Pipeline Management Using GIS

November 7 2006

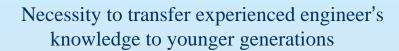
Nihon Suido Consultants Co.,Ltd.

Index

- 1. Background of Installation of GIS
- 2. What is GIS?
- 3. Using GIS in Water Utility
- 4. GIS Data for NRW Reduction
- . Conclusions

1 . Background of Installation of GIS

- Major Issues on Water Utilities in Japan -


Necessity to replace/renew the facilities

- Aging facilities
 - ➤ In the 1960s-70s, many water facilities were built to meet the increasing water demand
 - Now, those facilities are 40 years or over 40

of system renewal plan

Necessity to manage the facilities efficiently and document properly

- Increase of Facilities and drawings
 - many water facilities = many documents(as-built drawings)
- · · · · GIS will provide efficiency on asset management

- Retirement of experienced engineers/field staff
- ➤ After World War II, Baby boom(1947-1949)
- They worked hard to build new facilities for increasing water demand.
- They have a lot of knowledge and experience of management of water facilities
- Now, the baby boom generation are nearly 60

· · · GIS will assist inheritance of the technical knowledge

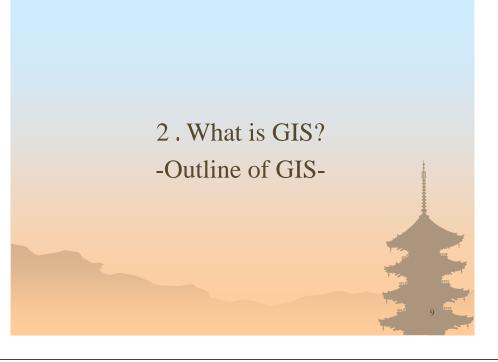
Necessity to improve the facilities

- Changes of consumer's needs for water supply service.
 - To supply palatable (good quality) water
 - To serve with adequate pressure/to serve to 3rd floor-5th floor directly(without receiving tank and pumping up).
 - > To reduce troubles
 - red water
 - no/little suspension even in case of emergencies such as earthquake

customer services

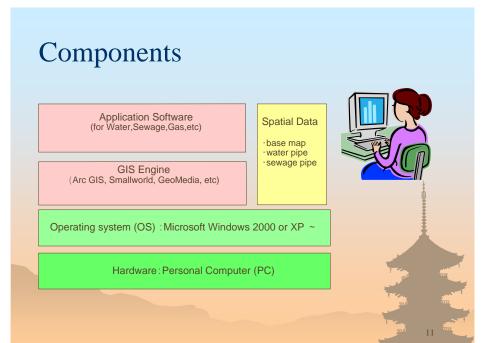
Major Issues on Water Utilities in Japan

Necessity to replace/renew the facilities

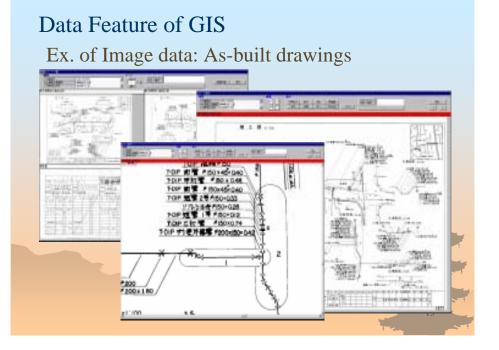

Necessity to manage the facilities efficiently /properly

Necessity to transfer their knowledge to younger generations

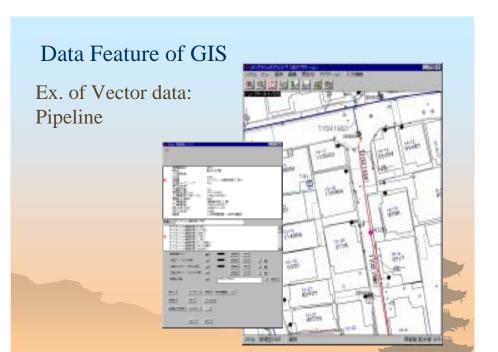
Necessity to improve the facilities


- Facility data is necessary to conduct above items
- Facility data is various and is huge

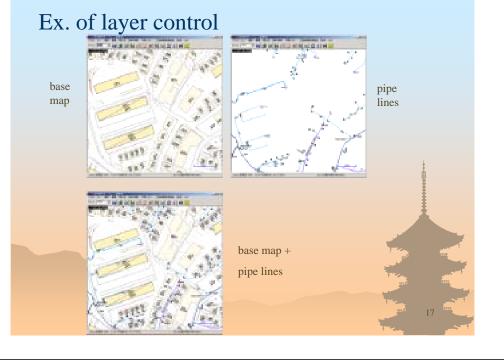
· · · GIS must be effective to process these data


Definition

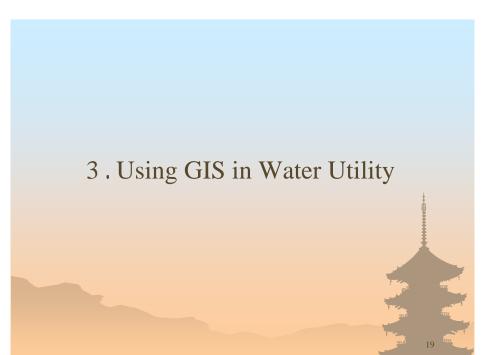
- Geographic Information System is a computerized database management system for spatial data that enable storage, retrieval, analysis and support of decision making.
- Spatial data means a figure that have coordinate (position) data and attribute.

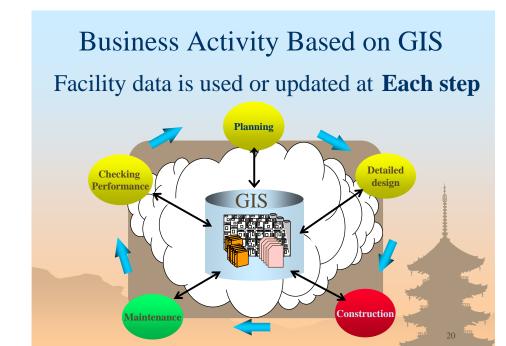

Data Feature of GIS/Image data

- Dot data / pixcel data.
- Resolution; dot per inch (dpi).ex: digital photos, scanned documents, etc
- File format; BMP, JPEG, Tiff
- Not usable for retrieval and analysis

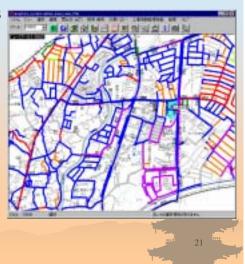

Data Feature of GIS/Vector data

- Position/locationX and Y coordinates/latitude and longitude
- Geometry/Shape point, line, polygon (rectangle, circle, etc)
- Attribute contents of objects
- Geographic display = Easy to grasp
- Usable for retrieval and analysis




Management of Vector Data

- GIS data is managed in layers separately.
 - ➤ Base map: road layer, house layer, river layer, · · ·
 - ➤ Water data: water main, service pipe, valve, · · ·
- * Data display is controlled by layers.
- You can display only necessary data.


Function Features of GIS Display Arbitrary range: scale up / down, movement Display of necessary data, non-display of unnecessary data Retrieval Attribute condition Spatial condition Complex condition (Spatial + Attribute)

Planning support; Pipe Replacement

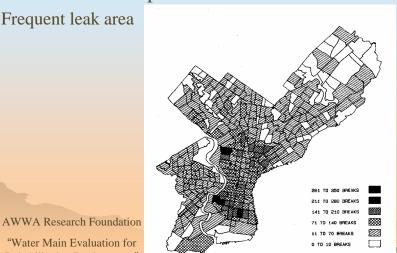
- Coloring By pipe types (materials) or installation year
- Easy to find which pipe should be replaced

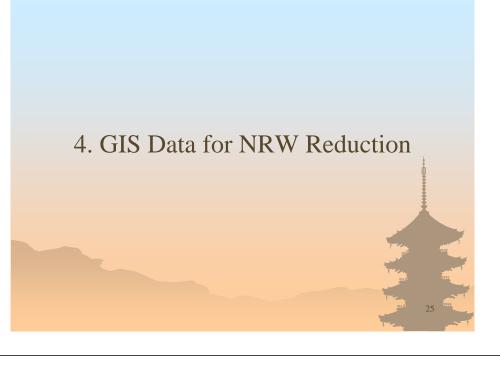
Design support

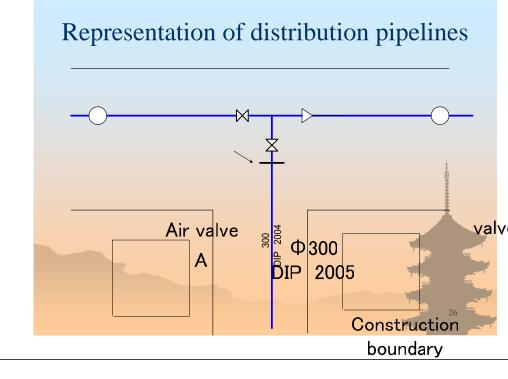
Export of Existing base map and pipe data to CAD system

Maintenance/Pipe failure

- •Indication of valves that should be closed
- •Indication of suspension area



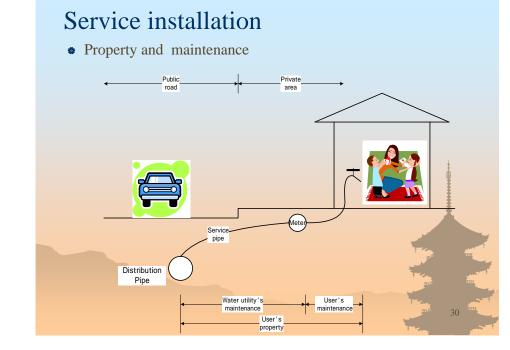

Checking performance/analysis


Distribution of leak points

"Water Main Evaluation for

- Frequent leak area

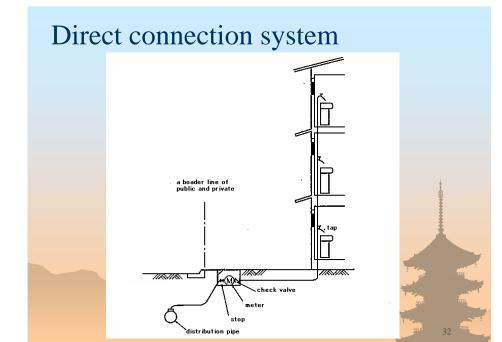
GIS data: Pipeline

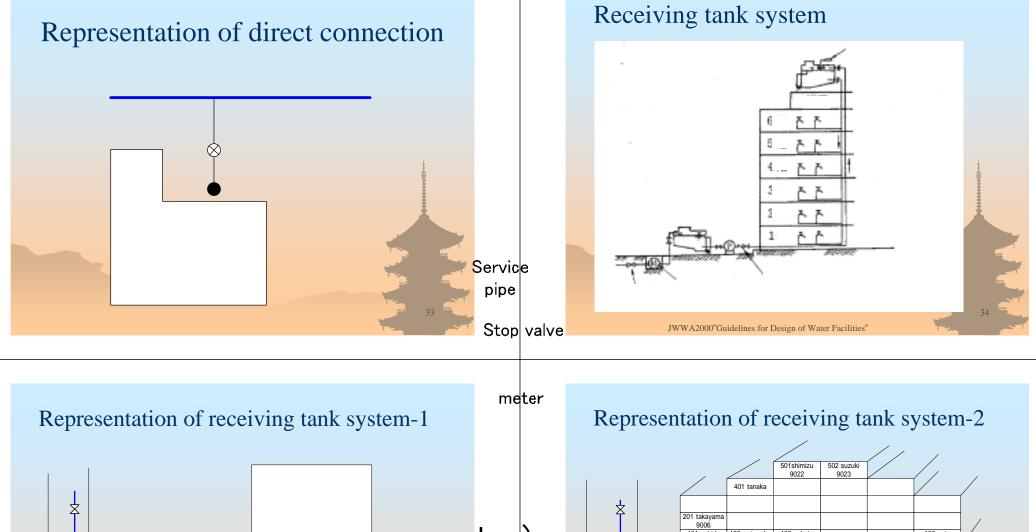

Attribute	Contents	
Purpose	transmission, distribution, drain, etc	
Material	DIP, CIP, SP, VP, etc	
Diameter	75,100,150,200,	
Length	210.58(m)	
Lining	Mortal, Epoxy resin, Synthetic resin	
Corrosion protection	Polyethylene sleeve	
Construction year	1984	

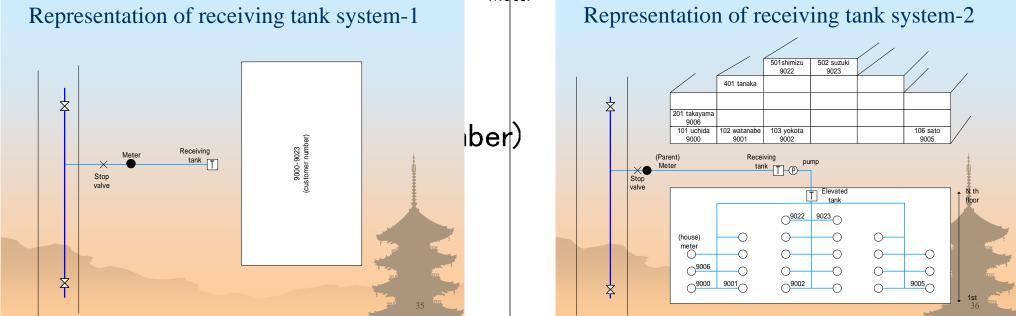
GIS data: Valve

Attribute	Contents	
Туре	butterfly, sluice, etc	
Diameter	75, 100, 150, 200,	
Switch status	open, close,	
Switch direction	right, left	
Operability	will not open, etc	
Construction year	1996	

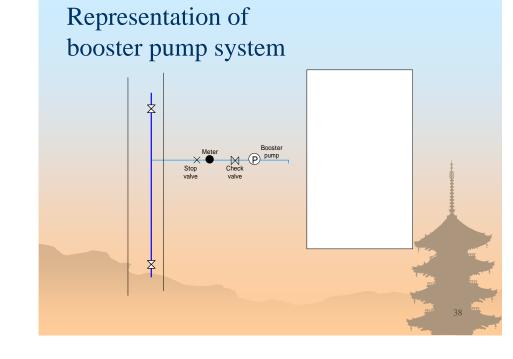
GIS data: Hydrant and Air valve


Name of Object	Attribute	Contents
Hydrant	Туре	single, dual,
	Purpose	fire fighting, drain
	Diameter	75,100
	Construction year	2004
Air Valve	Туре	single, dual,
	Diameter	25, 75, 100,150,
	Construction year	2005
		³⁸⁸ 29




Water service system

- Three types of water service system
 - Direct connection system
 - Receiving tank system
 - Booster pump system



Booster pump system Booster pump Check valve Service pipe 37 JWWA2000"Guidelines for Design of Water Facilities"

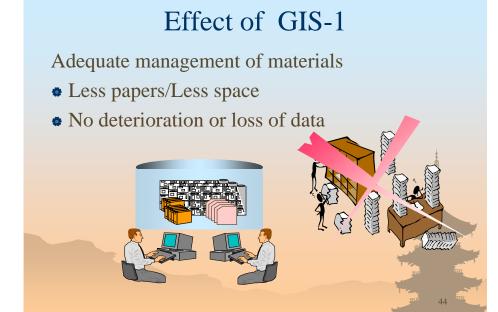
GIS data: Service pipe and stop valve

Name of Object	Attributes	Contents
Service pipe	Customer number	12345
	Material	PEP, VP, Pb, etc
	Diameter	13,20,25, · · ·
	Length	15.23m
Stop valve	Customer number	12345
	Туре	butterfly, stop, etc
	Diameter	13,20,25, · · ·

GIS data: Meter

Name of Object	Attributes	Contents
Meter	Customer number	12345
	Diameter	13,20,25, · · ·
	Meter number	3825
	Installation data	10-Oct-06
	switch status	open, close
	Customer name	Takayama
	Customer address	Sayama city
	Customer tel. number	04-2955- × × × ×
	Owner name	Watanabe
	Owner address	Yokohama city
	Owner tel. number	03-5323-6220

GIS data: receiving tank and booster pump


Name of Object	Attributes	Contents
Receiving tank	Customer number	12345
	Volume	10m3
Booster pump	Customer number	12345
	pump head	30m
	capacity	0.1m3/min
		³⁰⁰ 41

GIS data: leak repair and customer complaint

Name of Object	Attributes	Contents
Leak repair	Repair date	nov-7-06
	Address/road name	
	Pipe data	DIP 300 installed in 1975
	Damage data	pipe broken and leaks
	Repair data	replaced 2m pipe
	Remarks	
Customer	Received date/time	nov-7-06 10:00am
complaint	Customer number	
	Address	
	Customer name	Tu,
	Complaints	delay in repaving the road after pipe installation
	Action	instruction to contractors
	Remarks	

- Effect of GIS -

Effect of GIS-2 **Data Sharing** Administration section **Planning** section Annual data Design existing pipe section

Effect of GIS-3

Efficient operation

er GIS

- Reduction of Retrieval Time of the Facilities data.
- Efficient Maintenance of the Facilities(pipe failure, leak inspection, etc).

Under Construction 01/05/2004-

Effect of GIS-4

Efficient operation

- Decision making support for Investment priority(pipe replacement, etc)
- Quick response to customer's inquiries/complaints

Improvement of Water Supply Service

Thank you (Questions)