

Optimisation of Water Use at Home

seecon international gmbh

Copyright & Disclaimer

Copy it, Adapt it, Use it - But Acknowledge the Source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. **Those materials are open source**. Following the open-source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0. This agreement officially states that:

You are free to:

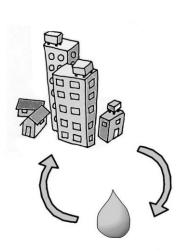
- Share to copy, distribute and transmit this document
- Remix to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions:

• Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

Disclaimer

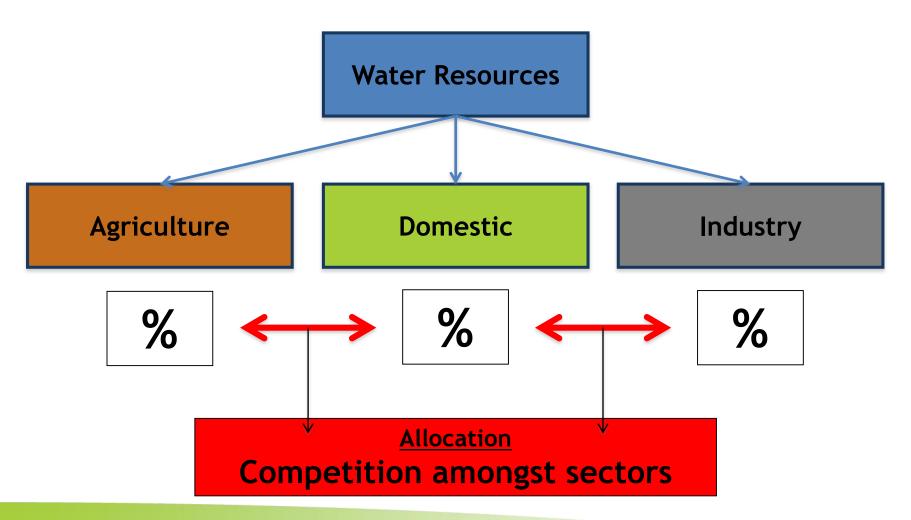
The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.


Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

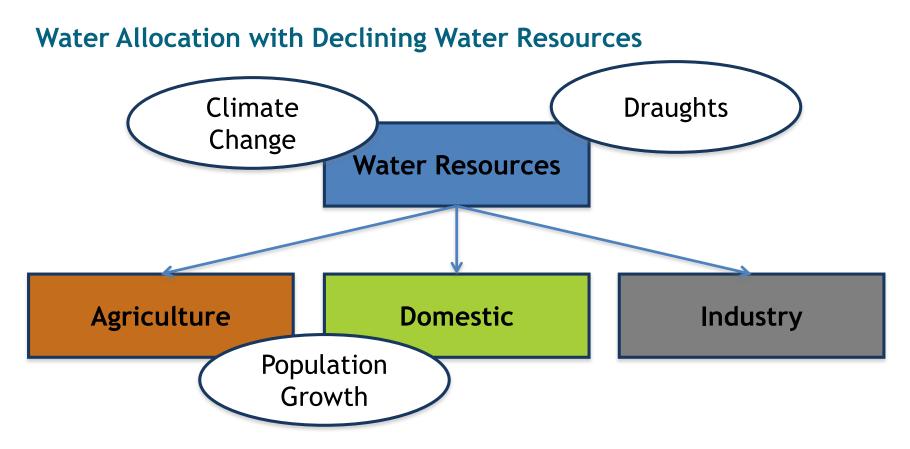
Contents

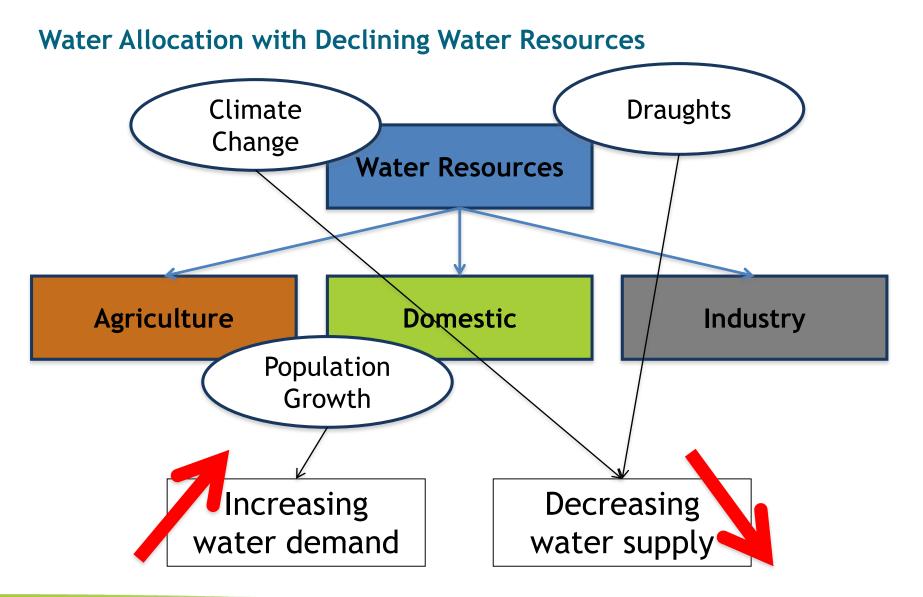
- 1. Introduction The three R's
- 2. Reduce Water Consumption at Home
- 3. Reuse Water at Home
- 4. Recycle Wastewater at Home
- 5. Limitations
- 6. References

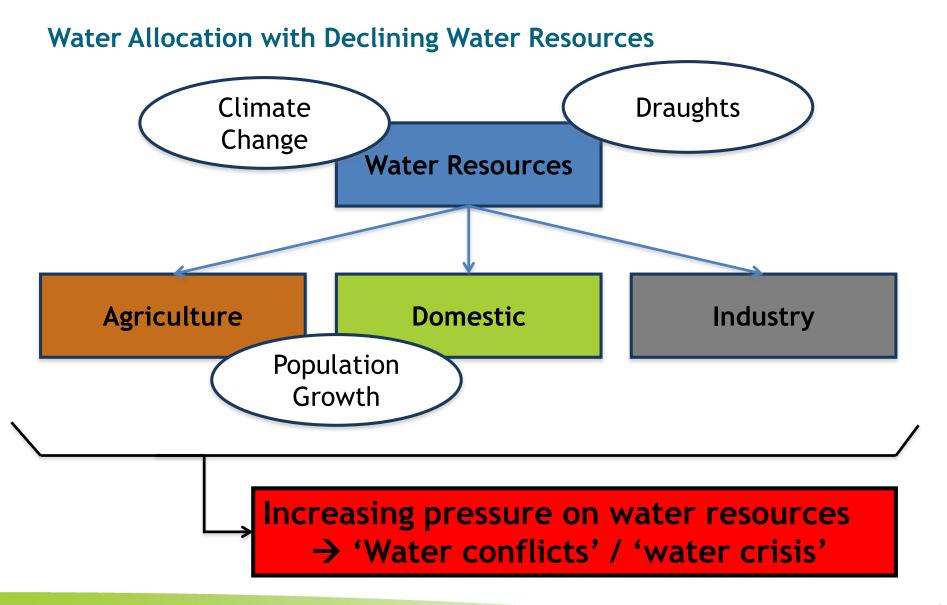
A: Annex 1: Case Study - The SSWM Eco-House

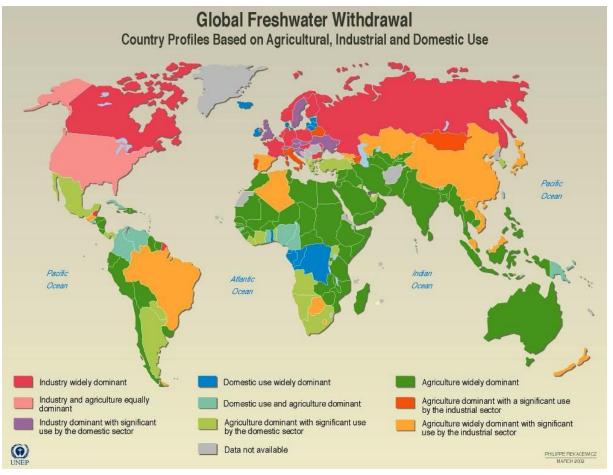


Water Allocation with Declining Water Resources

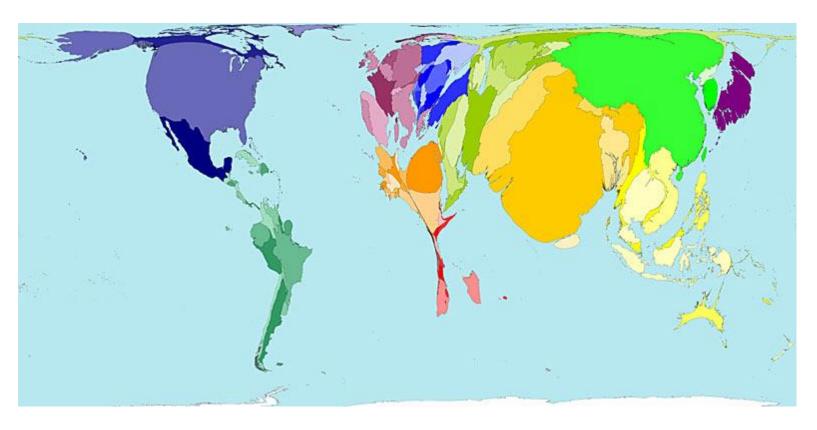



Water Allocation with Declining Water Resources





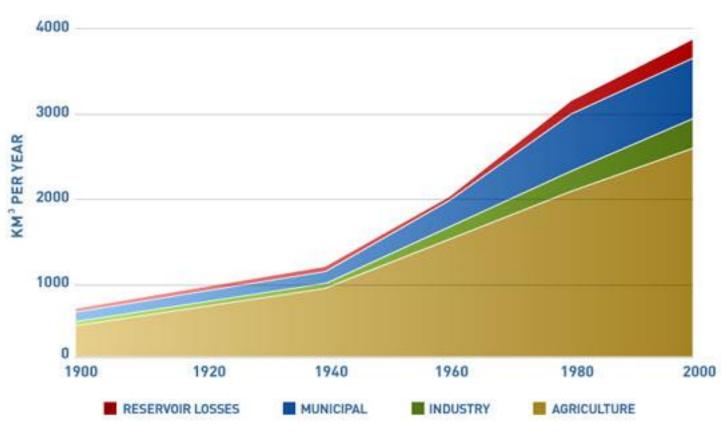
Major Water Use per Country



Global freshwater withdrawal -Country profile based on agricultural, industrial and domestic use

Source: UNEP (2002)

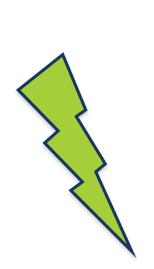
World Map According to Water Consumption

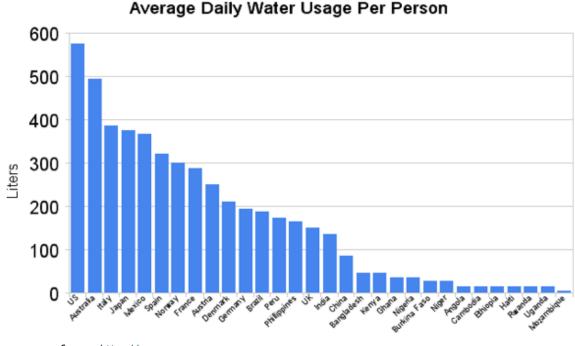


 $Source: \underline{http://images.forbes.com/media/2008/06/19/water_map.jpg} \ [Accessed: 20.06.2012]$

History of Water Use

ESTIMATED WORLD WATER USE

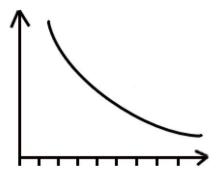

Source: http://www.fao.org/nr/water/art/2008/waterusegraph.jpg [Accessed: 20.06.2012]



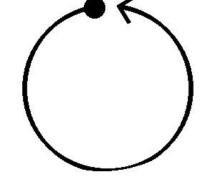
Why Optimise at Home?

 In the developed world, there is much room for improvement in household water use.

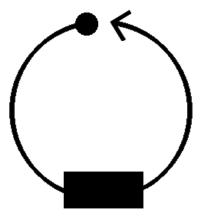
According to the WHO a minimum of 25 litres per day is required to meet basic needs.



Source: https://www.e-education.psu.edu/drupal6/files/geog030/action/m9_average_daily_water_usage_per_person.png [Accessed: 20.06.2012]



The Three R's - A Concept of Natural Resources Management


Reduce

Reuse (directly)

Recycle (treat & reuse)

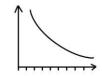
Implications of R-R-R

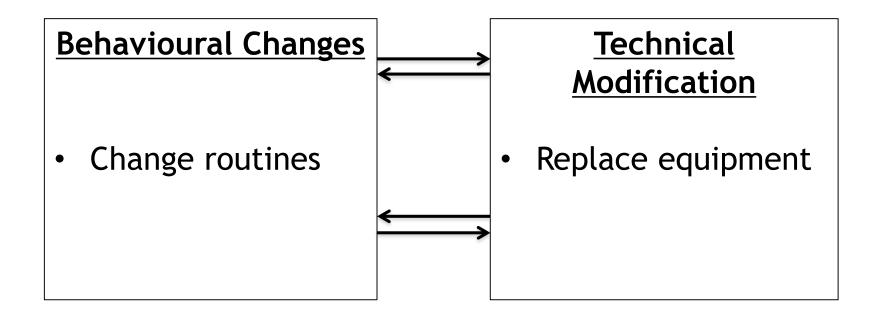
Reduction of water consumption, Reuse, Recycle leads to:

- Reduction of pressure on water resources,
- Less demand for large water supply systems and facilities (e.g. wells, pumps, distribution networks, collection, treatment),
- Less generation of wastewater → reduces energy demand and need for collection and treatment facilities, and
- Closing the water & nutrient cycle.

2. Reduce Water Consumption at Home

The Difficulty of Tracking Domestic Water Use in Developing Countries


- In developing countries, most water supplies are unmetered. In many instances, water standpipes or blocks of houses have never been fitted with meters or they have broken.
- In these cases, neither water departments nor individual end-users know how much water is used.
- Effective billing cannot take place, and water demand management plans cannot be implemented effectively.
- The calibration, repair, and replacement of meters are important components of a water conservation strategy.
- Furthermore, unlicensed use of water, water losses through broken pipes, and water wastage can only be determined if appropriate metering takes place.

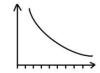

FOERCH (2007)

2. Reduce Water Consumption at Home

Behaviour Changes vs. Modifying Equipment

2. Reduce Water Consumption at Home

Tackle Water Saving through Diversified Strategies



	Behavioural Change	Technical Modifications
Toilet	Avoid unnecessary flushing	Use water-efficient/no-water toilet systems, check for leaks, use rainwater for flushing, etc.
Тар	Turn off tap if it is not used (while brushing teeth, razing)	Fix leaks, limit the outflow, e.g. areators, press bottoms instead of turning knob
Shower/ Bath tub	Rather shower than bath, consider reusing bathwater for gardening	Limit the outflow by using a water-efficient showerhead
Clothes washing	Only wash when necessary, wash with a full load	Use efficient washing machines
Dish- washing	<u>Machine</u> : Wash with a full load, manual pre-washing is often unnecessary <u>Manual</u> : don't wash under a running tap	Use efficient washing machines
Gardeni ng	Water in the evenings/mornings (less evaporation)	Mulching, drip irrigation instead of sprinklers

SSWM sustainable sanitation and water management

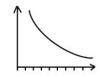
2. Reduce Water Consumption at Home

Examples of Water-Saving Equipment 1

Tap Areator

<u>Source:</u>
http://waterus.com/images/aquawizard_aerator_2.jpg [Accessed: 19.06.2012]

Different types of urine diversion flush toilets.



Source: dubbletten.nu; gustavsberg.com; stman.se; rroevac.de [Accessed: 19.06.2012]

and water management

2. Reduce Water Consumption at Home

Examples of Water-Saving Equipment 2

Use of rainwater for toilet flushing

Source: http://www.groedibles.com/wpcontent/uploads/2011/11/rainwater-harvesting-techniques.jpg [Accessed: 19.06.2012]

Fix seeping taps and leakages

http://images03.olx.com/ui/2/13/ 56/24330756_1.jpg [Accessed: 19.06.20121

Source: http://www.stebnitzbuildersblog.com/wpcontent/uploads/2011/03/fix-water-leak-reno-lg.jpg

[Accessed: 19.06.2012]

3. Reuse Water at Home

Directly Reuse your Wastewater

Wastewater take on many forms:

- Blackwater
- Brownwater
- Yellowwater

•Greywater (laundry, dishwashing, showering, bathing)

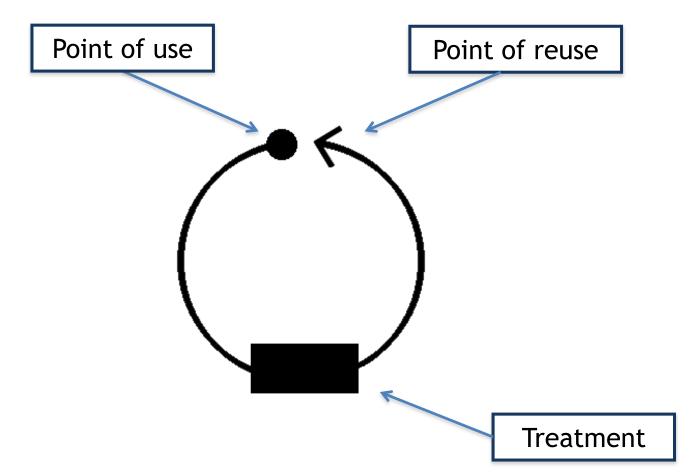
•...

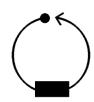
For example:

Greywater can easily be reused directly

(without any treatment) for various purposes

(e.g. car washing, gardening, etc.)

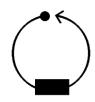

3. Reuse Water at Home


Directly Reuse your Wastewater: Example Take a bath without using hazardous substances Water your garden Collect the water after use

SSWM sustainable sanitation and water management

4. Recycle Wastewater at Home

Treat your Wastewater and Reuse It!



4. Recycle Wastewater at Home

Step 1-3

Step 1 Water Use	Mind what you mix in your water in order to minimise treatment effort.
Step 2 Treatment	Possible treatment options for water reuse include: waste stabilisation ponds, aerated ponds, trickling filters, vertical flow constructed wetland, hybrid constructed wetland, free-surface constructed wetland and horizontal flow constructed wetland.
Step 3 Reuse	Different water uses require different water qualities: Only reuse water for the purpose it was treated for!

5. Limitation of Water Saving at Home

Keep Track of the Bigger Picture

- Water use at home equals about 160 litres per person per day (in Switzerland). Clearly, there is a large potential for water saving.
- However, this domestic water use does not include all the water being used for producing the food we eat, the clothes we wear, etc.
- A recent study by the WWF estimated the actual water use (water footprint) per person per day to amount 4200 litres.

 GNEHM (2012)

6. References

FOERCH, W. (2007): Water Conservation. In (Ed.), Encyclopedia of Environment and Society (pp. 1919-1922). Thousand Oaks, CA: SAGE. URL: http://sage-ereference.com/view/environment/n1173.xml [Accessed 01.03.2012].

GAO, L.; ZONGGUO, W.; BIN, D.; CHAO, Z.; JINING, C. (2008): An analysis of industrial water conservation potential and selection of key technologies based on the IWCPA model. In: Resources, Conservation & Recycling, Volume 52, Issue 10, 1141-1152.

SASI GROUP (Editor) (2006): Industrial Water Use. Sheffield: SASI Group. URL: http://www.worldmapper.org/posters/worldmapper_map325_ver5.pdf [Accessed: 20.06.2012].

UNEP (Editor) (2007): Water Utilisation in African Beverage Industries: Current Practices and Prospects. Nairobi: UNEP, Division of Technology, Industry & Economics. URL: http://www.unep.org/roa/docs/pdf/AfricanBeverage.pdf [Accessed: 20.06.2012].

WORLD WATER ASSESSMENT PROGRAMME WWAP (Editor) (2009): Water in a Changing World - Overview of Key Messages of the United Nations World Water Development Report 3. Water in a Changing World. Paris and London: UNESCO & Earthscan. URL: http://webworld.unesco.org/water/wwap/wwdr/wwdr3/pdf/WWDR3_Water_in_a_Changing_World.pdf [Accessed: 20.06.2012].

GNEHM, F. (2012): Der Wasser-Fussabdruck der Schweiz. Ein Gesamtbild der Wasserabhängigkeit der Schweiz. Zurich: WWF Schweiz. URL: http://assets.wwf.ch/downloads/swiss-water_footprint_de_web.pdf [Accessed: 20.06.2012].

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

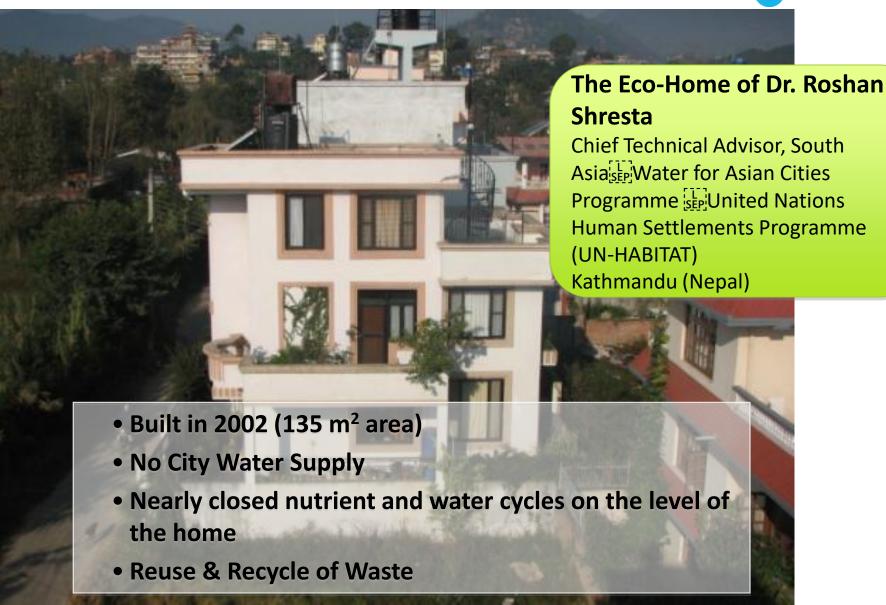
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizza

Federal Department of Foreign Affairs FDFA
Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

Source: NABUUR (n.y.)

Example of a SSWM-House: The Eco-Home


Dorothee Spuhler and Michael Kropac, seecon international gmbh

Contents

- A1. Features
- A2. Rainwater Harvesting & Purification
- A3. Water Purification
- A4. Greywater Treatment
- A5. Urine-Diversion Dehydration Toilets
- A6. Vermicomposting
- A7. Rooftop Gardening
- A8. Demonstration Site
- A9. References

A1. Features

Rainwater catchment

Rainwater catchment

Solar panel

Roof tanks

UDD

toilet

Dug well for ground water recharge

Greywate

reatment

ht

Biosand filter for

water

Water collection
Tank

Garden

A2. Rainwater Harvesting

Rain water for 7-8 months (April to October/November); more than 180 m³/year of rainwater harvesting potential from 90.4 m² of roof area

Source: ENPHQ

SSWM sustainable sanitation and water management

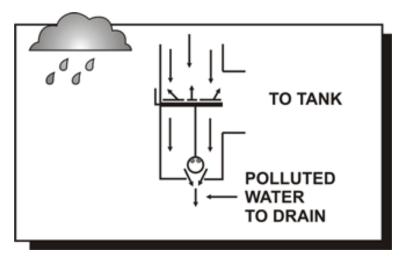
A2. Rainwater Harvesting

Underground tank

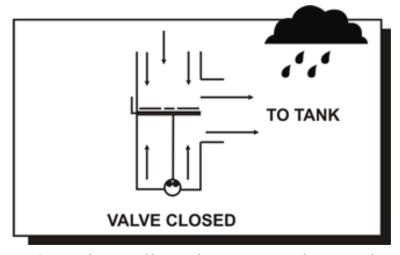
Dug well for groundwater collection and recharge

SSWM sustainable sanitation and water management

A2. Rainwater Harvesting



Priced at AUD\$132.00


(GST Inclusive)

SSWM sustainable sanitation and water management

A2. Rainwater Harvesting

1. When rain starts, the tainted water is dumped from the base

2. After the polluted water is dumped, the valve shuts automatically. Clean water is then diverted to the tank.

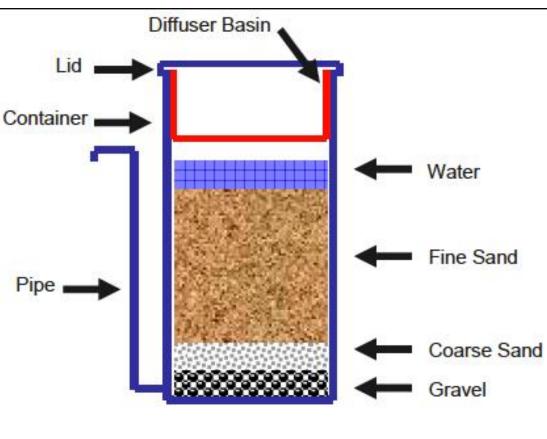
The unit closes at flow rates between 10 litres/min and 20 litres/min adjustable. Large leaves, sticks and such like are caught in a detachable screen accessible by the screw access.

Source: http://saferain.com.au/vertical_valve.html [Accessed: 20.09.2010]

SSWM sustainable sanitation and water management

A2. Rainwater Harvesting

Water tank: 9000 liters



Dug well before & after rain: Storage (10'000l + Groundwater recharge)

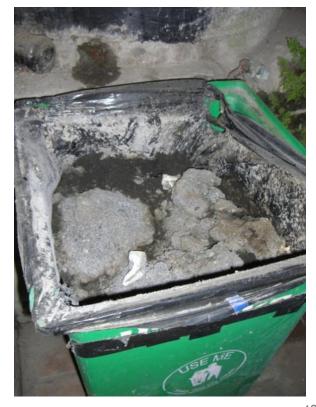
A3. Rainwater Harvesting - Water Purification

Water Purification: Biosandfilter

A3. Rainwater Harvesting - Water Purification

Drinking Water: SODIS (Solar Water Desinfection)

A4. Greywater Treatment and Recycling



A5. Urine-Diversion Dehydration Toilets

A5. Urine-Diversion Dehydration Toilets

Faeces after 5 to 6 months

A6. Vermicomposting

A7. Rooftop Gardening

A7. Rooftop Gardening

A7. Rooftop Gardening

A8. Demonstration Site

A9. References

SHRESTHA, R.R. (2010): Eco Home for Sustainable Water Management: A Case Study in Kathmandu, Nepal. (=International Conference on Sustainable Sanitation: Food and Water Security for Latin America, Fortaleza, 2007). Available at: http://www.nepal.watsan.net/page/635 [Accessed: 30.10.2010]

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizza

Federal Department of Foreign Affairs FDFA Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

Compiled by:

