

Introduction to Purate Technology & ClO2.

Paul Beattie

February 2016.

Summary

Chlorine dioxide: What is it?

Chlorine dioxide advantages vs other biocides

Chlorine dioxide biofilm removal action

Chlorine dioxide producing methods: pros and cons

SVP Purate technology

Purate: when to consider it

Purate safety

Purate examples

Chlorine Dioxide Gas and Disinfectant Characteristics

Greenish-Yellow Color, Similar Smell to Chlorine

Highly Soluble in Water

- Applied as a dissolved gas in water
 - Does not hydrolyze like Cl₂: no loss of effectiveness at higher pHs
 - Kills bacteria, spores, viruses, fungi, algae very fast and no immunity development
 - It can diffuse into biofilms attacking the bacteria generating the biofilm

Reacts by Oxidation (select oxidizer)

- No loss of biocide effectiveness due to byproduct reaction
- No byproduct AOX or THMs

Cannot be compressed or shipped

Chlorine Dioxide Advantages over other Biocides.

Advantages of CIO2 over CI2 / Hypo

Very fast rate of disinfection

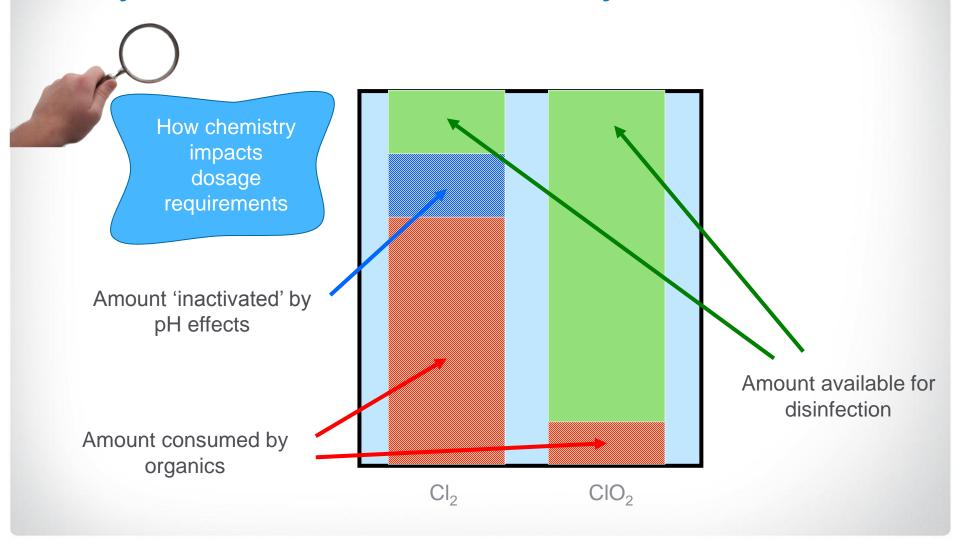
Excellent control of Bio-films

Effective at low dosage rate

Non Reactive with Organics (No THM or HHA, Low TOX, Low stable consumption)

Non reactive with ammonia (low and stable consumption)

Slow bacterial recovery after disinfection (Chlorite ion)


Disinfection less dependent on pH (stability, economy)

Significantly lower corrosion rate

Safer handling/storing

Why Use CIO2 - Selectivity

Property	Hypochlorite	Chlorine Dioxide		
Active species	HOCI Hypochlorous acid OCI Hypochlorite ion	ClO ₂ Chlorine Dioxide		
Disinfection efficacy with varying pH	Powerful <7.5 Decreasing 7.5 - 8.2 Reduced above 8.2	Powerful 6 - 10		
Disinfection by- products of environmental concern	Forms trihalomethanes, adsorbable organic halogens and non purgeable organic halogens	None		
pH impact of dosing	Increase Excess caustic in solution (pH 11-12)	Slight decrease Excess acid in solution (pH 1-3)		
Reaction with Natural Organic Matter	Rapid Forms chlorinated organic compounds	Intermediate Forms oxidised organic compounds		
Reaction with ammonia	Reacts to form chloramines which are poor biocides and highly toxic to aquatic life	No Reaction		
Reaction with biofilm	Fair	Excellent		
Product Stability	Poor Degrades readily	Good Generated on site		

Chlorine Dioxide Oxidation Potential.

Oxidant Species	Oxidation Potential, Eo(V)	Oxidation Capacity
Ozone (O ₃)	2.07	2 e⁻
Hydrogen peroxide (H ₂ O ₂)	1.76	2 e⁻
Permanganate ion (MnO ₄ -)	1.68	3 e⁻
Hypochlorous acid (HOCI)	1.49	2 e⁻
Chlorine (Cl ₂)	1.36	2 e⁻
Hypobromous acid (HOBr)	1.33	2 e⁻
Bromine (Br ₂)	1.07	2 e⁻
Chlorine dioxide (ClO₂)	0.95	5 e⁻
Sodium hypochlorite ion (NaOCl ⁻)	<0.50	2 e⁻

Dosages - Best Practice Guidelines for Recirculating Cooling Water.

Continuous residual of 0.10 – 0.50 mg/l

- Based on circulation rate (Calculate to 0.10 0.20)
- Monitored by ORP

Intermittent slug doses

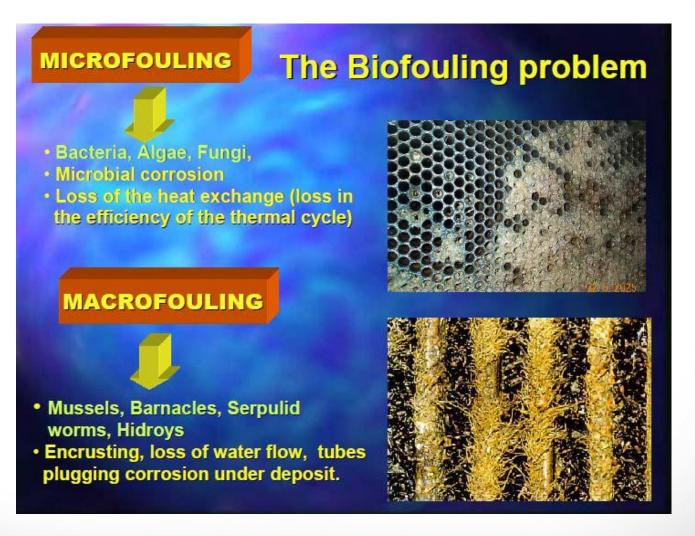
- 0.10 5.0 mg/l residual
- (Calculate to 2.00 mg/l) Based on system volume
- 4-6 times daily
- Monitored by ORP (e.g. slug from 200 600 mV)

Direct replacement (active:active) of existing oxidizer

- Low demand systems only
- pH dependent

How does Chlorine Dioxide Work.

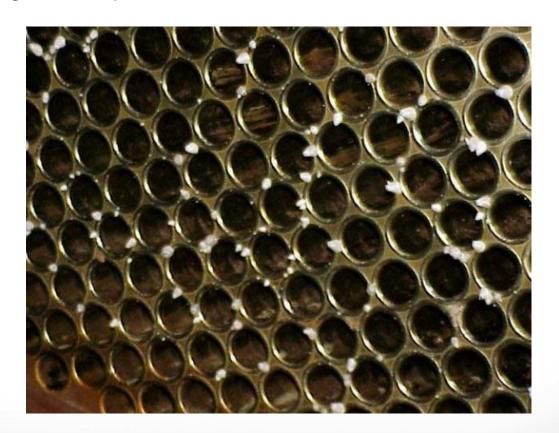
CIO2 disinfects via two separate mechanisms. As a permeable gas, it migrates through the cell membrane and reacts selectively with cellular components (amino acids: cystine, tryptophan and tyrosine) and proteins. It also inhibits critical cell physiological functions, including the disruption of protein synthesis via the oxidation of the disulfide bonds in amino acids and alteration of the permeability of the outer cell membrane.



Chlorine Dioxide Biofilm Removal Action.

The Biofouling Problem

Power Station Treated with Chlorination


Heat exchanger from a power station treated with chlorine

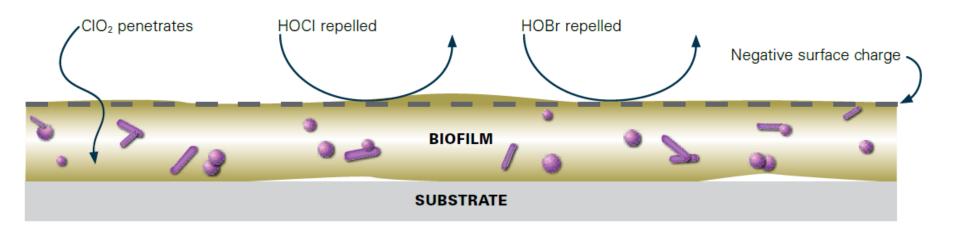
Power Station Treated with Chlorine Dioxide

Heat exchanger from a power station treated with chlorine dioxide

The Menace of Bio-films

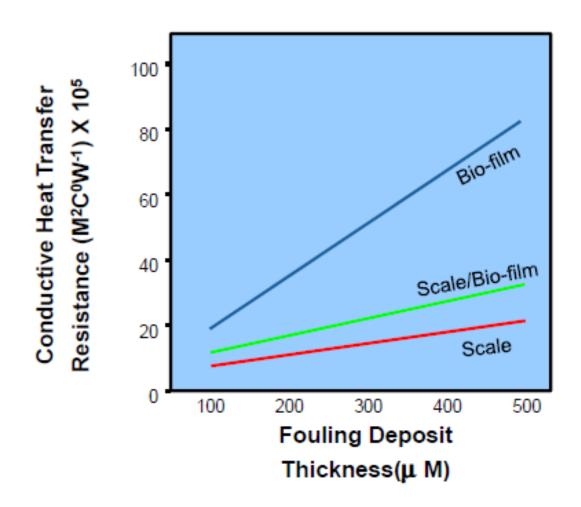
Because CIO2 is a true dissolved gas in solution, it can rapidly diffuse and penetrate the polysaccharide-based biofilm substrate, killing microbes both throughout and beneath the biofilm

Reduce heat transfer in heat exchangers


Home for pathogenes

Cause microbiologicly induced corrosion (MIC, pitting)

Reduce cooling water flow



Chlorine Dioxide Kill Mechanism.

Microbiological Growth & Heat Transfer.

Chlorine Dioxide Generating Methods Pros & Cons.

Methods for producing CIO2 – chlorite oxidation

▲ Chlorine + Chlorite

$$2NaClO_2 + Cl_2$$

2CIO₂ + 2 NaCl

Advantage

- 100% theoretical chemical conversion efficiency
- Relatively low cost especially if Cl2 is locally available

<u>Disadvantage</u>

- Produces THM's
- Gaseous chlorine is required
- Safety issues for storage.
 transportation, and handling
- Higher corrosion (in recirculating system)

Methods for producing CIO2 – chlorite oxidation

▲ ABC method: acid + bleach + chlorite

 $2CIO_2 + 3NaCI + H_2O$

Advantages

- 100% theoretical chemical conversion
- Elimination of Cl₂ Gas

<u>Disadvantages</u>

- Bleach degradation (especially in warm climates)
- Three chemical system makes it more difficult to control & optimize
- High vapor pressure of HCI

Methods for producing CIO2 – chlorite oxidation

▲ Chlorite + acid

$$5NaClO_2 + 4HCl$$

<u>Advantages</u>

- Elimination of Cl₂ Gas
- Two component system
- Lowest THM formation of the chlorite systems
- Most robust and safe system of the Chlorite processes

$4CIO_2 + 5 NaCI + H_2O$

<u>Disadvantages</u>

- Max 80 % chemical conversion efficiency
- High vapor pressure of HCI
- Relatively high cost

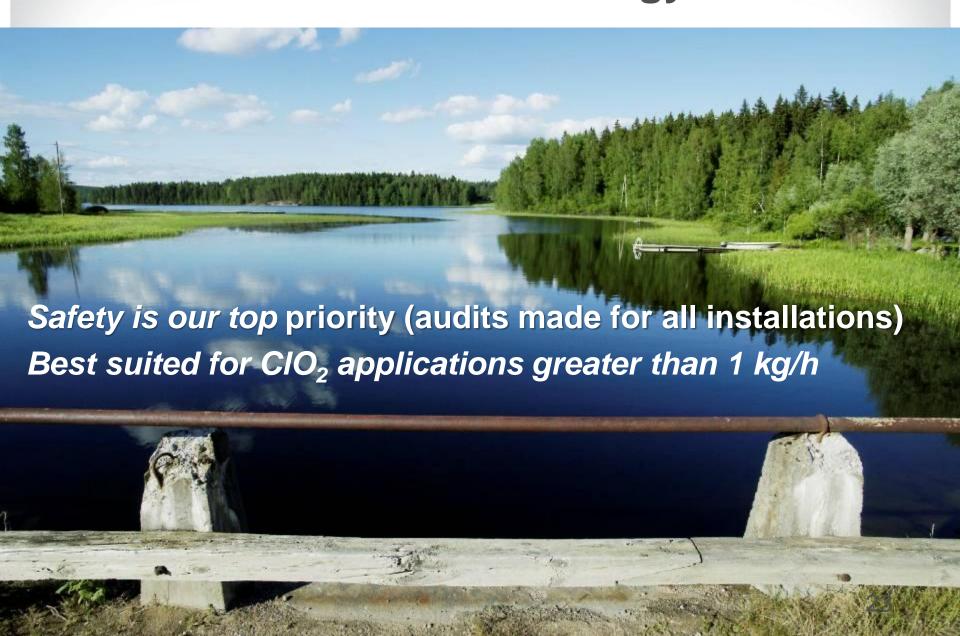
Methods for producing CIO2 – chlorate reduction

▲ Purate + acid

$$NaClO_3 + \frac{1}{2} H_2O_2 + \frac{1}{2} H_2SO_4 \rightarrow ClO_2 + \frac{1}{2} Na_2SO_4 + \frac{1}{2} O_2 + H_2O_4$$

SVP-Pure® Process

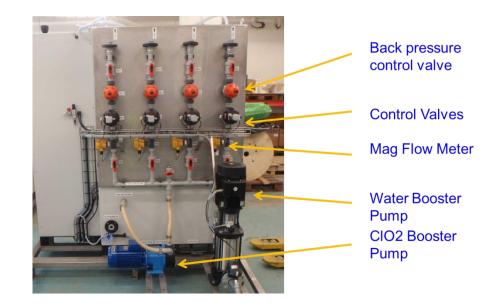
Advantages


- Efficient 95% conversion at standard conditions
- No need of Cl₂ Gas
- No chloride contribution
- High precursor concentration minimize storage requirements and freight costs
- Converts chlorate directly to ClO₂ (not via intermediates as the Chlorite processes)
- Excellent cost structure
- Chlorine Free no AOX or THM formation
- Two Chemical Program reduces truck traffic
- Patented
- High quality equipment safe and reliable

Chemical feed rates per unit mass of requested ClO₂

Purate	78%*	93%*	98%*
R	H2SO4	H2SO4	H2SO4
4.15	5.16	4.33	4.11

* Only one of the acid choices is needed for SVP-Pure® chemistry. Acid strengths higher than 78% must be diluted down before using.



SVP-Pure ® CIO₂ Generator Model AD DS

SVP-Pure® CIO₂ generator + four-point dosing system

24

40 Feet CIO₂ Production Container

Purate: - when to consider it

Large cooling systems with problems

>2000 l/day bleach

Open recirculating cooling systems

Minimum recirculation rate 7500 m3/h

Electro-Chlorintors high generating and maintenance costs.

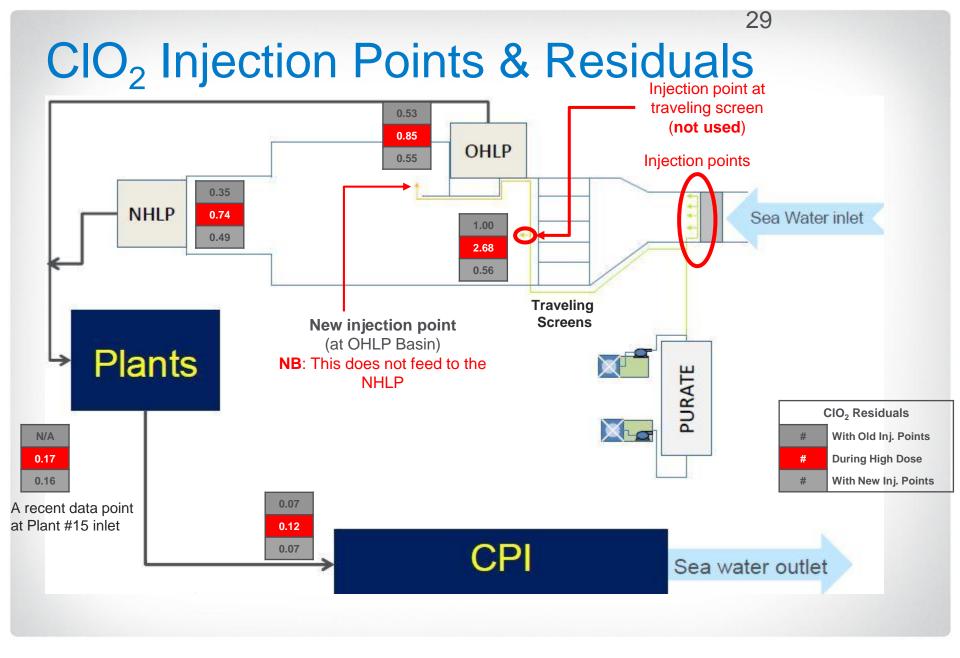
Once through Sea Water Cooling Systems:

Minimum 20 000m3/h

Purate Examples.

Sea Water Cooling System.

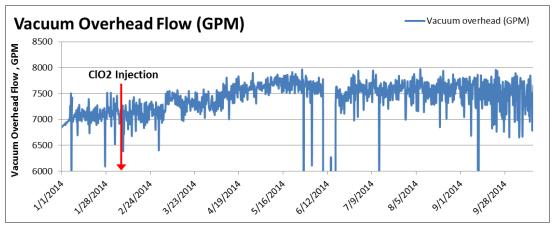
The Sea Water Cooling System in the Middle East has a history of bio-fouling leading to poor thermal efficiency and under-deposit corrosion.


Historical attempts to address this had not been successful due to a variety of factors including efficacy and control problems.

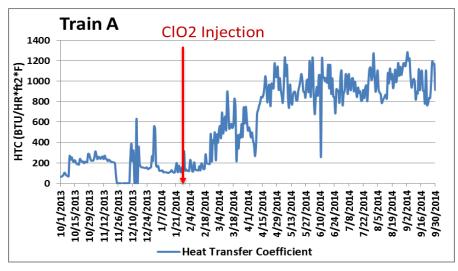
Purate technology has addressed these factors and is providing a significant improvement in microbiological control and thermal efficiency.

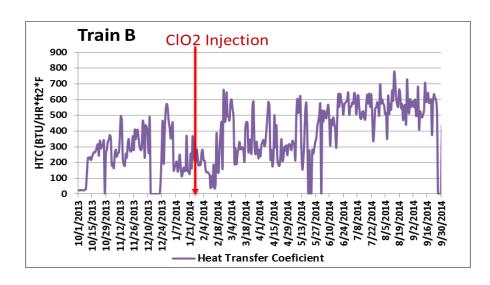
The trial has focused on better targeting of the chlorine dioxide to further improve cost-effectiveness as we work towards finalizing the target dosage.

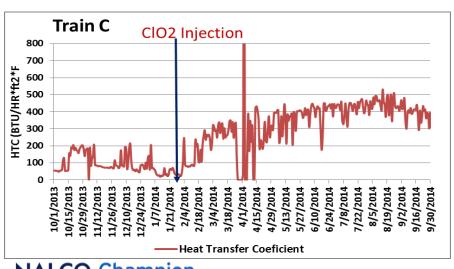
Further improvements to safety and monitoring required.

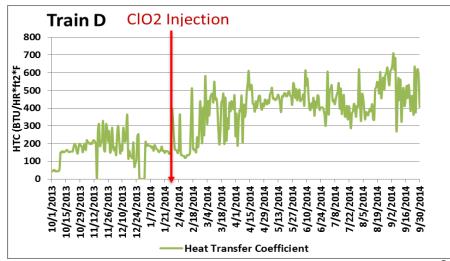


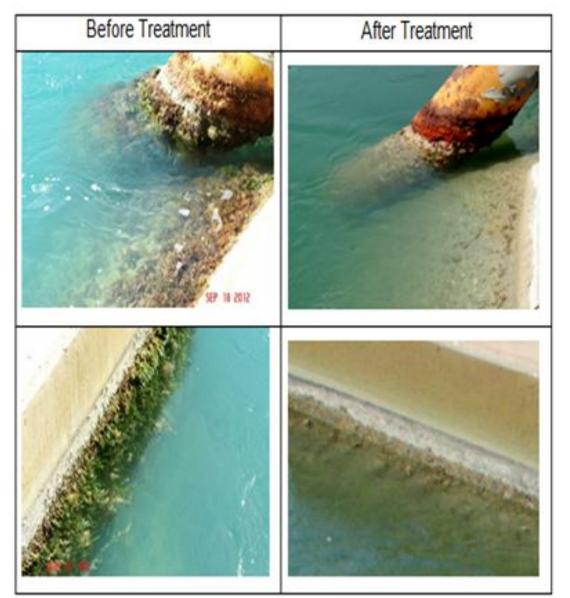
Heat Exchanger Performance


	Total Heat Transfer coefficient (U)	Cleanlines s factor (%)	Cooling Water Flow (m³/h)	Flow Velocity (m/s)	U- normalized by SW flow U/SW Flow	
Average 2013 (Feb to 14-Oct)	145.9	16.9	400.9	1.6	0.3675	0.0427
Average 2014 (7-Feb to 14-Oct)	176.1	20.5	454.9	1.8	0.3892	0.0452
% Change	20.7	20.7	13.5	13.5	5.92	5.90



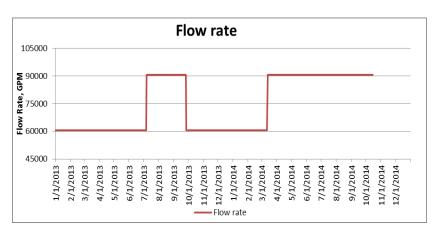


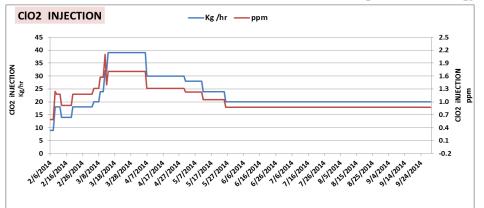

Plant Data.



Visual Inspection

Microbiological Analysis




Plant 35 – Plate # 4	BEFORE CIO2 INJECTION	AFTER CIO2 INJECTION
Analyte	Result	Result
AEROBIC BACTERIA Total Viable Count @ 35°C Pigmented Bacteria Total Coliforms E. coli Pseudomonas spp @ 35°C Spores	130 000 CFU/gram 1 Type <1 000 CFU/gram <1 000 CFU/gram 7 000 est. CFU/gram 3 200 CFU/gram	9 000 est. CFU/gram Not Detected <1 000 CFU/gram <1 000 CFU/gram <1 000 CFU/gram 4 300 CFU/gram
ANAFROBIC BACTERIA Sulfate Reducing bacteria	30 000 CFU/gram	300 CFU/gram
FUNGI Mold Yeast	<100 CFU/gram <100 CFU/gram	<10 CFU/gram <10 CFU/gram

Chemical Consumption Results & Target

Last Purate Consumption

\	Months	Feb	Mar	Apr	May	June	July	Aug	Sept	Total
/	PURATE, Kg	8,562	22,257	19,352	17,845	9,845	11,826	12,611	13,796	116,094

Target
Consumption
based on current
level of monitoring

	Purate	Wi	nter	Summer		
	Pulate	2 Pumps	3 Pumps	2 Pumps	3 Pumps	
>	Taget dosing, ppm	1		1		
	Running hours, day		4		6	
	Flow Rate, M3/hr	13,581	20,371	13,581	20,371	
	Consumption, Kg Monthly	7,153	10,730	10,730	16,095	

Summary of Improvements

Aspect	Improvement
Safety	A safer system for employees and environment but more to do
Monitoring & Control	Significant improvements achieved with additional monitoring (ORP) recommended.
Analysis & Visual	Considerable reductions in microbiological activity known to contribute to fouling and under deposition corrosion. Cleaner surfaces.
P15- VDU strainer backwash frequency improvement	330%
P15 –VDU HX Heat Transfer Coefficient	~ 21/6%
P15- VDU Over-Head Production	~ 7%
MED- Heat Transfer Coefficient	~ 70 %

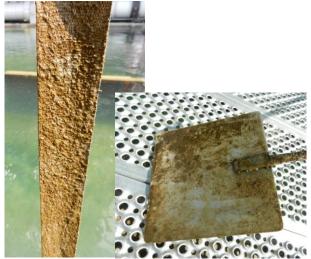
Mussels: Why ClO2?

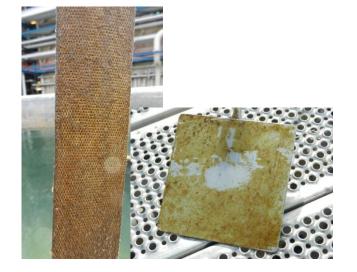
Sea water flow, 7 000 -10 000 m³/h
Problem with biofilm and mussels

Production losses

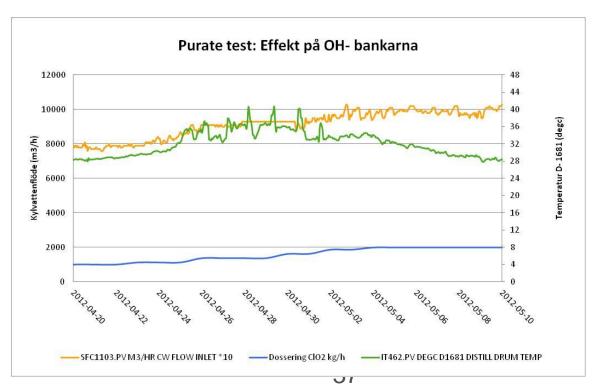
Annual cleaning costs in **2010**: **2400** k€

High NaOCI dose but little effect
Does not remove the bio-film
AOX and THM problems
Authorities would like them to change
disinfection method





Trial follow up – Mussels and bio-film


6 weeks after start up

8 weeks after start up

- •Continued to dose hypo during the two first weeks of the trial
- •Gradually increased the dose to avoid the bio-film to block the heat exchangers
- Dosing scheme
 - •0,2 ppm at the beginning / 0,8 ppm during the summer
 - •Future expections: 0.2 ppm in winter / 0.5 0.6 ppm in summer

K.S.A. Purate Users

Aramco Ras Tanura

Saudi Kayan

Chevron

Safco (Interested)

Sharq (Interested)

Tasnee (Interested)

Ar Razi (Interested)

An Ecolab Company

Questions?

