#### Islamic University of Gaza -Environmental Engineering Department

## Water Treatment

**EENV 4331** 

Lecture 6: Softening

Dr. Fahid Rabah

#### **6.1 Definition of hardness:**

- A. Hardness is the term often used to characterize a water that :
  - Dose not form a foam or lather well and cause soap scum

Ca<sup>2+</sup> + (Soap)<sup>-</sup> ↔ Ca(Soap)<sub>2 (s)</sub> (soap scum) This increase the amount of soap needed for washing

- cause scaling on pipes and hot boilers.
- cause valves to stick due to the formation of calcium carbonate crystals
- leave stains on plumbing fixtures





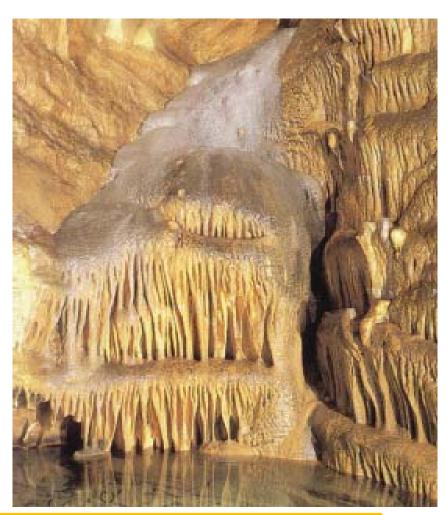



Figure 6.1:
Scaling due to calcium and magnesium precipitation

B. Hardness is defined as the sum of the divalent metal cations (in consistent units) existing in water such as:

Ca  $^{2+}$  , Mg  $^{2+}$  , Fe  $^{2+}$  , Mn  $^{2+}$ 

- Practically most hardness is due to Ca <sup>2+</sup>, Mg <sup>2+</sup> ions (the predominant minerals in natural waters)
- C. Total Hardness =  $Ca^{2+}$  hardness+  $Mg^{2+}$  hardness where the concentration of each ion is in consistent units such as mg/L as  $Ca^{2+}$  or meq/L.

#### D. Hard water classification

| Description     | Hardness range (mg/L as CaCO <sub>3</sub> ) |
|-----------------|---------------------------------------------|
| Soft            | 0 - 75                                      |
| Moderately hard | 75 - 100                                    |
| Hard            | 100 - 300                                   |
| Very hard       | > 300                                       |

#### E. Formation of Hardness



#### F. Carbonate and non carbonate Hardness

- Carbonate Hardness (CH)
  - Ca<sup>2+</sup>, Mg<sup>2+</sup> associated with HCO<sub>3</sub>-, CO<sub>3</sub><sup>2-</sup>
  - Often called "temporary hardness" because heating the water will remove it. When the water is heated, the insoluble carbonates will precipitate and tend to form bottom deposits in water heaters.
- Non-Carbonate Hardness (NCH)
  - Ca<sup>2+</sup>, Mg<sup>2+</sup> associated with other ions, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>
  - NCH = TH CH

#### F. Hardness Units

Total Hardness = 
$$\sum$$
 (Ca<sup>2+</sup> + Mg<sup>2+</sup>)

The hardness unit is the same as that consistent unit used for both of the above ions. The most used units are:

mg/L as CaCO<sub>3</sub> = (mg/L as species) 
$$\frac{\text{EW of CaCO}_3}{\text{EW of species}}$$

#### Where,

**EW** = equivalent weight

**Species** = Ion or Radical or Compound

Radical: such as CO<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup>

Compounds: such as CO<sub>2</sub>, CaSO<sub>4</sub>

$$EW = \frac{MW}{Electrical Charge}$$
 For radicals and compounds

$$EW = \frac{MW}{Valance} \longrightarrow For ions$$

MW = molecular weight of the Species

Example 3.1: a) Find the EW of Mg  $^{2+}$  that has a concentration of 10 mg/L as the ion in water. b) Find the EW of CaCO $_3$  c) find concentration of Mg  $^{2+}$  as mg/L CaCO $_3$ .

#### a) Finding the EW for Mg <sup>2+</sup>:

$$MW = 24.3 \frac{g}{\text{mole}} \longrightarrow MW = 24.3 \frac{\text{mg}}{\text{mmole}}$$

$$Valance (n) = \frac{2 \text{ eq}}{\text{mole}} \longrightarrow Valance (n) = \frac{2 \text{ meq}}{\text{mmole}}$$

$$EW = \frac{MW}{\text{Valance}} \longrightarrow EW = \frac{24.3 \text{ mg}}{\text{mmole}} \cdot \left[\frac{1}{2 \text{ meq/mmole}}\right] \longrightarrow EW = 12.15 \frac{\text{mg}}{\text{meq}}$$

#### b) Finding the EW for CaCO<sub>3</sub>:

$$MW = 100 \quad \frac{g}{\text{mole}} \quad \longrightarrow \quad MW = 100 \quad \frac{\text{mg}}{\text{mmole}}$$

Electrical charge (n) = 
$$\frac{2 \text{ eq}}{\text{mole}}$$
 Electrical charge =  $\frac{2 \text{ meq}}{\text{mmole}}$ 

$$EW = \frac{MW}{Electrical Charge} \longrightarrow EW = \frac{100 \text{ mg}}{mmole} \cdot \left[\frac{1}{2 \text{ meq/mmole}}\right] \longrightarrow EW = 50 \frac{mg}{meq}$$

#### D) Finding the Mg <sup>2+</sup> concentration as CaCO<sub>3</sub>:

mg/L as CaCO<sub>3</sub> = 
$$(mg/L \text{ as species}) \frac{EW \text{ of CaCO}_3}{EW \text{ of species}}$$

Mg <sup>2+</sup> conc.

(Mg2+) in mg/L as CaCO<sub>3</sub> =  $(10 \text{ mg/L as Mg } 2+) \frac{50 \text{ mg/meq}}{12.15 \text{ mg/meq}}$ 
 $\longrightarrow$  41.15 mg/L as CaCO<sub>3</sub>

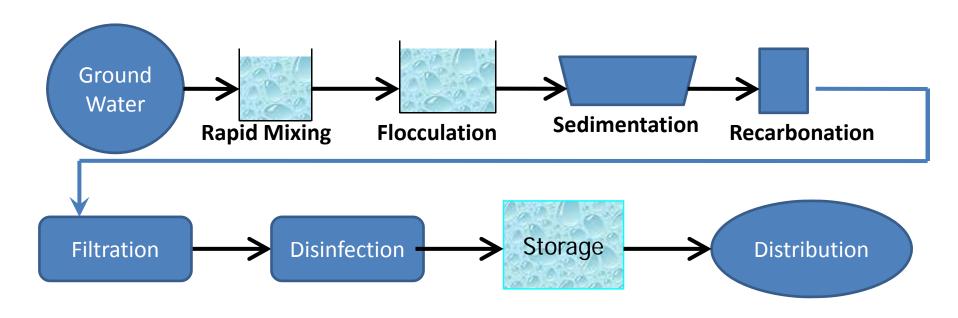
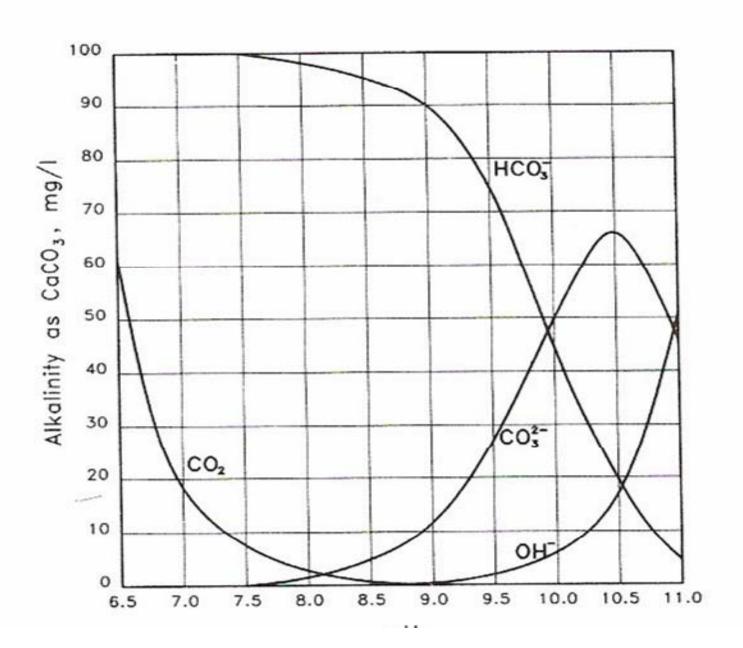



Figure 6.2: Softening Treatment Plant Single stage softening

#### **6.2 Relation between Alkalinity and hardness:**

#### A. Definition of Alkalinity


Alkalinity is a very important parameter in water chemistry and related very closely to hardness and softening process. The following equation is used to measure the alkalinity in water:

- Alkalinity = (HCO<sub>3</sub><sup>-</sup>) + (CO<sub>3</sub><sup>2-</sup>) + (OH<sup>-</sup>) (H<sup>+</sup>)
- Where the concentrations are in meq/L or mg/L as CaCO<sub>3</sub> Usually the (OH<sup>-</sup>) and (H<sup>+</sup>) are negligible.
- The relation between the alkalinity species is given by the following three equations:

$$10^{-10.33} = \frac{[H^+][CO_3^{2-}]}{[HCO3-]}$$
,  $10^{-14} = [H^+] \bullet [OH^-]$ ,  $[H^+] = 10^{-pH}$ 

Where the concentrations are moles/ L in these three equations

#### Various Forms of alkalinity and CO<sub>2</sub> relative to pH in water at 25 °C.



#### Example 6.1:

# A sample of water having a pH of 7.2 has the following concentrations of ions

```
Ca^{2+} 40 mg/L Mg<sup>2+</sup> 10 mg/L Na<sup>+</sup> 11.8 mg/L K<sup>+</sup> 7.0 mg/L HCO<sub>3</sub><sup>-</sup> 110 mg/L SO<sub>4</sub><sup>2-</sup> 67.2 mg/L Cl<sup>-</sup> 11 mg/L
```

- Construct a bar chart of the ions in term of mg/L CaCO<sub>3</sub>
- Calculate the TH, CH, NCH, Alkalinity

## Example 6.1:

| Ion                           | Conc. | M.W.    | n | Eq. Wt. | Conc. | Conc.             |
|-------------------------------|-------|---------|---|---------|-------|-------------------|
|                               | mg/L  | mg/mmol |   | mg/meq  | meq/L | mg/L as           |
|                               |       |         |   |         |       | CaCO <sub>3</sub> |
| Ca <sup>2+</sup>              | 40.0  | 40.1    | 2 | 20.05   | 1.995 | 99.8              |
| Mg <sup>2+</sup>              | 10.0  | 24.3    | 2 | 12.15   | .823  | 41.2              |
| Na <sup>+</sup>               | 11.8  | 23.0    | 1 | 23.0    | .51   | 25.7              |
| K <sup>+</sup>                | 7.0   | 39.1    | 1 | 39.1    | .179  | 8.95              |
| HCO <sub>3</sub>              | 110.0 | 61.0    | 1 | 61.0    | 1.80  | 90.2              |
| SO <sub>4</sub> <sup>2-</sup> | 67.2  | 96.1    | 2 | 48.05   | 1.40  | 69.9              |
| Cl                            | 11.0  | 35.5    | 1 | 35.5    | .031  | 15.5              |

#### Check The ionic balance:

```
\begin{split} \Sigma(\text{cations}) &= \; \Sigma(\text{anions}) \\ 175.6 &= \; 175.6 \qquad \text{mg/L as CaCO}_3 \qquad \text{O.K} \\ 3.51 &= \; 3.23 \qquad \text{meq/L} \qquad \text{O.K} \\ \text{Note: (error in the range of } \pm \; 10\% \text{ is accepted}) \\ \text{Note: one check is enough (either as } \{\text{mg/L as CaCO3}\} \text{ or as } \{\text{meq/L}\}) \\ \bullet \quad \text{Total Hardness} &= \; \Sigma \; \left(\text{Ca}^{2+}\right) + \left(\text{Mg}^{2+}\right) = 99.8 + 41.2 \\ \qquad \qquad \qquad \text{TH} = 141 \; \text{mg/L as CaCO}_3 \\ \text{or} \qquad \text{TH= } 1.995 + 0.823 = \; 2.818 \; \text{meq/L} \end{split}
```

```
• Alkalinity = (HCO_3^-) + (CO_3^{2-}) + (OH^-) - (H^+)

a. Since pH = 7.2 \rightarrow [H^+] = 10^{-pH} = 10^{-7.2} \text{ mole/L} = 10^{-7.2} \text{ g/L}

eq/L = \frac{10^{-7.2} \text{ g H}^+/L}{1 \text{ g/eq}} \longrightarrow (H^+) = 10^{-7.2} \text{ eq/L}

b. 10^{-14} = [H^+] \bullet [OH^-] = 10^{-6.8} \text{ g/L}

eq/L = \frac{17^{*10^{-6.8}} \text{ g OH}^-/L}{17 \text{ g/eq}} \longrightarrow (OH^-) = 10^{-6.8} \text{ eq/L}

C. (HCO_3^-) = 1.80 \text{ meq/L} = \frac{1.80 * 10^{-3} \text{ eq/L}}{17 \text{ g/eq}} \text{ from this example calculations}

as in the table.

g/L \text{ as } HCO_3^- = EW * \text{ eq/L} = (61 \text{ g/eq}) * 1.80 * 10^{-3} \text{ g/L} = 10^{-8} \text{ g/L}

[HCO_3^-] = (109.8 * 10^{-3} \text{ g/L})/(61 \text{ g/mole}) = \frac{1.80 * 10^{-3} \text{ mole/L}}{1.80 * 10^{-3} \text{ mole/L}}
```

#### d. Find the carbonate concentration:

$$10^{-10.33} = \frac{[H^+][CO_3^{2-}]}{[HCO3-]} \longrightarrow 10^{-10.33} = \frac{10^{-7.2} \times [CO_3^{2-}]}{1.8 \times 10^{-3}}$$

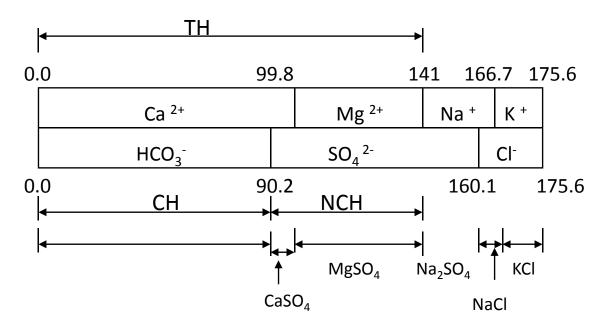
$$[CO_3^{2-}] = 1.33 \times 10^{-6} \text{ mole/L} = 79.8 \times 10^{-6} \text{ g/L}$$
 
$$eq/L = \frac{79.8 \times 10^{-6} \text{ g/L}}{30 \text{ g/eq}} = 2.66 \times 10^{-6} \text{ eq/L}$$

Alkalinity = 
$$(1.80 \times 10^{-3}) + (2.66 \times 10^{-6}) + 10^{-6.8} - 10^{-7.2} = 1.801 \times 10^{-3} \text{ eq/L}$$

Alkalinity = 
$$1.801 \times 10^{-3} \times 1000 \times 50 = 90.1 \text{ mg/L as CaCO}_3$$

Note: it is clear that the most effective form of alkalinity is bicarbonate, this is always true when the pH is 8.3 or less.

#### Carbonate Hardness


the portion of the hardness associated with carbonate or bicarbonate

- Alkalinity = 90.1 mg/L as CaCO<sub>3</sub> TH = 141 mg/L as CaCO<sub>3</sub> CH = 90.2 mg/L as CaCO<sub>3</sub>

- Non-carbonate Hardness:

NCH = TH - CH  
= 
$$141 - 90.1 = 50.9 \text{ mg/L as } \text{CaCO}_3$$

Construct the bar chart of the ions in term of mg/L CaCO<sub>3</sub>



Note: the chemicals at the lower line of the bar graph is called the <a href="https://www.hypothetical.com/hypothetical">hypothetical</a> <a href="https://www.new.hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.com/hypothetical.

## 6.3 Softening definition:

- Softening is the chemical processes in which hardness causing ions (Ca<sup>2+</sup>, Mg<sup>2+</sup>) are removed from water ether completely or partially.
- b) Softening may be a chivied by chemical precipitation using the Lime- Soda Ash method or by ion exchange.
- c) In the chemical precipitation method the objective is to produce CaCO<sub>3</sub> and Mg(OH)<sub>2</sub>:

$$Ca^{2+} + CO_3^{2-} \leftrightarrow 2CaCO_{3(s)}$$
  
 $Mg^{2+} + 2OH^- \leftrightarrow Mg(OH)_{2(s)}$ 

These two reactions are achieved by the addition of Lime  $[Ca(OH)_2]$  and Soda ash  $[Na_2CO_3]$  as will be shown.

- f) A common water treatment goal is to provide a water with a hardness in the range of 75 to 120 mg/L as CaCO<sub>3</sub>
- g) To precipitate  $CaCO_3$  and  $Mg(OH)_2$  we need to raise the pH to 10.3 by the addition of Lime  $[Ca(OH)_2]$ . The addition of the OH-will convert  $HCO_3^-$  to  $CO_3^{2-}$
- h) To precipitate  $Mg(OH)_2$  we need to raise the pH to 11 by the addition of Soda ash [ $Na_2CO_3$ ]. This will add the  $CO_3^{2-}$  ion needed to react with the remaining  $Ca^{2+}$
- i) Some of the added lime  $[Ca(OH)_2]$  is consumed to remove  $CO_2$  which is necessary to raise the pH.

6.4 Chemistry of Lime-Soda Ash Softening

## softening reactions

- Neutralization of carbonic acid
   [To raise the pH we need first to neutralize any acid in the water]
   CO<sub>2</sub> + Ca(OH)<sub>2</sub> ↔ CaCO<sub>3(s)</sub> + H<sub>2</sub>O
- Precipitation of CH due to calcium:
   [To raise the pH to 10.3 all the HCO<sub>3</sub><sup>-</sup> is converted to CO<sub>3</sub><sup>2-</sup>]
   Ca<sup>2+</sup> + 2HCO<sub>3</sub><sup>-</sup> + Ca(OH)<sub>2</sub> ↔ 2CaCO<sub>3(s)</sub> + 2H<sub>2</sub>O
- Precipitation of CH due to magnesium

  [To raise the pH to 11 add more lime]  $Mg^{2+} + 2HCO_3^{-} + Ca(OH)_2 \leftrightarrow Mg^{2+} + CO_3^{2-} + CaCO_{3(s)} + 2H_2O$   $Mg^{2+} + CO_3^{2-} + Ca(OH)_2 \leftrightarrow MgOH_{2(s)} + CaCO_{3(s)}$

#### 6.4 Chemistry of Lime-Soda Ash Softening

Removal of NCH due to calcium

$$Ca^{2+} + SO_4^{-2} + Na_2CO_3 \leftrightarrow CaCO_{3(s)} + 2Na^+ + SO_4^{-2}$$
  
 $Ca^{2+} + 2Cl^{-1} + Na_2CO_3 \leftrightarrow CaCO_{3(s)} + 2Na^+ + 2Cl^{-1}$ 

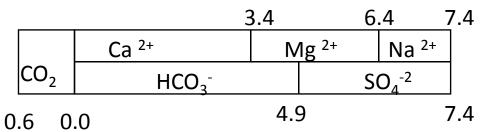
Removal of NCH due to magnesium

$$Mg^{2+} + Ca(OH)_2 \leftrightarrow MgOH_{2(s)} + Ca^{2+}$$
  
 $Ca^{2+} + Na_2CO_3 \leftrightarrow CaCO_{3(s)} + 2Na^+$ 

## **6.4 Chemistry of Lime- Soda Ash Softening** Softening process limitations:

- Lime-Soda softening cannot produce a water completely free of hardness because of the solubility of CaCO<sub>3</sub> and Mg(OH)<sub>2</sub>, limitations of mixing and reaction time.
- 2. Thus, the minimum calcium hardness that can be achieved is 30 mg/L as CaCO<sub>3</sub>, the minimum Magnesium hardness that can be achieved is 10 mg/L as CaCO<sub>3</sub>, this gives a minimum hardness of 40 mg/L as CaCO<sub>3</sub>.
- 3. However, normally the water is treated to give a hardness in the range of 75 to 120 mg/L as  $CaCO_3$ .
- 4. An Excess lime beyond the stoichiometric amount is usually added to remove Mg  $^{2+}$  hardness . The minimum excess lime is usually 20 mg/L as CaCO $_3$ , maximum excess lime is 62.5 mg/L as CaCO $_3$  (1.25 meq/L).
- 5. Mg  $^{2+}$  in excess of 40 mg/L as CaCO $_3$  is not desired as it forms scale in water heaters. Mg  $^{2+}$  is expensive to remove, so we only remove Mg  $^{2+}$  in excess of 40 mg/L as CaCO $_3$ .

**6.4 Chemistry of Lime- Soda Ash Softening** Chemicals requirements:


According to the softening chemical reactions:

- -Lime is added at the ratio of 1:1 for each carbonate hardness compound except for  $Mg(HCO_3)$  the ratio is 2:1 [i.e. 2 lime for each 1  $Mg(HCO_3)$ ].
- -Lime is also added at the ratio of 1:1 for each Magnesium NCH compound such as MgSO₄
- -Soda ash is added at the ratio of 1:1 for each Magnesium or Calcium NCH compound such as MgSO<sub>4</sub>, and CaSO<sub>4</sub>.
- CO<sub>2</sub> needed is 1:1 ratio with the excess lime added, and 1:1 ratio with CaCO<sub>3</sub> remaining after softening, 2:1 ratio with Mg(OH)<sub>2</sub> remaining after softening.
- The units of the chemicals are either in meq/L or mg/L CaCO<sub>3</sub>
- Example 6.2 illustrates the chemical requirements calculations.

6.5 Excess Lime Softening example

Example: 6.2

A water with the ionic characteristics shown below is to be softened to the minimum possible hardness by lime-soda-ash excess lime process. Calculate the required chemical quantities in meq/L. Draw a bar diagram of the softened water. Assume that a residual of  $CaCO_3$  of 0.60 meq/L and a residual of  $Mg(OH)_2$  of 0.20 meq/L will remain in the softened water.



Example: 6.2 ...... continued

#### **Solution:**

```
Lime = 0.6+3.4+2(4.9-3.4)+(6.4-4.9)+ excess lime
= 8.5+1.25=9.75 meq/L
Soda Ash = 6.4-4.9=1.5 meq/L (to remove NCH, MgSO<sub>4</sub><sup>2-</sup>)
```

#### Na +:

- The addition of soda ash adds to the water an equal amount of Na<sup>+</sup>.
- Since we added 1.5 meg/L soda ash, this will add 1.5 meg/L Na<sup>+</sup>
- The original concentration existing in the raw water is 1.0 meq/L . Total  $Na^+ = 1 + 1.5 = 2.5 \text{ meg/L } Na^+$ .

Example: 6.2 ...... continued

| 0.0 |                               | 0.6 | 0                | .8                 | 3.3 |
|-----|-------------------------------|-----|------------------|--------------------|-----|
|     | Ca <sup>2+</sup>              |     | Mg <sup>2+</sup> | Na <sup>2+</sup>   |     |
|     | CO <sub>3</sub> <sup>2-</sup> |     | НО⁻              | SO <sub>4</sub> -2 |     |
|     |                               | 0.6 | 5 0              | .8                 | 3.3 |

Bar graph of the softened water