shutdown	
Cost Rate LE/order/unit	200	500	1,000	4,000	10,000	

Based on this information; discuss the

Annual Maintenance Schedule, Cost Plan & Resource Plan (Material, ... etc.).

Job Information:

PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)		
Maintenance Task	Check	Check	Check	Check Change seal	Check Change seal Change bearing		
Maintenance Type	Running	Running	Running	Shutdown	Shutdown		
Cost Rate LE/order/unit	200	500	1,000	4,000	10,000		

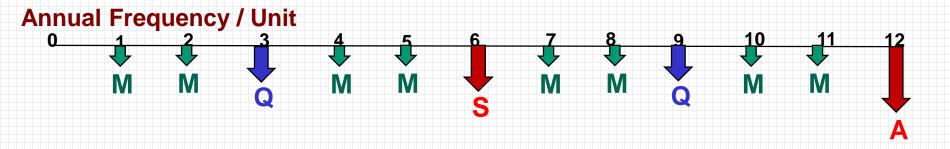
Maintenance Schedule:

Area: xxxx

ID	Month #											
	1	2	3	4	5	6	7	8	9	10	11	12
P01												
P02												
P03												
P04												
W/O												
Cost												

Job Information:

1					
PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Maintenance Task	Check	Check	Check	Check Change seal	Check Change seal Change bearing
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Cost Rate LE/order/unit	200	500	1,000	4,000	10,000


ID						Mor	nth #					
ID	1	2	3	4	5	6	7	8	9	10	11	12
P01	М	M	Q	М	M	S	M	M	Q	М	M	Α
P02	M	M	Q	М	M	S	M	M	Q	M	M	A
P03	M	M	Q	М	M	S	M	M	Q	М	M	A
P04	M	M	Q	М	M	S	M	M	Q	М	M	A
W/O	4M 12W	4M 12W	4Q 12W	4M 12W	4M 12W	4S 12W	4M 12W	4M 12W	4Q 12W	4M 12W	4M 12W	4A 12W
Cost	4,400	4,400	6,400	4,400	4,400	18,40 0	4,400	4,400	6,400	4,400	4,400	42,400

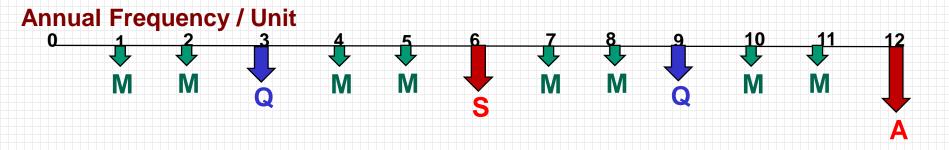
Job Information:

PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Maintenance Task	Check	Check	Check	Check Change seal	Check Change seal Change bearing
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Cost Rate LE/order/unit	200	500	1,000	4,000	10,000

ın						Mor	nth#					
ID	1	2	3	4	5	6	7	8	9	10	11	12
P01												Α
P02									Α			
P03						Α						
P04			Α									
W/O												
Cost												

Annual Maintenance Schedule

Plant: Water Station


Equipment Type: Pumps

Period: 2018

щ	Equipment	ın	Last Major					Мо	nths	s - 20	018				
#	Equipment	ID	Maintenance	1	2	3	4	5	6	7	8	9	10	11	12
1	Pump #1	P1	12/2017												Α
2	Pump #2	P2	10/2017									x	Α		-
3	Pump #3	P3	8/2017						x		Α				-
4	Pump #4	P4	5/2017			x		Α							
				Milestones											
													est	on	es

M: Monthly Q: Quarter S:Semi-Annually A: Annual

Annual Maintenance Schedule

Plant: Water Station

Equipment Type: Pumps


Period: 2018

ш	Equipment	ID	Last Major					Мо	nths	s - 20	018				
#	Equipment	ID	Maintenance	1	2	3	4	5	6	7	8	9	10	11	12
1	Pump #1	P1	12/2017												Α
2	Pump #2	P2	10/2017									Α			-
3	Pump #3	P3	8/2017						Α						
4	Pump #4	P4	5/2017			Α									
				Milestones											
													est	one	2 5

M: Monthly Q: Quarter S:Semi-Annually A: Annual

Annual Maintenance Schedule (Maintenance Matrix)

(52 Weeks or 12 Months)

Plant: Water Station

Equipment Type: Pumps

Period: 2018

<u>"</u>	Cauinmont	ın	Dof					Мо	nths	s - 20)18				
#	Equipment	ID	Ref.	1	2	3	4	5	6	7	8	9	10	11	12
1	Pump #1	P1		М	М	Q	М	М	S	М	М	Q	М	М	Α
2	Pump #2	P2		Μ	М	S	М	Μ	Q	М	М	A	М	М	Q
3	Pump #3	P3		М	М	Q	M	М	Α	М	М	Q	М	М	S
4	Pump #4	P4		М	М	Α	М	М	Q	М	М	S	М	М	Q
		Standby #	P1	P2	P 3	P4	P1	P2	P 3	P4	P1	P2	P3	P4	

M: Monthly Q: Quarter S:Semi-Annually A: Annual

Master Maintenance Schedule (3 Areas / 12 Pump Units)

Area	Equipment	D	Ref.					Мо	nths	s - 20)18				
Ar	Equipment	שו	Kei.	1	2	3	4	5	6	7	8	9	10	11	12
	Pump #1	P1													Α
#1	Pump #2	P2										A			
#1	Pump #3	P3							A						
	Pump #4	P4				Α									
	Pump #5	P5												A	
#2	Pump #6	P6									A				
#2	Pump #7	P7						A							
	Pump #8	P8			A										
	Pump #9	P9											A		
#3	Pump #10	P10								A					
#3	Pump #11	P11					Α								
	Pump #12	P12		A											

M: Monthly Q: Quarter S:Semi-Annually A: Annual

Meeting → Must be Accepted (Operation & Maintenance)

Master Maintenance Schedule (3 Areas / 12 Pump Units)

Area	Fauinmont	ın	Def					Мо	nths	s - 20)18					
Ā	Equipment	ID	Ref.	1	2	3	4	5	6	7	8	9	10	11	12	
	Pump #1	P1		М	М	Q	М	М	S	М	М	Q	М	М	A	
#1	Pump #2	P2		М	М	S	М	М	Q	М	М	A	М	M	Q	
#1	Pump #3	P3		М	М	Q	Μ	М	A	Μ	М	Q	М	Μ	S	
	Pump #4	P4		М	М	A	Μ	М	Q	Μ	М	S	М	Μ	Q	
	Pump #5	P5		М	Q	М	Μ	S	М	Μ	Q	М	М	A	М	
#2	Pump #6	P6		М	S	М	Μ	Q	М	Μ	A	М	М	Q	М	
#2	Pump #7	P7		М	Q	М	Μ	A	М	Μ	Q	М	М	S	М	
	Pump #8	P8		М	A	М	Μ	Q	М	Μ	S	М	М	Q	М	
	Pump #9	P9		Q	М	М	S	М	М	Q	М	М	A	М	М	
#3	Pump #10	P10		S	М	М	Q	М	М	A	М	М	Q	М	М	
#3	Pump #11	P11		Q	М	М	A	М	М	Q	М	М	S	М	М	
	Pump #12	P12		Α	М	М	Q	М	М	S	М	М	Q	М	М	

M: Monthly Q: Quarter S:Semi-Annually A: Annual

Annual Cost Plan

PM Level	W	M	Q	S	Α	
Annual Frequency / Unit	40	8	2	1	1	
4 Units	160	32	8	4	4	
Cost / Order	200	500	1000	4000	10000	

Annual Maintenance Cost = 112,000 LE

Pla	ant: Water Sta	tion	EC	quipr	nent	Тур	9: P	ump	S		erio	d: 20	J18	
#	Equipment	ID					M	onths	s - 20	18				
#	Equipment	שו	1	2	3	4	5	6	7	8	9	10	11	12
1	Pump #1	P1	М	М	Q	М	М	S	М	М	Q	М	М	Α
2	Pump #2	P2	М	М	S	М	M	Q	М	М	A	М	М	Q
3	Pump #3	P3	М	М	Q	М	М	A	М	М	Q	М	М	S
4	Pump #4	P4	М	М	Α	М	M	Q	М	М	S	М	М	Q
Νι	umber of Weekly	PM												
			4.5	4.5	19	4.5	4.5	19	4.5	4.5	19	4.5	4.5	19
	Maintenance Co (1000 LE)	ost		28			28			28			28	

112

Annual Cost Plan (2018)

System: Water Pump Systems

щ	Equipment	ın					Moi	nths	s - 2	018					
#	Equipment	ID	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	Water Station	410-P		28			28			28			28		112
2	Water Station	510-P		28			28			28			28		112
3	Water Station	610-P		28			28			28			28		112
	Total Cost (10	00 LE)		84			84			84			84		336

Annual Material Plan (PM + 20% CM)

System: A Water Pumping Station (4 units 3 Running & 1 Standby)

D.I.	ш	DATE: A STATE OF TAXABLE PARTY.		P	M Le	evels		An	nual M	Iateri a	ıls	
Policy	#	Maintainable Items	W	M	Q	6M	A	/ Unit	PM	CM	Total	
PM	1	Mechanical Seals	С	C	C	R	R	2	8	2	10	
PIVI	2	Bearing Kit			C	С	R	1	4	1	5	
	3	Shaft Sleeve					C			1	1	
	4	Shaft					C			1	1	
	5	Coupling				С	C			1	1	
	6	Impeller				С	C			1	1	
5.75	7	Casing				С	C			1	1	
RTF	8	Strainers				С	С			1	1	
	9	Valves		C	С	С	С			2	2	
	10	Electric Motor				С	C			1	1	
	11								_			
	12								sed o			
C: Check		Check	R: R	epla	се			At least one item (safety stock)				

Annual Material Plan (PM + 20% CM)

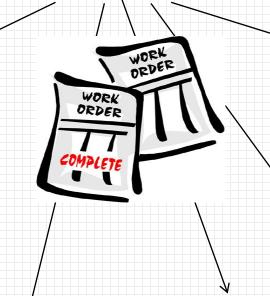
Pla	ant: Water Sta	tion	Equipment Type: Pumps Period: 2018											
				Months - 2018										
#	Equipment	ID	1 2 3 4 5 6 7 8 9 1											12
1	Pump #1	P1	М	М	Q	М	М	S	М	М	Q	М	М	Α
2	Pump #2	P2	М	М	S	М	М	Q	М	М	Α	М	М	Q
3	Pump #3	P3	М	М	Q	М	М	Α	М	М	Q	М	М	S
4	Pump #4	P4	М	М	Α	М	М	Q	М	М	S	М	М	Q
Maintenance Material			-	2 seal 2 seal 1 bear 1 bear										2 seal 1 bear
			Sea	8+2 =	10 ι	unit	s &	Ве	arin	ng Kit 4+1 = 5 units				

W: (Running) M: (Running) Q: (Running) S: seal (1) A: seal (1) & bearing (2)

Maintenance W/o Elements

What

Should be done?


Job Plan

- Scope of work
- Maintenance levels
- Main activities
- Method of Statement
- Safety Plan

When?

Maintenance Schedule

- Duration / Downtime
- Start Date
- Finish Date

Who?

Responsible Leader

Leading & Close-out

How?

Maintenance Resources

- Spare Parts
- Standard Tool Box (?)
- Special Tools
- Manpower Skills
- Method of Statement
- Subcontractor
- Service Equipment

Where?

Location

- Code
- Area
- Location
- •

Maintenance Work Instruction (MWI):

	PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Job	Check	Cleaning Check operation Check seals Check noise	Cleaning Check operation Check seals Check noise Check valves	Cleaning Check operation Check seals Check noise Check valves Check bearing	Cleaning Check operation Check noise Check valves Check bearing Check coupling Check impeller Check casing Check strainers Check motor	Cleaning Check operation Check noise Check valves Check coupling Check impeller Check casing Check shaft Check strainers Check motor
	Replace	-	-	-	Replace seal	Replace seal Replace bearing
	Maintenance Type	Running	Running	Running	Shutdown	Shutdown
	MWI	410-P-W	410-P-M	410-P-Q	410-P-S	410-P-A

Maintenance Work Order Form, for example

Area / Location: 410 TAG No.: 410-P-001 Equipm

Equipment: Centrifugal Pump

Criticality: SCE Job Type: Annual PM

Department: Mechanical

W/O Number: 2018-0027 W/o Priority: High Shutdown: Yes Work Permit: 1234

	Planned Performance	Feedback
þ	Planned Job:	Actual Job:
doL	Refer to MWI	
S	Planned Maintenance Duration: Planned Downtime:	Actual Maintenance Duration: Actual Downtime:
Times	Planned Repair Time:	Actual Repair Time:
_	Planned Start Date: / / 2018 Planned Finish Date: / / 2018	Actual Start Date: / / 2018 Actual Finish Date: / / 2018
	Planned Manpower:	Actual Manpower:
es		
Resources	Planned Materials:	Actual Materials:
Resc		
II.	Planned Tools:	Actual Tools:
Col	mmonte:	

Comments:

Close Out: / / 2018 Reported by:

Maintenance Work Order Form, for example

Area / Location: 410 TAG No.: 410-P-001 Equipment: Centrifugal Pump

Criticality: SCE Job Type: Annual PM Department: Mechanical

W/O Number: 2018-0027 W/o Priority: High Shutdown: Yes Work Permit: 1234

	Planned Perf	ormance				Feedback
)	Planned Job:			Actual Jo	<u>ob:</u>	
Job	Refer to MWI					
3	Planned Maintenance Duration	on:	Actual M Actual D		ance Duration:	
Times	Planned Repair Time:			Actual R		Time:
_	Planned Start Date: / /2 Planned Finish Date: / /	6 Q	luestic	ons?		te: / / 2018 ate: / / 2018
	Planned Manpower:	What?	Job			<u>er:</u>
rces	Diamad Materials	When?	Schedu	ıle		
Resources	Planned Materials:	How?	Resour	ces	V	<u>-5:</u>
R	Planned Tools:	Where?	Locatio	n		
Col	mments:	Who?	Respor	sible		
		Fe	edback?)	1	
CIO	se Out: / / 2018		Nob	ortoa by.		_

Work Order Priority

Low	Medium	High	Very High
P4	Р3	P2	P1
Planned	Normal	Critical	Emergency
Overhaul	(Routine or PM)		
(2 Weeks) (within 14 days)	(Week) (within 7 days)	(Do Today) (within 24 hours)	(Start Now) (within 2 hours)
Low Production losses	Medium Production losses	High Production losses	Safety Critical Elements (SCE)

Refer to ISO 14224

Overdue % SCE

Refer to (ISO 14224):

W/O Types:

CM Corrective

MM Modification

SM Service

PM Preventive

PD Predictive

RP Repair Work

OM Overhaul

Operational Condition:

OVH GENERAL OVERHAUL

RUN RUNNING

STB STANDBY

STP STOPPED

SUP START UP

W/O Priority:

- P1. Emergency (within 2 hours)
- P2. Critical (within 24 hours)
- P3. Normal (routine or PM)
- P4. Planned Overhaul

W/O Status:

- CANCELLED
- CLOSED
- IN PROGRESS
- ON HOLD
- PLANNED
- COMPLETED
- REQUESTED
- Planned will be the summation of all (Preventive + Predictive)
- Unplanned will be summation of all (Corrective)
- Uncompleted will be the summation of all (Planned + In progress + On hold)

FEED BACK WORK ORDER

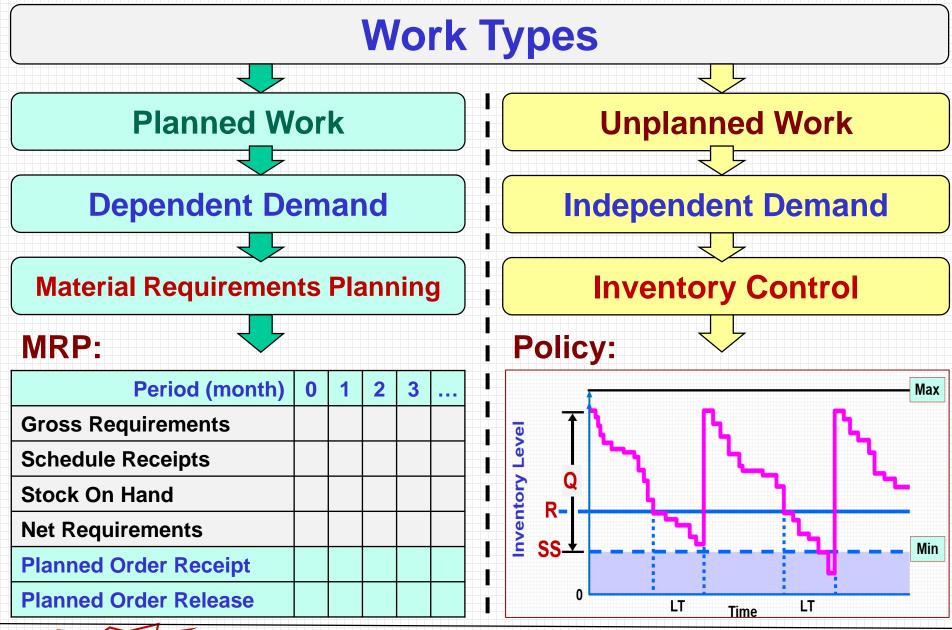
PLANNING DEPARTMENT

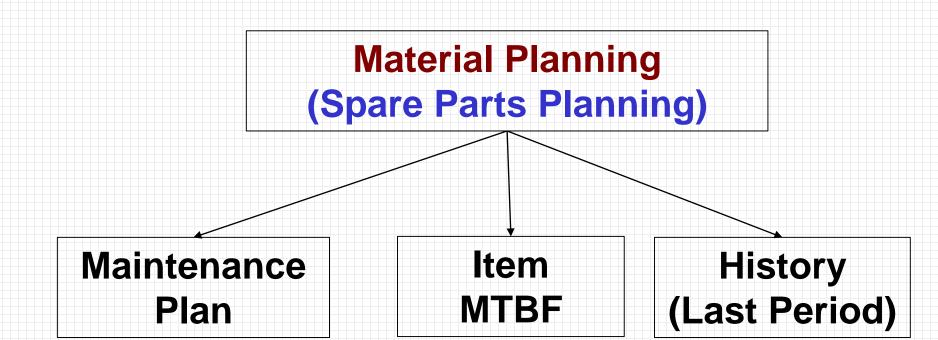
	2019-003682 M	ledium Critical WO	ssue Date : 17/02/2019	Date Due :	17/02/2019
riority: Routine	Job Typ	pe: P Planne	d Preventive Maintenance	PTW No. :	
ermits : CLD	Depart	ment : E Elect	rical		
			Criticality: S Safety C	-1-1	ece.
Shut Down: Y			Criticality: S Safety C	ritical Element (SCE)
System : SSS	/ 510 /	8000 De	scription : Power Generation System		
Equip: E /	BCH-800		scription : Diesel Starting Battery Cha	arger No. 2	
			, , , , , , , , , , , , , , , , , , , ,		
Task: EBCH18	M013 Descript	ion:	1-Month P.M for Battery C	harger	
ctual Duration / Aux :	2.00 /	0.00 Hrs			
Work Scope					
WOLK Scope					
CARRY OUT MONTHL	Y PM ACCORDING TO);			
MWI: EUPS1M013					
VL D					
Work Done					
Work Done As per MIWI					
As per MIWI					
s per MIWI	Desc.	Emp. Code	Emp. Desc	ACT_H	AUX_H
As per MIWI	Desc. Electrical Engineer	Emp. Code	Emp. Desc	ACT_H 0.00	AUX_H 0.00
AS per MIWI MAN POWER Trade Code	DESCRIPTION OF THE PROPERTY OF	Emp. Code	Emp. Desc	3 4 6 5 5 1 TO CO.	A STATE OF THE STATE OF
As per MIWI MAN POWER Trade Code E03	Electrical Engineer	Emp. Code	Emp. Desc Mahmoud Ahmed Elshazly	0.00	0.00
As per MIWI MAN POWER Trade Code E03 E04	Electrical Engineer Electrical Supervisor	S3100 **S914, S414505 2.4	STORES STORES	0.00	0.00
AS per MIWI MAN POWER Trade Code E03 E04 E05	Electrical Engineer Electrical Supervisor Electrical Technision	S3100 **S914, S414505 2.4	STORES STORES	0.00 0.00 2.00	0.00 0.00 0.00
AS per MIWI MAN POWER Trade Code E03 E04 E05 E06	Electrical Engineer Electrical Supervisor Electrical Technision Electrical Helper	S3100 **S914, S414505 2.4	Mahmoud Ahmed Elshazly	0.00 0.00 2.00	0.00 0.00 0.00

Tool Box (Standard)

Crew:

#	Item	Description
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		


Special Tools


#	Job	Special Tools	Description
1			
2			
3			
4			
5			

Service Equipment

#	Job	Service Equipment	Description
1			
2			
3			
4			
5			

Material Planning (Spare Parts Planning)

One Item & Single Level

Item Information:

Equipment: Water Pumps Number of Equipment: 60

Item: Bearing (2 units/pump) Item Code: BXX

Item Cost: 1000 \$/unit

Maintenance Policy: Annual

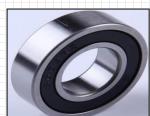
Annual Demand:

Period (month)	1	2	3	4	5	6	7	8	9	10	11	12
Gross Requirements	20	0	20	0	20	0	20	0	20	0	20	0

Inventory Data:

On Hand = 20 units

Safety Stock = 10 units


Lot Size = 24 units

Lead Time = 1 Month

Schedule Receipts =

(24 units, Month#1)

One Item & Single Level

Item Information:

Equipment: Water Pump Number of Equipment: 60

Item: Bearing (2 units/pump) Item Code: BXX

Item Cost: 1000 \$/unit Maintenance Policy: Annual

Inventory Data:

On Hand = 20 units Safety Stock = 10 units Lot Size = 24 units

Lead Time = 1 Month Schedule Receipts = (24 units, Month#1)

Material Plan:

Period (month) 0	1	2	3	4	5	6	7	8	9	10	11	12	0
Gross Requirements		20	0	20	0	20	0	20	0	20	0	20	0	
Schedule Receipts		24												
Stock On Hand	20	24	24	28	28	32	32	12	12	16	16	20	20	
Net Requirements				6		2				18		14		
Planned Order Receipt				24		24				24		24		
Planned Order Release			24		24				24		24			

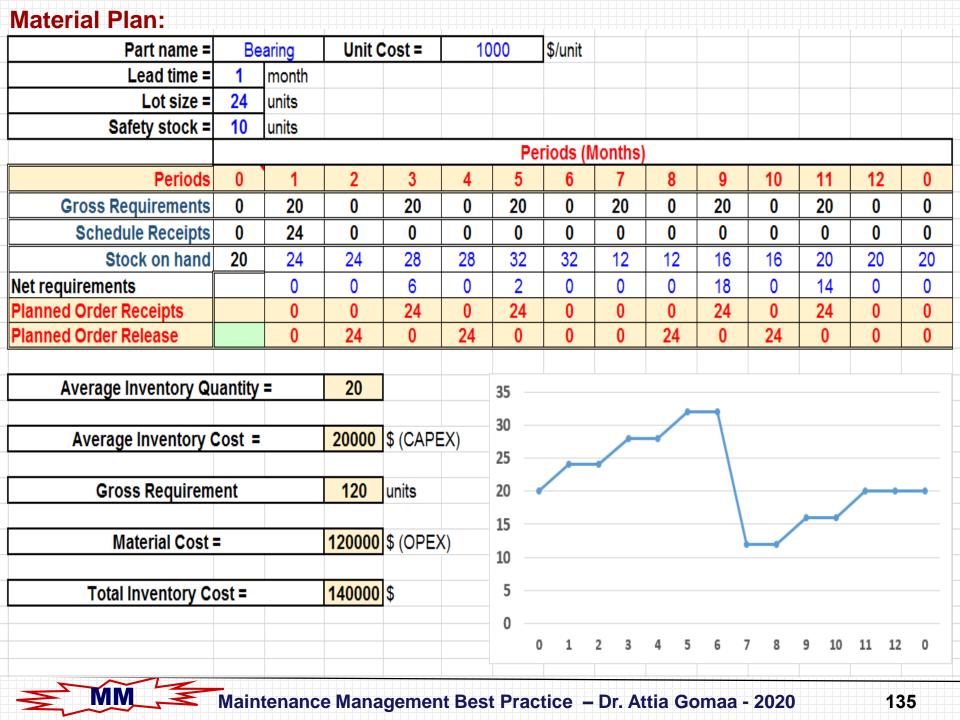
One Item & Single Level

Item Information:

Equipment: Water Pump Number of Equipment: 60

Item: Bearing (2 units/pump) Item Code: BXX

Item Cost: 1000 \$/unit Maintenance Policy: Annual

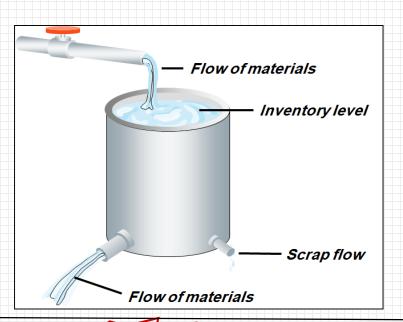

Inventory Data:

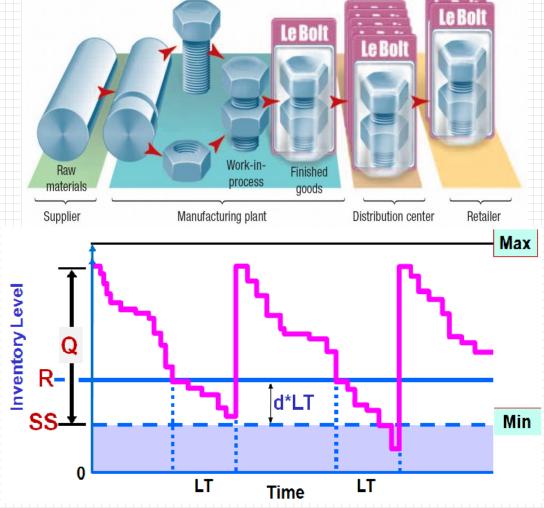
On Hand = 20 units Safety Stock = 10 units Lot Size = 24 units

Lead Time = 1 Month Schedule Receipts = (24 units, Month#1)

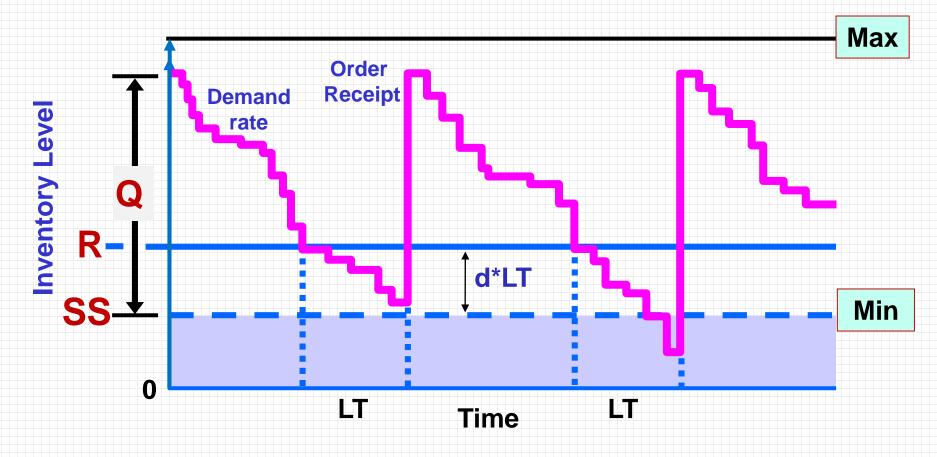
Material Plan:

Period (month)			1	2	3	4	5	6	7	8	9	10	11	12	0
Gross Requirement		20	0	20	0	20	0	20	0	20	0	20	0		
Schedule Receipts		24													
Stock On Hand	20	20	24	24	28	28	32	32	12	12	16	16	20	20	
Net Requirements					6		2				18		14		
Planned Order Receipt					24		24				24		24		
Planned Order Release				24		24				24		24			



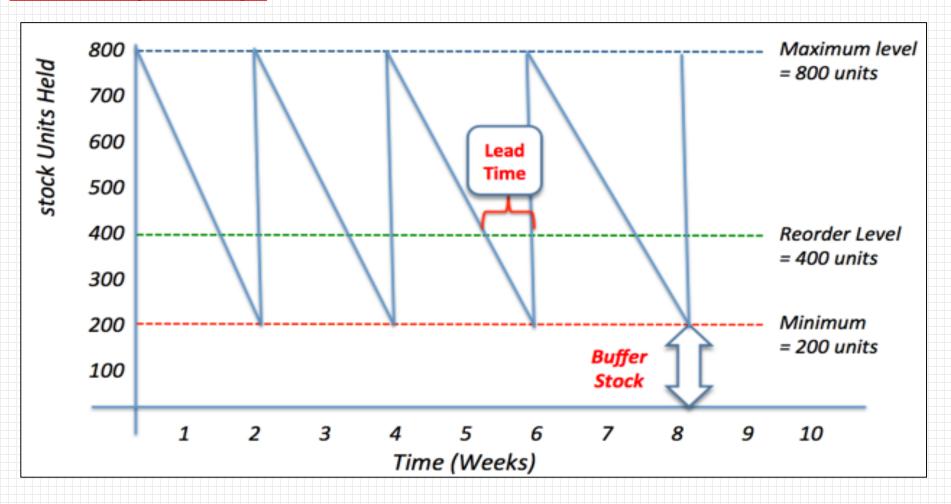

Inventory Control (Stock Control)

Ford Whitman Harris first presented the familiar economic order quantity (EOQ) model, 1913


Types of Inventory:

- Raw materials
- Work-in-process
- Finished goods

Inventory Policy:


LT = Lead Time

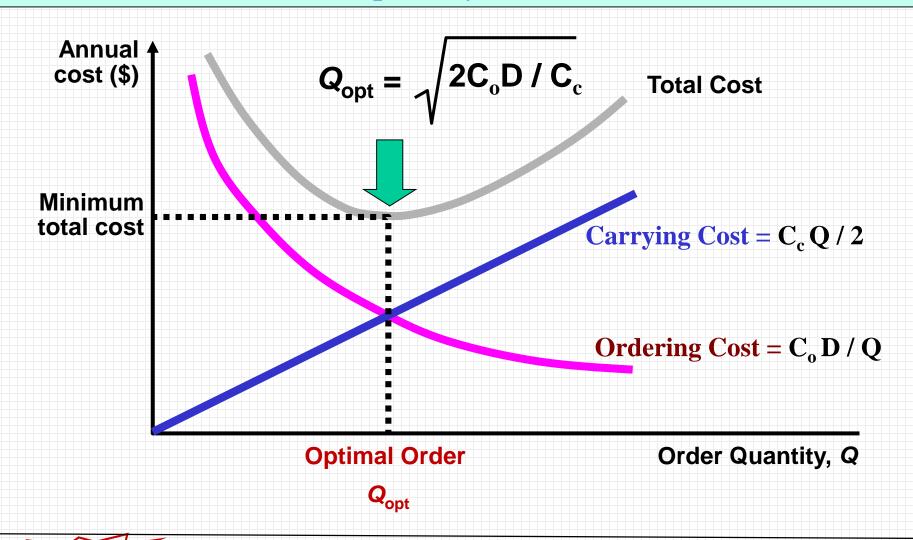
d = Demand rate

R = Reorder Point

SS = Safety Stock

Inventory Policy:

Q = Order Quantity=600 units


LT = Lead Time = 2 weeks

R = Reorder Point = 400 units

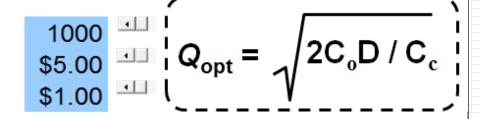
SS = Safety Stock = 200 units

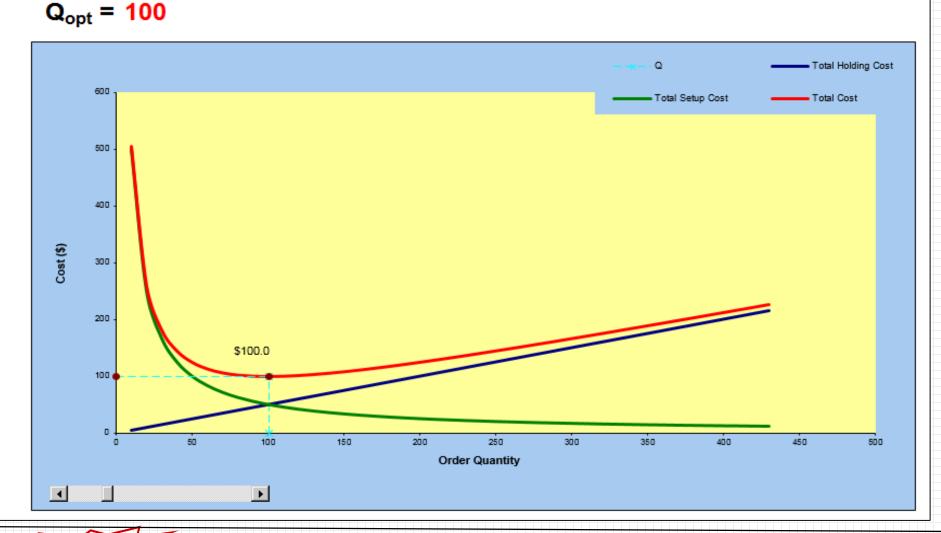
Economic Order Quantity (EOQ or Qopt)

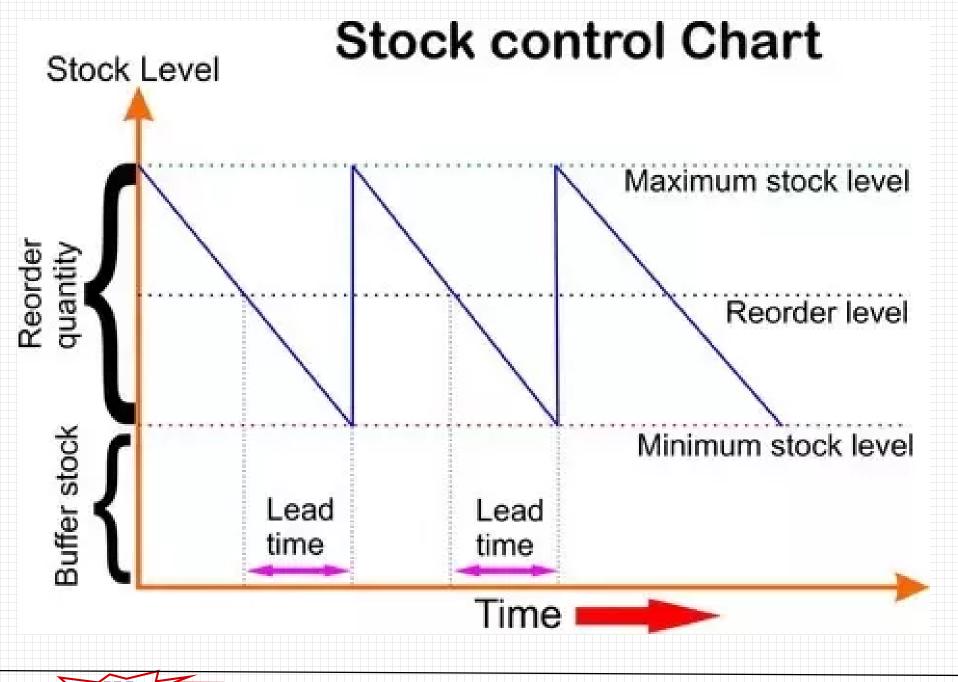
Ford Whitman Harris first presented the familiar economic order quantity (EOQ) model, 1913

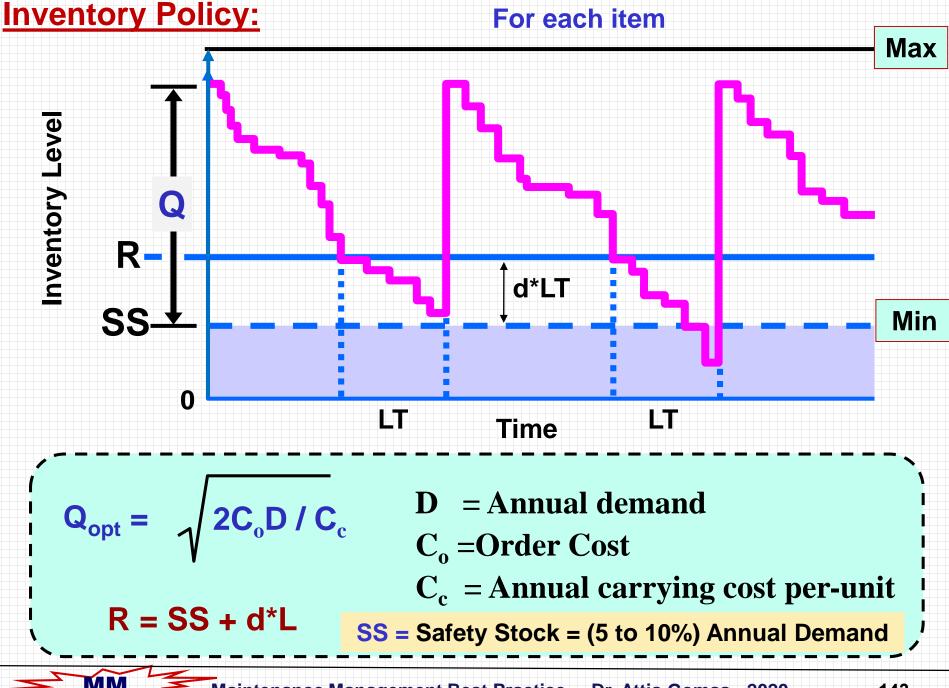
Economic Order Quantity:

Annual Demand = D = 1000 units Order Cost = \$5 / order Holding Cost = H = \$ 1 /unit / year


$$Q_{\rm opt} = \sqrt{2C_{\rm o}D/C_{\rm c}}$$


$$Q_{\text{opt}} = \sqrt{\frac{2*5*1000}{1000}}$$


Order Quantity Q	Number of orders = D/Q	Annual Order Cost	Average Stock = Q/2	Annual Holding Cost	Annual Inventory Cost	Min. Cost
50	20	100	25	25	125	
100	10	50	50	50	100	100
200	5	25	100	100	125	
	•••		•••		•••	
500	2	10	250	250	260	
	•••	•••	•••	•••	•••	
1000	1	5	500	500	505	


EOQ and Total Cost Graph

Annual demand (D)
Per Order cost (S)
Holding cost per unit per year (H)

Inventory Control:

Item Information:

Equipment: Water Pump

Item: Bearing (2 units/pump)

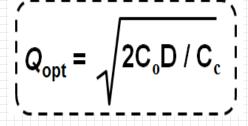
Item Cost: 1000 \$/unit

Number of Equipment: 60

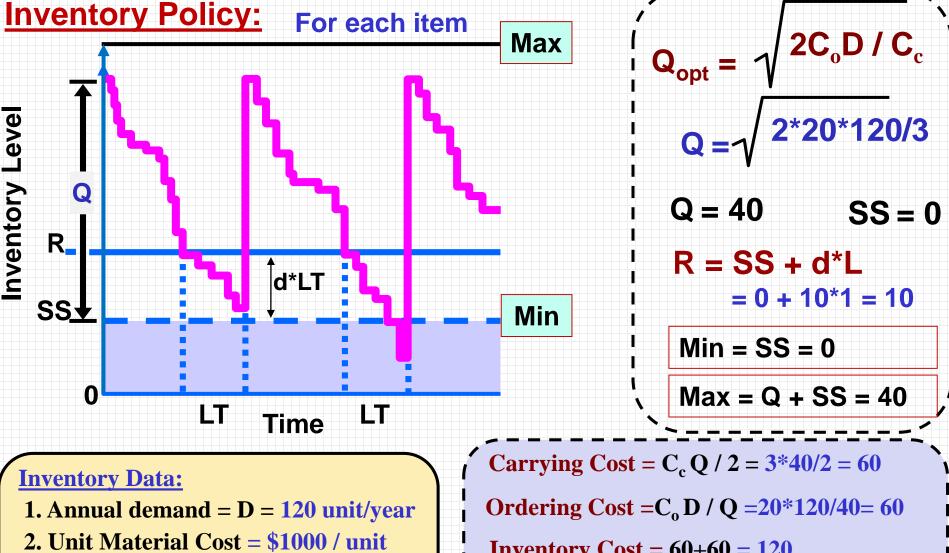
Item Code: BXX

Maintenance Policy: RTF

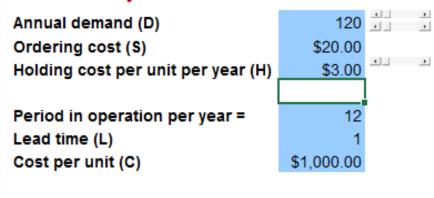
Annual Demand = 60*2 = 120 Items

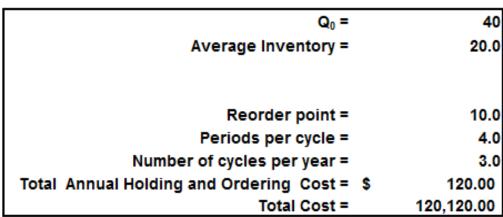

Inventory Data:

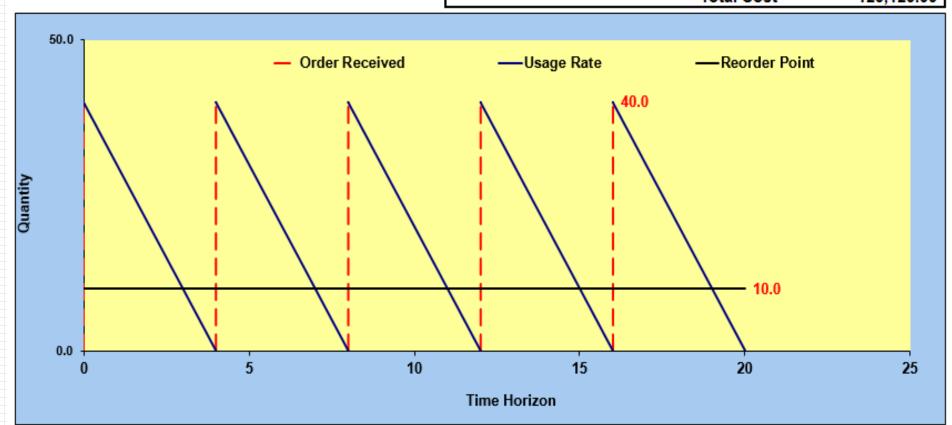
- 1. Annual demand = 120 unit/year
- 2. Unit Material Cost = \$1000 / unit
- 3. Average Order Cost = \$20 / order
- 4. Average Carrying Cost per Unit = \$3/year
- 5. Lead Time = 1 Month


Based on this information, discuss the following:

- 1) Optimal order quantity
- 2) Number of Orders
- 3) Reorder level
- 4) Stock Control Chart
- 5) Annual Material Cost (Direct)
- 6) Annual Inventory Cost (Overhead)




3. Order Cost = $C_0 = 20 / order


- 4. Carrying Cost = $C_c = \frac{3}{year}$
- 5. Lead Time = LT = 1 Month

Inventory Cost = 60+60 = 120Material Cost = 120*1000 = 120,000Total Cost = 120,000+120 = 120,120

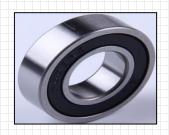
Fixed Quantity Model

Example:

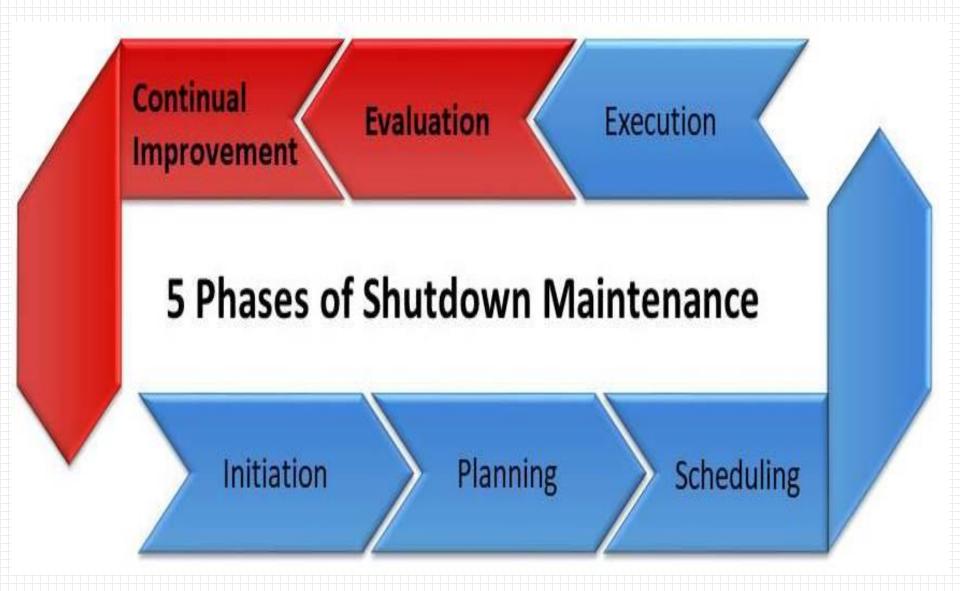
Item Information:

Equipment: Water Pumps Item: Bearing

Inventory Data:


- 1. Annual demand = 120 unit/year
- 2. Unit Material Cost = \$1000 / unit
- 3. Average Order Cost = \$20 / order
- 4. Average Carrying Cost per Unit = \$3/year
- 5. Lead Time = 1 Month
- 6. Safety Stock = 10 units

Based on this information, discuss the following:


- 1) Optimal order quantity
- 2) Number of Orders
- 3) Reorder level
- 4) Stock Control Chart
- 5) Average Inventory
- 6) Annual Material Cost
- 7) Annual Inventory Cost

Shutdown Maintenance Planning

Project Planning

- 1) Project Description / Charter
- 2) Work Breakdown Structure
- 3) Responsibility Matrix
- 4) Project Estimation
- 5) Main Activities

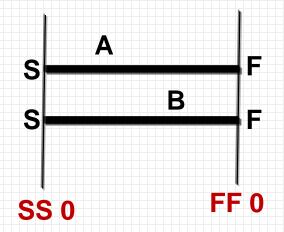
Scope

- 6) Network
- 7) Critical Path
- 8) Schedule / Gantt Chart
- 9) Material Plan
- 10) Resource Plan
- 11) Cost Plan
- 12) Payment Plan
- 13) Milestones Plan
- 14) Risk Plan
- 15) Quality Plan / QA / QC
- 16) Contractor / Supplier Selection

End Objectives

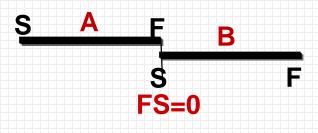
Outputs

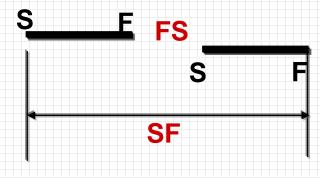
Activity Relations:

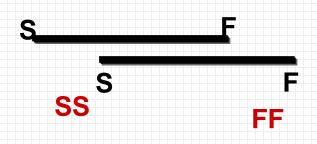

FS – Finish to Start

SS – Start to Start

SF – Start to Finish


FF - Finish to Finish

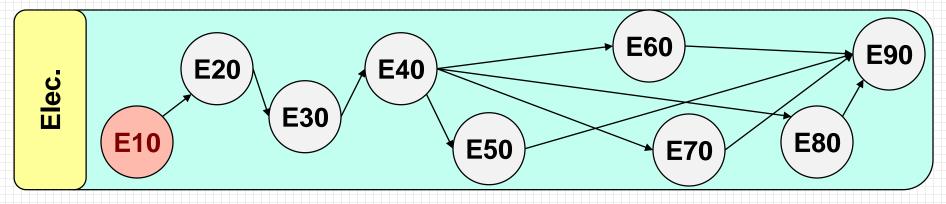

For Example;

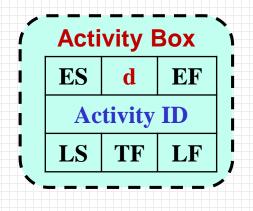


By default

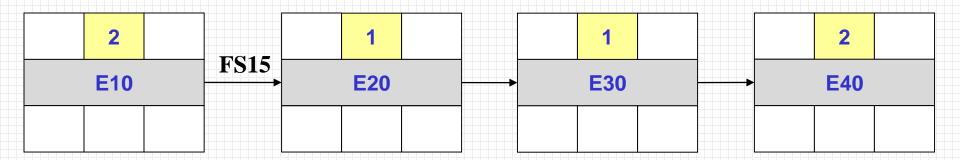
(FS 0)

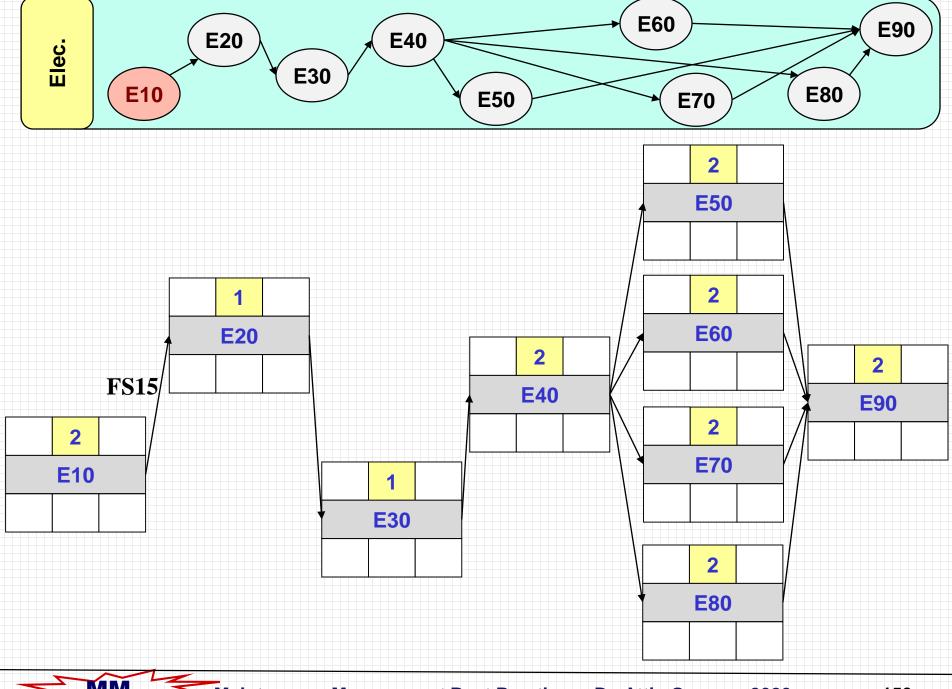
Case Study:

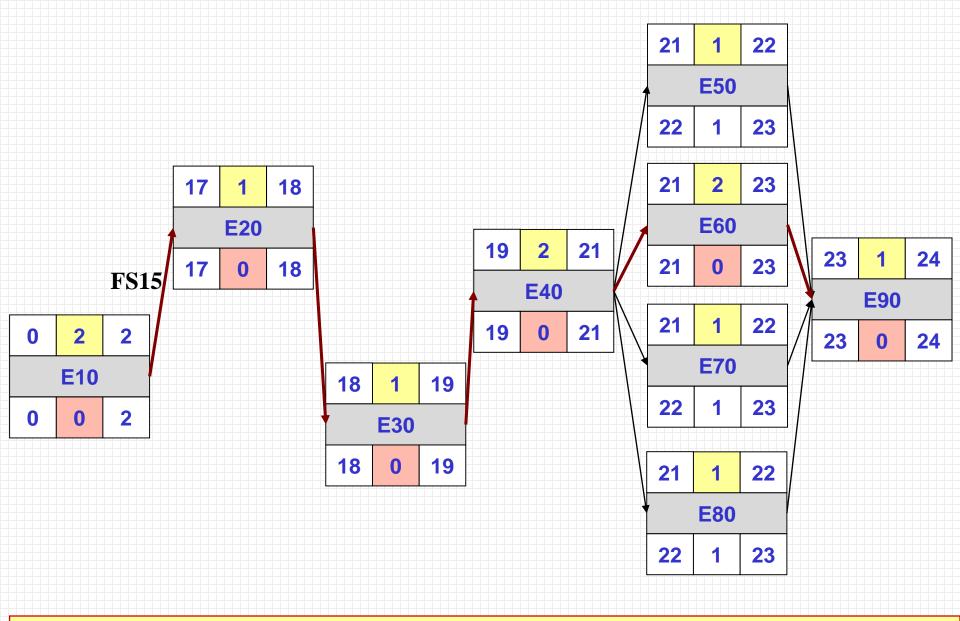

Project: Shutdown Planning for Computer Lab 507


WBS	ID	Activity	Days	Predecessors	Workers	Mat. Cost 1000 LE
	E10	Wiring	2	-	4	10
Works	E20	Terminals	1	E10, FS15	4	5
0 L]	E30	Control Panel	1	E20	4	20
	E40	Lighting System	2	E30	4	20
	E50	Fire Alarms	1	E40	2	15
Electrical	E60	Sound System	2	E40	2	16
tr	E70	Network	1	E40	2	10
	E80	Datashow	1	E40	2	20
	E90	Final Test	1	E50, E60, E70, E80	2	4

Based on this information, discuss the following:


1- Network 2- Critical Path 3- Gantt Chart 4- Resource Plan 5- Cost Plan


Network:

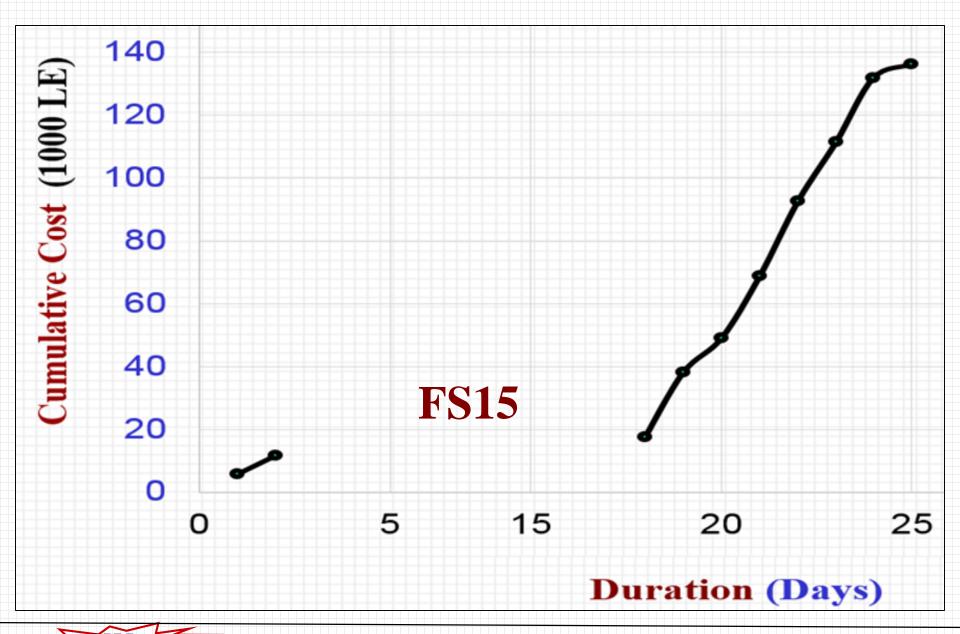


d: Duration (given)
ES: Early Start
EF: Early Finish
LF: Late Finish
LS: Late Start
TF: Total Float

Schedule / Gantt Chart

ID	Days	Crews	Material 1000 LE					Dura	ation (I	Days)				
	I)	Ms 10	1	2	•••	18	19	20	21	22	23	24	
E10	2	4	10	4	4									
E20	1	4	5				4							
E30	1	4	20					4						
E40	2	4	20						4	4				
E50	1	2	15								2			
E60	2	2	16								2	2		
E70	2	2	10								2			
E80	1	2	20								2			
E90	1	2	4										2	
											/ <u>-</u> _			
#	of W	ork	ers	4	4		4	4	4	4 (8	2	2	
Cost									`					
-		0 LF	E											

Schedule / Gantt Chart


ID														
	I		M 01	1	2	•••	18	19	20	21	22	23	24	
E10	2	4	10	4	4									
E20	1	4	5				4							
E30	1	4	20					4						
E40	2	4	20						4	4				
E50	1	2	15								2			
E60	2	2	16								2	2		
E70	2	2	10									2		
E80	1	2	20									2		
E90	1	2	4										2	
#	of V	Vork	kers	4	4 4 4 4 4 4 6) 2									

Resource Smoothing

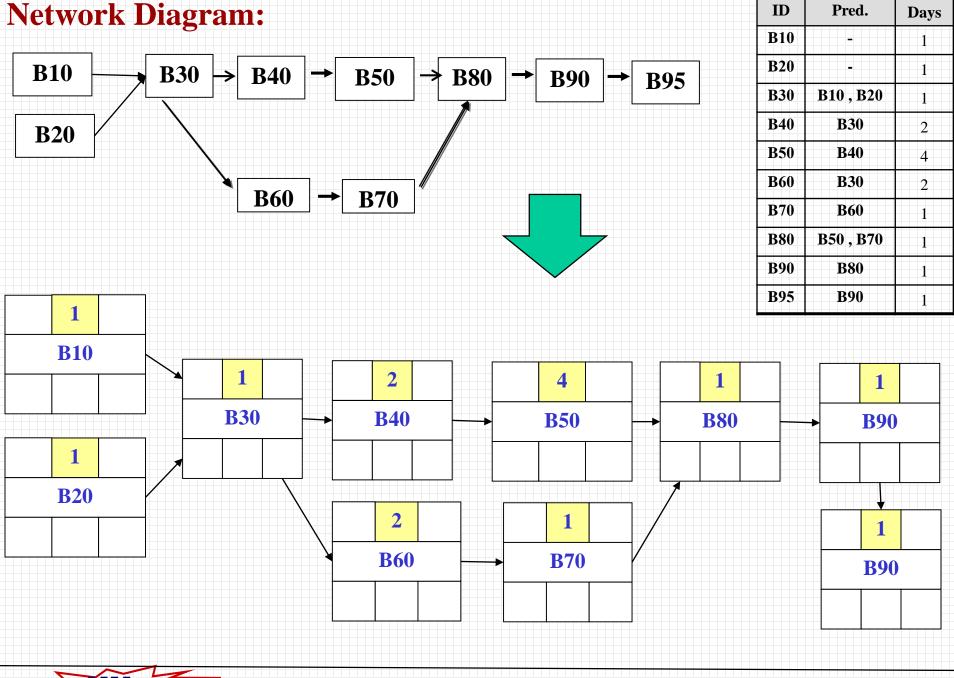
Target Schedule / Resource Plan / Cost Plan

	N.	SA	rial					Dura	ation (I	Days)				
ID	Days	Crews	Material 1000 LE	1	2	•••	18	19	20	21	22	23	24	25
E10	2	4	10	5	5	•••								
E20	1	4	5			• • •	5							
E30	1	4	20			•••		20						
E40	2	4	20			•••			10	10				
E50	1	2	15			•••					15			
E60	2	2	16			•••					8	8		
E70	2	2	10			•••						10		
E80	1	2	20			•••							20	
E90	1	2	4			•••								4
						•••								
	# of \	Vork	ers	4	4	• • •	4	4	4	4	4	4	2	2
	Lab	or Co	st	0.8	0.8	•••	0.8	0.8	0.8	0.8	0.8	0.8	0.4	0.4
	Material Cost		5	5	•••	5	20	10	19	23	18	20	4	
	Total Cost		5.8	5.8	•••	5.8	20.8	10.8	19.8	23.8	18.8	20.4	4.4	
C	umul	ative	Cost	5.8	11.6	11.6	17.4	38.2	49	68.8	92.6	111	132	136

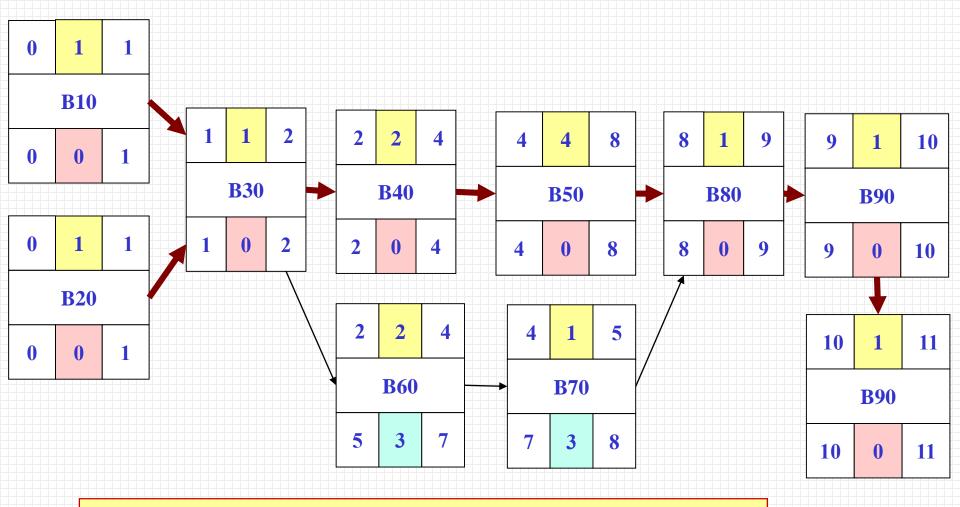
Total Cost: S Curve

Case Study:

Project: Shutdown Maintenance Project


Main Item: Boiler Maintenance (Annual Inspection)

WBS	ID	Activity description	Days	Predecessor	Mech. Workers
	B10	Moblization	1	-	2
	B20	Shut down & cool down boiler	1	-	2
ks Ks	B30	Open man ways & clean boiler	1	B10 , B20	2
Mechanical Works	B40	Inspect refractory	2	B30	2
<u> </u>	B50	Repair damaged refractory	4	B40	2
anic	B60	Replace bad tubes	2	B30	2
) Sch	B70	Perform hydrostatic test on tubes	1	B60	2
Ž	B80	Close man ways	1	B50 , B70	2
	B90	Fire up boiler & Run test	1	B80	2
	B95	Demobilization	1	B90	2


Constraints:

Maximum duration = 12 days

Maximum Resources = 4 Mech. Labors

Network Diagram:

Planned Duration = 11 days

Critical Path: B10-B20-B30-B40-B50-B80-B90-B95

Noncritical Activities: B60-B77

Gantt Chart:

(Critical Resources)

Main Item: Boiler Maintenance (Annual Inspection)

ID	Pred.	Days	Workers	Duration (Days)											
שו	rieu.	Ď	Wor	1	2	3	4	5	6	7	8	9	10	11	12
B10	-	1	2	2											
B20	-	1	2	2											
B30	B10 , B20	1	2		2										
B40	B30	2	2			2	2								-
B50	B40	4	2					2	2	2	2				
B60	B30	2	2			2	2								
B70	B60	1	2					2							
B80	B50 , B70	1	2									2			
B90	B80	1	2										2		
B95	B90	1	2											2	
	# of Worke	ers		4	2	4	4	4	2	2	2	2	2	2	

Constraints:

Maximum duration = 12 days

Maximum Resources = 4 Mech. Labors

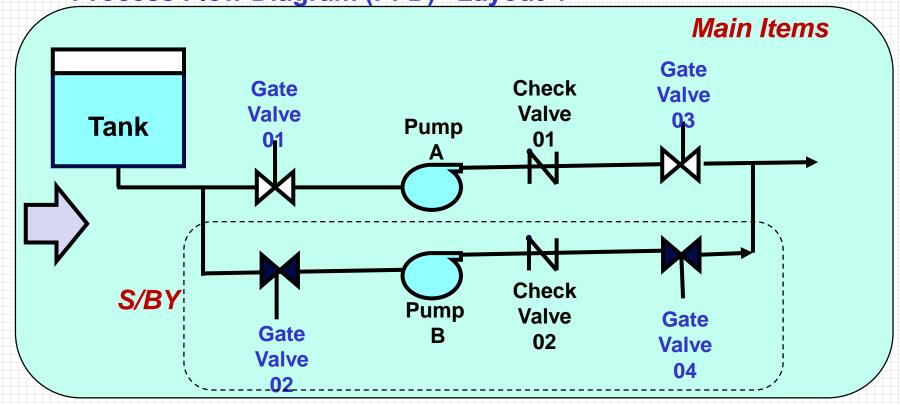
Case Study:

Project: Maintenance & Repair for Mobile Crane 50 ton

Main Item: Engine Overhaul

Case Study:

Project: Maintenance & Repair for Mobile Crane 50 ton


Main Item: Engine Overhaul

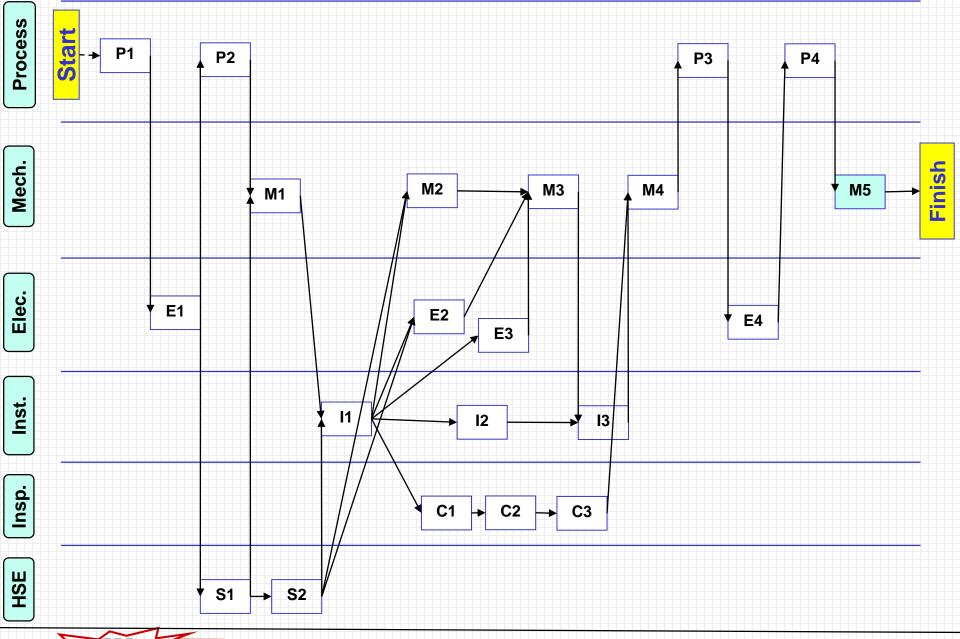
ID	Activity Description	Duration (day)	Predecessors	Resource (workers)
E00	Inspection	1	-	2
E01	Disassembly	1	E00	2
E02	Cleaning	1	E01	2
E03	Visual Inspection	1	E02	2
E04	Dimension Inspection	1	E03	2
E05	Non Destructive Test (NDT)	1	E03	2
E06	Part Request	2	E04, E05	2
E07	Repair	2	E05	2
E08	Replacement	2	E06	2
E09	Assembly	2	E07,E08	2
E10	Test & Operation	1	E09	2

System / Area: Crude Oil Pump Station

Process Flow Diagram (PFD) "Layout":

Equipment List (Tree):

_					
#	Equipment Type	Short Description	Main Function Parameters	Numbers	TAG No.
1	Pump	Centrifugal		2	410-P-01A 410-P-01B
2	Tank	Water Cooling		1	410-TK-01


Shutdown Activity Matrix

			Stages		
Work Types	Shutdown	Isolation	Maintenance & Inspection	De-isolation	Start up
Process	Pre-shutdown	Process Isolation		Process De-isolation	Run Test
Mech. Maintenance		Mech. Isolation	Pump Overhauling Pump Alignment	Mech. De-isolation	Vibration Test
Elec. Maintenance		Elec. Isolation	Motor Overhauling SWG Check	Elec. De-isolation	
Instruments			Inst. Disconnect Inst. Check & Repair Inst. Re-connect		
Inspection			Open Tank Man-way Tank Insp. & Repair Close Tank Man-way		
HSE	Work Permits	Isolation Check			Gas Check

Project: Shutdown for Crude Oil Pump Station XXX

WBS	ID	Activity Description	Duration (Hrs.)	Predecessors	Workers						
S	P1	Pre-shutdown	2	-	1 P, 1 M, 1 E						
Process	P2	Process Isolation	3	E1	2 P						
Š	Р3	Process De-isolation	3	M4	2 P						
	P4	Run Test	12	E4	1 P						
-	M1	Mech. Isolation	3	P2	4 M						
غ ا	M2	Pump Overhauling	36	E1, I1, S2	2 M						
Mech.	M3	Pump Alignment	12	M2 , E2, E3	2 M						
≥	M4	Mech. De-isolation	3	13 , C3	4 M						
	M5	Vibration Test	3	P4 (SS2)	1 M						
	E1	Elec. Isolation	3	P1	1 E						
Elec.	E2	Motor Overhauling	24	I1, S2	2 E						
Ĕ	E3	SWG Check	24	l1,	2 E						
	E4	Elec. De-isolation	3	P3	1 E						
.•	l1	Instruments Disconnect	8	M1,S2	21						
Inst.	12	Instruments Check & Repair	24	I1	11						
	13	Instruments Re-connect	12	M3 , I2	21						
	C1	Open Tank Man-way	2	l1	1 M						
Insp.	C2	Tank Inspection & Repair	24	C1	2 C						
_	C3	Close Tank Man-way	2	C2	1 M						
HSE	S1	Isolation Check	2	E1, M1	15						
ПЭЕ	S2	Gas Check	1	S1	1 S						
	MM Maintenance Management Best Practice – Dr. Attia Gomaa - 2020 167										

Logic Diagram:

Maintenance Control & KPIs

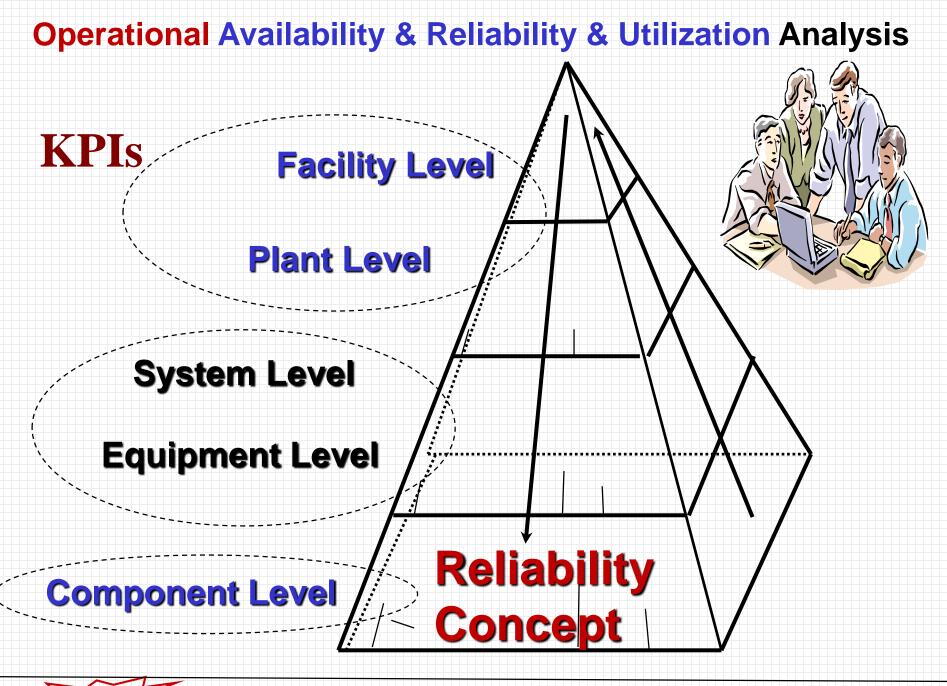
Key Objective:

Improve Quality (RAMS) at Low Cost

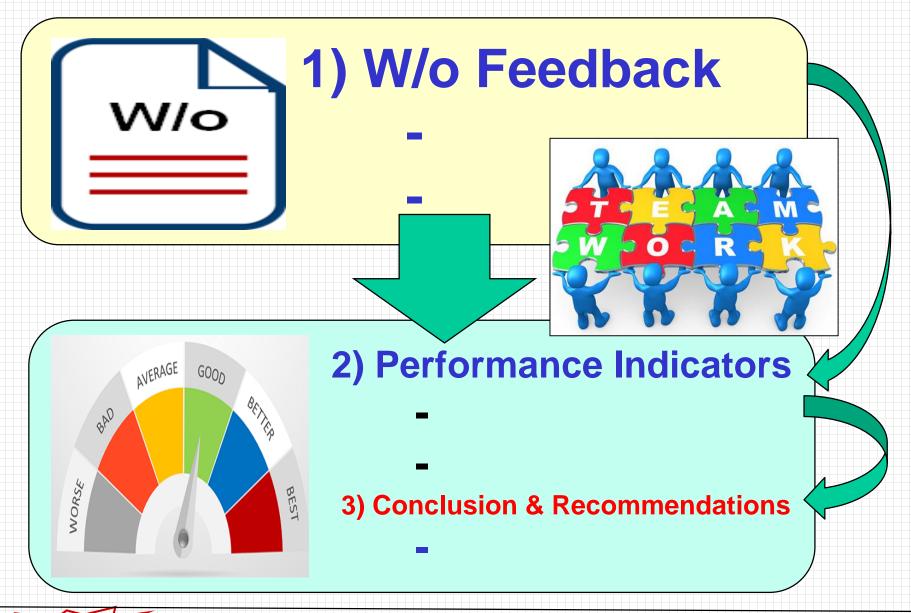
Maintenance Feedback

W/o Feedback

OK / Done / Complete


Quantitative "Measurable"

→ Indicators??



Close-out

Qualitative "Comments"

Feedback & Performance Indicators

Maintenance Record / Maintenance Feedback

System / Equipment: ID: Criticality:

W/O	Type	Level	Policy	Target Finish	Actual Finish	Downtime Hours	Maintenance Time Hours	Spare Parts	Direct Cost	••
#1										
#2										
#3										
#4										
#5										
#6										
#7										
#8										
#9										
•••										
•••										

Level: M01: Monthly M03:Quarter M06: Semi Annual M12: Annually

Maintenance Record / Maintenance Feedback

System: Fire Fighting Pump ID: XX/XX/A Criticality: SCE

	M01: Mo	nthly	M03	:Quarter	M06: \$	Semi Annual	N	<mark>112:</mark> Annua	lly
W/ O	Type	Level	Policy	Target Finish	Actual Finish	Downtime Hours	Maintenance Time hours	Spare Parts	Direct Cost LE
#1	PM	M01	R	25/1/2018	24/1/2018	-	2	-	1,000
#2	PM	M01	R	22/2/2018	27/2/2018	-	3	-	1,000
#3	PM	M03	S/D	29/3/2018	01/4/2018	4	6	Seal	4,000
#4	PM	M01	R	26/4/2018	24/4/2018	-	3	-	1,000
#5	PM	M01	R	31/5/2018	30/5/2018	-	2	-	1,000
#6	PM	M06	S/D	28/6/2018	30/6/2018	16	19	Bearing	6,000
#7	PM	M01	R	26/7/2018	29/7/2018	-	3	-	1,000
#8	CM	-	S/D	20/8/2018	20/8/2018	10	16	Seal	10,000
#9	PM	M01	R	30/8/2018	-	-	-	-	-
#10	PM	M03	S/D	27/9/2018	20/10/2018	6	7	Seal	4,000
#11	PM	M01	R	25/10/2018	22/10/2018	-	1	-	1,000
#12	PM	M01	R	29/11/2018	26/11/2018	-	4	-	1,000
#13	PM	M12	S/D	27/12/2018	30/12/2018	24	36	Bearing	20,000

Based on this information; discuss maintenance performance indicators

Maintenance Performance Indicators & KPIs

Maintenance Performance Indicators

(Department Level – Operational Level)

- MTTR
- MTTM
- 3. CM / PM
- CM % , PM%
- CM / PM
- **MTBF**
- Availability % → (T-D)/T **7.**
- **Reliability %**
- **Utilization %**

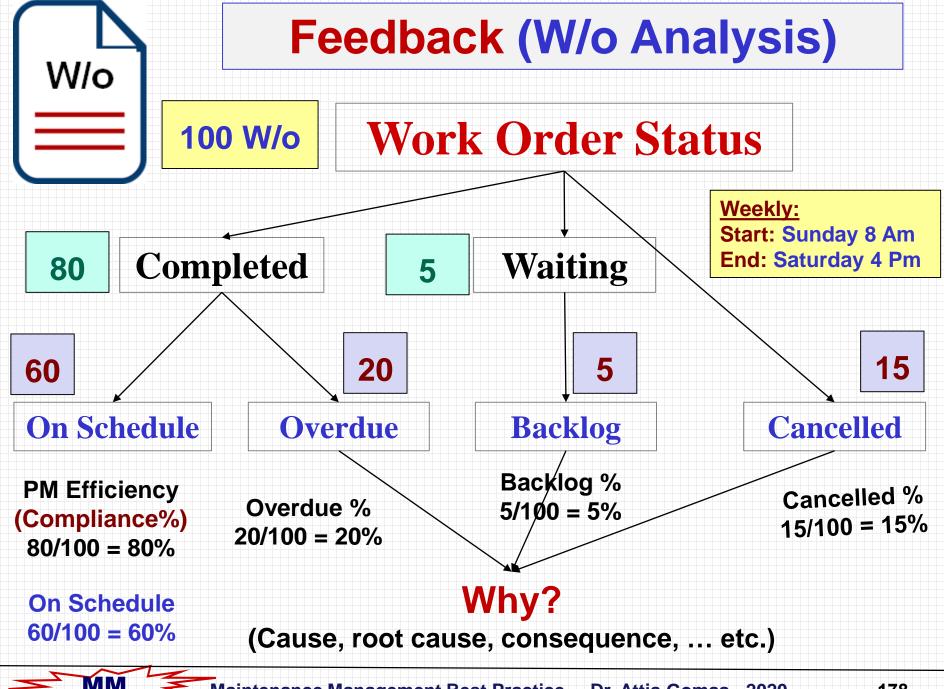
- 12. Overdue %
- 13. Backlog %
- 14. Canceled %
- **15.** Compliance % → PM Efficiency
- 16. ... etc.

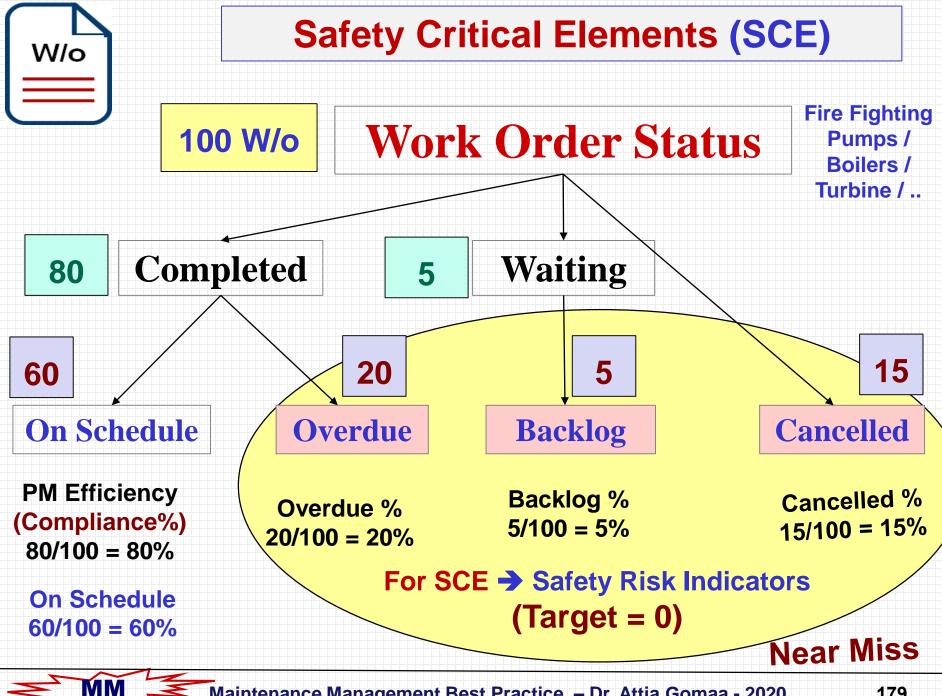
- **→** Item Level
- → PM Level
- \rightarrow S/D W/o
- \rightarrow S/D W/o
- → # , Time, Cost
- **→** Item Level
- \rightarrow RH/(RH+CD)
- **→** Running/Calendar
- **10.** Maintenance Cost Rate → \$/hour or \$/unit
- 11. Breakdown Losses \rightarrow units/hour or \$/hour
 - → Delay & On hold %
 - **→** Delay but finish
 - **→** Non critical

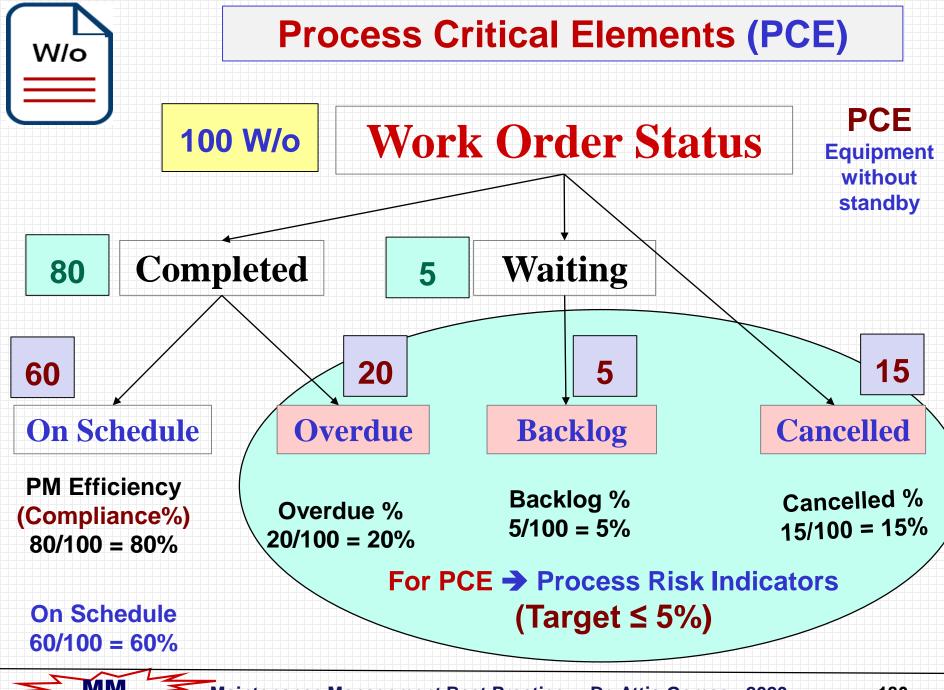
Maintenance KPIs

(Facility Level)

- **Reliability %**
- **Availability %**
- **3. Compliance %**
- **Overdue SCE %**
- 5. Breakdown Losses
- **Maintenance Cost** Rate
- 7. ... etc.


(Max. 8 Indicators)


"Most Effective"


Data Collection Plan For example:

Performance Metric(s)	Definition of metric	Data	Data source	Frequency	Responsibility
Availability %	A = (T-D)/T D=PMD + CMD	T=Total Time	Calendar	Annual	Planner
		PMD= PM Downtime	PM W/o	Annual	Planner
		CMD= CM Downtime	CM W/o	Annual	Planner
Reliability %	R = (T-D)/ (T-PMD)	*	*	Annual	Planner
Unplanned %	CM/PM %	CM = summation of all CM W/o	CM W/o	Annual	Planner
		CM = summation of all PM W/o	PM W/o	Annual	Planner
Overdue %					

Schedule Compliance Score

Time Period	Scheduled Jobs	Completed Jobs	Compliance Score	
Week 1	7	5	2 jobs missed	
Week 2	3	3	0 jobs missed 1 job missed	
Week 3	5	4		
Week 4	6	3	3 jobs missed	
Total	21	15	70 percent	

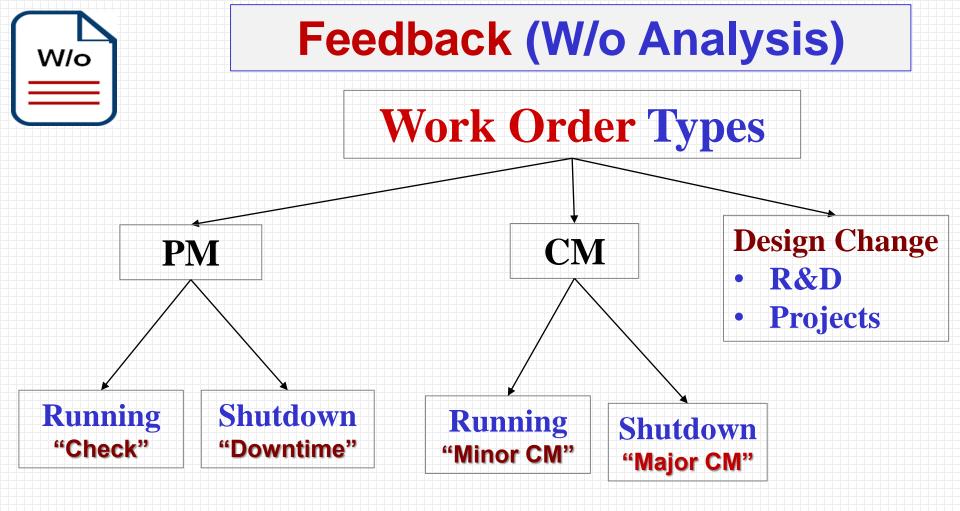
Compliance Score = (Completed jobs) / (Scheduled jobs)

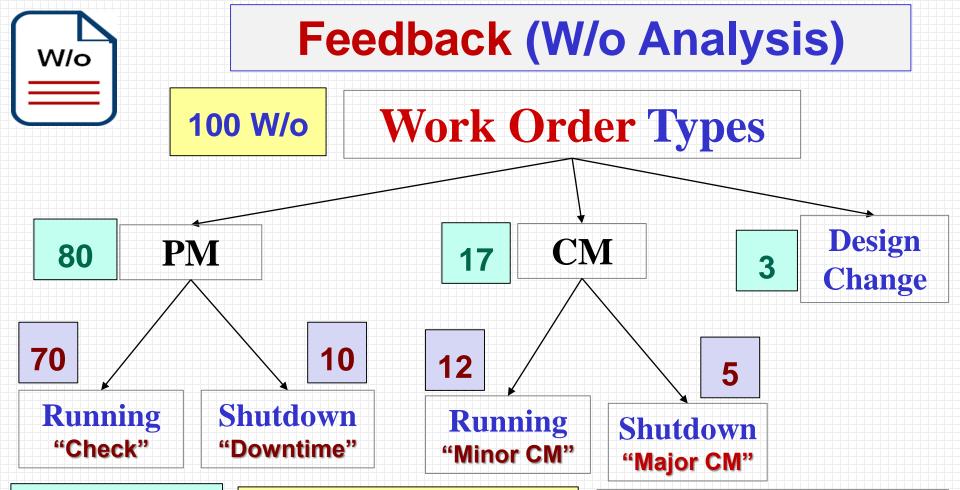
$$= (5+3+4+3) / (7+3+5+6) = 0.7 = 70\%$$

Annual Maintenance Control

System: A Water Pumping Station (8 units 6 Running & 2 Standby)

Annual PM Performance:


PM Level	Weekly	Monthly	Annual
Check	Check	Check	Check
Replace	-	-	Pump seal Pump bearing
Maintenance Type	Running	Running	Shutdown
Actual # of PM W/o	250	60	6
Overdue W/o	25	10	2


Annual CM Performance:

Item	Total	Minor CM	Pump seal	Pump bearing	Coupling	Impelle r	Motor bearing
Number of CM Work Orders	18	10	3	2	1	1	1
Maintenance Type	-	Running			Shutdown		

Based on this information, discuss performance indicators

Total W/o:

PM% = 80% CM% = 17 % CM/PM = 21%

Shutdown Work Oders:

PM% = 10/(10+5)= 67% CM% = 5/(10+5) = 33% CM/PM = 5/10 = 50%

Running Work Orders:

PM% = 70/(70+12)= 85% CM% = 12/(70+12)= 15% CM/PM = 12/70 = 17%

CM / PM Ratio (#, hours, downtime, man-hour, cost, ..., overall)

Annual Maintenance Control

System: A Water Pumping Station (4 units 3 Running & 1Standby)

PM Program / Unit:

PM Level	Weekly	Monthly	Annual
Maintenance Cost LE/order/unit	200	500	10,000
Maintenance Type	Running	Running	S/D

Annual CM Work Orders:

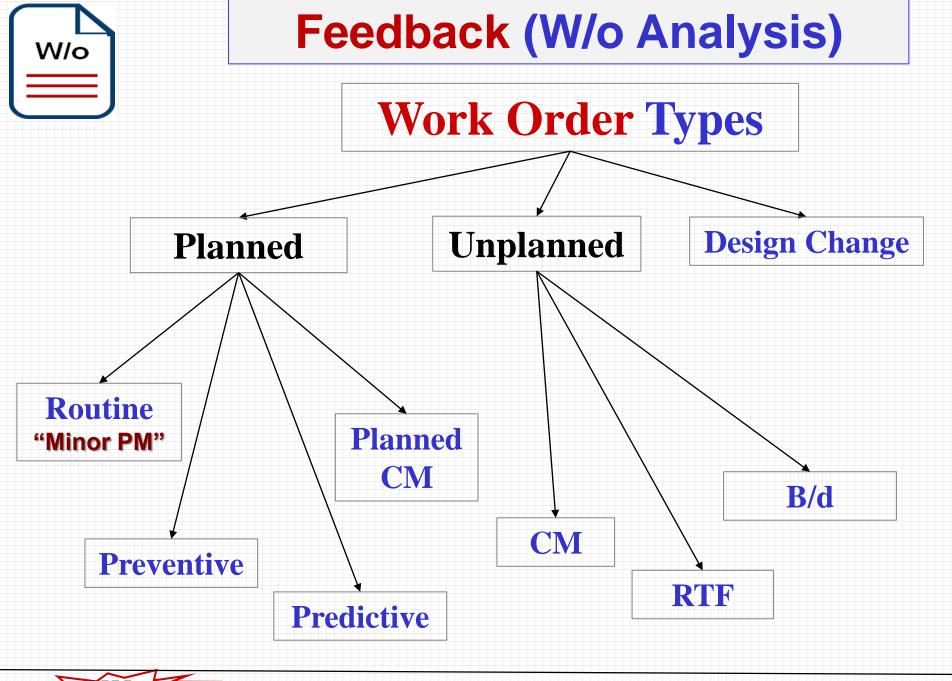
Running = 10 Work Orders & 5,000 LE Total

Shut Down = 2 Work Orders & 30,000 LE Total

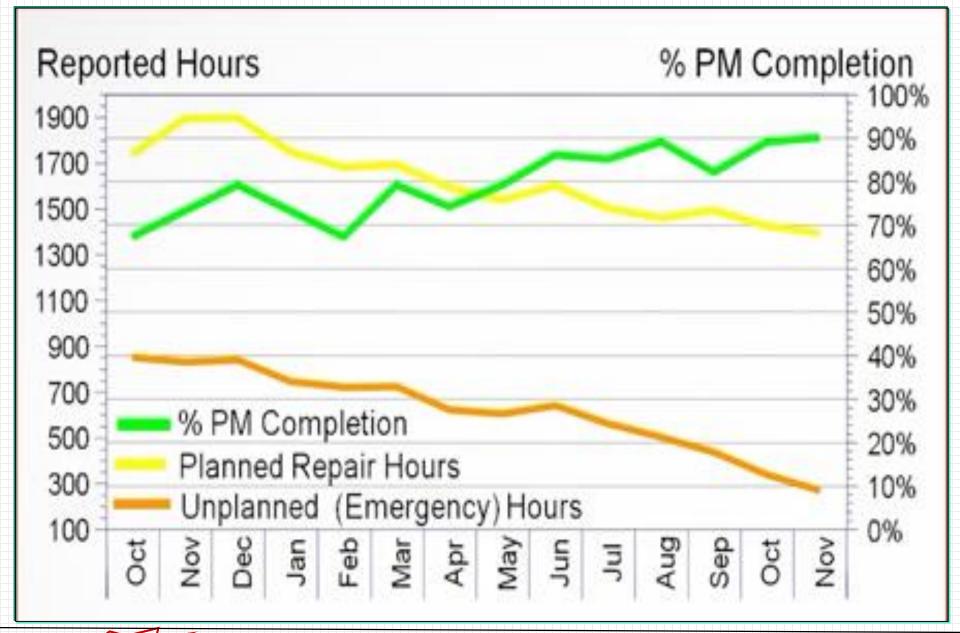
Based on this information; discuss performance Indicators

Annual Maintenance Control

System: A Water Pumping Station (8 units 6 Running & 2 Standby)


PM Program / unit:

PM Level	Weekly	Monthly	Annual
Check	Check	Check	Check
Replace	1	-	Pump seal Pump bearing
Maintenance Type	Running	Running	Shutdown


Annual CM Performance:

Number of CM Work Orders	18	10	seal 3	bearing 2	Coupling 1	Impeller 1	bearing 1	
Туре	-	Running			Shutdow	n		

Based on this information, discuss performance indicators

For example; KPIs Report for critical equipment:

Time Analysis

Repair Time Logistic Time

Value Added Non-Value Added

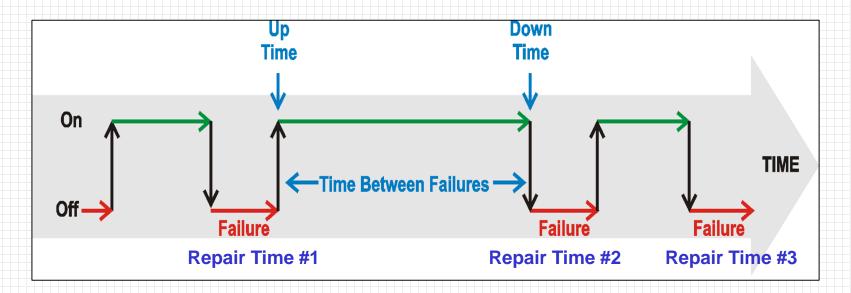
MTTR
Maintainability

Labor Utilization

Down Time (Process Losses)

Planned

Unplanned


PM Down Time

CM Down Time

MTBF Reliability

Availability

Mean Time to Repair (MTTR) & Mean Time to Maintain (MTTM)

Mean Time to Repair (MTTR) (CM Only):

MTTR = Total Repair Time / Number of Repairs

MTTR = Total CM Repair Time / Number of CMs

Mean Time to Maintain (MTTM) (PM Only):

MTTM = Total PM Maintenance Time / Number of PMs

Maintainability is the probability of performing a maintenance action during certain time.

Maintainability is measured by mean time to repair MTTR

To calculate the probability of performing a maintenance action within an allowable time interval use:

$$M(t) = 1 - e^{-t/MTTR}$$

Where:

t = Allowable downtime

MTTR= Expected downtime (MTTR)

Example: What is the probability of completing an action within 5 hours if the MTTR = 7 hours?

Solution: $M(t) = 1 - e^{-t/MTTR} = 1 - e^{5/7}$ = 1 - .4895 = .5105

There is approximately a 51% probability of completion.

Brainstorming:

Water Pump Station # P1

- Maintenance Policy: RTF
- Running Time: 20,000 RH
- 5 CM Orders

Based on this information, discuss MTBF

MTBF = 20,000 / 5 = 4000 hours /failure

→ Proposed Maintenance Policy:
PM W/o → Change Bearing Every 4000 RH

Brainstorming:

Water Pump Station # P1

- PM Work Order: Replace Bearing Every 4000 RH
- Running Time: 20,000 RH
- 2 CM Orders

Based on this information, discuss MTBF

$$MTBF = 20,000/2 = 10,000$$

→ Proposed Maintenance Policy:

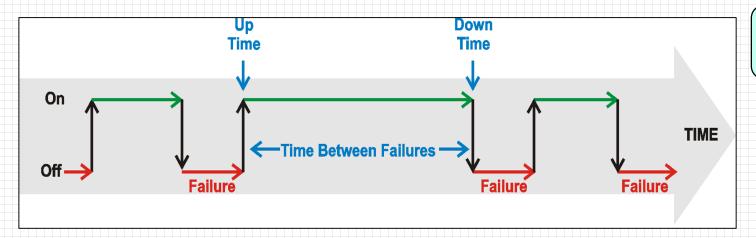
PM W/o → Change Bearing Every 10,000 RH

Brainstorming:

Water Pump Station # P1

- PM Work Order: Replace Bearing Every 4000 RH
- Running Time: 20,000 RH
- 4 PM Work Orders
- 2 CM Work Orders

Based on this information, discuss MTBF


MTBF =

→ Proposed Maintenance Policy:
PM W/o → Change Bearing Every ??? RH

Based on MTBF: CM → → PM

Policy RTF (CM Only):

MTBF = Total Operating Time / Number of Failures

Policy PM & CM:

MTBF = Total Time Between Failures / Number of CMs

Policy PM & CM:

MTBF ≈ Total Operating Time / Number of (CMs + PMs)

Check:

MTBF ≤ PM Interval

1

System: Water Pumps Item: Bearing

Maintenance Policy: Run To Fail

Number of Bearing Failures: 20 CM Work Orders

Time To Failure (hours):

8400	7600	7500	8200	7900
7500	8100	7800	7700	8000
7700	7800	7600	8000	7400
8300	7800	8200	7800	7300

Based on this information; discuss the MTTF

 $\mathbf{MTTF} = 7830$

→ Proposed Maintenance Policy:

PM W/o → Change Bearing Every 8000 RH (Annual PM)

2

System: Water Pumps Number of units: 10

Item: Bearing

Number of Failures: 200 CM Work Orders

Time To Failure (hours):

TTF	8400- 8300	8200- 8100	8000- 7900	7800- 7700	7600- 7500	7400- 7300	
Frequency	20	30	30	60	40	20	

Based on this information; discuss the MTTF

 $\mathbf{MTTF} = 7820$

→ Proposed Maintenance Policy:

PM W/o → Change Bearing Every 8000 RH (Annual PM)

#3

System: Water Pumps Item: Bearing

Maintenance Policy: Planned Maintenance

History (5 years):

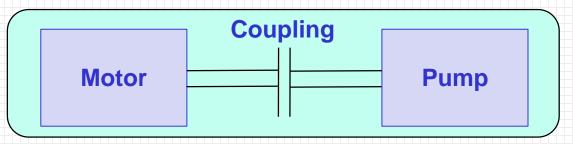
Working Condition: 156,400 Running Hours

Planned Work Orders: 12 PM Work Orders

Number of Failures: 8 CM Work Orders

Based on this information; discuss the MTTF

 $\mathbf{MTTF} = \mathbf{7820}$


→ Proposed Maintenance Policy:

PM W/o → Change Bearing Every 8000 RH (Annual PM)

1

Feed Water Pump ##

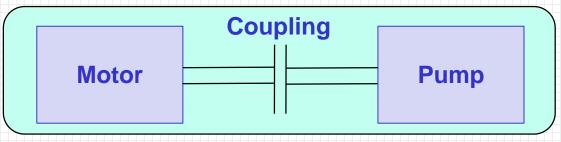
History (5 years):

Working Condition: 20,000 Running Hours

Number of Failures: 10 CM Work Orders

Based on this information; discuss the MTBF

MTBF =


→ Proposed Maintenance Policy:

PM W/o → Change ??? Every ???

2

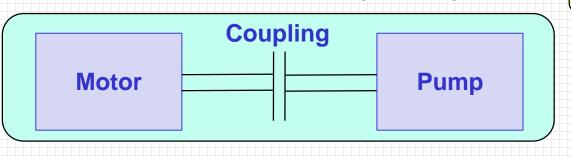
Feed Water Pump ##

History (5 years):

Working Condition: 20,000 Running Hours

Number of Failures: 10 CM Work Orders

	Motor	Coupling	Pump
Number of major failures	2	3	5


Based on this information; discuss the MTBF

	Motor	Coupling	Pump
MTBF			
Policy			

#3

Feed Water Pump ##

History (5 years): Working Condition = 20,000 Running Hours

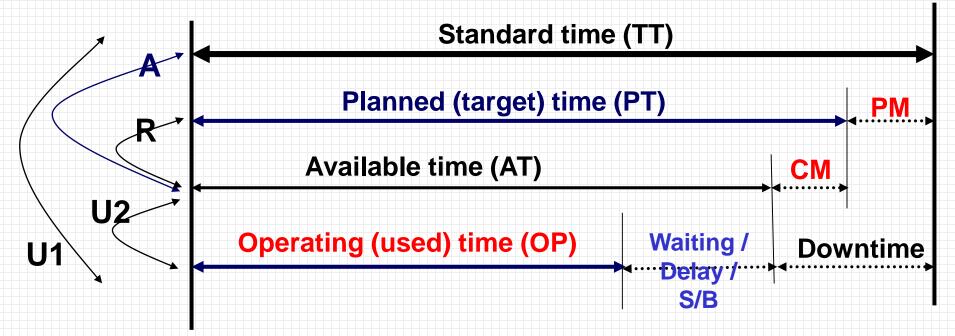
-									
	Running Hours	Work Order Type	Item	Running Hours	Work Order Type	Item	Running Hours	Work Order Type	Item
	5000	PM	Pump-seal	10000	PM	Motor- bearing	19000	CM	Motor- bearing
	8000	CM	Misalignm ent	13000	CM	Misalign ment	19000	CM	Misalignme nt
	8000	PM	Pump- bearing	13000	PM	Pump-seal	20,000	PM	Pump-seal
	9000	CM	Pump-seal	15000	CM	Pump- bearing	20,000	CM	Pump- bearing

Based on this information; discuss the MTTF

	Running Hours	Work Order Type	Item	Running Hours	Work Order Type	Item	Running Hours	Work Order Type	Item
	5000	PM	Pump-seal	10000	PM	Motor- bearing	19000	CM	Motor- bearing
	8000	CM	Misalignm ent	13000	CM	Misalign ment	19000	CM	Misalignme nt
	8000	PM	Pump- bearing	13000	PM	Pump-seal	20,000	PM	Pump-seal
	9000	CM	Pump-seal	15000	CM	Pump- bearing	20,000	CM	Pump- bearing
1									

Eq. MTBF	20,000/12 = 1666	Check 2000
Pump Seal	(5000 + 4000 + 4000 + 7000)/4 = 5000	
Pump Bearing	(8000+7000+5000)/3 = 6666	Every 6000
Coupling	(8000+5000+6000)/3= 6333	
Motor Bearing	(10000+9000)/2 = 9500	Every 10000

Standard Period; Running Hours


Standard	Standard Period; Running Hours					
1000	2000	4000	6000	2000	10000	12000

Maintenance Program:

Main Hama		Standard Period; Running Hours						
Main Items	2000	4000	6000	8000	10000	12000		
Pump Bearing	С	С	R	С	С	R		
Pump Seal	С	С	R	С	С	R		
Coupling	С	С	R	С	С	R		
Shaft	С	С	С	С	С	С		
	С	С	C	С	С	С		
Motor Bearing	С	С	С	С	С	R		
Motor Fan	С	С	С	С	С	С		
	C	С	С	С	С	С		

Operational Availability & Reliability & Utilization Analysis


```
PM = Planned downtime
```

CM = Corrective downtime

S/B =Standby time

OP = Operating time

AT = Available Time

PT = Planned Time

```
A= Equipment Availability = AT/TT

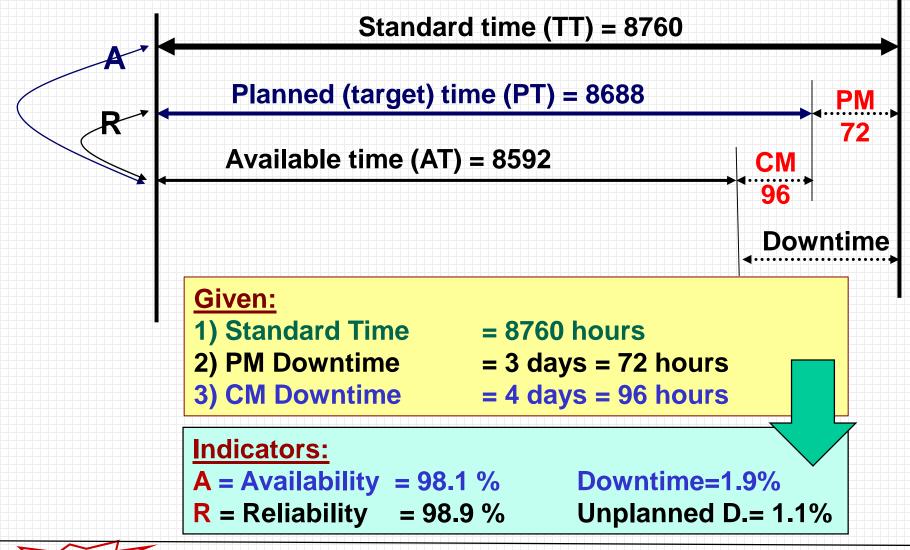
= Available time / Total Time

= (Total Time - Downtime) / Total Time

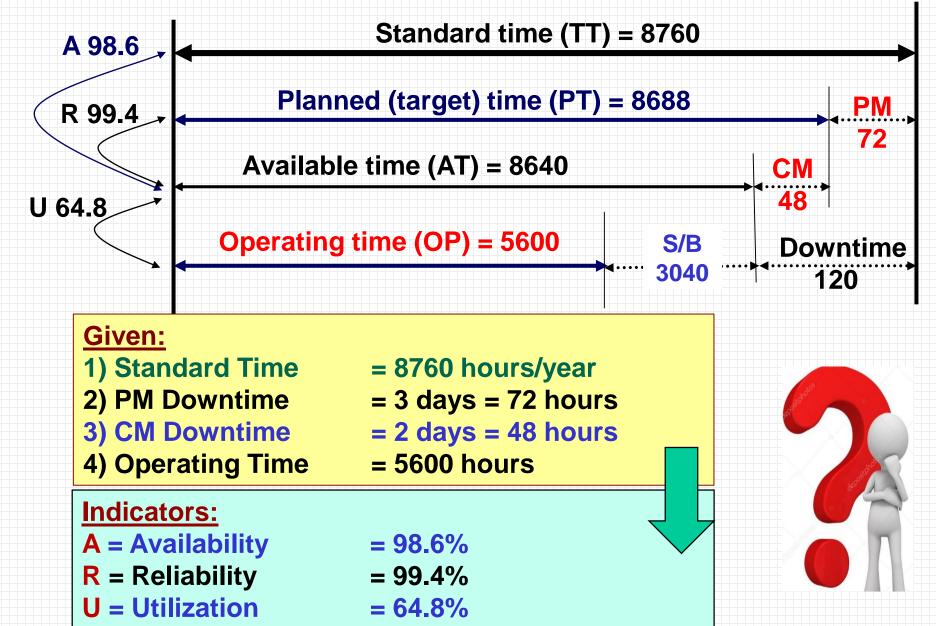
= (OP + S/B) / (OP+S/B+PM+CM)

R= Equipment Reliability = AT / PT

= (OP+S/B) (OP + S/B + CM)


= Running / (Running + CM)

U= Equipment Utilization


= OP / AT or = OP / TT
```

KPIs for top management

Operational Availability & Reliability

Operational Availability & Reliability & Utilization Analysis

Maintenance Control (KPIs):

Objective: High Quality (RAMS) at Low Cost

Objective		KPIs	Actual	Target	Recommendations
		System Reliability			
(Outputs)	Reliability	MTBF seal MTBF bearing			
Lliada		CM/PM seal CM/PM bearing			
High Quality	Availability	System Availability			
Quality	Maintainability	PM Efficiency			
(RAMS)		MTTR seal MTTR bearing MTTR seal & bearing			
	Safety	Overdue for SCE			
(Inputs)	Resources	Labor Productivity			
Low	Capacity	Operation Efficiency			
Cost	Cost	Maintenance Cost Rate			

Key Performance Indicator (KPIS) Target Values:

	Measure	<u>Target</u>
1.	Facility Availability	≥ 98%
2.	Operation Efficiency	≥ 85%
3.	Reliability of Critical Equipment	≥99%
4.	Availability of Critical Equipment	≥98%
5.	Planned v Unplanned	≥90%
6.	Maintenance Cost per Capacity	Site specific
7.	etc.	Site specific

Oil & Gas Site:

Monthly KPIs

Measure	Target	Month (#4)	Month (#3)	Month (#2)
Schedule Compliance (PM% on time)	≥ 90 %	93.2	94.5	90.15
Un-Scheduled Fill-in ratio (CM%)	≤ 10 %	2.3	11.4	3.28
Emergency Work (CM% for SCE)	≤ 5 %	4.1	3.6	3.28
M-hrs. estimation variance	≤ 10 %	6.67	17.48	1.82
PM backlog for SCE (PM waiting)	< 1 week	0.32	0.32	0.53
CM backlog for SCE (CM waiting)	≤1 week	0.87	0.91	0.44

Information For Annual Control (KPIs):

The maintenance information for a water pumping station is as follows:

System: A Water Pumping Station (4 units 3 Running & 1 Standby) Working Conditions: 24 hours/day Manpower: 4 Workers 2000 h/y

Annual PM Work Orders	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Maintenance Task	Cleaning Check	Cleaning Check Check	Cleaning Check Check	Check Check Replace seal	Check Replace seal Replace bearing
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Actual PM W/o	132	26	6	3	3
Total PM Downtime	-	-	-	24	36
Total maintenance time	160	65	24	36	51
Manpower	2 Mech.	2 Mech.	2 Mech.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.

Manpower	2 Mech.	2 Mech.	2 Mech.	2 Mech. + 1 Elec.	-
Annual CM Work Orders		Seal Failure		Bearing Failure	
CM Work Orders		3		2	
Time Between Failure; hours		3400, 3200, 3600		6400, 6200	
Repair Time; hours		33		30	
CM Downtime; hours		30		25	
Total Repair Time		36		30	
Manpower		2 Mech. +	1 Elec.	3 Mech. + 1 Elec.	

Based on this information; discuss the Maintenance

Information For Annual Control (KPIs):

The maintenance information for a water pumping station is as follows:

System: A Water Pumping Station

(4 units 3 Running & 1 Standby)

W

KPIs

Current Feedback

Future Feedback

Reactive Analysis

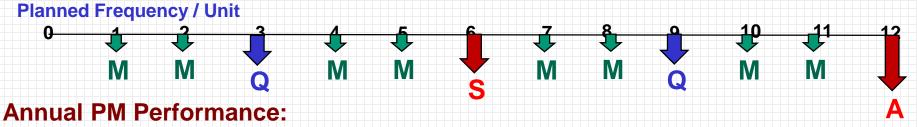
- 1. CM/PM
- 2. PM Efficiency
- 3. MTTR & MTTM
- 4. MTBF
- 5. Availability
- 6. Reliability
- 7. Labor Productivity

Proactive Analysis

- Overdue of SCE
- Canceled of SCE
- Operation Efficiency
- System OEE
- Maintenance Cost Rate
-

CM / PM (#/#):

Annual PM Performance:


PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Maintenance Task	Cleaning Check	Cleaning Check Check	Cleaning Check Check	Check Check Change seal	Check Change seal Change bearing
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Number of Actual PM W/o	132	26	6	3	3

Annual CM Performance:

CM Task	Seal Failure	Bearing Failure	
Number of CM W/o	3	2	

Item	Unit	Seal	Bearing
Actual CM / PM	5/6 = 83%	3/6 = 50%	2/3 = 67%
Target CM / PM	< 20%	< 20%	< 20%
Recommendations	Updating PM	RCFA	RCFA

PM Efficiency: (PM% on time) or PM Compliance %

PM Level **Quarter** Semi-Annual Annual Weekly **Monthly** (2000 RH) (4000 RH)(8000 RH) Cleaning Cleaning Check ... Check ... Cleaning **Maintenance Task** Check ... Check ... Check ... **Change seal** Check ... **Change bearing** Check Check Change seal **Maintenance Type** Running Running Running Shutdown Shutdown Number of Actual PM W/o 132 26 3 3 6 160 **32** 8 4 4 **Planned PM Frequency** 200

Item	Total PM	Running Maintenance	Shutdown Maintenance
PM Efficiency	170/208= 82%	164/200= 82%	6/8= 75%
Backlog (waiting) %	18%	18%	25%
Target PM Eff.	100	100%	
Recommendations	Updati	RCFA	

Mean Time to Maintain (MTTM) & Mean Time to Repair (MTTR):

Mean Time to Maintain (MTTM): Assume; PM downtime = PM Maintenance time

Annual PM Performance:

PM Level	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Maintenance Task	Cleaning Check	Cleaning Check Check	Cleaning Check Check	Check Check Change seal (1)	Check Change seal (1) Change bearing (2)
Maintenance Type	Running	Running	Running	Shutdown	Shutdown
Number of Actual PM W/o	132	26	6	3	3
Total PM Downtime, hours	-	-	-	24	36
MTTM (Standard time)				8	12

Mean Time to Repair (MTTR): Assume; CM downtime = repair time

Annual CM Performance:

CM Task	Seal Failure	Bearing Failure	
Number of CM W/o	3	2	
Total CM Downtime, hours	30	25	
MTTR	10	12.5	

Standard PM Hours:

Item	Replace Seal	Replace Bearing
PM Level	Semi- Annual	Annual
Standard PM Hours	4000	8000

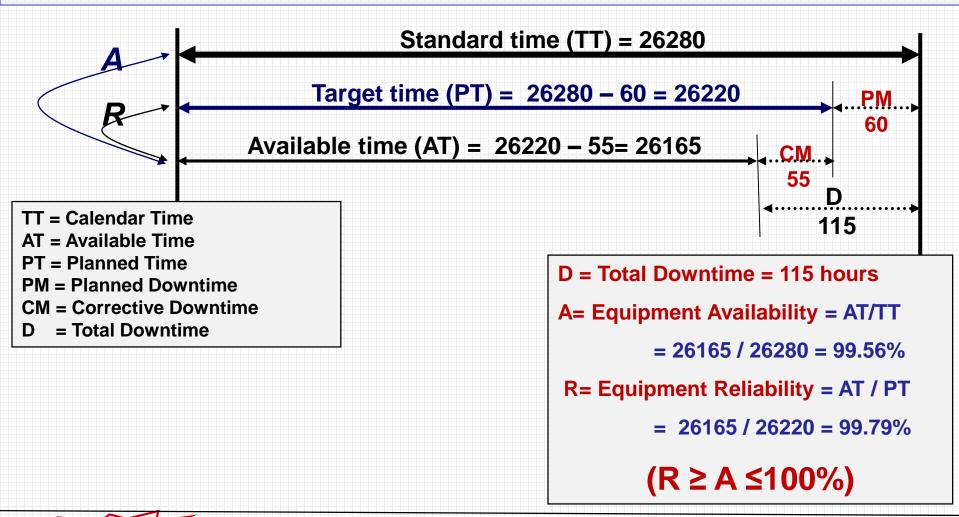
Annual CM Performance:

- <u></u>			
CM Work Orders	3S , 2B		
Time Between Failure; hours	S (3400,3200,3600) B (6400,6200)		
Repair Time; hours	33 , 30		
CM Downtime; hours	30S , 25B		
CM Labor; man-hours	250		

Item: S:Seal B:Bearing

MTBF = Total Operating Time / Number of Failures → RTF

Seal (S)
$$\Rightarrow$$
 (3400+3200+3600) / (3 CMs) = 3400 hours/failure Bearing (B) \Rightarrow (6400+6200) / (2 CMs) = 6300 hours/failure Unit \Rightarrow (3400+3200+3600+ 6400+6200) / (5CMs)= 4560 hours/failure


Item	Unit	Seal	Bearing
MTBF	4560	3400	6300
Target MTBF	Semi-Annual	Semi-Annual	Annual
Recommendations	Updating PM	RCFA	RCFA

Operational Availability & Reliability (Based on Downtime)

Feed Water Pump Station → 4 Units (3 Running &1 standby)

Standard Time = 8760*3 = 26280 hour/year,

PM Downtime = 60 hours , CM Downtime = 55 hours , Total Downtime = 115 hours

Labor Productivity

Available Manpower:

4 Workers * 2000 h/y = 8000 man-hours

Annual PM Work Orders	Weekly	Monthly	Quarter (2000 RH)	Semi-Annual (4000 RH)	Annual (8000 RH)
Total maintenance time	160	65	24	36	51
Manpower	2 Mech.	2 Mech.	2 Mech.	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.
Total PM man-hours	320	130	48	108	204
Total PM man-nours				810	

Annual CM Work Orders	Seal Failure	Bearing Failure	
Total Repair Time	36	30	
Manpower	2 Mech. + 1 Elec.	3 Mech. + 1 Elec.	
Total CM man having	108	120	
Total CM man-hours	228		

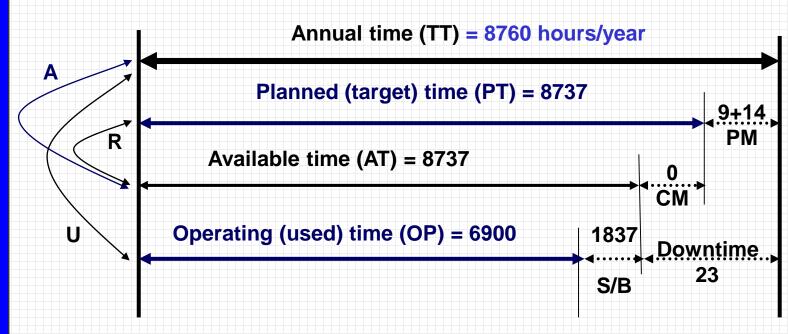
Labor Productivity = Actual man-hours / Available man-hours

= 1038 / 8000 = 13%

Maintenance Control (KPIs)

Objective	· · · · · · · · · · · · · · · · · · ·	KPIs		Target	Rec.
		System Reliability	99.79%	99.9%	
	Reliability	MTBF seal MTBF bearing	3400 6300	4000 8000	
(Outputs)	puts)	CM/PM seal CM/PM bearing	50% 67%	20% 20%	
High	Availability System Availability		99.56%	99.9%	
Quality		PM Efficiency	82%	90%	
		MTTR seal MTTR bearing	10 15	8 12	Repair time
	Safety	Overdue for SCE	-	-	Finish date
(Inputs)	Resources	Labor Productivity	13%	15%	Man-hour
Low	Capacity	System OEE			Time analysis
Cost	Cost	Maint. Cost Rate	Feedback		LE / ton

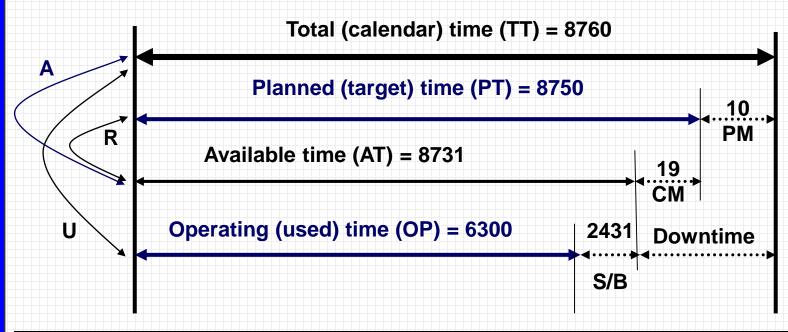
Continuous Improvement



<u>Information For Annual Control (KPIs):</u> The maintenance information for a water pumping station is as follows: **System:** A Water Pumping Station Manpower: (4 units 3 Running & 1 Standby) 4 Workers Working Conditions: 24 hours/day 2000 h/y **Annual PM Performance:** Unit **P1 P2 P3 P4** Total (4 units) **Actual Operating Time; hours** 6900 8760*3 6300 6200 6880 **Running PM Work Orders 50** 34 35 45 164 3 Semi-Annual PM Work Orders (S) 2 1

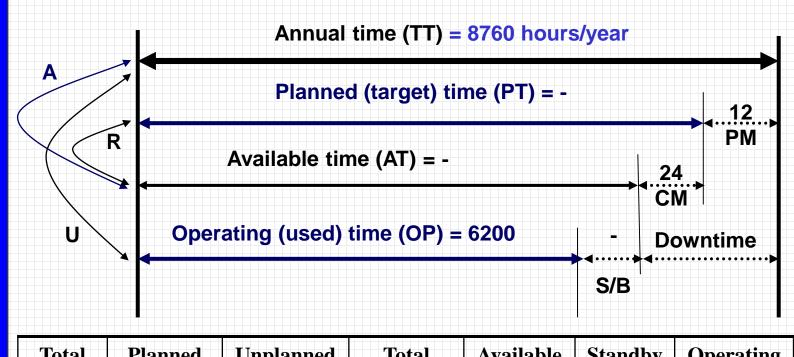
9 15 24 **Semi-Annual PM Downtime; Hours** Annual PM Work Orders (S.B) 1 1 3 1 **Annual PM Downtime; Hours** 14 10 12 36 PM Labor; man-hours 340 290 270 300 1.200

Annual CM Performance: Item: S:Seal **B**:Bearing **P1 P3 P2 P4** Total (4 units) Unit **2S CM Work Orders** 1S, 1B **1B** 3S, 2B (3400,3200,3600) 3400,3200 Time Between Failure; hours 3600,6400 6200 (6400,6200)Repair Time; hours 10,12 11,14 16 33,30 **CM Downtime**; hours 10,14 12 30S, 25B 9,10


Report **Availability Analysis KPIS** Pump #1

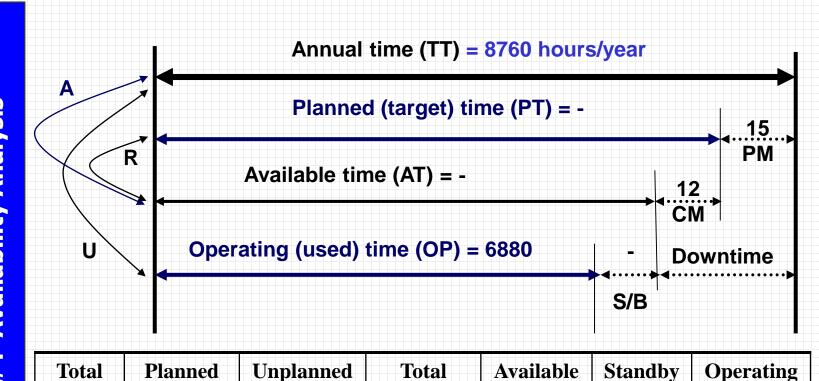
Total Hours	Planned downtime	Unplanned downtime	Total downtime	Available time	Standby time	Operating time
8760	9+14	0	14	8746	1846	6900

Availability %	Reliability %	Utilization %
99.74%	100 %	78.76 %


Report **Availability Analysis KPIS** Pump #2

Total Hours	Planned downtime	Unplanned downtime	Total downtime	Available time	Standby time	Operating time
8760	10	9+10	29	8731	2431	6300

Availability %	Reliability %	Utilization %
99.67%	99.78 %	71.91 %



Total	Planned	Unplanned	Total	Available	Standby	Operating
Hours	downtime	downtime	downtime	time	time	time

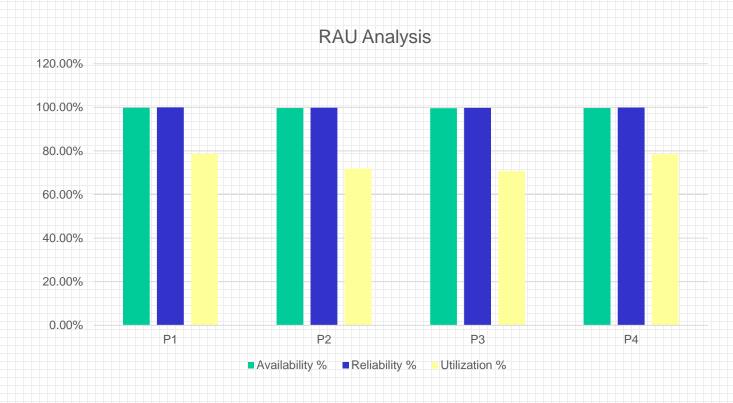
Availability %	Reliability %	Utilization %
99.58%	99.72%	70.78%

Availability %	Reliability %	Utilization %	
99.69%	99.86%	78.53%	

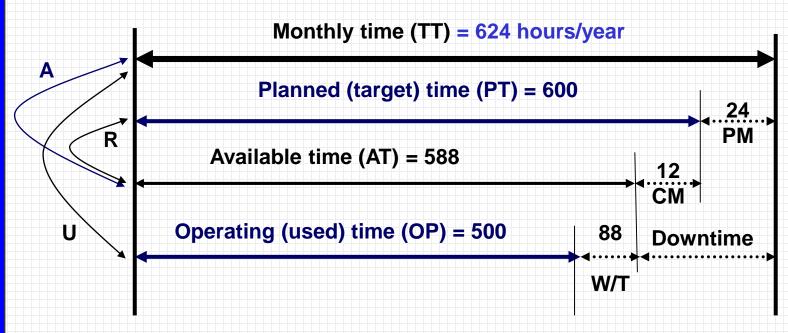
downtime

time

time


downtime

downtime


Hours

time

Pump #	Availability %	Reliability %	Utilization %
P1	99.84%	100 %	78.76 %
P2	99.67%	99.78 %	71.91 %
Р3	99.58%	99.72%	70.78%
P4	99.69%	99.86%	78.53%

Availability Analysis Report **KPIS** Air Compressor #1

Standar d Hours	Planned downtim e	Unplanned downtime	Total downtime	Available time	Waiting time	Operating time
624	24	12	36	588	88	500

Availability %	Reliability %	Utilization %
588/624=94.2%	588/600= 98%	500/624=80%

Annual KPIs Report For Top Management

Facility / Site

System / Area

System / Area

System / Area

Power System

Turbine

Equipment

Steam System

Boilers

Equipment

/Top \
(Facility)
Level I

Middle (Systems) Level II

Operational (Critical Equipment)
Level III

KPIs Report

KPIs - Level I

744

U-1000

742.5

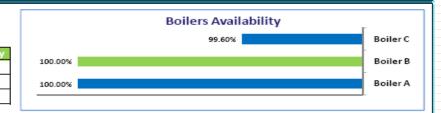
744

U-4000

Availability KPIS Report

Equipment **Availability** Critical

Performance Production Efficiency


Monthly Plant	Monthly Plant Availability						
	Down hrs	Up. Hrs	Availability				
U-100	0	744	100.00%				
U-200	0	744	100.00%				
U-300	97	647	86.96%				
U-400	0	744	100.00%				
U-450	4.5	739.5	99.40%				
U-0550	0	744	100.00%				
U-600	1.5	742.5	99.80%				
U-1000	0	744	100.00%				
U-4000	0	744	100.00%				

* Standard operating hours =

744

Monthly Boilers Availability

	Down hrs	Up. Hrs	Availability
Boiler A	0	744	100.00%
Boiler B	0	744	100.00%
Boiler C	3	741	99.60%
Boiler C	3	/41	99.60%

U-0550

Unit Availability

739.5

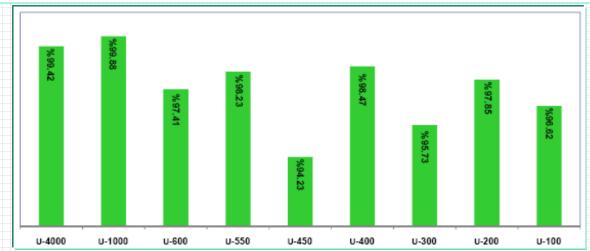
744

647

744

Monthly Production Performance Efficiency

	Target	Actual	Efficiency
U-0100	15080.65	14468.186	95.94%
U-0200 (WAX)	3600	4703.599	130.66%
U-0200 (OIL)	8000	8687.392	108.59%
U-0300	8000	8049.118	100.61%
U-0400	2536.364	2750.883	108.46%
U-0450	3428.6	3546.5	103.44%
U-1000 (VGO)	22916	19790.285	86.36%
U-1000 (SO)	3438	6275.105	182.52%
U-1000 (LWD)	18750	20144.321	107.44%
U-1000 (MWD)	10833	12077.519	111.49%
U-1000 (HWD)	11333	8422.207	74.32%
U-1000 (VR+mix)	35958	40917.354	113.79%
U-4000 (GO)	32000	23776.588	74.30%
U-4000 (NPH)	7500	7080.803	94.41%
U-4000 (LPG)	2400	2505.17	104.38%

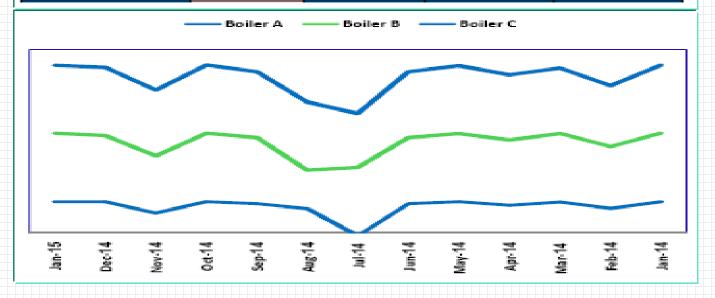

Page 1/6

KPIs Report

Accumulative Plant Availability

KPIs - Level I

Acc. Plant Ava	Acc. Plant Availability									
	U-100	U-200	U-300	U-400	U-450	U-550	U-600	U-1000	U-4000	Std. Hrs
Jan-14	744	744	744	744	744	744	744	744	740	744
Feb-14	672	672	672	672	672	672	672	672	672	672
Mar-14	744	744	744	744	744	744	725	744	713	744
Apr-14	693	720	720	720	715	720	720	720	720	720
May-14	725	744	744	744	744	744	744	744	737	744
Jun-14	720	720	720	720	720	720	688	720	720	720
Jul-14	744	744	667	744	660	744	744	744	733	744
Aug-14	469	540	512	599	300	576	552	744	744	744
Sep-14	720	720	720	720	720	720	720	709	720	720
Oct-14	744	744	744	744	737	744	742.66667	744	744	744
Nov-14	720	720	720	720	720	720	720	720	717.5	720
Dec-14	744	744	744	744	740	744	744	744	744	744
Jan-15	744	744	647	744	739.5	744	742.5	744	744	744
Total	9183	9300	9098	9359	8955.5	9336	9258.1667	9493	9448.5	9504
Acc. Availability	96.62%	97.85%	95.73%	98.47%	94.23%	98.23%	97.41%	99.88%	99.42%	100.00%

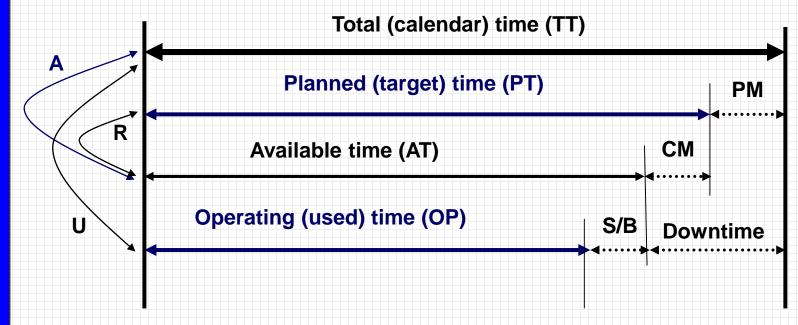


Page 2/6

KPIs - Level II

Boiler Availability Report **KPIS** Accumulative

Acc. boilers Availability						
	Boiler A	Boiler B	Boiler C	Std. Hrs		
Jan-14	744	744	744	744		
Feb-14	668	672	666	672		
Mar-14	740	744	715	744		
Apr-14	702	713	709.5	720		
May-14	744	742	740	744		
Jun-14	720	720	720	720		
Jul-14	370	744	591	744		
Aug-14	665	420	744	744		
Sep-14	720	720	720	720		
Oct-14	744	744	744	744		
Nov-14	618.5	621	720	720		
Dec-14	744	720	744	744		
Jan-15	744	744	741	744		
Total	8923.5	9048	9298.5	9504		
Acc. Availability	93.89%	95.20%	97.84%	100.00%		



Page 3/6

Boiler Availability

Accumulative

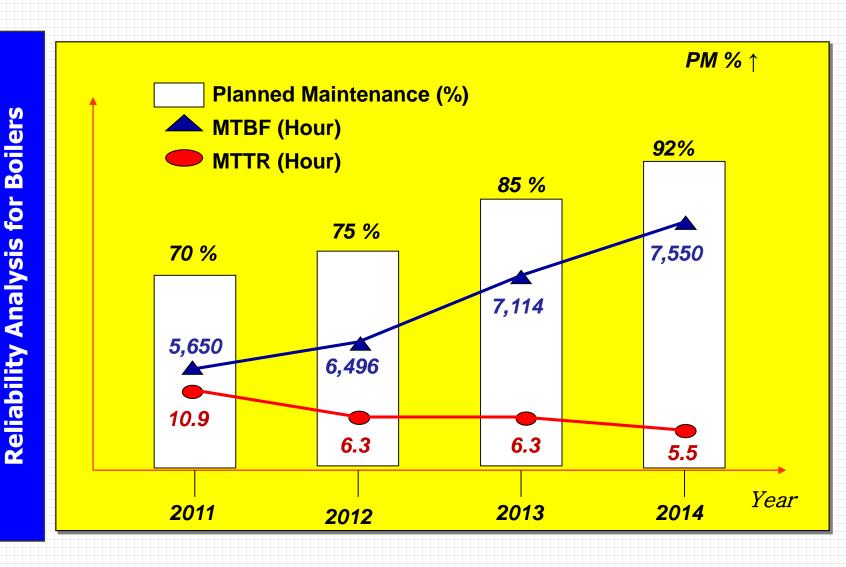
KPIs - Level II

Total Hours	Planned downtime	Unplanned downtime	Total downtime	Available time	Standby time	Operating time
9504	400	180.5	580.5	8923.5	0	8923.5

Availability %	Reliability %	Utilization %	
93.89	98	93.89	

Page 4/6

KPIs - Level II

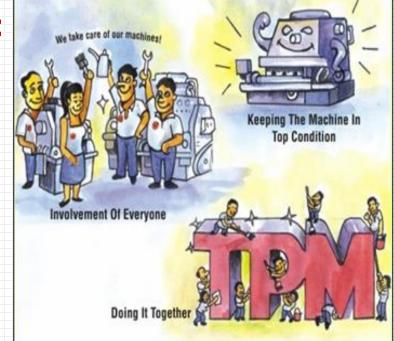

Top Critical Equipment (Accumulative Down Time) Report **KPIS**

Unit	Equipment	Total
UNIT 400	GA-402B	1548
UNIT 1000	GA-1001A	1209
UNIT 1000	GA-1009A	1093.5
UNIT 400	GA-402A	747
UNIT 6000	GB-302A	321

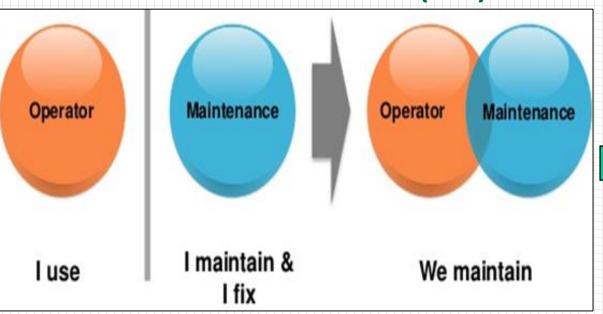
Page 5/6

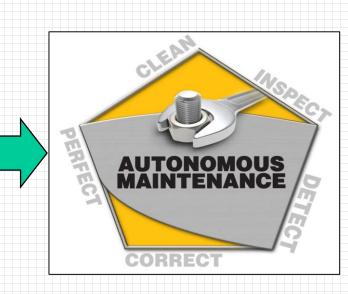
KPIs - Level III

KPIs Report



Page 6/6


Total Productive Maintenance (TPM):


TPM is a systematic approach to maximize the equipment effectiveness through operators involvement.

Management + Operators + Maintenance

Autonomous Maintenance (AM):

Case Study

Process: Excavation Equi	pment: Excavator
Item	Day #1
Total working hours	12
Planned Performance Rate, m3/hr	30
Net Quantity, m3	210

Capacity Analysis:

Maximum Quantity = 12 * 30 = 360 m3 (Optimal ??)

Net Quantity = 210 m3

Capacity Utilization = 210 / 360 = 58% Losses= 42%

Time Analysis:

Total Working Time = 12 hours Net Quantity = 210 m3

Productive time = 210/30 = 7 hours

Capacity Utilization = 7 / 12 = 58% Losses= 42%

Case Study

Process: xxx Equipment: Compressor xxx					
Item	2017				
Total working hours	8760				
Planned Performance Rate, ton/hour	15				
Net Quantity, ton	100,000				

Capacity Analysis:

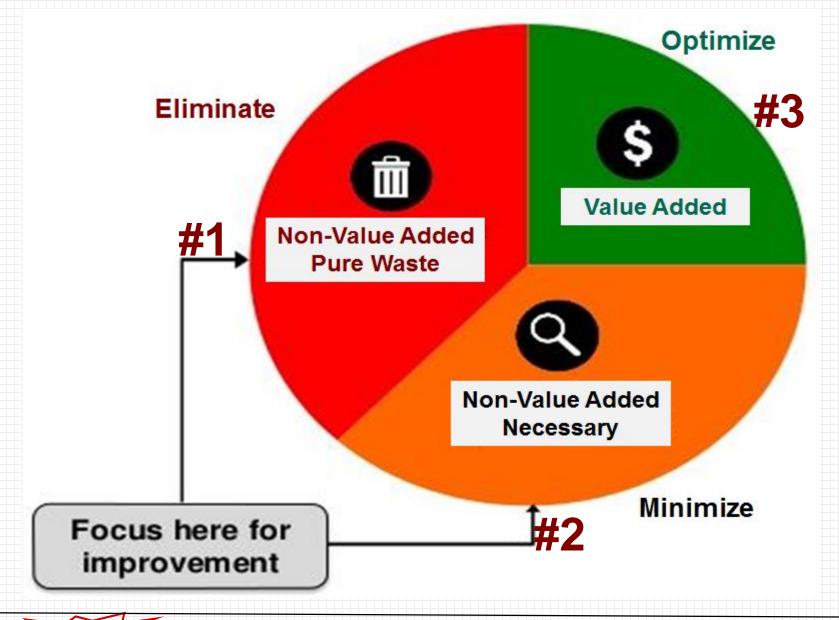
Maximum Quantity = 8760 * 15 = 131400 ton (Optimal ??)

Net Quantity = 100,000

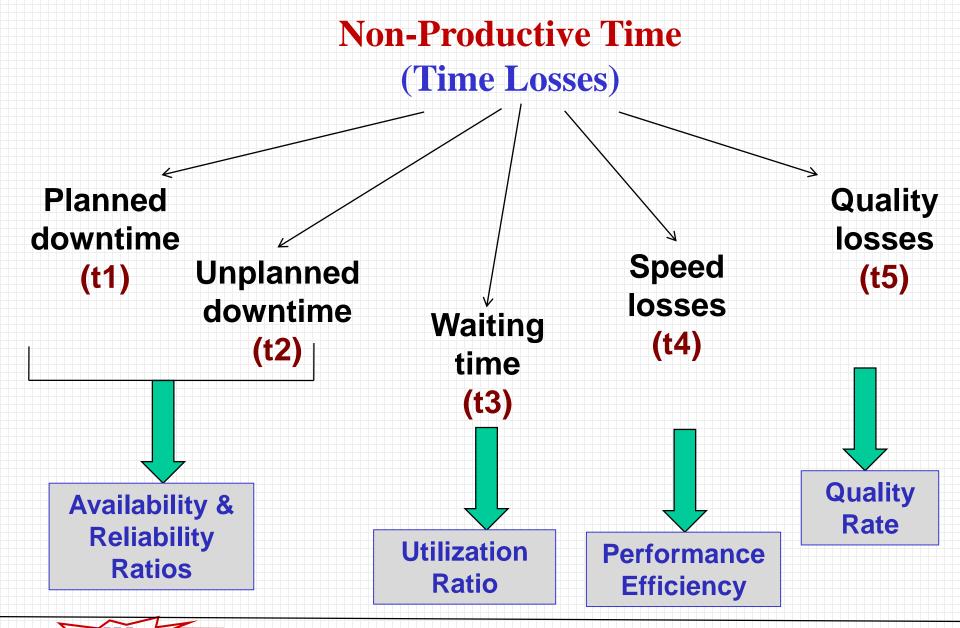
Capacity Utilization = 76%

Losses= 24%

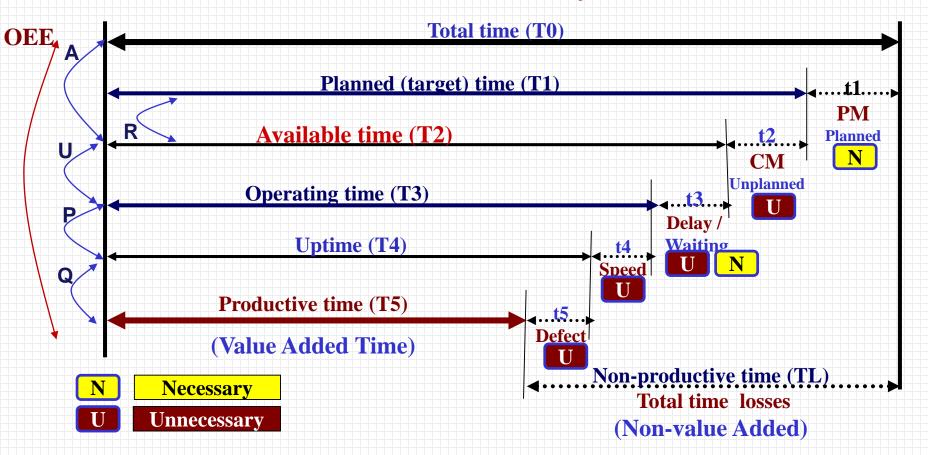
Time Analysis:


Total Working Time = 8760 Net Quantity = 100,000

Productive time = 100,000/15 = 6667


Capacity Utilization = 76%

Losses= 24%


Lean Approach – Value Added Flow Analysis

Process Time Analysis:

Process Time Analysis

Overall Equipment Effectiveness (OEE)

= Availability * Performance * Quality yield

Availability = (Total Time – Down Time) / Total Time

→ Downtime loss

Performance = Actual Production / Target Production

→ Speed loss

Quality Yield = Net Production / Total Production

→ Quality loss

(Target → Zero Losses)

Case Study:

Annual KPIs

Company: Petrochemical Industry Product: XXX

Case Study: KPIs

The operation information 2017 for a petrochemical industry is as follows:

Total Working Hours	8760	hours
Performance Standard Rate	15	units/hour
Net Production Quantity	100,000	units

Based on this information, discuss briefly KPIs.

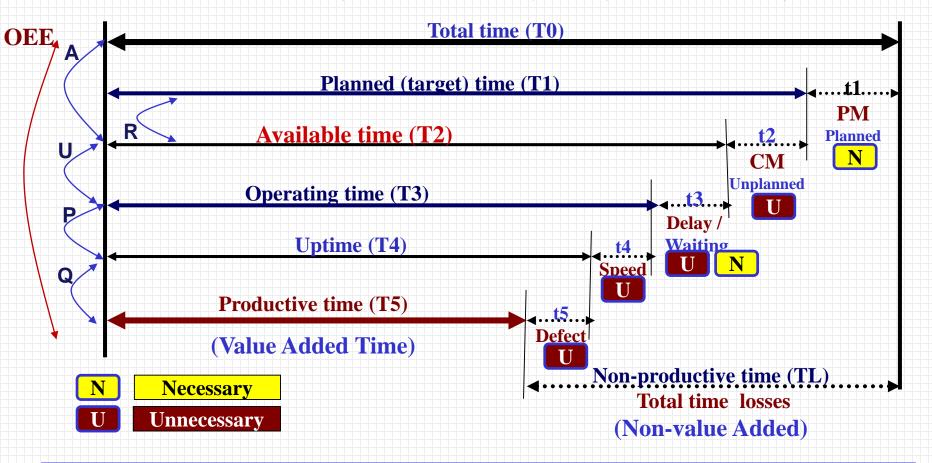
Main KPIs:

Operation Efficiency = (100,000/15)/8760 = 76%

Operation Efficiency = 100,000/(15*8760) = 76%

Unused Capacity = 100 - 76% = 24%

(Non-Value Added)


Case Study: KPIs

The operation information 2017 for a petrochemical industry is as follows:

Daily Working Hours	24	hour/day
Annual Working Days	365	days
Planned Downtime (PM)	72	hours
Unplanned Downtime (CM)	48	hours
Performance Standard Rate	15	units/hour
Actual Operating Time	8,000	hours
Total Production Quantity	105,000	units
Reject/Scrap Quantity	5,000	units

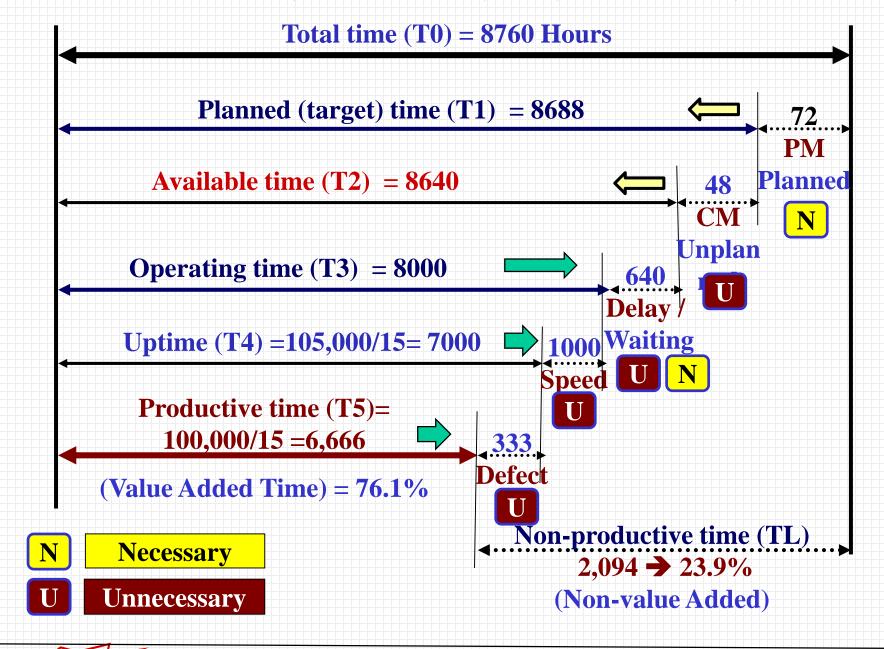
Based on this information, discuss briefly KPIs.

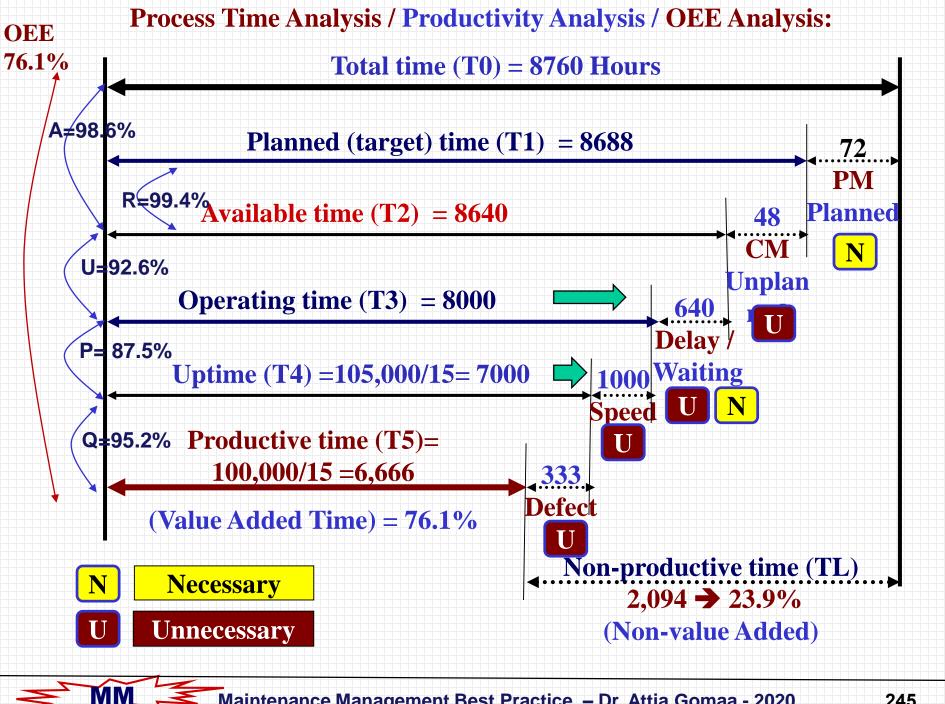
Process Time Analysis / Productivity Analysis / OEE Analysis:


```
A = Availability = (Total Time – Down Time) / Total Time =

R = Reliability = Available Time / Planned Time =

U = Utilization = Operating Time / Available Time =

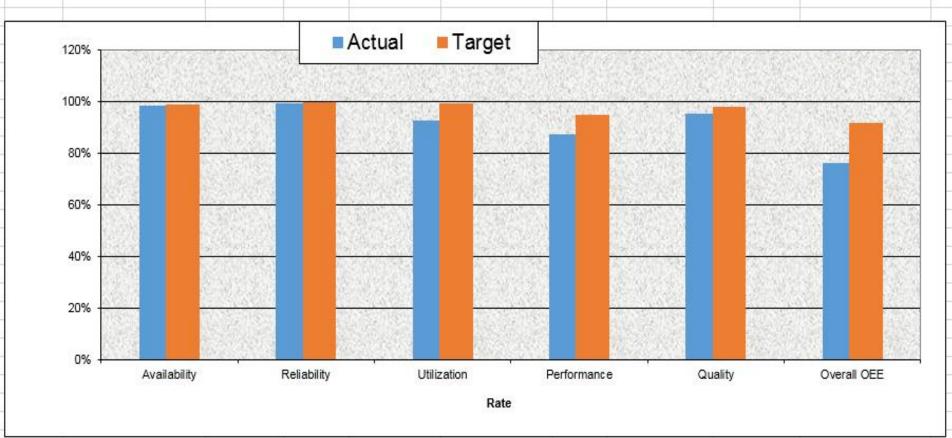

P = Performance = Actual Production / Target Production =


Q = Quality yield = Net Production / Total Production =

OEE = Availability * Performance * Quality yield =

OEE = Availability * Utilization * Performance * Quality yield =
```

Process Time Analysis / Productivity Analysis / OEE Analysis:



OEE Analy	sis:										
Working hours	24		Planned	down time		72	hr				Ť
Workinh days	365		unplann	ed downtime		48	hr				
Standard rate	15	unit /hr	Total prod	duction quantity		105000	unit	7000	hr		
Actual operating time	8000	hr	Reject sc	Reject scrap quantity 50		5000	unit	333.333	hr		
				Total time (TO))						1
				8760							
			Pla	nned time (T1)						PM	Ŧ
			110	8688						72	ł
										/-	1
				e time (T2)					CM		╀
			8	640					48		ł
		Ope	rating tin	ne (T3)				Stand by	1		l
			8000					640			1
		UP ti	me (T4)				Speed				I
		7	000				1000				I
	Prod	luctive tir	ne (T5)			Defects					t
		6666.7				333					t
											†
Availability (A	\)	98.	.6%								t
Reliability (R	-	99.	.4%			A*P*	*U*Q	T5/T0			t
Utilization (U		92.	.6%		OEE	76.	1%	76.1%			Ť
Performance (P)	87.	.5%								
Quality (Q)		95.	.2%								
₹ MM , ₹	Mair	ntenance	Manage	ement Best Pra	ictice -	Dr. Attia	Gomaa	- 2020		246	

	Company:	ххх			Process: xxx			
			1	1	Total Time	8760	Hours	
			2	Planr	ned Downtime	72	Hours	
			3	Unplar	nned Downtime	48	Hours	
			4	Availab	ole Time (1-2-3)	8640	Hours	
Avail	ability Rate =					98.63%		Maintenance
	Reliability = (4/(1-2))				99.45%		
			5	Actual	Operating Time	8000	Hours	
Utiliz	ation Rate = (5/4)				92.59%		Logistic
			6	Total Pro	duction Quantit	y 105000	Units	
			7	Standard	Production Rat	e 15	Units per	r hour
			8		Uptime	7000.0	Hours	
Perfo	rmance Rate	= (8/5)				87.50%		Operation
			9	Reject	Scrap Quantity	5000	Units	
	ity Rate = ((6-9					95.24%		Quality

KPIs Report (2017):

KPIs	Actual	Target	Gap%	Resposiblity
Availability	98.6%	99.0%	0.4%	Maintenance
Reliability	99.4%	99.6%	0.2%	Maintenance
Utilization	92.6%	99.5%	6.9%	Logistic
Performance	87.5%	95.0%	7.5%	Operation
Quality	95.2%	98.0%	2.8%	Quality
Overall OEE	76.1%	91.7%	15.6%	Business

Recommendations (2018):

Improve OEE% (76.1 to ≥ 91.7%)

- Improve A% (98.6 to ≥ 99%):
 (Min. Downtime losses)
 - 1. Standard RCFA
 - 2. Advanced Training
 - 3. Motivation Program
- Improve U% (92.6 to ≥ 99.5%):
 (Min. waiting / delay)
 - 1. Raw Material Availability
 - 2. Commination Plan
 - 3. Motivation Program
- Improve P% (87.5 to ≥ 95%): (Min. Speed losses)
 - 1. Monthly Test Run (full)
 - 2. Advanced Training
 - 3. Motivation Program
- Improve Q% (95.2 to ≥ 98%): (Min. Defect Ratio)
 - 1. Sample Analysis
 - 2. Labor Rotation
 - 3. Motivation Program

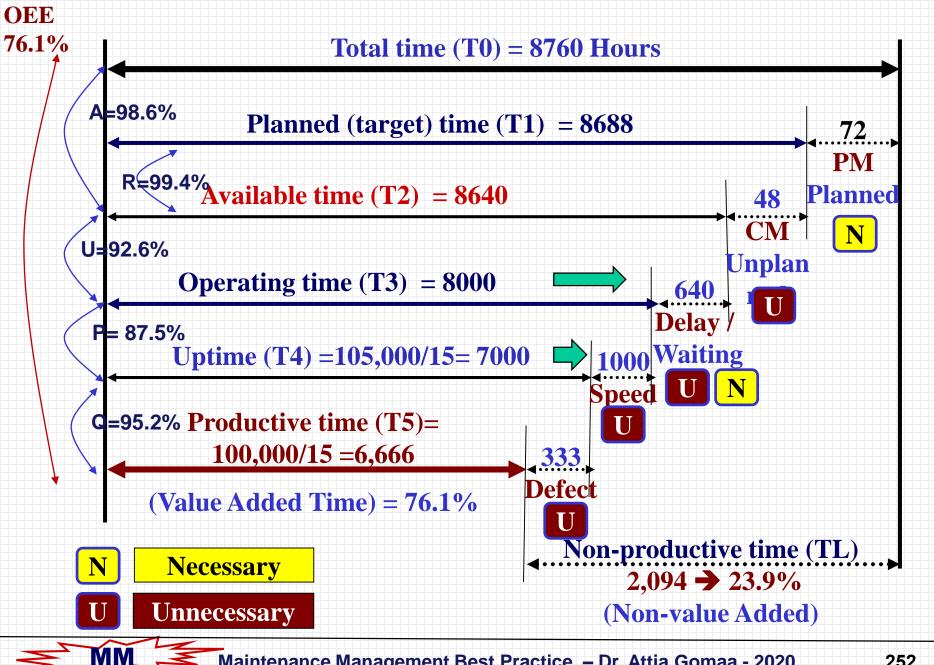
Case Study: KPIs

The operation information for a petrochemical industry is as follows:

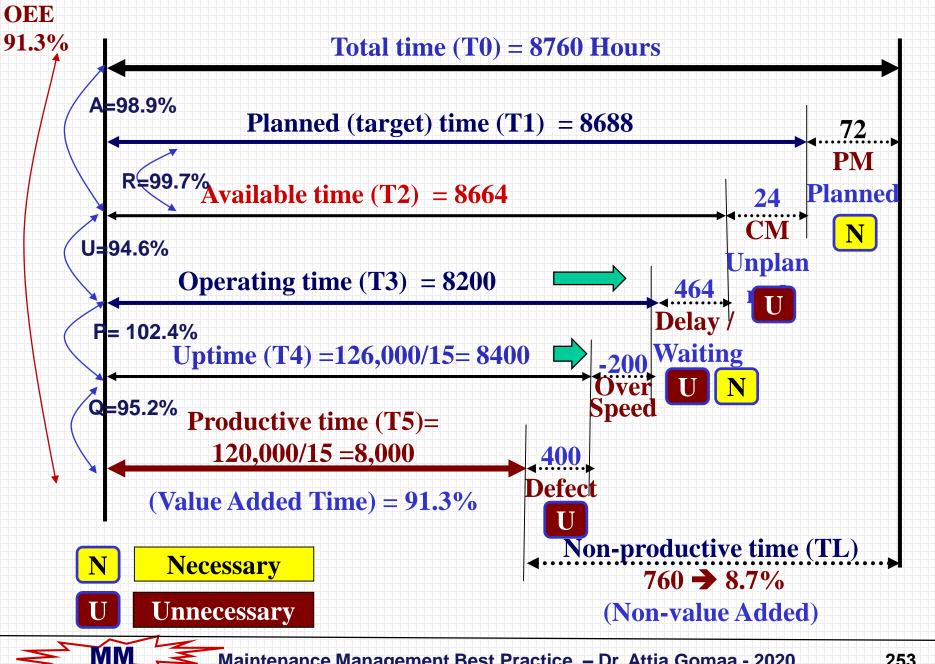
Item	Units	2017	2018
Daily Working Hours	hour/day		
Annual Working Days	days		
Planned Downtime (PM)	hours		
Unplanned Downtime (CM)	hours		
Standard Performance Rate	units/hour		
Actual Operating Time	hours		
Total Production Quantity	units		
Reject/Scrap Quantity	units		

Based on this information, discuss briefly KPIs.

Case Study: KPIs


The operation information for a petrochemical industry is as follows:

Dept.	Item	Units	2017	2018
ce	Daily Working Hours	hour/day	24	24
enan	Annual Working Days	days	365	365
Maintenance	Planned Downtime (PM)	hours	72	72
M	Unplanned Downtime (CM)	hours	48	24
u	Standard Performance Rate	units/hour	15	15
atio	Actual Operating Time	hours	8,000	8,200
Operation	Total Production Quantity	units	105,000	126,000
	Reject/Scrap Quantity	units	5,000	6,000

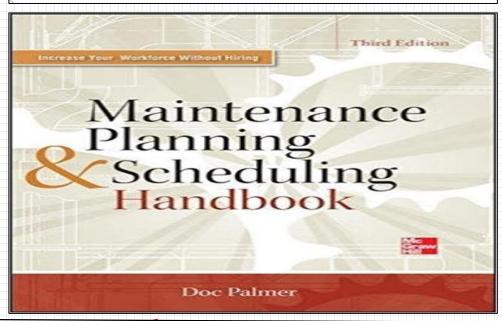

Based on this information, discuss briefly KPIs.

KPIs Report

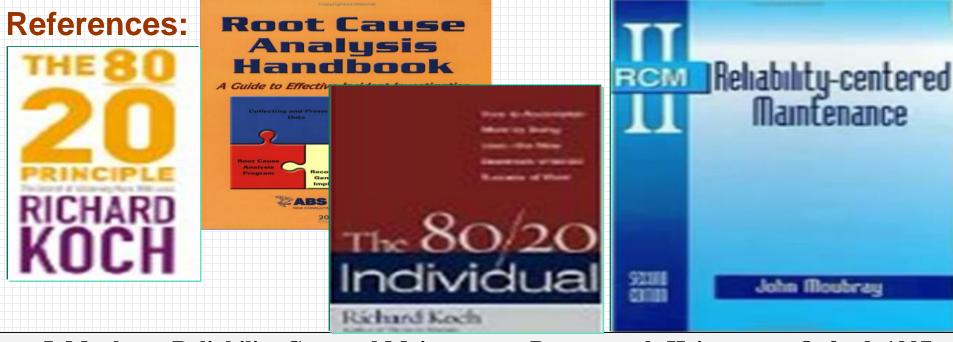
KPIs	2017	2018	Evaluation 2018 / 2017	Target 2019	Responsibility
OEE %	76.1	91.3	+ 15.2%	93%	Facility
Availability %	98.6	98.9	+ 0.3%	99.5	
Reliability %	99.4	99.7	+ 0.3%	99.99	Maintenance
Utilization %	92.6	94.6	+ 2.0%	96%	Logistics
Performance %	87.5	102.4	+ 14.9%	100%	Operation
Quality %	95.2	95.2	-	97%	Quality

Comments & Recommendations for the next period 2019:

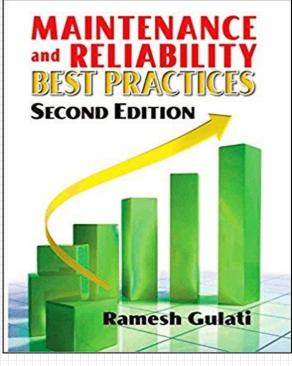
- 1- Advanced Training Program
- 2- Performance Motivation Program
- **3- Standard Documentation System**
- 4- Update Maintenance Program
- 5- Root Cause Failure Analysis (RCFA)

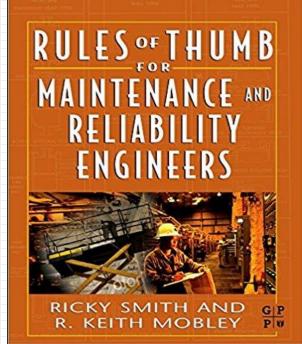


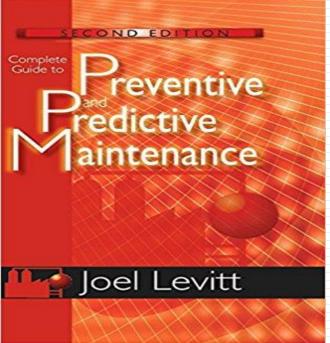
Main References:

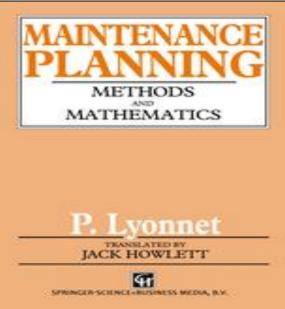


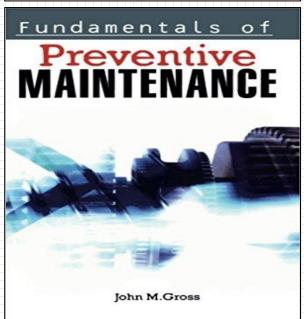
Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability and maintenance data for equipment (ISO 14224:2016)

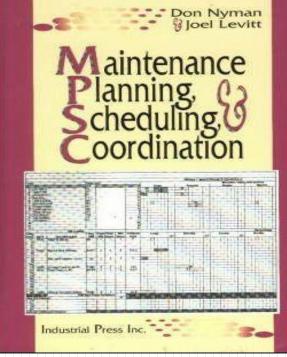


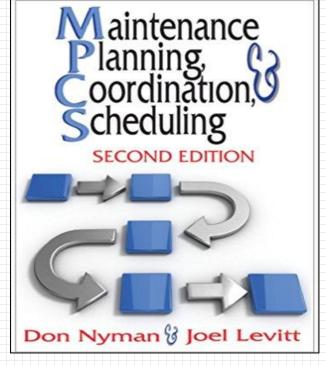


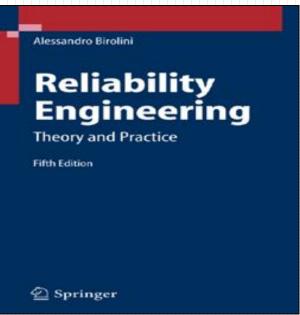


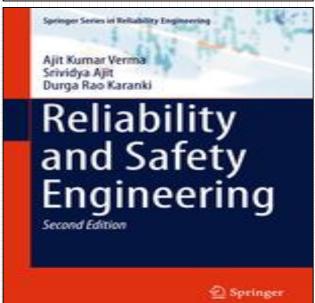


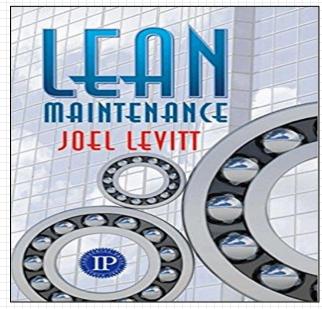

- J. Moubray, Reliability Centered Maintenance, Butterworth-Heinemann, Oxford, 1997.
- Charles E. Ebeling, An Introduction to Reliability and Maintainability Engineering, Waveland Press, Inc., 2005.
- Elsayed, A. Elsayed, Reliability Engineering, Addison Wesley, 1996.
- MIL-P-1629 "Procedures for performing a failure mode, effects and criticality analysis
- Nicholls, David B., System Reliability Toolkit, DoD Reliability Information Analysis Center (RIAC), 2005
- O'Connor, Patrick D. T., Practical Reliability Engineering, 4th ed., Wiley, 2002
- http://www.fmeca.com/

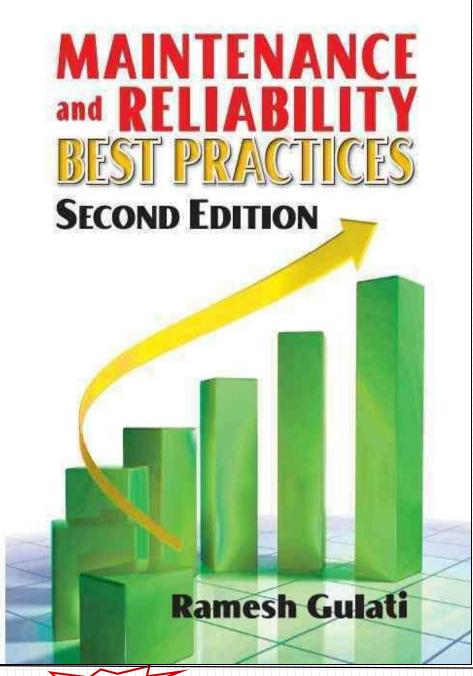


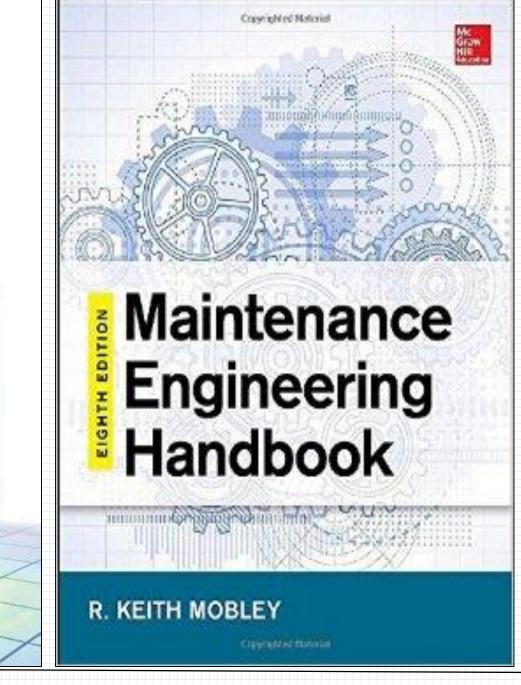












صنع في مصر - Made in Egypt اللهم يا حفيظ - أحفظ مصر وأهل مصر من كل سوء — اللهم أمين

Thank you for your attention!

Copyrights of this file & More information:

Dr. Attia Gomaa

Industrial Engineering Professor & Consultant

Mechanical Eng. Department - Shoubra Faculty of Eng. - Benha University

& Engineering and Science Services - American University in Cairo

attiagomaa@yahoo.com or attiagomaa@aucegypt.edu

Tel: 01222738497

Useful Science For the Sake of Allah

اللهم تقبل هذا العلم

قُالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إلا مَا عَلَّمْتُنَا الِّلَّكَ أَنتَ العَلِيمُ الحَكِيمُ" (سورة البقرة آية 32)

