WATER TREATMENT PRIMER 1

CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE

Printing and Saving Instructions

The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat reader.

Abode Acrobat reader is a free computer software program and you can find it at Abode Acrobat's website.

You can complete the course by viewing the course materials on your computer or you can print it out. We give you permission to print this document.

Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided.

This course booklet does not have the assignment. Please visit our website and download the assignment also.

Internet Link to Assignment...

http://www.abctlc.com/PDF/WTPrimer2ASS.pdf

State Approval Listing Link, check to see if your State accepts or has pre-approved this course. Not all States are listed. Not all courses are listed. If the course is not accepted for CEU credit, we will give you the course free if you ask your State to accept it for credit.

Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies acceptance or approvals.

State Approval Listing URL...

http://www.tlch2o.com/PDF/CEU%20State%20Approvals.pdf

You can obtain a printed version from TLC for an additional \$49.95 plus shipping charges.

Be careful not to overfill the Bac-T bottle or rapidly fill it. It is easier than you think to contaminate or have a positive sample.

We have taught this course to over 5,000 students in a conventional classroom setting. Call and schedule a class at your facility or utilize the distance learning course to obtain your CEUs.

Contributing Editors

Joseph Camerata has a BS in Management with honors (magna cum laude). He retired as a Chemist in 2006 having worked in the field of chemical, environmental, and industrial hygiene sampling and analysis for 40 years. He has been a professional presenter at an EPA analytical conference at the Biosphere in Arizona and a presenter at an AWWA conference in Mesa, Arizona. He also taught safety classes at the Honeywell and City of Phoenix, and is a motivational/inspirational speaker nationally and internationally.

Dr. Eric Pearce S.M.E., chemistry and biological review.

Dr. Pete Greer, S.M.E., retired biology instructor.

Jack White, Environmental, Health, Safety expert, City of Phoenix. Art Credits.

Important Information about this Manual

Disclaimer

This CEU training manual has been prepared to assist employees in the general awareness of the water distribution system and groundwater production system, complex pumping ideas, dangerous excavation techniques, water regulatory sampling and dealing with often-complex procedures and requirements for safely handling hazardous and toxic materials. The scope of the material is quite large, requiring a major effort to bring it under control. Employee health and safety, as well as that of the public, depend upon careful application of federal and state regulations and safe working procedures.

This manual will cover general laws, regulations, required procedures and work rules relating to water distribution and sampling. It should be noted, however, that the federal and state regulations are an ongoing process and subject to change over time. For this reason, a list of resources and hyperlinks is provided to assist in obtaining the most up-to-date information on various subjects. You can find these on our website or in this manual. This manual is a guidance document for employees who are involved with water distribution, water quality and pollution control. It is not designed to meet the full requirements of the United States Environmental Protection Agency (EPA) or the Department of Labor-Occupational Safety and Health Administration (OSHA) rules and regulations.

This course manual will provide general guidance and should not be used as a preliminary basis for developing general water/wastewater sampling plans or water distribution safety plans or procedures. This document is not a detailed water/wastewater textbook or a comprehensive source book on water/wastewater/safety rules and regulations. Technical Learning College makes no warranty, guarantee or representation as to the absolute correctness or appropriateness of the information in this manual and assumes no responsibility in connection with the implementation of this information.

It cannot be assumed that this manual contains all measures and concepts required for specific conditions or circumstances. This document should be used for guidance and is not considered a legal document. Individuals who are responsible for water distribution, production and/or sampling and the health and safety of workers at hazardous waste sites should obtain and comply with the most recent federal, state, and local regulations relevant to these sites and are urged to consult with OSHA, the EPA and other appropriate federal, state, and local agencies.

Copyright Notice

©2002 Technical Learning College (TLC). No part of this work may be reproduced or distributed in any form or by any means without TLC's prior written approval. Permission has been sought for all images and text where we believe copyright exists and where the copyright holder is traceable and contact-able. All material that is not credited or acknowledged is the copyright of Technical Learning College. This information is intended for educational purposes only. Most unaccredited photographs have been taken by TLC instructors or TLC students. We will be pleased to hear from any copyright holder and will make proper attribution for your work if any unintentional copyright infringements were made as soon as these issues are brought to the editor's attention.

Every possible effort is made to ensure that all information provided in this course is accurate. All written, graphic, photographic, or other material is provided for information only. Therefore, Technical Learning College (TLC) accepts no responsibility or liability whatsoever for the application or misuse of any information included herein. Requests for permission to make copies should be made to the following address:

TLC, P.O. Box 420, Payson, AZ 85547-0420 Information in this document is subject to change without notice. TLC is not liable for errors or omissions appearing in this document.

Technical Learning College's Scope and Function

Technical Learning College (TLC) offers affordable continuing education for today's working professionals who need to maintain licenses or certifications. TLC holds approximately eighty different governmental approvals for granting of continuing education credit.

TLC's delivery method of continuing education can include traditional types of classroom lectures and distance-based courses or independent study. Most TLC's distance based or independent study courses are offered in a print based format and you are welcome to examine this material on your computer with no obligation. Our courses are designed to be flexible and for you do finish the material on your leisure. Students can also receive course materials through the mail. The CEU course or e-manual will contain all your lessons, activities and assignments. Most CEU courses allow students to submit lessons using e-mail or fax; however some courses require students to submit lessons by postal mail. (See the course description for more information.) Students have direct contact with their instructor—primarily by e-mail. TLC's CEU courses may use such technologies as the World Wide Web, e-mail, CD-ROMs, videotapes and hard copies. (See the course description.) Make sure you have access to the necessary equipment before enrolling, i.e., printer, Microsoft Word and/or Adobe Acrobat Reader. Some courses may require proctored exams depending upon your state requirements.

Flexible Learning

At TLC, there are no scheduled online sessions you need contend with, nor are you required to participate in learning teams or groups designed for the "typical" younger campus based student. You will work at your own pace, completing assignments in time frames that work best for you. TLC's method of flexible individualized instruction is designed to provide each student the guidance and support needed for successful course completion.

We will beat any other training competitor's price for the same CEU material or classroom training. Student satisfaction is guaranteed.

Course Structure

TLC's online courses combine the best of online delivery and traditional university textbooks. Online you will find the course syllabus, course content, assignments, and online open book exams. This student friendly course design allows you the most flexibility in choosing when and where you will study.

Classroom of One

TLC Online offers you the best of both worlds. You learn on your own terms, on your own time, but you are never on your own. Once enrolled, you will be assigned a personal Student Service Representative who works with you on an individualized basis throughout your program of study. Course specific faculty members are assigned at the beginning of each course providing the academic support you need to successfully complete each course.

Satisfaction Guaranteed

Our Iron-Clad, Risk-Free Guarantee ensures you will be another satisfied TLC student.

We have many years of experience, dealing with thousands of students. We assure you, our customer satisfaction is second to none. This is one reason we have taught more than 20,000 students.

Our administrative staff is trained to provide the best customer service in town. Part of that training is knowing how to solve most problems on the spot with an exchange or refund.

TLC Continuing Education Course Material Development

Technical Learning College's (TLC's) continuing education course material development was based upon several factors; extensive academic research, advice from subject matter experts, data analysis, task analysis and training needs assessment process information gathered from other states.

Rush Grading Service

If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of \$50.00. This fee may not cover postage costs. If you need this service, simply write RUSH on the top of your Registration Form. We will place you in the front of the grading and processing line.

For security purposes, please fax or e-mail a copy of your driver's license and always call us to confirm we've received your assignment and to confirm your identity.

Thank you...

Please fax or e-mail the answer key to TLC Western Campus Fax (928) 272-0747 Back-up Fax (928) 468-0675.

CEU Course Description

WATER TREATMENT PRIMER 2 TRAINING COURSE

An 8 hour continuing education review of various water quaity concerns commonly found in water treatment. This course will cover the basic requirements of the Safe Drinking Water Act, water sampling, disinfection and general water quality principles. You will not need any other materials for this course.

Water Distribution, Well Drillers, Pump Installers, Water Treatment Operators.

The target audience for this course is the person interested in working in a water treatment or distribution facility and/or wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or to meet education needs for promotion.

Final Examination for Credit

Opportunity to pass the final comprehensive examination is limited to three attempts per course enrollment.

Course Procedures for Registration and Support

All of Technical Learning College's correspondence courses have complete registration and support services offered. Delivery of services will include, e-mail, web site, telephone, fax and mail support. TLC will attempt immediate and prompt service.

When a student registers for a distance or correspondence course, he/she is assigned a start date and an end date. It is the student's responsibility to note dates for assignments and keep up with the course work. If a student falls behind, he/she must contact TLC and request an end date extension in order to complete the course. It is the prerogative of TLC to decide whether to grant the request. All students will be tracked by a unique number assigned to the student.

Instructions for Written Assignments

The Water Treatment Primer 2 training CEU course uses a multiple choice answer key. If you should need any assistance, please email all concerns and the final test to: info@tlch2o.com.

You may write your answers or type out your own answer key. TLC would prefer that you utilize the answer key found on the TLC website under Assignments and e-mail the answer key to TLC, but it is not required. You may also fax the answer key. Please call us a couple hours later to ensure we received your information.

Feedback Mechanism (examination procedures)

Each student will receive a feedback form as part of their study packet. You will be able to find this form in the rear of the course or lesson.

Security and Integrity

All students are required to do their own work. All lesson sheets and final exams are not returned to the student to discourage sharing of answers. Any fraud or deceit and the student will forfeit all fees and the appropriate agency will be notified.

Grading Criteria

TLC will offer the student either pass/fail or a standard letter grading assignment. If TLC is not notified, you will only receive a pass/fail notice.

Required Texts

The Water Treatment Primer 2 training CEU course will not require any other materials. This course comes complete. No other materials are needed.

Recordkeeping and Reporting Practices

TLC will keep all student records for a minimum of seven years. It is the student's

responsibility to give the completion certificate to the appropriate agencies.

ADA Compliance

TLC will make reasonable accommodations for persons with documented disabilities. Students should notify TLC and their instructors of any special needs. Course content may vary from this outline to meet the needs of this particular group.

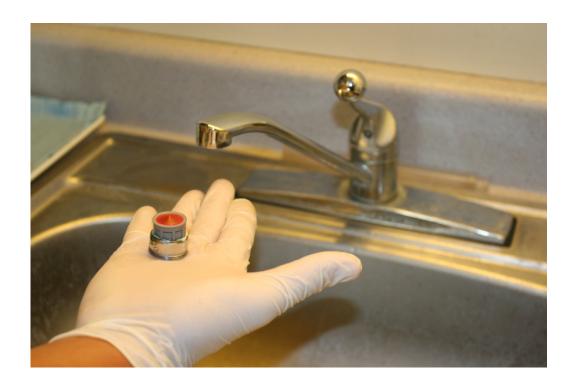
You will have 90 days from receipt of this manual to complete it in order to receive your Continuing Education Units (**CEUs**) or Professional

Development Hours (**PDHs**). A score of 70% or better is necessary to pass this course.

The educational mission of TLC is:

To provide TLC students with comprehensive and ongoing training in the theory and skills needed for the environmental education field.

To provide TLC students with opportunities to apply and understand the theory and skills needed for operator certification,


To provide opportunities for TLC students to learn and practice environmental educational skills with members of the community for the purpose of sharing diverse perspectives and experience,

To provide a forum in which students can exchange experiences and ideas related to environmental education,

To provide a forum for the collection and dissemination of current information related to environmental education, and to maintain an environment that nurtures academic and personal growth.

TABLE OF CONTENTS

Safe Drinking Water Act Summary	13
Primary Drinking Water MCLs	
Secondary Drinking Water MCLs	
New EPA Rules	
Key Words	
Terms and Definitions	
Waterborne Pathogens	
Protozoan Diseases	
Waterborne Diseases	
Bacteriological Monitoring	
HPC	
Total Coliforms	51
Chain of Custody	54
Sampling Plan	57
QA/QC Measures	59
Water Disinfection	
Troubleshooting Sampling Table	61
Waterborne Pathogen Review	63
Safe Drinking Water Act Review	67
Bateriogical Monitoring Review	69
Disinfection Methods	71
Disinfection Rules	79
Periodic Chart	83
pH	85
Chlorine Section	157
DPD Residual Method	162
Chemistry of Chlorination	179
Chlorinator Parts	
Troubleshooting Hypochlorination	175
Disinfection Policy	
Alternant Disinfectants	178
Amperometric Titration	
Chlorine Dioxide	181
Corrosion Control	
Alkalinity / pH Adjustment	189
Activated Carbon	192
IOC Section	147
VOCs	151
Glossary	
Math Conversions	

Sampling for Coliform Bacteria Analysis – Sampling Taps to Avoid, if Possible (from Bacteriological Sampling, 1988)

- 1. Taps with swivel/swing type spouts
- 2. Faucets with leaks around the valve stem. The kitchen sink is most often used for sampling. Outside faucets are sometimes used as sampling locations
- 3. Taps with leaks around the base of the spout.
- 4. Taps with aerators or other accessories (such as filters) attached to the spout, unless they are removed before sampling.
- 5. Taps located in areas that are not cleaned or maintained.
- 6. Taps that are subject to splash or contamination.

Example: Pot and pan washing sink in a restaurant kitchen ora janitor's mop sink.

- 7. Taps with threaded bibs.
- 8. Taps that do not have a uniform stream of water.
- 9. Mixing (hot and cold) faucets.
- 10. Frost free hydrants with buried stop and waste valves
- 11. Faucets that were recently installed or repaired, and have not yet been treated with chlorine.

Safe Drinking Water Act (SDWA)

On August 6, 1996, President Clinton signed the Reauthorization of the Safe Drinking Water Act, bringing to a successful conclusion to years of work on the part of water professionals and a broad range of public interest groups throughout the nation. This new law strikes a balance among federal, state, local, urban, rural, large and small water systems in a manner that improves the protection of public health and brings reason and good science to the regulatory process.

The major elements of this law include:

- The law updates the standard-setting process by focusing regulations on contaminants known to pose greater public health risks.
- It replaces the current law's demand for 25 additional standards every three years with a new process based on occurrence, relative risk, and cost-benefit considerations.
- It also requires the EPA to select at least five new candidate contaminants to consider for regulation every five years.
- The EPA is directed to require public water systems to provide customers with annual "Consumer Confidence Reports" in newspapers and by direct mail.
- The reports must list levels of regulated contaminants along with Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs), along with plainly worded definitions of both.
- The reports must also include a plainly worded statement of the health concerns for any contaminants for which there has been a violation, describe the utility's sources of drinking water and provide data on unregulated contaminants for which monitoring is required, including Cryptosporidium and radon.
- The EPA must establish a toll-free hot line customers can call to get additional information.
- The EPA is required to publish guidelines for states to develop water source assessment programs that delineate protection areas and assess contamination risks.
- The EPA is required to identify technologies that are affordable for small systems to comply with drinking water regulations.
- Technical assistance funds and Small System Technical Assistance Centers are authorized to meet the training and technical needs of small systems.
- States are authorized to grant variances for compliance with drinking water regulations for systems serving 3,300 or fewer persons.
- The EPA is required to publish certification guidelines for operators of community and nontransient noncommunity public water systems.
- States that do not have operator certification programs that meet the requirements of the guidelines will lose 20 percent of their SRLF grant.
- A source water petition program for voluntary, incentive-based partnerships among public water systems and others to reduce contamination in source water is authorized.
- The law establishes a new State Revolving Loan Fund (SRLF) of \$1 billion per year to provide loans to public water systems to comply with the new SDWA.
- It also requires states to allocate 15 percent of the SRLF to systems serving 10,000 or fewer people unless no eligible projects are available for loans.
- It also allows states to jointly administer SDWA and Clean Water Act loan programs and transfer up to 33 percent between the two accounts.
- States must ensure that all new systems have compliance capacity and that all current systems maintain capacity, or lose 20 percent of their SRLF grant.

Although the EPA will continue to provide policy, regulations and guidance, state governments will now have more regulatory flexibility allowing for improved communication between water providers and their local regulators.

Increased collaboration will result in solutions that work better and are more fully supported by the regulated community. States that have a source water assessment program may adopt alternative monitoring requirements to provide permanent monitoring relief for public water systems in accordance with EPA guidance.

Safe Drinking Water Act of 1974 (PL 93-523) as amended by:

- The Safe Drinking Water Act Amendments of 1986
- National Primary Drinking Water Regulations, 40 CFR 141
- National Interim Primary Drinking Water Regulations Implementation, 40 CFR142
- National Secondary Drinking Water Regulations, 40 CFR 143

This is the primary Federal legislation protecting drinking water supplied by public water systems (those serving more than 25 people). The Environmental Protection Agency (EPA) is lead agency and is mandated to set standards for drinking water. The EPA establishes national standards of which the states are responsible for enforcing.

The act provides for the establishment of primary regulations for the protection of the public health and secondary regulations relating to the taste, odor, and appearance of drinking water. Primary drinking water regulations, by definition, include either a maximum contaminant level (MCL) or, when a MCL is not economically or technologically feasible, a prescribed treatment technique which would prevent adverse health effects to humans. An MCL is the permissible level of a contaminant in water that is delivered to any user of a public water system. Primary and secondary drinking water regulations are stated in 40 CFR 141 and 143, respectively. As amended in 1986, the EPA is required to set maximum contaminant levels for 83 contaminants deemed harmful to humans (with specific deadlines). It also has authority over groundwater. Water agencies are required to monitor water to ensure it meets standards.

National Drinking Water Regulations

The Act instructs the EPA on how to select contaminants for regulation and specifies how EPA must establish national primary drinking water regulations once a contaminant has been selected (Section 1412). As of late 1996, the EPA had promulgated 84 drinking water regulations.

Contaminant Selection

P.L. 104-182 establishes a new process for the EPA to select contaminants for regulatory consideration based on occurrence, health effects, and meaningful opportunity for health risk reduction. By February 1998 and every 5 years thereafter, the EPA must publish a list of contaminants that may warrant regulation. Starting in 2001, and every 5 years thereafter, the EPA must determine whether or not to regulate at least 5 of the listed contaminants. The Act directs the EPA to evaluate contaminants that present the greatest health concern and to regulate contaminants that occur at concentration levels and frequencies of public health concern.

The law also includes a schedule for the EPA to complete regulations for disinfectants and disinfection byproducts (D/DBPs) and *Cryptosporidium* (a waterborne pathogen).

Standard Setting

Developing national drinking water regulations is a two-part process. For each contaminant that the EPA has determined merits regulation, the EPA must set a non-enforceable maximum contaminant level goal (MCLG) at a level at which no known or anticipated adverse health effects occur, and which allows an adequate margin of safety. The EPA must then set an enforceable standard, a maximum contaminant level (MCL), as close to the MCLG as is "feasible" using best technology, treatment techniques, or other means available (taking costs into consideration).

Standards are generally based on technologies that are affordable for large communities; however, under P.L. 104-182, each regulation establishing an MCL must list any technologies, treatment techniques or other means that comply with the MCL and that are affordable for three categories of small public water systems. The 1996 Amendments authorize the EPA to set a standard at other than the feasible level if the feasible level would lead to an increase in health risks by increasing the concentration of other contaminants or by interfering with the treatment processes used to comply with other SDWA regulations. In such cases, the standard or treatment techniques must minimize the overall health risk. Also, when proposing a regulation, the EPA must now publish a determination as to whether or not the benefits of the standard justify the costs. If EPA determines that the benefits do not justify the costs, the EPA may, with certain exceptions, promulgate a standard that maximizes health risk reduction benefits at a cost that is justified by the benefits.

Risk Assessment

P.L. 104-182 adds risk assessment and communication provisions to SDWA. When developing regulations, the EPA is now required to: (1) use the best available, peer-reviewed science and supporting studies and data; and (2) make publicly available a risk assessment document that discusses estimated risks, uncertainties, and studies used in the assessment.

When proposing drinking water regulations, the EPA must publish a health risk reduction and cost analysis. The law permits the EPA to promulgate an interim standard without first preparing a benefit-cost analysis or making a determination as to whether the benefits of a regulation would justify the costs if the EPA determines that a contaminant presents an urgent threat to public health.

New regulations generally become effective 3 years after promulgation. Up to 2 additional years may be allowed if the EPA (or a state in the case of an individual system) determines the time is needed for capital improvements. Section 1412 includes specific provisions for arsenic, sulfate, and radon. The law authorizes states to grant Systems variances from a regulation if raw water quality prevents meeting the standards despite application of best technology (Section 1415). A new provision authorizes small system variances based on best affordable technology.

States may grant these variances to systems serving 3,300 or fewer persons if the system cannot afford to comply (through treatment, an alternative water source, or restructuring) and the variance ensures adequate protection of public health; states may grant variances to systems serving between 3,300 and 10,000 persons with EPA approval. To receive a small system variance, the system must install a variance technology identified by EPA. The variance technology need not meet the MCL, but must protect public health.

The EPA must identify variance technologies for existing regulations. Variances are not available for microbial contaminants. The Act also provides for exemptions if a regulation cannot be met for other compelling reasons (including costs) and if the system was in operation before the effective date of a standard or treatment requirement (Section 1416). An exemption is intended to give a public water system more time to comply with a regulation and can be issued only if it will not result in an unreasonable health risk. Small systems may receive exemptions for up to 9 years.

State Primacy

The primary enforcement responsibility for public water systems lies with the states, provided they adopt regulations as stringent as the national requirements, adopt authority for administrative penalties, develop adequate procedures for enforcement, maintain records, and create a plan for providing emergency water supplies (Section 1413). Currently, 55 of 57 states and territories have primacy authority. P.L. 104-182 authorizes \$100 million annually for the EPA to make grants to states to carry out the public water system supervision program. States may also use a portion of their SRLF grant for this purpose (Section 1443). Whenever the EPA finds that a public water system in a state with primary enforcement authority does not comply with regulations, the Agency must notify the state and the system and provide assistance to bring the system into compliance. If the state fails to commence enforcement action within 30 days after the notification, the EPA is authorized to issue an administrative order or commence a civil action.

Nonprimacy State

In a non-primacy state, the EPA must notify an elected local official (if any has jurisdiction over the water system) before commencing an enforcement action against the system (Section 1414). Primacy states may establish alternative monitoring requirements to provide interim monitoring relief for systems serving 10,000 or fewer persons for most contaminants, if a contaminant is not detected in the first quarterly sample. States with approved source water protection programs may adopt alternative monitoring requirements to provide permanent monitoring relief to qualified systems for chemical contaminants (Section 1418).

P.L. 104-182 requires states to adopt programs for training and certifying operators of community and nontransient noncommunity systems. The EPA must publish guidelines specifying minimum standards for operator certification by February 1999. Two years thereafter, the EPA must withhold 20% of a state's SRLF grant unless the state has an operator certification program (Section 1419). States are also required to establish capacity development programs based on EPA guidance. State programs must include: 1) legal authority to ensure that new systems have the technical, financial, and managerial capacity to meet SDWA requirements; and 2) a strategy to assist existing systems that are experiencing difficulties to come into compliance. The EPA is required to withhold a portion of SRF grants from states that do not have compliance development strategies (Section 1420).

Underground Injection Control

Another provision of the Act requires the EPA to promulgate regulations for state underground injection control (UIC) programs to protect underground sources of drinking water. These regulations contain minimum requirements for the underground injection of wastes in five well classes to protect underground sources of drinking water and to require that a state prohibit, by December 1977, any underground injection that was not authorized by state permit (Section 1421).

Ground Water Protection Grant Programs

The Act contains three additional ground water protection programs. Added in 1986, Section 1427 established procedures for demonstration programs to develop, implement, and assess critical aquifer protection areas already designated by the Administrator as sole source aquifers. Section 1428, also added in 1986, and established an elective state program for protecting wellhead areas around public water system wells. If a state established a wellhead protection program by 1989, and the EPA approved the state's program, then the EPA may award grants covering between 50% and 90% of the costs of implementing the program. Section 1429, added by P.L. 104-182 authorizes the EPA to make 50% grants to states to develop programs to ensure coordinated and comprehensive protection of ground water within the states.

Source Water Protection Programs

P.L. 104-182 broadens the pollution prevention focus of the Act to embrace surface water as well as ground water protection. New Section 1453 directs the EPA to publish guidance for states to implement source water assessment programs that delineate boundaries of assessment areas from which systems receive their water, and identify the origins of contaminants in delineated areas to determine systems' susceptibility to contamination. States with approved assessment programs may adopt alternative monitoring requirements to provide systems with monitoring relief under Section 1418.

New Section 1454 authorizes a source water petition program based on voluntary partnerships between state and local governments. States may establish a program under which a community water system or local government may submit a source water quality partnership petition to the state requesting assistance in developing a voluntary partnership to: (1) reduce the presence of contaminants in drinking water; (2) receive financial or technical assistance; and (3) develop a long-term source water protection strategy. This section authorizes \$5 million each year for grants to states to support petition programs. Also, states may use up to 10% of their annual SRF capitalization grant for the source water assessment activities or for the petition program.

State Revolving Funds

Section 1452, added by P.L. 104-182 authorizes a State Revolving Loan Fund (**SRF**) program to help systems finance improvements needed to comply with drinking water regulations. The law authorizes the EPA to make grants to states to capitalize SDWA SRFs, which states then use to make loans to public water systems. States must match 20% of the federal grant.

Grants will be allotted to states using the formula for distributing state PWSS grants through FY1997; then, grants will be allotted based on a needs survey. Each state will receive at least 1% of funds. The District of Columbia will receive 1% of funds as well. A state may transfer up to 33% of the grant to the Clean Water Act (CWA) SRF, or an equivalent amount from the CWA SRF to the SDWA SRF.

Drinking water SRFs may be used to provide loan and grant assistance for expenditures that the EPA has determined will facilitate compliance or significantly further the Act's health protection objectives. States must make available 15% of their annual allotment for loan assistance to systems that serve 10,000 or fewer persons. States may use up to 30% of their SRF grant to provide grants or forgive loan principle to help economically disadvantaged communities. Also, states may use a portion of funds for technical assistance, source water protection and capacity development programs, and for operator certification.

Other Provisions

Public water systems must notify customers of violations with potential for serious health effects within 24 hours. Systems must also issue to customers annual reports on contaminants detected in their drinking water (Section 1414).

Section 1417 requires any pipe, solder, or flux used in the installation or repair of public water systems or of plumbing in residential or nonresidential facilities providing drinking water to be "lead free" (as defined in the Act). As of August 1998, it will be unlawful to sell pipes, plumbing fittings or fixtures that are not "lead free" or to sell solder or flux that is not lead free(unless it is properly labeled); with the exception of pipes used in manufacturing or industrial processing. P.L. 104-182 sets limits on the amount of lead that may leach from new plumbing fixtures, and allows one year for a voluntary standard to be established before requiring the EPA to take regulatory action. The Administrator has emergency powers to issue orders and commence civil action if a contaminant likely to enter a public drinking water supply system poses a substantial threat to public health and state or local officials have not taken adequate action (Section 1431).

If a chemical necessary for water treatment is not reasonably available, the Administrator can issue a "certification of need," in which case the President can order an allocation of the chemical to those needing it (Section 1441). The EPA is provided authority to conduct research, studies, and demonstrations related to the causes, treatment, control, and prevention of diseases resulting from contaminants in water. The Agency is directed to provide technical assistance to the states and municipalities in administering their public water system regulatory responsibilities.

The law authorizes annually, \$15 million for technical assistance to small systems and Indian Tribes, and \$25 million for health effects research (Section 1442). P.L. 104-182 authorizes additional appropriations for drinking water research, not to exceed \$26.6 million annually.

The Administrator may make grants to develop and demonstrate new technologies for providing safe drinking water and to investigate health implications involved in the reclamation/reuse of waste waters (Section 1444). Also, suppliers of water who may be subject to regulation under the Act are required to establish and maintain records, monitor, and provide any information that the Administrator requires to carry out the requirements of the Act (Section 1445). The Administrator may also enter and inspect the property of water suppliers to enable him/her to carry out the purposes of the Act. Failure to comply with these provisions may result in criminal penalties. The Act established a National Drinking Water Advisory Council, composed of 15 members (with at least 2 representing rural systems), to advise, consult, and make recommendations to the Administrator on activities and policies derived from the Act (Section 1446).

National Security

Any federal agency having jurisdiction over federally owned and maintained public water systems must comply with all federal, state, and local drinking water requirements as well as any underground injection control programs (Section 1447). The Act provides for waivers in the interest of national security. Procedures for judicial review are outlined (Section 1448), and provision for citizens' civil actions is made (Section 1449). Citizen suits may be brought against any person or agency allegedly in violation of provisions of the Act, or against the Administrator for alleged failure to perform any action or duty which is not discretionary.

The EPA may use the new estrogenic substances screening program created in the Food Quality Protection Act of 1996 (P .L. 104-170) to provide for testing of substances that may be found in drinking water if the Administrator determines that a substantial population may be exposed to such substances (Section 1457). The EPA is directed to conduct drinking water studies involving subpopulations at greater risk and biological mechanisms, and studies to support several rules including those addressing D/DBPs and *Cryptosporidium*.

The Act includes a provision amending the Federal Food, Drug, and Cosmetic Act, generally requiring the Secretary of Health and Human Services to issue bottled drinking water standards for contaminants regulated under the Safe Drinking Water Act. Other provisions of P.L. 104-182 authorize water and wastewater grants for colonies and Alaska rural and native villages, and authorize the transfer of the Washington (D.C.) Aqueduct to a regional authority. The 1996 Amendments also authorize a \$50 million per year grant program for additional infrastructure and watershed protection projects; the conference report lists, and directs the EPA to give priority consideration to 24 such projects.

Because of the events of 9/11, we have to prepare for an attack on our water distribution system. This includes preparing for hurricanes, floods and terrorist actions.

National Primary Drinking Water Regulations

Inorganic Chemicals	MCLG ¹ (mg/L) ⁴	MCL ² or TT ³ (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Antimony	0.006	0.006	Increase in blood cholesterol; decrease in blood glucose	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	none ⁵	0.010	Skin damage; circulatory system problems; increased risk of cancer	Discharge from semiconductor manufacturing; petroleum refining; wood preservatives; animal feed additives; herbicides; erosion of natural deposits
Asbestos (fiber >10 micrometers)	7 million fibers per Liter	7 MFL	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits
Barium	2	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	0.004	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	0.005	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (total)	0.1	0.1	Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits
Copper	1.3	Action Level=1. 3; TT [©]	Short term exposure: Gastrointestinal distress. Long term exposure: Liver or kidney damage. Those with Wilson's Disease should consult their personal doctor if their water systems exceed the copper action level.	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Cyanide (as free cyanide)	0.2	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	4.0	4.0	Bone disease (pain and tenderness of the bones); Children may get mottled teeth.	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	zero	Action Level=0. 015; TT ⁶	Infants and children: Delays in physical or mental development. Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits

Inorganic Mercury	0.002	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nitrate (measured as Nitrogen)	10	10	"Blue baby syndrome" in infants under six months - life threatening without immediate medical attention. Symptoms: Infant looks blue and has shortness of breath.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (measured as Nitrogen)	: 1	1	"Blue baby syndrome" in infants under six months - life threatening without immediate medical attention. Symptoms: Infant looks blue and has shortness of breath.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	0.05	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines
Thallium	0.0005	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and pharmaceutical companies

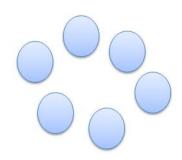
Organic Chemicals	MCLG ¹ (mg/L) ⁴	or 11- (mg/L) ⁴	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Acrylamide	zero	TT ^{<u>7</u>}	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/wastewater treatment
Alachlor	zero	0.002	Eye, liver, kidney or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops
Atrazine	0.003	0.003	Cardiovascular system problems; reproductive difficulties	Runoff from herbicide used on row crops
Benzene	zero	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills
Benzo(a)pyrene	zero	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines
Carbofuran	0.04	0.04	Problems with blood or nervous system; reproductive difficulties.	Leaching of soil fumigant used on rice and alfalfa
Carbon tetrachloride	zero	.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities
Chlordane	zero	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide
Chlorobenzene	0.1	0.1	Liver or kidney problems	Discharger from chemical and agricultural chemical factories
2,4-D	0.07	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops
Dalapon	0.2	0.2	Minor kidney changes	Runoff from herbicide used on rights of way
1,2-Dibromo-3- chloropropane (DBCP)	zero	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Water TreatmentPrin	ner 2 @ 1/1/2	013 TI C	20 (86)	6) 557-1746 Fay (928) 468-0675

5				
o-Dichlorobenzene	0.6	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories
p-Dichlorobenzene	0.075	0.075	Anemia; liver, kidney or spleen damage; changes in blood	Discharge from industrial chemical factories
1,2-Dichloroethane	zero	0.005	Increased risk of cancer	Discharge from industrial chemical factories
1-1- Dichloroethylene	0.007	0.007	Liver problems	Discharge from industrial chemical factories
cis-1, 2- Dichloroethylene	0.07	0.07	Liver problems	Discharge from industrial chemical factories
trans-1,2- Dichloroethylene	0.1	0.1	Liver problems	Discharge from industrial chemical factories
Dichloromethane	zero	0.005	Liver problems; increased risk of cancer	Discharge from pharmaceutical and chemical factories
1-2- Dichloropropane	zero	0.005	Increased risk of cancer	Discharge from industrial chemical factories
Di(2- ethylhexyl)adipate	0.4	0.4	General toxic effects or reproductive difficulties	Leaching from PVC plumbing systems; discharge from
Di(2- ethylhexyl)phthalate	zero	0.006	Reproductive difficulties; liver problems; increased risk of	chemical factories Discharge from rubber and chemical factories
Dinoseb	0.007	0.007	cancer Reproductive difficulties	Runoff from herbicide used on
Dioxin (2,3,7,8- TCDD)	zero	0.000000 03	Reproductive difficulties; increased risk of cancer	soybeans and vegetables Emissions from waste incineration and other combustion; discharge from
Diquat	0.02	0.02	Cataracts	chemical factories Runoff from herbicide use
Endothall	0.1	0.1	Stomach and intestinal problems	Runoff from herbicide use
Endrin Epichlorohydrin	0.002 zero	0.002 TT ^{<u>′</u>}	Nervous system effects Stomach problems; reproductive difficulties;	Residue of banned insecticide Discharge from industrial chemical factories; added to
Ethylbenzene	0.7	0.7	increased risk of cancer Liver or kidney problems	water during treatment process Discharge from petroleum refineries
Ethelyne dibromide	zero	0.00005	Stomach problems; reproductive difficulties; increased risk of cancer	Discharge from petroleum refineries
Glyphosate	0.7	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use
Heptachlor	zero	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide
Heptachlor epoxide	zero	0.0002	Liver damage; increased risk of cancer	Breakdown of hepatachlor
Hexachlorobenzene	zero	0.001	Liver or kidney problems; reproductive difficulties;	Discharge from metal refineries and agricultural chemical
Hexachlorocyclopen tadiene	0.05	0.05	increased risk of cancer Kidney or stomach problems	factories Discharge from chemical factories
Lindane	0.0002	0.0002	Liver or kidney problems	Runoff/leaching from insecticide
Methoxychlor	0.04	0.04	Reproductive difficulties	used on cattle, lumber, gardens Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl (Vydate)	0.2	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes
Polychlorinated biphenyls (PCBs)	zero	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals

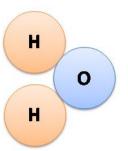
	MCLG ¹	MCL ²	Potential Health Effects	Sources of Conteminant in
Xylenes (total)	10	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories
Vinyl chloride	zero	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories
Trichloroethane Trichloroethylene	zero	0.005	system problems Liver problems; increased risk of cancer	chemical factories Discharge from petroleum refineries
1,1,2-	0.003	0.005	Liver, kidney, or immune	Discharge from industrial
1,1,1- Trichloroethane	0.20	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories
2,4,5-TP (Silvex) 1,2,4- Trichlorobenzene	0.05	0.05	Liver problems Changes in adrenal glands	Discharge from textile finishing factories
·	0.05	0.05	problems; increased risk of cancer	used on cotton and cattle Residue of banned herbicide
Trihalomethanes (TTHMs) Toxaphene	zero	0.003	nervous system problems; increased risk of cancer Kidney, liver, or thyroid	disinfection Runoff/leaching from insecticide
Total	none ⁵	0.10	liver problems Liver, kidney or central	factories Byproduct of drinking water
Toluene	1	1	of cancer Nervous system, kidney, or	dry cleaners Discharge from petroleum
Tetrachloroethylene	zero	0.005	Liver problems; increased risk	landfills Discharge from factories and
Simazine Styrene	0.004 0.1	0.004 0.1	Problems with blood Liver, kidney, and circulatory problems	Herbicide runoff Discharge from rubber and plastic factories; leaching from
Picloram	0.5	0.5	increased risk of cancer Liver problems	preserving factories Herbicide runoff
Pentachlorophenol	zero	0.001	Liver or kidney problems;	Discharge from wood

Radionuclides	MCLG ¹ (mg/L) ⁴		Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Beta particles and photon emitters	none ⁵	4 millirems per year	Increased risk of cancer	Decay of natural and man- made deposits
Gross alpha particle activity	none ⁵	15 picocurie s per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits
Radium 226 and Radium 228 (combined)	none ⁵	5 pCi/Ĺ	Increased risk of cancer	Erosion of natural deposits

Microorganisms	MCLG ¹ (mg/L) ⁴	$\begin{array}{c} \text{MCL}^{\frac{2}{4}} \\ \text{or TT}^{\frac{3}{4}} \\ \text{(mg/L)}^{\frac{4}{4}} \end{array}$	Potential Health Effects from Ingestion of Water	Sources of Contaminant in Drinking Water
Giardia lamblia	zero	TT ⁸	Giardiasis, a gastroenteric disease	Human and animal fecal waste
Heterotrophic plate count	N/A	TT ⁸	HPC has no health effects, but can indicate how effective treatment is at controlling microorganisms.	n/a
Legionella	zero	TT ⁸	Legionnaire's Disease, commonly known as pneumonia	Found naturally in water; multiplies in heating systems
Total Coliforms (including fecal coliform and <i>E. Coli</i>)	zero	5.0% ⁹	•	Human and animal fecal waste
Turbidity	N/A	TT ⁸	Turbidity has no health effects but can interfere with disinfection and provide a medium for microbial growth. It may indicate the presence of microbes.	Soil runoff
Viruses (enteric)	zero	TT ⁸	Gastroenteric disease	Human and animal fecal waste



We teach this course in both a conventional classroom setting and in a distance based CEU course. We have taught over 20,000 students.


Hydrogen Molecules

Oxygen Molecules

Water Molecules H₂O

National Secondary Drinking Water Regulations

National Secondary Drinking Water Regulations (NSDWRs or secondary standards) are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

The EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards.

Contaminant	Secondary Standard
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 (color units)
Copper	1.0 mg/L
Corrosivity	noncorrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Odor	3 threshold odor number
рН	6.5-8.5
Silver	0.10 mg/L
Sulfate	250 mg/L
Total Dissolved Solids	500 mg/L
Zinc	5 mg/L

Important Notes

- ¹ Maximum Contaminant Level Goal (MCLG) The maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health effect of persons would occur, and which allows for an adequate margin of safety. MCLGs are non-enforceable public health goals.
- ² Maximum Contaminant Level (MCL) The maximum permissible level of a contaminant in water which is delivered to any user of a public water system. MCLs are enforceable standards. The margins of safety in MCLGs ensure that exceeding the MCL slightly does not pose significant risk to public health.
- ³ Treatment Technique An enforceable procedure or level of technical performance which public water systems must follow to ensure control of a contaminant.
- ⁴ Units are in milligrams per Liter (mg/L) unless otherwise noted.
- ⁵ MCLGs were not established before the 1986 Amendments to the Safe Drinking Water Act. Therefore, there is no MCLG for this contaminant.
- ⁶ Lead and copper are regulated in a Treatment Technique which requires systems to take tap water samples at sites with lead pipes or copper pipes that have lead solder and/or are served by lead service lines. The action level, which triggers water systems into taking treatment steps if exceeded in more than 10% of tap water samples, for copper is 1.3 mg/L, and for lead is 0.015mg/L.
- ⁷ Each water system must certify, in writing, to the state (using third-party or manufacturer's certification) that when acrylamide and epichlorohydrin are used in drinking water systems, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows:
 - Acrylamide = 0.05% dosed at 1 mg/L (or equivalent)
 - **Epichlorohydrin** = 0.01% dosed at 20 mg/L (or equivalent)
- ⁸ The Surface Water Treatment Rule requires systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:
 - Giardia lamblia: 99.9% killed/inactivated
 Viruses: 99.99% killed/inactivated
 - **Legionella**: No limit, but EPA believes that if *Giardia* and viruses are inactivated, Legionella will also be controlled.
 - **Turbidity**: At no time can turbidity (cloudiness of water) go above 5 Nephelolometric turbidity units (NTU); systems that filter must ensure that the turbidity go no higher than 1 NTU (0.5 NTU for conventional or direct filtration) in at least 95% of the daily samples in any month.
 - **HPC**: NO more than 500 bacterial colonies per milliliter.
- ⁹ No more than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive). Every sample that has total coliforms must be analyzed for fecal coliforms. There cannot be any fecal coliforms.
- cannot be any fecal coliforms.

 10 Fecal coliform and *E. coli* are bacteria whose presence indicates that the water may be contaminated with human animal wastes. Microbes in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms.

New EPA Rules

Arsenic

Arsenic is a chemical that occurs naturally in the earth's crust. When rocks, minerals, and soil erode, they release arsenic into water supplies. When people either drink this water or eat animals and plants that drink it, they are exposed to arsenic. For most people in the U.S., eating and drinking are the most common ways that people are exposed to arsenic, although it can also come from industrial sources. Studies have linked long-term exposure of arsenic in drinking water to a variety of cancers in humans.

To protect human health, an EPA standard limits the amount of arsenic in drinking water. In January 2001, the EPA revised the standard from 50 parts per billion (ppb), ordered that it fall to 10 ppb by 2006. After adopting 10ppb as the new standard for arsenic in drinking water, the EPA decided to review the decision to ensure that the final standard was based on sound science and accurate estimates of costs and benefits. In October 2001, the EPA decided to move forward with

implementing the 10 ppb standard for arsenic in drinking water.

More information on the rulemaking process and the costs and benefits of setting the arsenic limit in drinking water at 10 ppb can be found at www.epa.gov/safewater/arsenic.html.

ICR

The EPA has collected data required by the Information Collection Rule (ICR) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule is intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

Drinking water microbial and disinfection byproduct information collected for the ICR is now available in the EPA's Envirofacts Warehouse website.

Disinfection Byproduct Regulations

In December 1998, EPA established the Stage 1 Disinfectants/Disinfection Byproducts Rule that requires public water systems to use treatment measures to reduce the formation of disinfection byproducts and to meet the following specific standards:

Total trihalomethanes (TTHM)	80 ppb
Haloacetic acids (HAA5)	60 ppb
Bromate	10 ppb
Chlorite	1.0 parts per million (ppm)

Currently trihalomethanes are regulated at a maximum allowable annual average level of 100 ppb for water systems serving more than 10,000 people under the Total Trihalomethane Rule finalized by EPA in 1979. The Stage 1 Disinfectant/Disinfection Byproduct Rule standards became effective for trihalomethanes and other disinfection byproducts listed above back in December 2001 for large surface water public water systems. Those standards became effective in December 2003 for small surface water and all ground water public water systems.

Disinfection byproducts are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection byproducts for which regulations have been established have been identified in drinking water, including trihalomethanes, haloacetic acids, bromate, and chlorite.

Trihalomethanes (THM) are a group of four chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The trihalomethanes are chloroform, bromodichloromethane, dibromochloromethane, and bromoform. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate total trihalomethanes (TTHM) at a maximum allowable annual average level of 80 parts per billion. This new standard replaced the old standard of a maximum allowable annual average level of 100 parts per billion back in December 2001 for large surface water public water systems. The standard became effective for the first time back in December 2003 for small surface water and all ground water systems.

Haloacetic Acids (HAA5) are a group of chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The regulated haloacetic acids, known as HAA5, are: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate HAA5 at 60 parts per billion annual average. This standard became effective for large surface water public water systems in December 2001 and for small surface water and all ground water public water systems in December 2003.

Bromate is a chemical that is formed when ozone, used to disinfect drinking water, reacts with naturally occurring bromide found in source water. EPA has established the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate bromate at an annual average of 10 ppb in drinking water. This standard became effective for large public water systems in December 2001 and for small surface water and all ground public water systems in December 2003.

Chlorite is a byproduct formed when chlorine dioxide is used to disinfect water. The EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate chlorite at a monthly average level of 1 ppm in drinking water.

This new standard became effective for large surface water public water systems in December 2001 and for small surface water and all ground water public water systems in December 2003.

Microbial Regulations

One of the key regulations developed and implemented by the United States Environmental Protection Agency (USEPA) to counter pathogens in drinking water is the Surface Water Treatment Rule.

Among its provisions, the rule requires that a public water system, using surface water (or ground water under the direct influence of surface water) as its source, have sufficient treatment to reduce the source water concentration of *Giardia* and viruses by at least 99.9% and 99.99%, respectively. The Surface Water Treatment Rule specifies treatment criteria to assure that these performance requirements are met; they include turbidity limits, disinfectant residual and disinfectant contact time conditions.

Disinfectant Review Statements:

Disinfectant residual: The CT values for disinfection are used to determine the disinfection efficiency based upon time and what other parameter?

Bacteria, Virus and Intestinal parasites: What types of organisms may transmit waterborne diseases?

Disinfection By-Products (DBPs): The products created due to the reaction of chlorine with organic materials (e.g. leaves, soil) present in raw water during the water treatment process. The EPA has determined that these DBPs can cause cancer.

How is the effectiveness of disinfection determined? From the results of coliform testing.

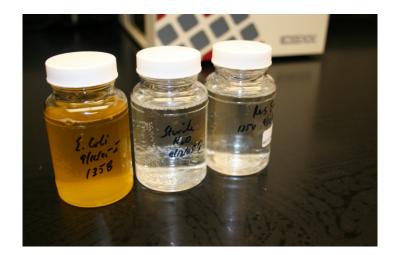
The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, viruses, protozoa, and other parasites.

What types of source water are required by law to treat water using filtration and disinfection? Groundwater under the direct influence of surface water, and related surface water sources.

E. Coli, *Escherichia coli*: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

pH Strips

pH is on a scale from 0-14. 7 is considered neutral and acid is on the 0 to 7 side and the base is 7-14. pH is known as the Power of Hydroxyl Ion activity.



Common water distribution sample bottles, Radiochems, VOCs, (Volatile Organic Compounds), TTHMs, Total Trihalomethanes), Nitrate, Nitrite.

Most of these sample bottles will come with the preservative already inside the bottle. Some bottles will come with a separate preservative (acid) for the field preservation. Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Bac-T Sample Bottle, often referred to as a Standard Sample, 100 mls. Notice the white powder inside the bottle. That is Sodium Thiosulfate, a de-chlorination agent. Be careful not to wash-out this chemical while sampling. Notice the custody seal on the bottle.

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

The bottle with the yellow color on the left indicates coliform bacteria is present. If the bottle fluoresces under a black light, fecal bacteria is present.

Common Water Quality Definitions

Units of Measurement

mg/l = Milligrams per liter. One milligram per liter equals one packet of artificial sweetener sprinkled into 250 gallons of iced tea.

μg/l = Micrograms per liter. One microgram per liter is equal to one packet of artificial sweetener sprinkled into an Olympic-size swimming pool.

NTU = Nephelometric Turbidity Units. A measurement on the cloudiness of the water. **pCi/I** = Picocuries per liter. A measure of radioactivity.

Acronyms

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements which a water system must follow.

Timeline of Existing Federal Water and State Drinking Water Quality Regulations

National Interim Primary Drinking Water Regulations (NIPDWR) Promulgated 1975-1981 Contained 7 contaminants Targeted: Trihalomethanes, Arsenic, and Radionuclides Established 22 drinking water standards.

Phase 1 Standards Promulgated 1987 Contained 8 contaminants Targeted: VOCs.

Phase 2 Standards Promulgated 1991 Contained 36 contaminants Targeted: VOCs, SOCs, and IOCs.

Phase 5 Standards Promulgated 1992 Contained 23 contaminants Targeted: VOCs, SOCs, and IOCs.

Surface Water Treatment Rule (SWTR) Promulgated 1989 Contained 5 contaminants Targeted: Microbiological and Turbidity.

Stage 1 Disinfectant/Disinfection By-product (D/DBP) Rule Promulgated 1998 Contained 14 contaminants Targeted: DBPs and precursors.

Interim Enhanced Surface Water Treatment Rule (IESWTR) Promulgated 1998 Contained 2 contaminants Targeted: Microbiological and Turbidity.

Radionuclide Rule Promulgated 2000 Contained 4 contaminants Targeted: Radionuclides.

Arsenic Rule Promulgated 2001 Contained 1 contaminant Targeted: Arsenic.

Filter Backwash Recycling Rule Promulgated 2001 Contained - Targeted: Microbiological and Turbidity.

Water Quality Key Words

2,4-D: A chlorinated phenoxy compound, functions as a systemic herbicide and is used to control many types of broadleaf weeds. There are many forms or derivatives (esters, amines, salts) of 2,4-D and these vary in solubility and volatility. Unless otherwise specified, this document will refer to the acid form of 2,4-D. This compound is used in cultivated agriculture and in pasture and rangeland applications, forest management, home and garden situations and for the control of aquatic vegetation. 2,4-D was a major component (about 50%) of the product Agent Orange used extensively throughout Vietnam. However most of the problems associated with the use of Agent Orange were associated with a contaminant (dioxin) in the 2,4,5-T component of the defoliant. The association of 2,4-D with Agent Orange has prompted a vast amount of study on the herbicide.

ANTIMONY: A chemical element with the symbol Sb (Latin: stibium, meaning "mark") and atomic number 51. A metalloid, antimony has four allotropic forms. The stable form of antimony is a blue-white metalloid. Yellow and black antimony are unstable non-metals. Antimony is used in flame-proofing, paints, ceramics, enamels, a wide variety of alloys, electronics, and rubber.

ASBESTOS: A mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. EPA and CPSC have banned several asbestos products. Manufacturers have also voluntarily limited uses of asbestos. Today, asbestos is most commonly found in older homes, in pipe and furnace insulation materials, asbestos shingles, millboard, textured paints and other coating materials, and floor tiles.

BARIUM: A chemical element. It has the symbol Ba, and atomic number 56. Barium is a soft silvery metallic alkaline earth metal. It is never found in nature in its pure form due to its reactivity with air. Its oxide is historically known as baryta but it reacts with water and carbon dioxide and is not found as a mineral. The most common naturally occurring minerals are the very insoluble barium sulfate, BaSO4 (barite), and barium carbonate, BaCO3 (witherite). Benitoite is a rare gem containing barium.

BERYLLIUM: A chemical element with the symbol Be and atomic number 4. A bivalent element, beryllium is a steel grey, strong, light-weight yet brittle alkaline earth metal. It is primarily used as a hardening agent in alloys, most notably beryllium copper. Commercial use of beryllium metal presents technical challenges due to the toxicity (especially by inhalation) of beryllium-containing dusts.

BROMATE: An inorganic anion, bromate is tasteless and colorless, with a low volatility. As a moderately strong oxidant, bromate is reactive. BrO3- is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate, (NaBrO3), and potassium bromate, (KBrO3).

CADMIUM: A chemical element with the symbol Cd and atomic number 48. A relatively abundant, soft, bluish-white, transition metal, cadmium is known to cause cancer and occurs with zinc ores. Cadmium is used largely in batteries and pigments, for example in plastic products.

CHLORITE: The chlorite ion is CIO2–. A chlorite (compound) is a compound that contains this group, with chlorine in oxidation state +3. Chlorites are also known as salts of chlorous acid.

CHROMIUM: A chemical element which has the symbol Cr and atomic number 24. It is a steel-gray, lustrous, hard metal that takes a high polish and has a high melting point. It is also odorless, tasteless, and malleable.

CONTACT TIME (CT): To inactivate viruses and bacteria, the minimum disinfection contact time measured before the first customer should be six milligrams per minute per liter (6 mg-min/L).

This value is called "Chlorine Contact Time" or CT. To calculate CT, multiply the free chlorine residual concentration (C) times the contact time (T). To get the required CT value of 6, adjust the free chlorine residual concentration or the contact time.

DISINFECTION BYPRODUCTS: Disinfection byproducts are chemical, organic and inorganic substances that can form during a reaction of a disinfectant with naturally present organic matter in the water.

DPD METHOD: Presence of free chlorine in the distribution network is indication of correct disinfection. Chlorine in water is determined according to ISO 7393-2 by colorimetric HACH method on the basis of DPD (N, N-diethyl - p – phenylendiamine). The photometric detection uses the wave lengths of 490 - 555 nm. Hach elected, for most of his DPD colorimetric systems, the wave length of 530 nm.

FORMAZIN TURBIDITY UNIT (FTU): A unit used to measure the clarity of water. The ISO refers to the units as FNU (Formazin Nephelometric Units). The technique is the same as that for the NTU, but the calibration uses microspheres of the polymer formazin.

HALOACETIC ACIDS: Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH₂CICO₂H. In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms (CHCl₂CO₂H).

HIGH-TEST HYPOCHLORITE: A composition composed mainly of calcium hypochlorite is commonly called high test hypochlorite. High-Test Hypochlorite contains not less than 60.0% of available chlorine.

HYDROCHLORIC ACID: It is the aqueous solution of hydrogen chloride gas (HCl). It is a strong acid, and the major component of gastric acid, and of wide industrial use. Hydrochloric acid must be handled with appropriate safety precautions because it is a highly corrosive liquid.

INFORMATION COLLECTION RULE (ICR): EPA collected data required by the Information Collection Rule (May 14, 1996) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule was intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

IRON BACTERIA: In the management of water-supply wells, iron bacteria are bacteria that derive the energy they need to live and multiply by oxidizing dissolved ferrous iron (or the less frequently available manganese and aluminum). The resulting ferric oxide is insoluble, and appears as brown gelatinous slime that will stain plumbing fixtures, and clothing or utensils washed with the water carrying it, and may contribute to internal corrosion of the pipes and fixtures the water flows through. They are known to grow and proliferate in waters containing as low as 0.1mg/l of iron. However, at least 0.3 ppm of dissolved oxygen is needed to carry out oxidation. The proliferation of iron bacteria, in some way, increases the chance of sulfur bacteria infestation.

LETHAL CONCENTRATION 50: Also referred to as LC50, a concentration of a pollutant or effluent at which 50 percent of the test organisms die; a common measure of acute toxicity.

MANGANESE (IV) OXIDE: The chemical compound MnO2, commonly called manganese dioxide. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese. It is also present in manganese nodules. The principal use for MnO2 is for dry-cell batteries, such as the alkaline battery and the zinc-carbon battery. In 1976 this application accounted for 500,000 tons of pyrolusite. MnO2 is also used for production of MnO4—. It is used extensively as an oxidizing agent in organic synthesis, for example, for the oxidation of allylic alcohols.

MAXIMUM CONTAMINANT LEVEL (MCL): The maximum concentration of a chemical that is allowed in public drinking water systems.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The maximum level at which a contaminant can exist in drinking water without having an adverse effect on human health.

NEPHELOMETRIC TURBIDITY UNIT (NTU): The unit used to describe turbidity. Nephelometric refers to the way the instrument, a nephelometer, measures how much light is scattered by suspended particles in the water. The greater the scattering, the higher the turbidity. Therefore, low NTU values indicate high water clarity, while high NTU values indicate low water clarity.

PERMISSIBLE EXPOSURE LIMIT (PEL or OSHA PEL): A legal limit in the United States for exposure of an employee to a substance or physical agent. For substances it is usually expressed in parts per million (ppm), or sometimes in milligrams per cubic meter (mg/m³). Units of measure for physical agents such as noise are specific to the agent. Permissible Exposure Limits are established by the Occupational Safety and Health Administration (OSHA).

POWDERED ACTIVATED CARDON TREATMENT (PACT): A wastewater technology in which powdered activated carbon is added to an anaerobic or aerobic treatment system. The carbon in the biological treatment process acts as a "buffer" against the effects of toxic organics in the wastewater.

PPM: Abbreviation for parts per million.

QUICKLIME: A calcium oxide material produced by calcining limestone to liberate carbon dioxide, also called "calcined lime" or "pebble lime", commonly used for pH adjustment. Chemical formula is CaO.

RECOMMENDED EXPOSURE LIMIT (REL): An occupational exposure limit that has been recommended by the U.S. National Institute for Occupational Safety and Health to OSHA for adoption as a Permissible Exposure Limit. The REL is a level that NIOSH believes would be protective of worker safety and health over a working lifetime if used in combination with engineering and work practice controls, exposure and medical monitoring, posting and labeling of hazards, worker training and personal protective equipment. No REL has ever been adopted by OSHA, but they have been used as guides by some industry and advocacy organizations.

SCADA: A remote method of monitoring pumps and equipment. 130 degrees F is the maximum temperature that transmitting equipment is able to with stand. If the level controller may be set with too close a tolerance 45 could be the cause of a control system that is frequently turning a pump on and off.

TRANSIENT, NON-COMMUNITY WATER SYSTEM: TNCWS A water system which provides water in a place such as a gas station or campground where people do not remain for long periods of time. These systems do not have to test or treat their water for contaminants which pose long-term health risks because fewer than 25 people drink the water over a long period. They still must test their water for microbes and several chemicals. A Transient Non-community Water System: Is not required to sample for VOC's.

U.S. ENVIRONMENTAL PROTECTION AGENCY: In the United States, this agency responsible for setting drinking water standards and for ensuring their enforcement. This agency sets federal regulations which all state and local agencies must enforce.

VOLATILE ORGANIC COMPOUNDS (VOCs): Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

Top photograph, HPC plate. Bottom, Bac-T or Colilert samples, the yellow indicates coliform bacteria, if this sample fluoresces under a black light that means that fecal or e. coli is present.

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Water Sampling Terms, and Definitions

Microbes

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Fecal Coliform and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms.

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Cryptosporidium is a parasite that enters lakes and rivers through sewage and animal waste. It causes cryptosporidiosis, a mild gastrointestinal disease. However, the disease can be severe or fatal for people with severely weakened immune systems. The EPA and the CDC have prepared advice for those with severely compromised immune systems who are concerned about *Cryptosporidium*.

Giardia lamblia is a parasite that enters lakes and rivers through sewage and animal waste. It causes gastrointestinal illness (e.g. diarrhea, vomiting, cramps).

Radionuclides

Alpha emitters. Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the EPA standard over many years may have an increased risk of getting cancer.

Beta/photon emitters. Certain minerals are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the EPA standard over many years may have an increased risk of getting cancer.

Combined Radium 226/228. Some people who drink water containing radium 226 or 228 in excess of EPA standard over many years may have an increased risk of getting cancer.

Radon gas can dissolve and accumulate in underground water sources, such as wells, and in the air in your home. Breathing radon can cause lung cancer. Drinking water containing radon presents a risk of developing cancer. Radon in air is more dangerous than radon in water.

Inorganic Contaminants

Antimony	Cadmium	Cyanide	Nitrite
Asbestos	Chromium	Mercury	Selenium
Barium	Copper	Nitrate	Thallium
Beryllium			

Arsenic. Some people who drink water containing arsenic in excess of the EPA standard over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

Fluoride. Many communities add fluoride to their drinking water to promote dental health. Each community makes its own decision about whether or not to add fluoride. The EPA has set an enforceable drinking water standard for fluoride of 4 mg/L (some people who drink water containing fluoride in excess of this level over many years could get bone disease, including pain and tenderness of the bones). The EPA has also set a secondary fluoride standard of 2 mg/L to protect against dental fluorosis. Dental fluorosis, in its moderate or severe forms, may result in a brown staining and/or pitting of the permanent teeth. This problem occurs only in developing teeth, before they erupt from the gums. Children under nine should not drink water that has more than 2 mg/L of fluoride.

Lead typically leaches into water from plumbing in older buildings. Lead pipes and plumbing fittings have been banned since August 1998. Children and pregnant women are most susceptible to lead health risks. For advice on avoiding lead, see the EPA's "Lead in Your Drinking Water" fact sheet.

Synthetic Organic Contaminants, including pesticides & herbicides

2,4-D Dibromochloropropane Hexachlorobenzene
2,4,5-TP (Silvex) Dinoseb Hexachlorocyclopentadiene

Acrylamide Dioxin (2,3,7,8-TCDD) Lindane
Alachlor Diquat Methoxychlor
Atrazine Endothall Oxamyl [Vydate]

Benzoapyrene Endrin PCBs [Polychlorinated biphenyls]

Carbofuran Epichlorohydrin Pentachlorophenol

Chlordane Ethylene dibromide Picloram
Dalapon Glyphosate Simazine
Di 2-ethylhexyl adipate Heptachlor Toxaphene

Di 2-ethylhexyl phthalate Heptachlor epoxide

Volatile Organic Contaminants

Benzene trans-1,2-Dicholoroethylene 1,2,4-Trichlorobenzene Carbon Tetrachloride Dichloromethane 1.1.1.-Trichloroethane Chlorobenzene 1,2-Dichloroethane 1,1,2-Trichloroethane o-Dichlorobenzene 1,2-Dichloropropane Trichloroethylene p-Dichlorobenzene Ethylbenzene Toluene 1,1-Dichloroethylene Styrene Vinyl Chloride cis-1.2-Dichloroethylene Tetrachloroethylene **Xvlenes**

Point-of-Entry P.O.E. will usually be a designated sampling point on a water treatment or distribution system.

Waterborne Pathogens and Disease Section

Bacteria, viruses, and protozoan that cause disease are known as pathogens. Most pathogens are generally associated with diseases that cause intestinal illness and affect people in a relatively short amount of time, generally a few days to two weeks. They can cause illness through exposure to small quantities of contaminated water or food, or from direct contact with infected people or animals.

How Diseases are Transmitted

Pathogens that may cause waterborne outbreaks through drinking water have one thing in common: they are spread by the fecal-oral or feces-to-mouth route. Pathogens may get into water and spread when infected humans or animals pass the bacteria, viruses, and protozoa in their stool. For another person to become infected, he or she must take that pathogen in through the mouth. Waterborne pathogens are different from other types of pathogens such as the viruses that cause influenza (the flu) or the bacteria that cause tuberculosis. Influenza virus and tuberculosis bacteria are spread by secretions that are coughed or sneezed into the air by an infected person.

Cryptosporidium→

Human or animal wastes in watersheds, failing septic systems, failing sewage treatment plants or cross-connections of water lines with sewage lines provide the potential for contaminating water with pathogens. The water may not appear to be contaminated because the feces has been broken up, dispersed, and diluted into microscopic particles. These particles, containing pathogens, may remain in the water and be passed to humans or animals unless adequately treated.

Only proper treatment will ensure eliminating the spread of disease. In addition to water, other methods exist for spreading pathogens by the fecal-oral route. The foodborne route is one of the more common methods. A frequent source is a food handler who does not wash his hands after a bowel movement and then handles food with *unclean* hands. The individual who eats fecescontaminated food may become infected and ill. It is interesting to note the majority of foodborne diseases occur in the home, not restaurants.

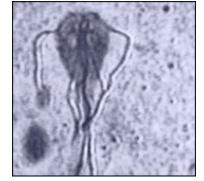
Day care centers are another common source for spreading pathogens by the fecal-oral route. Here, infected children in diapers may get feces on their fingers, then put their fingers in a friend's mouth or handle toys that other children put into their mouths. The general public and some of the medical community usually refer to diarrhea symptoms as stomach flu.

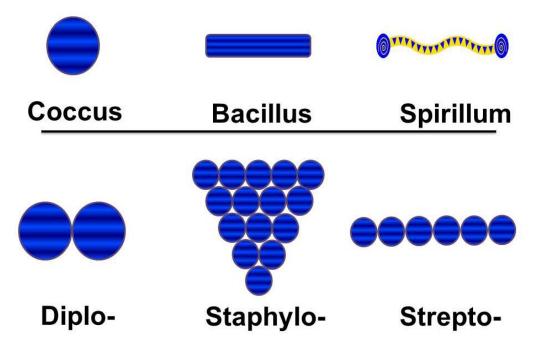
Technically, influenza is an upper respiratory illness and rarely has diarrhea associated with it; therefore, stomach flu is a misleading description for foodborne or waterborne illnesses, yet is accepted by the general public. So the next time you get the stomach flu, you may want to think twice about what you've digested within the past few days.

Chain of Transmission

Water is contaminated with feces. This contamination may be of human or animal origin. The feces must contain pathogens (disease-causing bacteria, viruses or protozoa). If the human or animal source is not infected with a pathogen, no disease will result. The pathogens must survive in the water. This depends on the temperature of the water and the length of time the pathogens are in the water. Some pathogens will survive for only a short time in water, others, such as Giardia or Cryptosporidium, may survive for months.

The pathogens in the water must enter the water system's intake and in numbers sufficient to infect people. The water is either not treated or inadequately treated for the pathogens present. A susceptible person must drink the water that contains the pathogen. Illness (disease) will occur.


This chain lists the events that must occur for the transmission of disease via drinking water. By


breaking the chain at any point, the transmission of disease will be prevented.

Bacterial Diseases

Giardia→

Campylobacteriosis is the most common diarrhea illness caused by bacteria. Symptoms include abdominal pain, malaise, fever, nausea and vomiting, and they usually begin three to five days after exposure. The illness is frequently over within two to five days and usually lasts no more than 10 days. Campylobacteriosis outbreaks have most often been associated with food, especially chicken and unpasteurized milk, as well as un-chlorinated water.

Types of Bacteria

These organisms are also an important cause of travelers' diarrhea. Medical treatment generally is not prescribed for campylobacteriosis because recovery is usually rapid. Cholera, Legionellosis, salmonellosis, shigellosis, and yersiniosis are other bacterial diseases that can be transmitted through water. All bacteria in water are readily killed or inactivated with chlorine or other disinfectants.

Viral-Caused Diseases

Hepatitis A is an example of a common viral disease that may be transmitted through water. The onset is usually abrupt with fever, malaise, loss of appetite, nausea and abdominal discomfort, followed within a few days by jaundice. The disease varies in severity from a mild illness lasting one to two weeks, to a severely disabling disease lasting several months (rare).

The incubation period is 15-50 days and averages 28-30 days. Hepatitis A outbreaks have been related to fecally contaminated water; food contaminated by infected food handlers, including sandwiches and salads that are not cooked or are handled after cooking and raw or undercooked mollusks harvested from contaminated waters. Aseptic meningitis, polio and viral gastroenteritis (Norwalk agent) are other viral diseases that can be transmitted through water. Most viruses in drinking water can be inactivated by chlorine or other disinfectants.

Protozoan Caused Diseases

Protozoan pathogens are larger than bacteria and viruses but still microscopic. They invade and inhabit the gastrointestinal tract. Some parasites enter the environment in a dormant form, with a protective cell wall, called a *cyst*. The cyst can survive in the environment for long periods of time and is extremely resistant to conventional disinfectants such as chlorine. Effective filtration treatment is therefore critical to removing these organisms from water sources.

Giardiasis is a commonly reported protozoan-caused disease. It has also been referred to as backpacker's disease and beaver fever because of the many cases reported among hikers and others who consume untreated surface water. Symptoms include chronic diarrhea, abdominal cramps, bloating, frequent loose and pale greasy stools, fatigue and weight loss. The incubation period is 5-25 days or longer, with an average of 7-10 days. Many infections are asymptomatic (no symptoms). Giardiasis occurs worldwide. Waterborne outbreaks in the United States occur most often in communities receiving their drinking water from streams or rivers without adequate disinfection or a filtration system.

Giardia lamblia

Giardia lamblia has been responsible for more community-wide outbreaks of disease in the U.S. than any other pathogen. Drugs are available for treatment, but these are not 100% effective.

Cryptosporidiosis

Cryptosporidiosis is an example of a protozoan disease that is common worldwide, but was only recently recognized as causing human disease. The major symptom in humans is diarrhea, which may be profuse and watery. The diarrhea is associated with cramping abdominal pain. General malaise, fever, anorexia, nausea and vomiting occur less often.

Symptoms usually come and go, and end in fewer than 30 days in most cases. The incubation period is 1-12 days, with an average of about seven days. *Cryptosporidium* organisms have been identified in human fecal specimens from more than 50 countries on six continents. The mode of transmission is fecal-oral, either by person-to-person or animal-to-person. There is no specific treatment for *Cryptosporidium* infections.

All of these diseases, with the exception of hepatitis A, have one symptom in common: diarrhea. They also have the same mode of transmission, fecal-oral, whether through person-to-person or animal-to-person contact, and the same routes of transmission, being either foodborne or waterborne. Although most pathogens cause mild, self-limiting disease, on occasion, they can cause serious, even life threatening illness. Particularly vulnerable are persons with weak immune systems such as those with HIV infections or cancer.

By understanding the nature of waterborne diseases, the importance of properly constructed, operated and maintained public water systems becomes obvious. While water treatment cannot achieve sterile water (no microorganisms), the goal of treatment must clearly be to produce drinking water that is as pathogen-free as possible at all times. For those who operate water systems with inadequate source protection or treatment facilities, the potential risk of a waterborne disease outbreak is real. For those operating systems that currently provide adequate source protection and treatment, operating, and maintaining the system at a high level on a continuing basis is critical to prevent disease.

Waterborne Diseases

Name	Causative organism	Source of organism	Disease
Viral gastroenteritis	Rotavirus (mostly in young children)	Human feces	Diarrhea or vomiting
Norwalk Agent	Noroviruses (genus Norovirus, family Caliciviridae) *1	Human feces; also, shellfish; lives in polluted waters	Diarrhea and vomiting
Salmonellosis	Salmonella (bacterium)	Animal or human feces	Diarrhea or vomiting
Gastroenteritis Escherichia <i>coli</i>	E. coli O1 57:H7 (bacterium): Other E. coli organisms:	Human feces	Symptoms vary with type caused
Typhoid	Salmonella typhi (bacterium)	Human feces, urine	Inflamed intestine, enlarged spleen, high temperature- sometimes fatal
Shigellosis	Shigella (bacterium)	Human feces	Diarrhea
Cholera	Vibrio choleras (bacterium)	Human feces; also, shellfish; lives in many coastal waters	Vomiting, severe diarrhea, rapid dehydration, mineral loss-high mortality
Hepatitis A	Hepatitis A virus	Human feces; shellfish grown in polluted waters	Yellowed skin, enlarged liver, fever, vomiting, weight loss, abdominal pain- low mortality, lasts up to four months
Amebiasis	Entamoeba histolytica (protozoan)	Human feces	Mild diarrhea, dysentery, extra intestinal infection
Giardiasis	Giardia lamblia (protozoan)	Animal or human feces	Diarrhea, cramps, nausea, and general weakness — lasts one week to months
Cryptosporidiosis Notes:	Cryptosporidium parvum	Animal or human feces	Diarrhea, stomach pain — lasts (protozoan) days to weeks

Notes:

^{*1} http://www.cdc.gov/

Bacteriological Monitoring Section

Most waterborne diseases and illnesses have been related to the microbiological quality of drinking water. The routine microbiological analysis of your water is for coliform bacteria. The

coliform bacteria group is used as an indicator organism to determine the biological quality of your water.

The presence of an indicator or pathogenic bacteria in your drinking water is an important health concern. Indicator bacteria signal possible fecal contamination, and therefore, the potential presence of pathogens. They are used to monitor for pathogens because of the difficulties in determining the presence of specific disease-causing microorganisms.

Indicator bacteria are usually harmless, occur in high densities in their natural environment and are easily cultured in relatively simple bacteriological media. Indicators in common use today for routine monitoring of drinking water include total coliforms, fecal coliforms, and *Escherichia coli (E. coli)*.

Bacteria Sampling

Water samples for bacteria tests must always be collected in a sterile container. Take the sample from an inside faucet with the aerator removed. Sterilize by spraying a 5% household bleach or alcohol solution or flaming the end of the tap with disposable butane lighter.

Run the water for five minutes to clear the water lines and bring in fresh water. Do not touch or contaminate the inside of the bottle or cap. Carefully open the sample container and hold the outside of the cap. Fill the container and replace the top. Refrigerate the sample and transport it to the testing laboratory within six hours (in an ice chest). Many labs will not accept

bacteria samples on Friday so check the lab's schedule. Mailing bacteria samples is not recommended because laboratory analysis results are not as reliable. Iron bacteria forms an obvious slime on the inside of pipes and fixtures. A water test is not needed for identification. Check for a reddish-brown slime inside a toilet tank or where water stands for several days.

Bac-T Sample Bottle, often referred to as a Standard Sample, 100 mls, Notice the white powder inside the bottle. That is Sodium Thiosulfate, a de-chlorination agent. Be careful not to wash-out this chemical while sampling. Notice the custody seal on the bottle.

Coliform bacteria are common in the environment and are generally not harmful. However, the presence of these bacteria in drinking water is usually a result of a problem with the treatment system or the pipes which distribute water, and indicates that the water may be contaminated with germs that can cause disease.

Laboratory Procedures

The laboratory may perform the total coliform analysis in one of four methods approved by the U.S. EPA and your local environmental or health division.

Methods

The MMO-MUG test, a product marketed as Colilert, is the most common. The sample results will be reported by the laboratories as simply coliforms present or absent. If coliforms are present, the laboratory will analyze the sample further to determine if these are fecal coliforms or E. coli and report their presence or absence.

Types of Water Samples

It is important to properly identify the type of sample you are collecting. Please indicate in the

space provided on the laboratory form the type of sample.

The three (3) types of samples are:

- 1. **Routine:** Samples collected on a routine basis to monitor for contamination. Collection should be in accordance with an approved sampling plan.
- 2. **Repeat:** Samples collected following a 'coliform present' routine sample. The number of repeat samples to be collected is based on the number of routine samples you normally collect.
- 3. **Special:** Samples collected for other reasons.

Examples would be a sample collected after repairs to the system and before it is placed back into operation or a sample collected at a wellhead prior to a disinfection injection point.

Water Quality Review Statements

- √ What are disease causing organisms such as bacteria and viruses called? Pathogens
- ✓ Name the 4 broad categories of water quality. Physical, chemical, biological, radiological.
- ✓ What does a positive bacteriological sample indicate? The presence of bacteriological contamination.
- ✓ When must source water monitoring for lead and copper be preformed? When a public water system exceeds an action level for lead of copper.

Noncommunity and nontransient noncommunity public water systems will sample at the same frequency as a like sized community public water system if:

- 1. It has more than 1,000 daily population and has ground water as a source, or
- 2. It serves 25 or more daily population and utilizes surface water as a source or ground water under the direct influence of surface water as its source.

Noncommunity and nontransient, noncommunity water systems with less than 1,000 daily population and groundwater as a source will sample on a quarterly basis.

Routine Coliform Sampling

The number of routine samples and frequency of collection for community public water systems is shown in Table 3-1 below.

No. of Samples per System Population

Persons served - Samples per month

Persons served - Sar	nples p
up to 1,000	1
1,001-2,500	2
2,501-3,300	3
3,301 to 4,100	4
4,101 to 4,900	5
4,901 to 5,800	6
5,801 to 6,700	7
6,701 to 7,600	8
7,601 to 8,500	9
8,501 to 12,900	10
12,901 to 17,200	15
17,201 to 21,500	20
21,501 to 25,000	25
25,001 to 33,000	30
33,001 to 41,000	40
41,001 to 50,000	50
50,001 to 59,000	60
59,001 to 70,000	70
70,001 to 83,000	80
83,001 to 96,000	90
96,001 to 130,000	100
130,001 to 220,000	120
220,001 to 320,000	150
320,001 to 450,000	180
450,001 to 600,000	210
600,001 to 780,000	240

Using a black light to see fecal bacteria.

Repeat Sampling

Repeat sampling replaces the old check sampling with a more comprehensive procedure to try to identify problem areas in the system. Whenever a routine sample is total coliform or fecal coliform present, a set of repeat samples must be collected within 24 hours after being notified by the laboratory. The follow-up for repeat sampling is:

- 1. If only one routine sample per month or quarter is required, four (4) repeat samples must be collected.
- 2. For systems collecting two (2) or more routine samples per month, three (3) repeat samples must be collected.
- 3. Repeat samples must be collected from:
- a. The original sampling location of the coliform present sample.
- b. Within five (5) service connections upstream from the original sampling location.
- c. Within five (5) service connections downstream from the original sampling location.
- d. Elsewhere in the distribution system or at the wellhead, if necessary.

- 4. If the system has only one service connection, the repeat samples must be collected from the same sampling location over a four-day period or on the same day.
- 5. All repeat samples are included in the MCL compliance calculation.

6. If a system which normally collects fewer than five (5) routine samples per month has a coliform present sample, it must collect five (5) routine samples the following month or quarter regardless of whether an MCL violation occurred or if repeat sampling was coliform absent.

Positive or Coliform Present Results

What do you do when your sample is positive or coliform present?

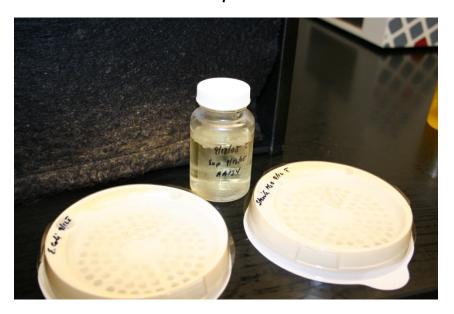
When you are notified of a positive test result you need to contact either the Drinking Water Program or your local county health department within 24 hours, or by the next business day after the results are reported to you. The Drinking Water Program contracts with many of the local health departments to provide assistance to water systems. After you have contacted an agency for assistance, you will be instructed as to the proper repeat sampling procedures and possible corrective measures for solving the problem. It is very important to initiate the repeat sampling immediately as the corrective measures will be based on those results.

Some examples of typical corrective measures to coliform problems are:

- 1. Shock chlorination of a ground water well. The recommended dose of 5% household bleach is 2 cups per 100 gallons of water in the well. This should be done anytime the bell is opened for repair (pump replacement, etc.). If you plan to shock the entire system, calculate the total gallonage of storage and distribution.
- 2. Conduct routine distribution line flushing. Install blowoffs on all dead end lines.
- 3. Conduct a cross connection program to identify all connections with non-potable water sources. Eliminate all of these connections or provide approved back flow prevention devices.
- 4. Upgrade the wellhead area to meet current construction standards as set your state environmental or health agency.
- 5. If you continuously chlorinate, review your operation and be sure to maintain a detectable residual (0.2 mg/l free chlorine) at all times in the distribution system.
- 6. Perform routine cleaning of the storage system.

This list provides some basic operation and maintenance procedures that could help eliminate potential bacteriological problems, check with your state drinking water section or health department for further instructions.

Maximum Contaminant Levels (MCLs)


State and federal laws establish standards for drinking water quality. Under normal circumstances when these standards are being met, the water is safe to drink with no threat to human health. These standards are known as maximum contaminant levels (MCL). When a particular contaminant exceeds its MCL a potential health threat may occur.

The MCLs are based on extensive research on toxicological properties of the contaminants, risk assessments and factors, short term (acute) exposure and long term (chronic) exposure. You conduct the monitoring to make sure your water is in compliance with the MCL. There are two types of MCL violations for coliform bacteria. The first is for total coliform; the second is an acute risk to health violation characterized by the confirmed presence of fecal coliform or E. coli.

Heterotrophic Plate Count HPC

Heterotrophic Plate Count (**HPC**) --- formerly known as the standard plate count, is a procedure for estimating the number of live heterotrophic bacteria and measuring changes during water treatment and distribution in water or in swimming pools. Colonies may arise from pairs, chains, clusters, or single cells, all of which are included in the term "*colony-forming units*" (**CFU**).

Method: There are three methods for standard plate count:

1. Pour Plate Method

The colonies produced are relatively small and compact, showing fewer tendencies to encroach on each other than those produced by surface growth. On the other hand, submerged colonies often are slower growing and are difficult to transfer.

2. Spread Plate Method

All colonies are on the agar surface where they can be distinguished readily from particles and bubbles. Colonies can be transferred quickly, and colony morphology easily can be discerned and compared to published descriptions.

3. Membrane Filter Method

This method permits testing large volumes of low-turbidity water and is the method of choice for low-count waters.

Material Necessary for Testing:

i) Apparatus

Glass rod

Erlenmeyer flask

Graduated Cylinder

Pipet

Petri dish

Incubator

ii) Reagent and sample

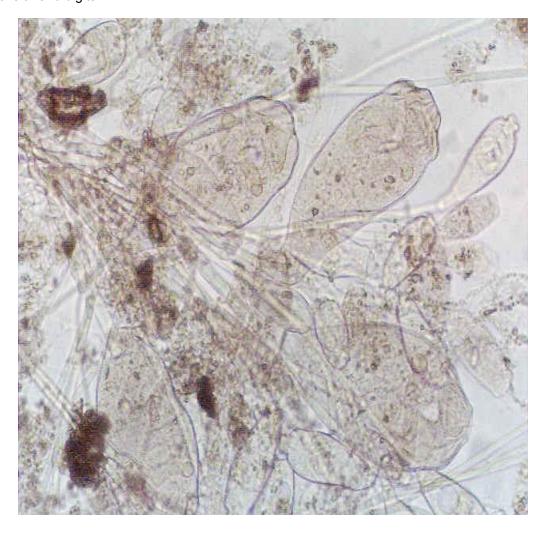
Reagent-grade water

Nutrient agar

Sample

Procedure*

- 1. Boil mixture of nutrient agar and nutrient broth for 15 minutes, and then cool for about 20 minutes.
- 2. Pour approximately 15 ml of medium in each Petri dish, let medium solidify.
- 3. Pipette 0.1 ml of each dilution onto surface of pre-dried plate, starting with the highest dilution.


- 4. Distribute inoculum over surface of the medium using a sterile bent glass rod.
- 5. Incubate plates at 35°C for 48h.
- 6. Count all colonies on selected plates promptly after incubation; consider only plates having 30 to 300 colonies in determining the plate count.
- *Duplicate samples

Computing and Reporting:

Compute bacterial count per milliliter by the following equation:

CFU/ml = colonies counted / actual volume of sample in dish a)If there is no plate with 30 to 300 colonies, and one or more plates have more than 300 colonies, use the plate(s) having a count nearest 300 colonies.

- b) If plates from all dilutions of any sample have no colony, report the count as less than 1/actual volume of sample in dish estimated CFU/ml.
- c) Avoid creating fictitious precision and accuracy when computing CFU by recording only the first two left-hand digits.

Ciliates, a wastewater bug, it shouldn't be in drinking water, but can be found if a well is close to a septic tank or marsh.

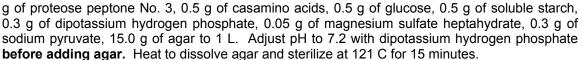
Heterotrophic Plate Count

(Spread Plate Method)

Heterotrophic organisms utilize organic compounds as their carbon source (food or substrate). In contrast, autotrophic organisms use inorganic carbon sources. The Heterotrophic Plate Count provides a technique to quantify the bacteriological activity of a sample. The R2A agar provides a medium that will support a large variety of heterotrophic bacteria. After an incubation period, a bacteriological colony count provides an estimate of the concentration of heterotrophs in the sample of interest.

Laboratory Equipment: 100 x 15 Petri Dishes

Turntable


Glass Rods: Bend fire polished glass rod 45 degrees about

40 mm from one end. Sterilize before using. **Pipet:** Glass, 1.1 mL Sterilize before using.

Quebec Colony Counter Hand Tally Counter

1) R2A Agar: Dissolve and dilute 0.5 g of yeast extract, 0.5

2) Ethanol: As needed for flame sterilization.

Preparation of Spread Plates

Immediately after agar sterilization, pour 15 mL of R2A agar into sterile 100 x 15 Petri dishes; let agar solidify. Pre-dry plates inverted so that there is a 2 to 3 g water loss overnight with the lids on. Use pre-dried plates immediately or store up to two weeks in sealed plastic bags at 4 degrees C.

Sample Preparation

Mark each plate with sample type, dilution, date, and any other information before sample application. Prepare at least duplicate plates for each volume of sample or dilution examined. Thoroughly mix all samples by rapidly making about 25 complete up-and-down movements.

Sample Application

Uncover pre-dried agar plate. Minimize time plate remains uncovered. Pipet 0.1 or 0.5 mL sample onto surface of pre-dried agar plate.

Record volume of sample used. Using a sterile bent glass rod, distribute the sample over surface of

the medium by rotating the dish by hand on a turntable. Let the sample be absorbed completely into the medium before incubating. Put cover back on Petri dish and invert for duration of incubation time. Incubate at 28 degrees C for 7 days. Remove Petri dishes from incubator for counting.

Counting and Recording:

After incubation period, promptly count all colonies on the plates. To count, uncover plate and place on Quebec colony counter. Use hand tally counter to maintain count. Count all colonies on the plate, regardless of size. Compute bacterial count per milliliter by the following equation:

$$CFU / mL = \frac{\text{colonies counted}}{\text{actual volume of sample in dish, mL}}$$

To report counts on a plate with no colonies, report the count as less than one (<1) divided by the sample volume put on that plate (remember to account for any dilution of that sample).

If plates of all dilutions for a sample have no colonies, report the count as less than one (<1) divided by the largest sample volume used. Example: if 0.1 mL of a 100:1 and 10000:1 dilution of a sample both turned up with no colonies formed, the reported result would be <1 divided by the largest sample volume 0.001 mL (0.1 mL divided by 100). The final reported result for the sample is <1000 CFU per mL.

Assignment:

- 1. Report the number of colony forming units (**CFU**) found on each plate.
- 2. Calculate the **CFU** per mL for each plate.
- 3. The aim of diluting samples is to produce a plate having 30 to 300 colonies, which plates meet these criteria. If no sample produces a plate with a count in this range, use the plate(s) with a count closest to 300. Based on these criteria, use your calculated results to report the **CFU** per mL for each sample.

In the conclusion of your lab report, comment on your final results for each sample type as well as the quality of your application of this analysis technique. Feel free to justify your comments using statistical analysis. Also, comment on the general accuracy of this analytical technique and the factors that affect its accuracy and or applicability.

Data Table for Samples

Sample ID	Volume of Sample, mL	Colonies Counted per plate

Total Coliforms

This MCL is based on the presence of total coliforms, and compliance is on a monthly or quarterly basis, depending on your water system type and state rule. For systems which collect *fewer* than 40 samples per month, no more than one sample per month may be positive. In other words, the second positive result (repeat or routine) in a month or quarter results in an MCL violation. For systems which collect 40 or more samples per month, no more than five (5) percent may be Positive, check with your state drinking water section or health department for further instructions.

Acute Risk to Health (Fecal coliforms and E.coli)

An acute risk to human health violation occurs if either one of the following happens:

1. A routine analysis shows total coliform present and is followed by a repeat analysis which indicates fecal coliform or E. coli present.

2. A routine analysis shows total and fecal coliform or E. coli present and is followed by a repeat analysis which indicates total coliform present. An acute health risk violation requires the water system to provide public notice via radio and television stations in the area. This type of contamination can pose an immediate threat to human health and notice must be given as soon as possible, but no later than 72 hours after notification from your laboratory of the test results.

Certain language may be mandatory for both these violations and is included in your state drinking water rule.

Public Notice

A public notice is required to be issued by a water system whenever it fails to comply with an applicable MCL or treatment technique, or fails to comply with the requirements of any scheduled variance or permit. This will inform users when there is a problem with the system and give them information. A public notice is also required whenever a water system fails to comply with its monitoring and/or reporting requirements or testing procedure. Each public notice must contain certain information, be issued properly and in a timely manner, and contain certain mandatory language. The timing and place of posting of the public notice depends on whether an acute risk is present to users. Check with your state drinking water section or health department for further instructions.

The following are acute violations:

- 1. Violation of the MCL for nitrate.
- 2. Any violation of the MCL for total coliforms, when fecal coliforms or E. coli are present in the distribution system.
- 3. Any outbreak of waterborne disease, as defined by the rules.

General Contaminant Information

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Contaminants that may be present in sources of drinking water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater run-off and residential uses; Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off and septic systems; Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Background

Coliform bacteria and chlorine residual are the only routine sampling and monitoring requirements for small ground water systems with chlorination. The coliform bacteriological sampling is governed by the Total Coliform Rule (TCR) of the SDWA. Although there is presently no requirement for chlorination of groundwater systems under the SDWA, State regulations require chlorine residual monitoring of those systems that do chlorinate the water.

TCR The TCR requires all Public Water Systems (PWS) to monitor their distribution system for coliform bacteria according to the written sample siting plan for that system. The sample siting plan identifies sampling frequency and locations throughout the distribution system that are selected to be representative of conditions in the entire system. Coliform contamination can occur anywhere in the system, possibly due to problems such as; low pressure conditions, line breaks, or well contamination, and therefore routine monitoring is required. A copy of the sample siting plan for the system should be kept on file and accessible to all who are involved in the sampling for the water system.

Number of Monthly Samples The number of samples to be collected monthly depends on the size of the system. The TCR specifies the minimum number of coliform samples collected but it may be necessary to take more than the minimum number in order to provide adequate monitoring. This is especially true if the system consists of multiple sources, pressure zones, booster pumps, long transmission lines, or extensive distribution system piping. Since timely detection of coliform contamination is the purpose of the sample siting plan, sample sites should be selected to represent the varying conditions that exist in the distribution system. The sample siting plan should be updated as changes are made in the water system, especially the distribution system.

Sampling Procedures The sample siting plan must be followed and all operating staff must be clear on how to follow the sampling plan. In order to properly implement the sample siting plan, staff must be aware of how often sampling must be done, the proper procedures and sampling containers to be used for collecting the samples, and the proper procedures for identification, storage and transport of the samples to an approved laboratory. In addition, proper procedures must be followed for repeat sampling whenever a routine sample result is positive for total coliform. The following diagram outlines the requirements for responding to a positive Total Coliform sample.

There is nothing in the lab that is difficult to understand or eventually master. All of you should be able to learn and master the basic lab procedures. Don't be intimidated, learn to take samples and learn all you can about the lab, it is an excellent career. Bottom, normal sampling supplies.

Chain of Custody Procedures

Because a sample is physical evidence, chain of custody procedures are used to maintain and document sample possession from the time the sample is collected until it is introduced as evidence. Chain of custody requirements will vary from agency to agency.

However, these procedures are similar and the chain of custody outlined in this manual is only a guideline. Consult your project manager for specific requirements.

If you have physical possession of a sample, have it in view, or have physically secured it to prevent tampering then it is defined as being in "custody." A chain of custody record, therefore, begins when the sample containers are obtained from the laboratory. From this point on, a chain of custody record will accompany the sample containers.

Handle the samples as little as possible in the field. Each custody sample requires a chain of custody record and may require a seal. If you do not seal individual samples, then seal the containers in which the samples are shipped.

When the samples transfer possession, both parties involved in the transfer must sign, date and note the time on the chain of custody record. If a shipper refuses to sign the chain-of-custody you must seal the samples and chain of custody documents inside a box or cooler with bottle seals or evidence tape. The recipient will then attach the shipping invoices showing the transfer dates and times to the custody sheets. If the samples are split and sent to more than one laboratory, prepare a separate chain of custody record for each sample. If the samples are delivered to afterhours night drop-off boxes, the custody record should note such a transfer and be locked with the sealed samples inside sealed boxes.

Using alcohol to disinfect a special sample tap before obtaining a sample.

Laboratory 123 W. Main St Sun City, Arizona 85541	35541	, .	,										P	LAB I.D. NUMBER	UMBE	89			
Sampler:										DATE					PAGE		1 OF	L	-
Company: Department: Address: Contact: Telephone:					рәц					(303)	(070) \$300			(s			rus Pest. (8141)		ners
					als* See Attac	d/Copper	000/0	ate + Nitrite	sinomA \ V	s'MHT \ C	ni Volital Orga oride	əpju	əbir	ABM) etnstost	. Coliform MPI	M moliloo la	21020	fate Conductivity	/umber/Contain
Sample Identification	Date	Time	Matrix	LabID	DeM SST	Гез	BOI			\dashv	-	CVS		ıng	\rightarrow	_	_		$\overline{}$
						-		+			-						+	+	
								\vdash											
								-			+							+	
						\vdash		Н		H	H		H						
Project Name	Sample Receipt	-			RELINQUISHED BY:	UISHED	BY:					RELINQUISHED BY:	UISHE	D BY:					
	No. Containers:				Signature:				Time:	4.4		Signature:				F	Time:		
Project Number	Custody Seals:				Printed Name:	:me:			Date:			Printed Name:	ame:			۵	Date:		
	Received Intact:	*	Yes I	No								Company					500000000000000000000000000000000000000		
Field Measurements:	Received Cold:	*	Yes	o _N	SAMPLED RECEIVED BY:	D REC	EIVED B	¥:				SAMPLED RECEIVED BY:	ED REC	EIVED	BY:				
pH:	Temperature:				Signature:				Time			Signature:				F	Time:		
Temp:	PRIORITY:				Printed Name:	ime:			Date:			Printed Name:	ame:			Ö	Date:		
												Company							

Chain of Custody Example.

Carefully follow these steps when collecting a coliform sample:

- 1. Select the sampling site, which must be a faucet from which water is commonly taken for consumer use or a dedicated site in the distribution system.
- a. The sampling point should be a non-swivel faucet.
- b. If it is a faucet with an aerator, remove the aerator, screen and gasket and flush thoroughly.
- c. If an outside faucet is used, disconnect any hoses or other attachments and flush the line thoroughly.
- d. It should be a faucet that does not leak around the packing or valve mechanism. Leaking faucets can promote bacterial growth.
- e. Do not use fire hydrants or drinking fountains as sampling points.
- f. Do not dip sample bottles in reservoirs, spring boxes or storage tanks in order to collect a sample. If you have any questions about proper sampling sites, please contact your laboratory, environmental or health department or the state drinking water section.

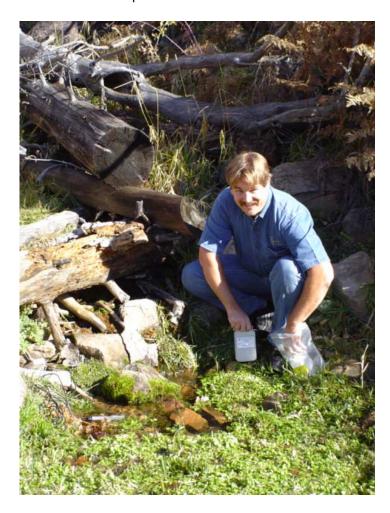
2. Use only sample bottles provided by the laboratory specifically for bacteriological sampling.

These bottles are sterile and should not be rinsed before sampling. A chemical, usually sodium thiosulfate, is placed in the bottle by the lab and is used for chlorine deactivation. Do not remove it.

- 3. Don't open the sample bottle until the moment you are going to fill it.
- 4. Flush the line thoroughly. Run water through the faucet for three to five minutes before opening the bottle and collecting the sample.
- 5. Uncap the sample bottle, being careful not to touch the inside of the bottle with your fingers or other objects. Do not set the lid down while taking the sample.
- 6. Reduce the water flow to a slow steady stream. Continue flushing for at least 1-2 minutes, then gently fill the sample bottle to the fill mark. At least 100 ml. of water is necessary for analysis. Leave an air space in the top of the bottle. Do not overfill.
- 7. Replace the cap immediately, making sure it is tight and does not leak.
- 8. Label the laboratory form. Complete the following information:
- a. Your Public Water System (PWS) ID number.
- b. Your water system name, address, city and phone number.
- c. Collection date and time.
- d. Type of sample: Routine, Repeat, and Special. Refer to previous discussion of definitions.
- e. Name of person collecting sample and sample location.
- f. Free chlorine residual if your system is chlorinated. The residual should be measured at the time of sample collection.
- g. Complete the section for the return address where the report is to be sent.
- 9. Package the sample for delivery to the laboratory.

Be sure to include the lab form. The sample should be kept cool if at all possible.

10. Mail or deliver the sample to the lab immediately. Samples over 30 hours old will not be analyzed by the laboratory. If the sample is too old or leaks in transit, the lab will notify you and you must collect another.



Sampling Plan Example

A written sampling plan must be developed by the water system. These plans will be reviewed by the Health Department or State Drinking Water agency during routine field visits for sanitary surveys or technical assistance visits. This plan should include:

- 1. The location of routine sampling sites on a system distribution map. You will need to locate more routine sampling sites than the number of samples required per month or quarter. A minimum of three sites is advised and the sites should be rotated on a regular basis.
- 2. Map the location of repeat sampling sites for the routine sampling sites. Remember that repeat samples must be collected within five (5) connections upstream and downstream from the routine sample sites.
- 3. Establish a sampling frequency of the routine sites.
- 4. Sampling technique, establish a minimum flushing time and requirements for free chlorine residuals at the sites (if you chlorinate continuously).

The sampling sites should be representative of the distribution network and pressure zones. If someone else, e.g., the lab, collects samples for you, you should provide them with a copy of your sampling plan and make sure they have access to all sample sites.

This fellow is taking a sample from a stream to check the water quality.

Collection of Surface Water Samples

Representative samples may be collected from rivers, streams and lakes if certain rules are followed:

- 1. Watch out for flash floods! If a flooding event is likely and samples must be obtained, always go in two-person teams for safety. Look for an easy route of escape.
- 2. Select a sampling location at or near a gauging station, so that stream discharge can be related to water-quality loading. If no gauging station exists, then measure the flow rate at the time of sampling, using the streamflow method described below.
- 3. Locate a straight and uniform channel for sampling.
- 4. Unless specified in the sampling plan, avoid sampling locations next to confluences or point sources of contamination.
- 5. Use bridges or boats for deep rivers and lakes where wading is dangerous or impractical.
- 6. Do not collect samples along a bank, as they may not be representative of the surface water body as a whole.
- 7. Use appropriate gloves when collecting the sample.

Streamflow Measurement

Before collecting water quality samples, record the stream's flow rate at the selected station. The flow rate measurement is important for estimating contaminant loading and other impacts.

The first step in streamflow measurement is selecting a cross-section. Select a straight reach where the stream bed is uniform and relatively free of boulders and aquatic growth. Be certain that the flow is uniform and free of eddies, slack water and excessive turbulence.

After the cross-section has been selected, determine the width of the stream by stringing a measuring tape from bank-to-bank at right angles to the direction of flow. Next, determine the spacing of the verticals. Space the verticals so that no partial section has more than 5 per cent of the total discharge within it.

At the first vertical, face upstream and lower the velocity meter to the channel bottom, record its depth, then raise the meter to 0.8 and 0.2 of the distance from the stream surface, measure the water velocities at each level, and average them. Move to the next vertical and repeat the procedure until you reach the opposite bank. Once the velocity, depth and distance of the cross-section have been determined, the mid-section method can be used for determining discharge. Calculate the discharge in each increment by multiplying the averaged velocity in each increment by the increment width and averaged depth.

(Note that the first and last stations are located at the edge of the waterway and have a depth and velocity of zero.) Add up the discharges for each increment to calculate total stream discharge. Record the flow in liters (or cubic feet) per second in your field book.

Composite Sampling

Composite sampling is intended to produce a water quality sample representative of the total stream discharge at the sampling station. If your sampling plan calls for composite sampling, use an automatic type sampler.

QA/QC Measures

In addition to standard samples, the field technicians collect equipment blanks (**EB**), field cleaned equipment blanks (**FB**), split samples (**SS**), and field duplicate samples (**FD**).

Overall care must be taken in regards to equipment handling, container handling/storage, decontamination, and record keeping. Sample collection equipment and non-preserved sample containers must be rinsed three times with sample water before the actual sample is taken. Exceptions to this are any pre-preserved container or bac-t type samples.

If protective gloves are used, they shall be clean, new and disposable. These should be changed upon arrival at a new sampling point. Highly contaminated samples shall never be placed in the same ice chest as environmental samples. It is good practice to enclose highly contaminated samples in a plastic bag before placing them in ice chests. The same is true for wastewater and drinking water samples.

Ice chests or shipping containers with samples suspected of being highly contaminated shall be lined with new, clean, plastic bags. If possible, one member of the field team should take all the notes, fill out labels, etc., while the other member does all of the sampling.

Preservation of Samples

Proper sample preservation is the responsibility of the sampling team, not the lab providing sample containers. The best reference for preservatives is Standard Methods or your local laboratory.

It is the responsibility of the field team to assure that all samples are appropriately preserved.

Follow the preservative solution preparation instructions.

Always use strong safety precautions diluting the acid.

Put a new label on the dispensing bottle with the current date.

Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Wait 3-4 hours for the preservative to cool most samples down to 4 degrees Celsius.

Most preservatives have a shelf life of one year from the preparation date.

When samples are analyzed for TKN, TP, NH4 and NOx 1 mL of 50% Trace Metal grade sulfuric acid is added to the each discrete auto sampler bottles/bags in the field lab before sampling collection. The preservative maintains the sample at 1.5<pH<2 after collection. To meet maximum holding time for these preserved samples (28 days), pull and ship samples every 14 days.

Narrow range pH paper (test strips) can be used to test an aliquot of the preserved sample.

Place the pH paper into the container and compare the color with the manufacturer's color chart.

Water Disinfectant Terminology

Many water suppliers add a disinfectant to drinking water to kill germs such as giardia and e coli. Especially after heavy rainstorms, your water system may add more disinfectant to guarantee that these germs are killed.

Chlorine. Some people who use drinking water containing chlorine well in excess of the EPA standard could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the EPA standard could experience stomach discomfort.

Chloramine. Some people who use drinking water containing chloramines well in excess of the EPA standard could experience irritating effects to their eyes and nose. Some people who drink water containing chloramines well in excess of the EPA standard could experience stomach discomfort or anemia.

Chlorine Dioxide. Some infants and young children who drink water containing chlorine dioxide in excess of the EPA standard could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorine dioxide in excess of the EPA standard. Some people may experience anemia.

Disinfection Byproducts

Disinfection byproducts form when disinfectants added to drinking water to kill germs react with naturally-occurring organic matter in water.

Total Trihalomethanes. Some people who drink water containing trihalomethanes in excess of the EPA standard over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

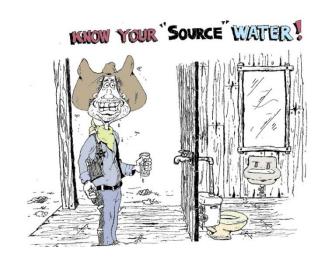
Haloacetic Acids. Some people who drink water containing haloacetic acids in excess of the EPA standard over many years may have an increased risk of getting cancer.

Bromate. Some people who drink water containing bromate in excess of the EPA standard over many years may have an increased risk of getting cancer.

Chlorite. Some infants and young children who drink water containing chlorite in excess of EPA standard could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the EPA's standard. Some people may experience anemia.

MTBE is a fuel additive, commonly used in the United States to reduce carbon monoxide and ozone levels caused by auto emissions. Due to its widespread use, reports of MTBE detections in the nation's ground and surface water supplies are increasing. The Office of Water and other EPA offices are working with a panel of leading experts to focus on issues posed by the continued use of MTBE and other oxygenates in gasoline. The EPA is currently studying the implications of setting a drinking water standard for MTBE.

Health advisories provide additional information on certain contaminants. Health advisories are guidance values based on health effects other than cancer. These values are set for different durations of exposure (e.g., one-day, ten-day, longer-term, and lifetime).


Troubleshooting Table for Sampling Monitoring

Problem

- 1. Positive Total Coliform.
- 2. Chlorine taste and odor.
- 3. Inability to maintain an adequately free chlorine residual at the furthest points of the distribution system or at dead end lines.

Possible Cause

- 1A. Improper sampling technique.
- 1B. Contamination entering distribution system.
- 1C. Inadequate chlorine residual at the sampling site.
- 1D. Growth of biofilm in the distribution system.
- 2A. High total chlorine residual and low free residual.
- 3A. Inadequate chlorine dose at treatment plant.
- 3B. Problems with chlorine feed equipment.
- 3C. Ineffective distribution system flushing program.
- 3D. Growth of biofilm in the distribution system.

Possible Solution

- 1A/ Check distribution system for low pressure conditions, possibly due to line breaks or excessive flows that may result in a backflow problem.
- 1B. Insure that all staff are properly trained in sampling and transport procedures as described in the TCR.
- 1C. Check the operation of the chlorination feed system. Refer to issues described in the sections on pumps and hypochlorination systems. Insure that residual test is being performed properly.
- 1D. Thoroughly flush effected areas of the distribution system. Superchlorination may be necessary in severe cases.
- 2A. The free residual should be at least 85% of the total residual. Increase the chlorine dose rate to get past the breakpoint in order to destroy some of the combined residual that causes taste and odor problems. Additional system flushing may also be required.
- 3A. Increase chlorine feed rate at point of application.
- 3B. Check operation of chlorination equipment.
- 3C. Review distribution system flushing program and implement improvements to address areas of inadequate chlorine residual.
- 3D. Increase flushing in area of biofilm problem.

Microorganisms Associated with Waterborne Disease

The following groups of microorganisms have been linked with the occurrence of waterborne disease. As each pathogen is isolated and identified as a threat to water quality, researchers try to discover the most effective combination of barriers and disinfection methods to minimize risk of human exposure.

Bacteria. Bacteria are the most widely distributed life forms. Pathogenic bacteria range in length from approximately 0.4 to 14 mm (a mm or "micrometer" equals one one-thousandth of a millimeter) and 0.2 to 1.2 mm in width. Key bacterial pathogens responsible for waterborne disease include Legionella, Salmonella typhi, Shigella, and Vibrio cholerae.

Viruses. Viruses are inactive when outside of a living host cell. Viruses linked to waterborne disease have protein coats that provide protection from environmental hazards and range in size from 0.02 to 0.09 mm. Unlike bacteria and protozoa, they contain only one type of nucleic acid (RNA or DNA). Key pathogens include hepatitis A and Norwalk virus.

Protozoa. Protozoa, common in bodies of water, are much larger than bacteria and viruses. To survive harsh environmental conditions, some species can secrete a protective covering and form a resting stage called a "cyst." Encystment can protect protozoa from drinking water disinfection efforts and facilitate the spread of disease. Key protozoa being studied as agents of waterborne disease include Giardia and Cryptosporidium.

Protozoan Diseases

Two protozoans in the news today are Giardia and Cryptosporidium. Their consumption can lead to severe problems of the digestive system, which can be life-threatening to the very young, very old, or those with damaged immune systems.

Review Section

Waterborne Pathogens

Incredibly in 2012, there are around 1.1 billion people globally do not have access to improved water supply sources whereas 2.4 billion people do not have access to any type of improved sanitation facility. About 2 million people die every year due to diarrheal diseases; most of them are children less than 5 years of age. The most affected are the populations in developing countries, living in extreme conditions of poverty, normally peri-urban dwellers or rural inhabitants.

In many cases, source water from a lake, river, reservoir or ground water aquifer needs to be disinfected to inactivate (or kill) microbial pathogens. Microbial pathogens include a few types of bacteria, viruses, protozoa, and other organisms. Some pathogens are often found in water, frequently as a result of:

- Fecal matter from sewage discharges
- Leaking septic tanks
- Runoff from animal feedlots into bodies of water

To protect drinking water from these pathogens, water suppliers often add a disinfectant to drinking water such as chlorine. However, disinfectant practices can be problematic because:

- Certain microbial pathogens, such as *Cryptosporidium*, are highly resistant to traditional disinfection practices.
- Disinfectants themselves can react with naturally-occurring materials in the water to form byproducts, such as trihalomethanes and haloacetic acids, which may pose health risks.

A major challenge for water suppliers is how to balance the risks from microbial pathogens and disinfection byproducts. It is important to provide protection from microbial pathogens while simultaneously minimizing health risks to the population from disinfection byproducts. There are several existing and future rules that are designed to achieve these goals.

Among the main problems which are responsible for this situation are: lack of priority given to the sector, lack of financial resources, lack of sustainability of water supply and sanitation services, poor hygiene behaviors, and inadequate sanitation in public places including hospitals, health centers and schools. Providing access to sufficient quantities of safe water, the provision of facilities for a sanitary disposal of excreta, and introducing sound hygiene behaviors are of capital importance to reduce the burden of disease caused by these risk factors. Water, sanitation and hygiene have important impacts on both health and disease.

Water-related diseases include:

- those due to micro-organisms and chemicals in water people drink;
- diseases like schistosomiasis which have part of their lifecycle in water;
- diseases like malaria with water-related vectors;
- drowning and some injuries:
- and others such as legionellosis carried by aerosols containing certain microorganisms.

Diseases	Responsible pathogen	Route of exposure	Mode of transmission
<u>Cholera</u>	Vibrio cholerae bacteria	gastro-intestinal	often waterborne
<u>Botulism</u>	Clostridium botulinum bacteria	gastro-intestinal	food/water borne; can grow in food
Typhoid	Salmonella typhi bacteria	gastro-intestinal	water/food borne
Hepatitis A	Hepatitis A virus	gastro-intestinal	water/food borne
<u>Dysentery</u>	Shigella dysenteriae bacteria or Entamoeba histolytica amoeba	gastro-intestinal	food/water
<u>Cryptosporidiosis</u>	Cryptosporidium parvum protozoa	gastro-intestinal	waterborne; resists chlorine
<u>Polio</u>	polioviruses	gastro-intestinal	exposure to untreated sewage; may also be waterborne
<u>Giardia</u>	Giardia lamblia protozoa	gastro-intestinal	waterborne

Microorganisms are Present Everywhere in Our Environment

Invisible to the naked eye, vast numbers of these microbes can be found in soil, air, food and water. Although humans are essentially free of microorganisms before birth, constant circumstances of exposure (e.g., breathing, eating, and drinking) quickly allow the establishment of harmless microbial flora in our bodies.

Microbial pathogens (microorganisms capable of causing disease), however, can and often do harm those who become infected. Moreover, diseases that healthy individuals "weather" well may prove fatal to individuals with compromised immune systems. In some cases, an infection can persist to create a "carrier state" where a disease causing agent is harbored by the body (and spread) without any apparent symptoms.

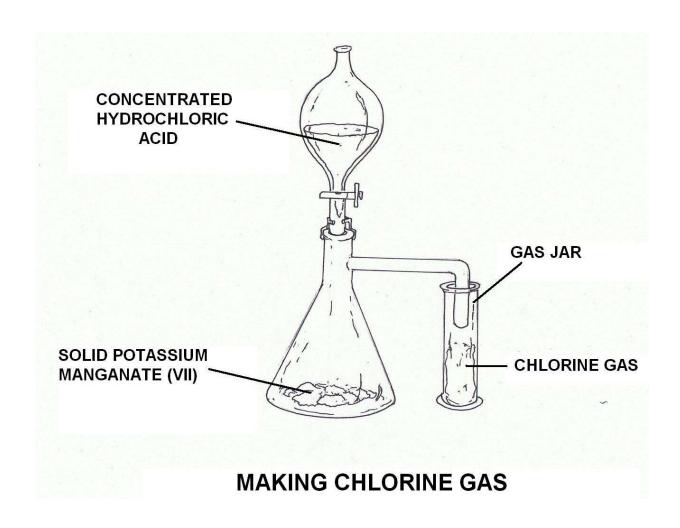
Waterborne diseases are typically considered to be those diseases resulting from ingestion of contaminated water. Additional pathways of infection being studied by EPA include inhalation of water vapors as well as body contact during bathing (opportunistic pathogens) in the hospital environment.

Since voluntary water ingestion (drinking water) and bathing are universal practices and accidental ingestion during recreational activities (e.g., swimming, water skiing, wading) is common, inadequate protection of water integrity could lead to widespread outbreaks (the Centers for Disease Control defines an outbreak to be two or more cases of illness that can be traced to a common source). Because symptoms can be mild and short-lived, it is estimated that only a fraction of waterborne outbreaks is recognized, reported and investigated. Of these, the pathogenic agent is identified only half of the time. Additionally, experts believe that some food-related disease outbreaks may originate with an initial infection (e.g., of a restaurant worker) caused by contaminated drinking water.

Bacteria, viruses and protozoa are the microorganism groups containing pathogens of primary concern in the study of waterborne diseases. To eliminate these pathogens from our water, especially from our drinking water, seems theoretically straightforward. Simply mix in a disinfectant, allow adequate contact time to assure inactivation (rendering the microbes unable to produce disease), and pump the water into the distribution lines.

In reality, many conditions render the above scenario unworkable. The physical characteristics of the water, primarily represented by dissolved and suspended solids content, can affect the disinfection process. The chemical content, both naturally occurring and anthropogenic (i.e., generated by humans), can also interfere with the chemical reactions desired during treatment and disinfection. Finally, pathogens associated (i.e., imbedded in or clumped) with higher organisms (e.g., algae, rotifers, worms) may be protected from the action of disinfectants. To overcome these obstacles to disinfection, successful treatment of drinking and waste water generally includes a series of steps. In the case of drinking water disinfection, once the impurities have been removed, enough disinfectant is added to inactivate pathogens.

What Progress Has Been Made?


Early in this century, the waterborne diseases of chief concern in the U.S. were typhoid fever and amebiasis. Of the 1,087 deaths associated with waterborne outbreaks between 1920 and 1991, 943 were attributed to typhoid fever while 102 were caused by amebiasis. Overall, 83% of the deaths occurred prior to 1936 and less than 1% occurred after 1970. Additionally, the number of outbreaks in community water systems since 1945 is about half as great as the number documented during the first half of this century. The reduction in fatalities and number of outbreaks indicates that progress has been made in the prevention of certain waterborne diseases. Much of the progress has been the result of increased implementation of important treatment practices (e.g., filtration, disinfection, sewage treatment).

Although progress has been significant, the nation's water continues to be a source of disease. It must be rigorously monitored for indicators of fecal contamination.

A residual level of disinfectant must be maintained throughout the distribution system to guard against potential problems (e.g., microorganisms entering through breaks in distribution lines or regrowth). Proper distribution system operation and maintenance practices are essential deterrents of pathogen entry, recovery and survival. These practices (according to Geldreich et al., 1992) include:

- Systematic flushing of the entire distribution system "to get more movement of the chlorine residual into all parts of the pipe network...to remove static water from slow-flow sections, deadends and stratified water in storage tanks on a periodic basis;"
- Effecting repairs and replacement of distribution line components (e.g., broken mains and service meters) in a sanitary manner (i.e., soil-free replacement parts, disinfection and flushing of repaired lines, valves and fittings);
- Preventing pathogens from being drawn into the distribution system by maintaining continuous positive pressure and preserving barriers between public water supplies and sewage or storm water drainage;
- Varying the sample sites during routine monitoring to produce data more representative of the entire system.

While the importance of source water treatment to ensure safe drinking water seems obvious, the need to devote equal effort to pathogen reduction in wastewater is not always recognized. The release of untreated or inadequately treated wastewater into source waters drawn upon by other communities presents a significant health risk. Source waters heavily loaded with disease causing microorganisms can reduce the effectiveness of "downstream" drinking water treatment processes. Such advances as ultraviolet light disinfection systems, initially investigated as a wastewater disinfection option several years ago, are presently becoming more widely accepted and reliable with recent design enhancements. This technology has been demonstrated to be capable of meeting existing disinfection criteria without the release of dangerous disinfection by-products.

Safe Drinking Water Act (SDWA) Review

In 1974, Congress passed the Safe Drinking Water Act (SDWA) setting up a regulatory program among local, state, and federal agencies to help ensure the provision of safe drinking water in the U.S. The states are expected to administer and enforce these regulations for public water systems (systems that either have 15 or more service connections or regularly serve an average of 25 or more people daily for at least 60 days each year). Public water systems must provide water treatment, ensure proper drinking water quality through monitoring, and provide public notification of contamination problems.

Relating to prevention of waterborne disease, the SDWA required EPA to:

- 1) set numerical standards, referred to as Maximum Contaminant Levels (MCLs the highest allowable contaminant concentrations in drinking water) or treatment technique requirements for contaminants in public water supplies;
- 2) issue regulations requiring monitoring of all regulated and certain unregulated contaminants, depending on the number of people served by the system, the source of the water supply, and the contaminants likely to be found;
- 3) set criteria under which systems are obligated to filter water from surface water sources; it must also develop procedures for states to determine which systems have to filter;
- 4) develop disinfection rules for all public water supplies; and
- 5) require all states to develop Wellhead Protection Programs designed to protect from sources of contamination areas around wells that supply public drinking water systems.

Through the Surface Water Treatment Rule (SWTR), EPA has set treatment requirements to control microbiological contaminants in public water systems using surface water sources (and ground-water sources under the direct influence of surface water). These requirements include the following:

- 1) treatment must remove or inactivate at least 99.9% of *Giardia lamblia* cysts and 99.99% of viruses;
- 2) all systems must disinfect, and are required to filter if certain source water quality criteria and site-specific criteria are not met;
- 3) the regulations set criteria for determining if treatment, including turbidity (suspended particulate matter) removal and disinfection requirements, is adequate for filtered systems; and 4) all systems must be operated by qualified operators as determined by the states.

Current EPA Research –Barriers to Contamination

Although water treatment and disinfection techniques are quite effective at microbe reduction, finished drinking water is not sterile. Survival and regrowth of microorganisms in drinking water distribution systems can lead to the deterioration of water quality and even noncompliance of a supply. Regrowth has largely been associated with heterotrophic bacteria (i.e., those bacteria – including pathogens – that require preformed organic compounds as carbon and energy sources). Bacterial growth occurs on the walls of the distribution system (referred to as "biofilms") and in the water either as free living cells or cells attached to suspended solids. A multi-faceted phenomenon, bacterial regrowth is influenced primarily by temperature, residence time in mains and storage units, the efficacy of disinfection, and nutrients.

Assimilable Organic Carbon (AOC)

Assimilable organic carbon (AOC) is the portion of the total organic carbon (TOC) dissolved in water that is easily used by microorganisms as a carbon source (i.e., nutrients). Researchers are currently investigating treatment processes to control AOC.

One promising process is biologically active filtration wherein bacterial communities are intentionally established in the filters to use up, or biodegrade, the AOC as it passes through. This treatment process must be employed before final disinfection so that bacteria escaping from the filter can be properly controlled.

Most water utilities do not disinfect with chlorine until late in the treatment train. This limits the formation of disinfection by-products (i.e., those compounds like chloroform produced when chlorine reacts with naturally occurring organic carbon).

To accomplish disinfection earlier in treatment, some water utilities employ ozonation. While ozone is a very strong disinfectant, it also converts a portion of the TOC into AOC. Researchers are examining the advantages (e.g., disinfection of bacteria, viruses and protozoan cysts, control of color, control of taste and odor, enhancement of coagulation, and partial oxidation of the naturally occurring organic carbon that reacts with chlorine) and disadvantages of ozone (e.g., enhancement of AOC, conversion of bromide to bromate, and formation of its own disinfection byproducts like formaldehyde).

EPANET

The project entitled "EPANET" involves the development and testing of a water quality model for drinking water distribution systems. The EPANET model is a computer program that performs extended period simulation of hydraulic and water quality behavior within water distribution networks. It tracks the flow of water in each pipe, the pressure at each pipe junction, the height of water in each tank, and the concentration of a contaminant throughout the network during a multiple time period simulation. Water age and source tracing can also be simulated.

EPANET can be useful for analyzing the loss of disinfectant residual, designing water quality sampling programs, performing drinking water exposure risk assessments, and calibrating network hydraulic models. It can provide insight into how changes in water source utilization, pumping water storage levels, use of satellite treatment and targeted pipe cleaning and replacement would affect drinking water quality. In support of small community and non-community (less than 3,300 people) drinking water treatment systems, researchers are designing, modifying and testing "Hybrid Drinking Water Treatment Package Plants."

These package plants are factory-built, skid-mounted, and ready to be operated in the field with minimal site preparation. They exhibit lower capital cost than custom designed facilities built onsite and can incorporate any drinking water treatment process. Promising technologies being considered for incorporation include membranes, advanced oxidation, bag filters, and photocatalytic oxidation. By merging, modifying, and adapting conventional treatment trains with innovative treatment technologies, a broader variety of contaminants (including pathogens) can be removed and SDWA compliance can be facilitated. Concern has recently mounted over the ability of certain pathogenic protozoan (*Cryptosporidium*) cysts to survive treatment processes and enter the distribution system.

Bacteriological Monitoring Section Review

Current EPA Research —Bacteria

The new National Primary Drinking Water Regulations require that all drinking water samples testing positive for total coliforms be further tested for the presence of either fecal coliforms or *E. coli*. There is a method currently available that allows the simultaneous detection of total coliforms and *E. coli* in a broth medium in 24 hours; however, there is no equivalent method for use with membrane filters. Development of such a method will allow those who prefer to obtain counts of these organisms in their distribution systems to use a membrane filter method and to have results within the 24-hour time frame. Through the project "Development of a Membrane Filter Medium for the Simultaneous Detection of Total Coliforms and *E. coli*," a membrane filter medium on which both total coliforms and *E. coli* can be distinguished from non-coliforms will be developed and patented.

E. coli are fecal organisms that when present in drinking water are indicative of fecal pollution. Logistical concerns in sample handling and holding require evaluation of conditions for optimizing sample stability and longevity. No current regulations exist for handling samples for analysis of *E. coli*. Through the project entitled "Optimal Sample Holding Conditions for Analysis of Fecal *E.coli* in Drinking Water," sample temperature and holding time will be determined for *E. coli* or fecal coliform analysis methods (i.e., Colilert and M-FC agar).

Relative recovery of methods and storage conditions will be assessed for optimal *E. coli* recovery. The requirement (through the SDWA amendments) to test all coliform-positive drinking water samples for either fecal coliforms or *E. coli* is new. Data from available methods for detecting chlorine damaged *E. coli* in drinking water are limited. The objective of the project entitled "Detection of Low Numbers of Chlorine-Stressed *E. coli* in Drinking Water" is to evaluate and compare the abilities of a commercial method (Colilert) and a standard coliform method (ECMUG) to recover low numbers of chlorine-stressed *E. coli* from potable water. Pure cultures of *E. coli* will be washed, nutrient-stressed in finished drinking water, and treated with chlorine. The chlorine-stressed *E. coli* will then be enumerated, diluted to levels that would be found in marginally unsafe drinking water and assayed in multiple tubes by the three methods.

These experiments will be repeated using naturally occurring *E. coli* from diluted human fecal specimens, contaminated source waters and effluents. The infectious bacterial agent identified from the stools of cholera victims is *Vibrio cholerae*. The epidemic in Latin America has prompted a renewed interest in control measures for this disease. Through the project entitled "Inactivation of *Vibrio cholerae* Biotype El Tor and Biotype Classical by Chlorination," it has been determined that the strain responsible for the epidemic in Peru is capable of reverting to a variant which is more resistant to chlorination than the typical smooth variety of *Vibrio cholerae*.

Cells of the variant appear to be imbedded in a gelatinous mucoid material, facilitating the formation of aggregates, which renders them more resistant to disinfection. Although the variant is more resistant, studies have indicated that all strains are readily inactivated through adequate chlorination.

The Legionella pneumophila bacterial strains that cause community- and hospital-acquired pneumonia are usually spread via finished drinking water. Certain free living amoebae (protozoa) support the multiplication of *L. pneumophila* in drinking water systems.

These amoebae may also be responsible for enhancing the virulence (capacity of a microorganism to cause disease) of the *Legionellae* and for protecting them from adverse environmental factors such as high temperature and chlorine disinfection. The project entitled "Multiplication of *Legionellae* in Amoebae and Assessment of Virulence" will determine the effect of intracellular growth of *Legionellae* in amoebae on virulence and as protection against chlorine and high temperature. To accomplish this, a method will be established to study the ability of various types of amoebae to provide a protective niche for the multiplication of *Legionellae* under adverse environmental conditions.

Combinations of *Legionella* isolates and specific amoebae that result in high yields of *Legionella* after intracellular growth will be used to study the effects of intracellular growth on virulence. Preliminary studies on the ability of amoebae to supply iron to *Legionellae* growing intracellularly showed no obvious associations between growth and iron concentration. EPA is required by the SDWA to establish appropriate controls and regulations for potable water.

EPA's Office of Research and Development's (ORD) project entitled "Develop Methods for Identifying Potential Bacterial Pathogens in Drinking Water" will develop a data base on potential health hazards (i.e., pathogenicity) associated with bacteria commonly found in water distribution systems. To accomplish this, three rodent species will be compromised using nitrous oxides or immunosuppressive agents, and the animals subsequently will be challenged via the gastrointestinal route.

Although virulence is usually measured *in vivo* (animal research), the need for extensive animal testing can be significantly reduced by the development of a battery of *in vitro* (cell culture) tests for traits known to be virulence-related. This battery can be used to predict the potential an organism has for causing disease in exposed populations. Through the project entitled "Develop *In Vitro* Methods for Identifying Potential Bacterial Pathogens in Drinking Water," model systems will be developed that can be used to determine the potential pathogenicity of bacteria found in potable water distribution systems. Additionally, gene probe and other assays to identify known opportunistic pathogens will be developed and evaluated. Bacteria common to drinking water distribution systems colonize point-of-entry, granular activated carbon (GAC) filters where they are able to grow to very high densities.

Subsequent to reaching the high densities the bacteria begin sloughing off the GAC filters. The number of bacteria in the filter effluent (i.e., water flowing out of the filter) is significantly higher than in the influent water. This amplification of bacteria in drinking water is of concern to EPA because GAC filters are being considered as a substitute for central potable (i.e., fit for drinking drinking) water treatment in small communities where the treatment system has been overwhelmed by organic substances that may be harmful to human health.

EPA's Office of Ground Water and Drinking Water (OGWDW), however, does not want to recommend the use of these filters if the possibility exists that their use poses an acute disease risk due to bacteria that grow on the filters. The health significance of the bacteria known to adsorb and grow on GAC filters used in the home will be evaluated. The OGWDW will use this information to develop appropriate controls and regulations for this type of drinking water treatment as required by the SDWA.

Water Disinfection Methods Review

Disinfection is an important step in ensuring that water is safe to drink. Water systems add disinfectants to destroy microorganisms that can cause disease in humans. The Surface Water Treatment Rule requires public water systems to disinfect water obtained from surface water supplies or groundwater sources under the influence of surface water. Primary methods of disinfection are chlorination, chloramines, zone, and ultraviolet light. Other disinfection methods include chlorine dioxide, potassium permanganate, and nanofiltration. Since certain forms of chlorine react with organic material naturally present in many water sources to form harmful chemical by-products, the U.S. Environmental Protection Agency has proposed maximum levels for these contaminants.

Many people in most developing countries suffer from the inadequacy or hazardous condition of public water supplies (WHO 1985). A wide variety of known waterborne diseases, including those associated with children's diarrhea, are rampant (Tartakow and Vorperian 1980; Feachem et al. 1983; WHO 1984, 1987). This prompted the establishment of the International Drinking Water Supply and Sanitation Decade. It aims at providing about 90% of the human population with an adequate, safe community water supply by 1990 (WHO 1985).

In Lebanon, the shortage of community water supplies, their actual or potential pollution from anthropogenic sources, inadequate treatment, and the resultant spread of associated diseases are still unresolved problems (Acra et al. 1985). To curb these issues would require implementing feasible measures for prevention and treatment. These should include sanitation and disinfection of drinking water.

Physical Methods

Formation of mutagenic and carcinogenic agents in water and wastewater effluent treated with chlorine has prompted research to seek alternative disinfecting methods that would minimize environmental and public health impacts. The technology, based on nonchemical methods, is undergoing rapid development. Some techniques are already available commercially. This category is represented by techniques employing such physical principles for disinfection as W radiation, ultrasound, ultrafiltration, reverse osmosis, heating, freezing, and ionizing radiation (Cheremissinoff et al. 1981). Disinfecting small quantities of water by pasteurizing with heat or solar energy is a technology with some potential, but requires further development (Cheremissinoff et al. 1981; Ciochetti and Metcalf 1984). The recently developed method for water disinfection by direct exposure to solar radiation (Acra et al. 1980, 1984) is further described in the following sections.

Chemical Methods

Chemical methods depend mostly on selected chemicals with oxidizing and biocidal properties. Their practical applications range from removing undesirable constituents to disinfecting water supplies, wastewater treatment effluent, or industrial waters. The most commonly used chemicals include ozone, chlorine and some of its compounds, potassium permanganate, and hydrogen peroxide.

Ozone has been used for water disinfection for about 80 years in France, Germany, and other European countries. It is now undergoing a critical evaluation as a possible alternative to chlorine when used alone or in conjunction with other disinfection systems (Foster et al. 1980; Kott et al. 1980; Dolora et al. 1981; Venosa 1983; Rakness et al. 1984; Wickramanayake et al. 1984; Den-Blanken 1985).

There is some evidence that it forms smaller amounts of hazardous trihalomethanes (THM) when employed to treat polluted waters or wastewater effluent than either chlorine or chlorine dioxide. However, its potential for producing other equally toxic substances is still not clearly defined (Glaze 1987). Ozonation has become popular in North America partly because of its superiority over chlorination. It enhances the coagulation process despite its inherent weakness in leaving practically no residual in the distribution system.

Interhalogen compounds, formed from two different halogens, resemble their parent substances in properties and germicidal characteristics. The interhalogens BrCl, ICl, and IBr have recently been investigated as possible alternative disinfectants for water and wastewater effluent (Groninger and Mills 1980; Cheremissinoff et al. 1981). Added to water, they rapidly hydrolyze to the corresponding hypohalous acids, which are stronger oxidants and disinfectants than hypochlorous acid. For instance, BrCl is hydrolyzed to HCl and HOBr. However, their improved germicidal activity is counterbalanced by the formation of haloforms. They react with humates in water or wastewater effluent by the haloform reaction (HOBr, for example, reacts with humates yielding bromoform). In this context, hypobromite would be formed in seawater by reaction of the natural bromides with hypochlorites in chlorinated wastewater effluent or cooling waters from power plants (Sugam and Helz 1980; Wong 1982; Bousher et al. 1986). This also applies to natural waters rich in bromides with subsequent formation of bromoform and other trihalomethanes (Amy et al. 1984; Rav-Acha, Choshen et al. 1985; Rav-Acha, Serri et al. 1985; Ishikawa et al. 1986; Guttman-Bass et al. 1987). Consequently, coastal groundwater affected by seawater infiltration should create some concern if used for drinking.

Using hydrogen peroxide for water disinfection began in the 1950s in Eastern Europe (Laubusch 1971). Although it has been well known for its high oxidative and germicidal activity, its application as a water disinfectant has not gained wide acceptance. Its increasing use, however, has been noted (Gaudy and Gaudy 1980). The degradation of organic matter in water treated sequentially with up to 0.5% by weight of hydrogen peroxide and W radiation (>200 nm) has been reported (Malaiyandi et al. 1982). In another form of application, hydrogen peroxide produced no significant oxidation of soluble manganese in water containing organic matter in the pH range of 5.0-8.0 (Knocke et al. 1987). A newly marketed product (Sanosil, Sanosil AG, Feldmeilen, Switzerland) is claimed to be applicable to large-scale water disinfection; its effective bacteriostatic and fungicidal activity has been demonstrated at concentrations of 10-35 mg/L on *Escherichia coli, Klebsiella pneumoniae, Streptococcus aureus, Pseudomonas aeroginosa, Proteus mirabilis, Micobacter* spp., *Clamidia sporogenes*, and *Candida albicans*. The two active biocidal constituents of this product are hydrogen peroxide and colloidal silver.

Chlorination and Dechlorination

The use of chlorine and some of its derivatives will continue as an integral part of the disinfection process in water and wastewater treatment. This also applies to developing countries, where this mode of disinfection is fairly well established (Mara 1978; Droste and McJunkin 1982; Smethurst 1983). Apart from almost a century of chlorination practices (Laubusch 1962a, b; Cheremissinoff et al. 1981), two other favourable determinants are the technical expertise already acquired and the relatively low costs involved. In the wake of the recent discovery of the formation of THM in chlorinated natural waters (Rook 1974), and their potential health hazards (Glaze et al. 1980; Williamson 1981; Carpenter and Beresford 1986), its credibility is diminishing.

Alternative disinfecting agents such as chlorine dioxide (Rav-Acha et al. 1985b), UV light (Severin et al. 1984; Scheible 1987), and UV light in conjunction with hydrogen peroxide (Crandall 1986) are being considered. However, the formation of mutagens and carcinogens in chlorinated waters and wastewaters can be abolished or minimized by modifying the unit processes (Stelter et al. 1984; Fiessinger et al. 1985; Finger et al. 1985; Huang et al. 1985; Kool et al. 1985; Moyers and Wu 1985; Suh and Abdel-Rahman 1985; Means et al. 1986; Rogers and Lauer 1986; Guttman-Bass et al. 1987; Knocke et al. 1987). The potential health impacts that are yet to be clearly discerned and the toxicity to aquatic life resulting from discharged chlorinated effluent (Brungs 1973; Jolley et al. 1980) do not seem to outweigh the public health benefits derived from chlorination practices (Cortruvo 1985). However, as the controversy continues, epidemiological studies (Craun 1985) and the pertinent drinking water standards and legislation (Toft 1985) are being revised.

Reactions of chlorine in water that form the basis for its application as a disinfectant and oxidant are as follows:

 $Cl_2 + H_20 \longrightarrow HCl + HOCl$

HOCI --> H⁺ + OCI⁻

These reactions in water devoid of other inorganic or organic matter that could react with chlorine are pH and temperature dependent. The products, hypochlorous acid (HOCI) and hypochlorite ions (OCI⁻, are referred to as free available chlorine (FAC). The biocidal activity is attributed chiefly to HOCI, as it is more effective than the OCI⁻. In the presence of natural or added ammonium ions, HOCI reacts to form chloramines, known as combined available chlorine (CAC). As a disinfectant, FAC is more effective. It is essential to chlorinate beyond the subsequent attainment of FAC at the desired level for optimal biocidal effectiveness ("free residual" chlorination).

The influencing factors to be considered in chlorination practices are the following:

- chlorine concentration,
- contact time.
- pH,
- temperature, and
- interfering substances.

The relationship between chlorine concentration (C, milligrams per liter) and contact time (T, minutes) required for a specific percentage destruction of microorganisms is expressed as a constant (CT = K) (Gaudy and Gaudy 1980). The proper use of this CT relationship to determine adequate water chlorination requirements has been emphasized as an approach to prevent and control waterborne diseases. Minimum CT values of 15-30 for systems using groundwater as a source and 100-150 for those using surface supplies have been recommended (Lippy 1986). Based on these values, the required FAC concentration can be determined mathematically for a given contact time. Once the chlorine demand (D) for a water supply is determined by testing, then the optimal chlorine dose to attain the desired free chlorine residual (C) can be calculated by addition: chlorine dose = D + C.

One of the factors in the many waterborne disease outbreaks in the United States in the past decades was failure to comply with the *CT* relationship in chlorination practices (Lippy and Waltrip 1984; Bitton et al. 1986; Lippy 1986; Williams and Akin 1986).

In addition, the need for the disinfection of wastewater discharged into streams has been emphasized and justified by the 23 different kinds of pathogenic organisms present in wastewater from US communities (Shertzer 1986).

Excess chlorine residuals can be controlled by a dechlorination procedure. Of the various chemicals used for the partial or complete removal of the residual chlorine in water or wastewater, sulfur dioxide gas (SO₂) is the most common (Laubusch 1971; Cheremissinoff et al. 1981; Finger et al. 1985; Huang et al. 1985). Dechlorination is often applied to heavily dosed water supplies as they are aesthetically objectionable to consumers or undesirable for industrial water uses. Chlorinated cooling waters and wastewaters need to be dechlorinated before discharging into water bodies in view of their toxicity to aquatic life. They have also potentially harmful effects because of the formed THM.

Household Methods

There are many situations where individuals or families would need to resort to simple and effective methods for drinking-water disinfection. These include the following:

- catastrophic conditions leading to displacement (earthquakes, floods, hurricanes, wars, or civil disturbances);
- · emergencies arising from flourishing waterborne diseases; and
- resident populations and foreigners at risk in endemic areas with unsafe water supplies.

Physical methods (boiling or the use of ceramic filters), chemical methods (chlorine compounds in solution or tablet form, e.g., sodium hypochlorite solutions, calcium hypochlorite tablets, organic chlorine compounds, iodine solution, and organic iodine compounds) and others have been recommended for such cases (Morris et al. 1953; Gershenfeld 1957; Hadfield 1957; Cox 1969; O'Connor and Cooper 1970; WHO 1972, 1973; Rajagopalan and Shiffman 1974; UNHCR 1982).

None of these methods is entirely free from practical problems that could induce users to revert to untreated water. Fuelwood, for instance, for boiling is no longer a tenable practice, particularly in areas where it is absent or being depleted. Besides, the flat taste of boiled water discourages some consumers. The diverse types of ceramic filters have a wide range of pore sizes and present difficulties in selection. They suffer frequent clogging of the ceramic candles and often leak through disguised fine cracks. Proprietary halogen preparations frequently lead to consumer complaints and rejection because of the undesirable tastes and odors imparted to the water. It is especially so if high doses are applied inadvertently or as required in cases of heavily polluted waters. Relief agencies are often trapped in a dilemma by the requirements for importing and distributing, in addition to shortages, cost acceptability, and expiry dates. These issues encourage attempts to resolve them through the development of practical and effective techniques, simple enough to be applied by individuals or households.

Photo-Inactivation

The concept of photodynamic inactivation (PDI) of microorganisms evolved from experiments made in the early l9th century. It was firmly established, however, after the discovery of the inactivation of *Paramecium* spp. by visible light in the presence of an exogenous photosensitizing dye (acridine) (Raab 1900). Two types of photosensitizing compounds are known (Harrison 1967; Chamberlin and Mitchell 1978; Senger 1980):

 exogenous: fluorescent substances or dyes such as eosin, methylene blue, and benzopyrene; and • endogenous: porphyrins, cytochromes, cytochrome oxidase, aromatic amino acids, flavins, tryptophan, and chlorophylls.

Several microorganisms and aquatic ecosystems have shown sensitivity to solar UVR, including viruses, algae, and fungi (Perdrau and Todd 1933; Hiatt et al. 1960; Crowther and Melnick 1961; Jagger 1967, 1981; Billen and Green 1975; Berry and Noton 1976; Propst and Lubin 1978; Acher and Elgavish 1980; Calkins and Thordardottir 1980; Kapuscinski and Mitchell 1981; Worrest et al. 1981; Jabara 1984; Wei et al. 1985). The rapid destruction of saprophytic strains of Mycoplasma by artificial visible light in the presence of toluidine blue and air has been reported (Cooney and Krinsky 1972). Coliforms in water and sewage have been completely inactivated by exposure to sunlight for about 1 h in the presence of methylene blue or rose bengal; the added dye is removed by absorption on bentonite (Acher and Juven 1977).

A new technique for the photodynamic disinfection of municipal and industrial wastewaters, which also results in the photodegradation of pesticides and anionic surfactants therein, has been suggested. The technique is based on the use of exogenous dye sensitizers, aeration, and sunlight, with the possibility of reusing the treated effluent for crop irrigation (Acher 1985).

Aquatic Photochemistry

Photochemical reactions induced by natural or artificial light have been known for some time, but much of this field remains obscure. Of particular interest is the photochemistry of the hydrosphere, which is continuously experiencing light-induced chemical reactions in the surface layer (photic zone). Inorganic and organic chemical pollutants in natural surface waters capable of absorbing solar energy with consequent chemical changes, referred to as photoreactive chromophores, can lead to direct photolysis reactions. Some of the better known chromophores include inorganic substances such as nitrites, nitrates, iodates, hydrogen peroxide, and ferrous compounds (Zafiriou et al. 1984).

The fate of disinfectants added to wastewater effluent and cooling waters used in industries that are discharged to surface waters is of importance in aquatic biology. Sunlight plays a prime role in their photodecomposition, as was demonstrated with experiments in which hypochlorite and hypobromite (formed by interaction of chlorine and natural bromides in seawater) were found to be photosensitive, the latter being easier to decompose (Wong 1982). In addition, volatilization into the atmosphere has been proposed as a possible pathway for the dissipation of the haloforms formed in water, with subsequent enhanced dilution and further photochemical degradation (Groninger and Mills 1980). Decay and dissipation models for chlorine residuals in natural waters have been developed. These models predict that the nocturnal discharge of chlorinated effluent would have a much greater impact on aquatic life, given the absence of light-induced decomposition (Lin et al. 1983; Yamomoto et al. 1985).

The photochemical reactions of the hypohalites formed in aqueous solutions of chlorine, bromine, and iodine are somewhat similar, except for the absorption spectra and reaction rates (Allmand et al. 1927; Allmand and Webb 1928; Farkas and Klein 1948). Their photodecomposition is wavelength-dependent, with increased decay rates in the shorter wavebands within the spectral region of 200-440 nm and the possible liberation of the highly reactive singlet oxygen, as has been noted for the surface of fresh and coastal waters (Zafiriou et al. 1984). It can be postulated, then, that aqueous halogen solutions are subject to photodecomposition by the effective radiation in the UV-B, UV-A, and blue light bands of the solar spectrum, and that these reactions could be of practical importance.

pH Scale

Alkalinity is the capacity of water to neutralize acids. This capacity is caused by the water's content of carbonate, bicarbonate, hydroxide and occasionally borate, silicate and phosphate. pH is an expression of the intensity of the basic or acid condition of a liquid. EPA has a suggested range of 6.5 to 8.5 for pH (called a secondary maximum contaminant level or SMCL). Furthermore, alkalinity and pH are different because water does not have to be strongly basic (high pH) to have a high alkalinity.

Conclusion

Emerging waterborne pathogens constitute a major health hazard in both developed and developing nations. A new dimension to the global epidemiology of cholera-an ancient scourge-was provided by the emergence of Vibrio cholerae O139. Also, water-borne enterohaemorrhagic Escherichia coli (E. coli O157:H7), although regarded as a problem of the industrialized west, has recently caused outbreaks in Africa. Outbreaks of chlorine-resistant Cryptosporidium have motivated water authorities to reassess the adequacy of current water-quality regulations. Of late, a host of other organisms, such as hepatitis viruses (including hepatitis E virus), Campylobacter jejuni, microsporidia, cyclospora, Yersinia enterocolitica, calciviruses and environmental bacteria like Mycobacterium spp, aeromonads, Legionella pneumophila and multidrug-resistant Pseudomonas aeruginosa have been associated with water-borne illnesses.

The protection and enhancement of our nation's water quality remains a chief concern of the U.S. Environmental Protection Agency. The Office of Research and Development is committed, through the extensive waterborne disease research efforts earlier described, to ensure that the most effective and efficient methods are developed to identify, detect, and inactivate/remove pathogens that may be present in our drinking water supplies.

Life cycles, mechanisms of infection, protective or dormant states, emergence of disinfection resistant variants, optimal pathogen removal techniques, regrowth in distribution lines...all are areas that must be investigated and understood to afford the water quality safeguards that are so often taken for granted. The successes and failures of these research efforts, relayed to the public and appropriate federal, state, and local agencies, have helped to ensure safe drinking water.

Salmonella Typhi

Salmonella typhi, the basics. It's a bacteria. It causes diarrheal illness, also known as typhoid fever. And humans are the reservoir for this pathogen. Salmonella typhi, prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Shigella Species

Shigella species, the basics. It's a bacteria. It causes diarrheal illness known as shigellosis. Humans and primates are the reservoir for this pathogen. Shigella species, in the United States two-thirds of the shigellosis in the U.S. is caused by Shigella sonnei, and the remaining one-third is caused by Shigella flexnieri. In developing countries, Shigella dysenteriae is the primary cause of illness associated with this pathogen. Shigella species prevention. Prevention strategies for this pathogen include source protection,

halogenation of water, and boiling water for one minute.

Campylobacter

Campylobacter, the basics. It's a bacteria. It causes diarrheal illness. And Campylobacter is primarily associated with poultry, animals, and humans. Campylobacter prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Vibrio Cholerae

Vibrio cholerae, the basics. It's a bacteria. It causes diarrheal illness, also known as cholera. It is typically associated with aquatic environments, shell stocks, and human. Vibrio cholerae has also been associated with ship ballast water, and there will be a discussion later on in this presentation of an outbreak associated with ship ballast water. Vibrio cholerae prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and boiling water for one minute.

Legionella

Legionella, the basics. It's a bacteria. It causes a respiratory illness known as legionellosis. There are two illnesses associated with legionellosis: the first, Legionnaire's disease, which causes a severe pneumonia, and the second, Pontiac fever, which is a nonpneumonia illness; it's typically an influenza-like illness, and it's less severe. Legionella is naturally found in water, both natural and artificial water sources. Legionella, prevention. Maintaining hot water systems at or above 50 degrees Centigrade and cold water below 20 degrees Centigrade can prevent or control the proliferation of Legionella in water systems. Hot water in tanks should be maintained between 71 and 77 degrees Centigrade. Proper recreational water system maintenance and disinfection can prevent the proliferation of Legionella in recreational water systems. It is important to prevent water stagnation. This can be accomplished by eliminating dead ends in distribution systems and in recreational water systems. Additionally, preventing biofilm development is important to control this particular pathogen in water systems.

Pseudomonas

Pseudomonas, the basics. It's a bacteria. It is caused by dermal contact with water. It can cause dermatitis, which is an inflammation of the skin, or it can cause otitis, which is an infection of the ear. Pseudomonas is typically associated with soil and water. Pseudomonas prevention. Proper maintenance and disinfection of recreational water systems is important in preventing Pseudomonas.

Hepatitis A

Hepatitis A, the basics. It's a virus. It causes inflammation of the liver. And the reservoir for Hepatitis A virus is humans.

Hepatitis A, Prevention

Prevention strategies for this pathogen include source protection and adequate disinfection. Fecal matter can protect Hepatitis A virus from chlorine. Additionally, Hepatitis A virus is resistant to combined chlorines, so it is important to have an adequate free chlorine residual.

Norovirus

Norovirus, the basics. It's a virus. It causes diarrheal illness. And humans are the reservoir for this virus. Norovirus, prevention. Prevention strategies for this pathogen include source protection.

Cryptosporidium

Cryptosporidium, the basics. It's a parasite. It causes diarrheal illness known as cryptosporidiosis. It is typically associated with animals and humans, and it can be acquired through consuming fecally contaminated food, contact with fecally contaminated soil and water. Cryptosporidium, prevention. Prevention strategies for this pathogen include source protection. A CT value of 9,600 is required when dealing with fecally accidents. CT equals a concentration, in parts per million, while time equals a contact time in minutes. Cryptosporidium can also be prevented or eliminated by boiling water for one minute.

Filtration with an "absolute" pore size of one micron or smaller can eliminate Cryptosporidium. And reverse osmosis is known to be effective as well.

Giardia

Giardia, the basics. It is a parasite. It causes diarrheal illness known as giardiasis. It is typically associated with water. It is the most common pathogen in waterborne outbreaks. It can also be found in soil and food. And humans and animals are the reservoir for this pathogen. Giardia prevention. Prevention strategies for this pathogen include source protection; filtration, coagulation, and halogenation of drinking water.

Schistosomatidae

Schistosomatidae, the basics. It is a parasite. It is acquired through dermal contact, cercarial dermatitis. It is commonly known as swimmer's itch. The reservoir for this pathogen are aquatic snails and birds. Schistosomatidae, prevention. Prevention strategies for this pathogen include eliminating snails with a molluscicide or interrupting the life cycle of the parasite by treating birds with an antihelmetic drug.

E-Coli Section

Escherichia coli. There are several pathogenic strains of Escherichia coli, which are classified under enterovirulent E. coli. They are enterohemorrhagic, enteroinvasive, enterotoxigenic, enteropathogenic, and enteroaggregative. Escherichia coli O157:H7, the basics. It's a bacteria. It causes diarrheal illness, and it's classified as an enterohemorrhagic E. coli.

In its most severe form, it can cause hemorrhagic colitis. The reservoir for this bacteria are cattle, deer, goats, and sheep. Humans can also be a reservoir. It is typically associated with contaminated food and water. E. coli O157:H7 prevention. Prevention strategies for this pathogen include source protection, halogenation of water, or boiling water for one minute.

Salmonella species, the basics. It's a bacteria. It causes diarrheal illness known as salmonellosis. Humans and animals are the reservoir, and it's typically associated with contaminated food and water. Salmonella species, prevention. Prevention strategies for this pathogen include source protection, halogenation of water, and also boiling water for one minute.

More on Evolving Disinfection Rules

In the past 25 years, the Safe Drinking Water Act (SDWA) has been highly effective in protecting public health and has also evolved to respond to new and emerging threats to safe drinking water. Disinfection of drinking water is one of the major public health advances in the 20th century. One hundred years ago, typhoid and cholera epidemics were common through American cities; disinfection was a major factor in reducing these epidemics.

However, the disinfectants themselves can react with naturally-occurring materials in the water to form unintended byproducts which may pose health risks. In addition, in the past ten years, we have learned that there are specific microbial pathogens, such as *Cryptosporidium*, which can cause illness and is resistant to traditional disinfection practices.

Chlorine is the most widely used water disinfectant due to its effectiveness and cost. Using chlorine as a drinking water disinfectant has prevented millions of water borne diseases, such as typhoid, cholera, dysentery, and diarrhea. Most states require community water systems to use chlorination. However, research shows that chlorine has side effects. It reacts with organic matter present in water and forms a series of compounds that have been linked to cancer in animals.

These compounds are called disinfection by-products (DBPs). All disinfectants form DBPs in one of two reactions:

- (1) chorine and chlorine-based compounds (halogens) react with organics in water causing the chlorine atom to substitute other atoms resulting in halogenated by-products and
- (2) oxidation reactions, where chlorine oxidizes compounds present in water. Secondary by-products are also formed when multiple disinfectants are used.

All living organisms have carbon as an essential element in their cells. When trees shed their leaves, they start decomposing and are ultimately broken down by bacteria into carbon-containing compounds. Similarly, dead animals on land and fish and other aquatic life decompose and disintegrate into compounds that contain carbon as an essential element. Hence, all surface water and groundwater contain varying amounts of carbon-containing compounds called organic matter (primarily humic and fulvic acids).

The EPA Surface Water Treatment Rule (SWTR) requires systems using public water supplies from either surface water or groundwater under the direct influence of surface water to disinfect. Also, since some disinfectants produce chemical by-products, the dual objective of disinfection is to provide the required level of organism destruction and remain within the maximum contaminant level (MCL) for the SWTR disinfection set by EPA. At this time, an MCL is set for only Total Trihalomethanes, and proposed for additional disinfection byproducts.

What are the microbial/disinfection byproducts (MDBP) rules and which ones apply to me?

The MDBP requirements have been in place for close to 30 years and include the following federal rules:

- Total Trihalomethanes monitoring and MCL, promulgated Nov 1979
- Surface Water Treatment Rule, promulgated June 1989
- Interim Enhanced Surface Water Treatment Rule and Stage 1 Disinfectants / Disinfection Byproducts Rule, promulgated Dec 1998
- Filter Backwash Rule, promulgated June 2001
- Long Term 1 Enhanced Surface Water Treatment Rule, promulgated Jan 2002

- Long Term 2 Enhanced Surface Water Treatment Rule and Stage 2
 Disinfectants / Disinfection Byproducts Rule, promulgated Jan 2006
- Groundwater Rule, promulgated Nov 2006

The Disinfectants and Disinfection Byproducts (DBP) rules apply to all community and noncommunity water systems using a disinfectant such as chlorine, chloramines, ozone and chlorine dioxide.

Compliance with the Stage 1 DBP requirements began in 2000. The Stage 2 DBP requirements began in 2006 with the Initial Distribution System Evaluation (IDSE). Compliance monitoring for the Stage 2 DBP begins in April 2012. See phased compliance schedule dependent on system population below.

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2) rule applies to all water systems using surface water, groundwater under the influence of a surface water, as well as groundwater/surface water blends. The LT2 requirements began in 2006 with the characterization of raw water Cryptosporidium and E.coli levels. Systems serving <10,000 monitor for E.coli only every two weeks for one year. Compliance with the LT2 requirements begin in April 2013.

The Groundwater Rule (GWR) applies to all public water systems using groundwater. The GWR requirements begin in March 2009 with 6-months investigative monitoring (IM) for source water E.coli, for systems currently applying disinfection only. All other requirements for the GWR began back in Dec 2009.

Amendments to the SDWA in 1996 require EPA to develop rules to balance the risks between microbial pathogens and disinfection byproducts (DBPs). It is important to strengthen protection against microbial contaminants, especially *Cryptosporidium*, and at the same time, reduce potential health risks of DBPs.

The Stage 1 Disinfectants and Disinfection Byproducts Rule and Interim Enhanced Surface Water Treatment Rule, announced in December 1998, are the first of a set of rules under the 1996 SDWA Amendments. This fact sheet focuses on the Stage 1 Disinfectants and Disinfection Byproducts Rule. A separate fact sheet focuses on the Interim Enhanced Surface Water Treatment Rule (EPA 815-F-98-009).

Public Health Concerns

While disinfectants are effective in controlling many microorganisms, they react with natural organic and inorganic matter in source water and distribution systems to form DBPs. Results from toxicology studies have shown several DBPs (e.g., bromodichloromethane, bromoform, chloroform, dichloroacetic acid, and bromate) to be carcinogenic in laboratory animals. Other DBPs (e.g., chlorite, bromodichloromethane, and certain haloacetic acids) have also been shown to cause adverse reproductive or developmental effects in laboratory animals. Several epidemiology studies have suggested a weak association between certain cancers (e.g., bladder) or reproductive and developmental effects, and exposure to chlorinated surface water. More than 200 million people consume water that has been disinfected. Because of the large population exposed, health risks associated with DBPs, even if small, need to be taken seriously.

Who Must Comply With The Rule?

The Stage 1 Disinfectants and Disinfection Byproducts Rule applies to all community and nontransient non-community water systems that treat their water with a chemical disinfectant for either primary or residual treatment.

What Does The Rule Require?

The Stage 1 Disinfectant and Disinfection Byproduct Rule updates and supersedes the 1979 regulations for total trihalomethanes. In addition, it will reduce exposure to three disinfectants and many disinfection byproducts.

The rule establishes maximum residual disinfectant level goals (MRDLGs) and maximum residual disinfectant levels (MRDLs) for three chemical disinfectants - chlorine, chloramine and chlorine dioxide (see Table 1). It also establishes maximum contaminant level goals (MCLGs) and maximum contaminant levels (MCLs) for total trihalomethanes, haloacetic acids, chlorite and bromate (see Table 1).

Table 1

MRDLGs, MRDLs, MCLGs and MCLs for Stage 1 Disinfectants
and Disinfection Byproducts Rule

DISINFECTANT RESIDUAL	MRDLG (mg/L)	MRDL (mg/L)	COMPLIANCE BASED ON
Chlorine	4 (as Cl ₂)	4.0 (as Cl ₂)	Annual Average
Chloramine	4 (as Cl ₂)	4.0 (as Cl ₂)	Annual Average
Chlorine Dioxide	0.8 (as CIO ₂)	0.8 (as CIO ₂)	Daily Samples
DISINFECTION BYPRODUCTS	MCLG (mg/L)	MCL (mg/L)	COMPLIANCE BASED ON
Total trihalomethanes (TTHM) ¹ - Chloroform - Bromodichloromethane - Dibromochloromethane - Bromoform	N/A *** 0 0.06 0	0.080	Annual Average
Haloacetic acids (five) (HAA5) ² - Dichloroacetic acid - Trichloroacetic acid	N/A 0 0.3	0.060	Annual Average
Chlorite	0.8	1.0	Monthly Average
Bromate	0	0.010	Annual Average

 $[\]ensuremath{\text{N/A}}$ - Not applicable because there are individual MCLGs for TTHMs or HAAs

¹⁻Total trihalomethanes is the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform.

²⁻Haloacetic acids (five) is the sum of the concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids.

^{*** &}lt;u>EPA removed the zero MCLG for chloroform</u> from its National Primary Drinking Water Regulations, effective May 30, 2000, in accordance with an order of the U.S. Court of Appeals for the District of Columbia Circuit.

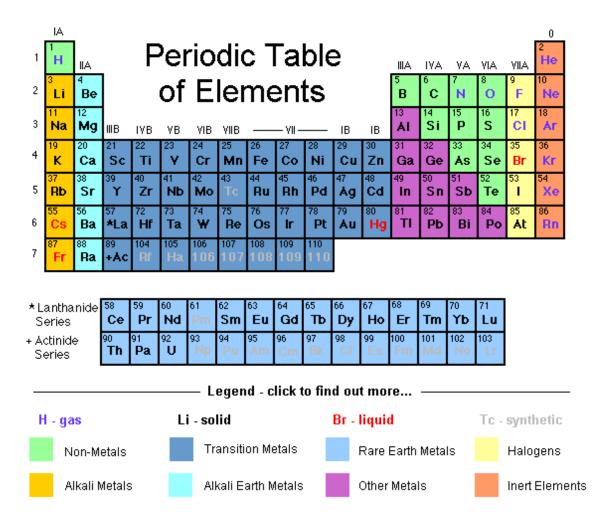
Water systems that use surface water or ground water under the direct influence of surface water and use conventional filtration treatment are required to remove specified percentages of organic materials, measured as total organic carbon (TOC) that may react with disinfectants to form DBPs (See Table 2). Removal will be achieved through a treatment technique (enhanced coagulation or enhanced softening) unless a system meets alternative criteria.

Table 2
Required Removal of Total Organic Carbon by Enhanced Coagulation and Enhanced Softening for Subpart H Systems Using Conventional Treatment¹

to: cappart :: cyclome coming controllar :: calmont				
Source Water TOC (mg/L)	Source Water Alkalinity (mg/L as CaCO₃)			
	0-60	>60-120	>1202	
>2.0-4.0	35.0%	25.0%	15.0%	
>4.0-8.0	45.0%	35.0%	25.0%	
>8.0	50.0%	40.0%	30.0%	

¹Systems meeting at least one of the alternative compliance criteria in the rule are not required to meet the removals in this table.

Large surface water systems are required to comply with the Stage 1 Disinfectants and Disinfection Byproducts Rule and Interim Enhanced Surface Water Treatment Rule by January 2002. Ground water systems and small surface water systems must comply with the Stage 1 Disinfectants and Disinfection Byproducts Rule by January 2004.


What Are The Costs And Benefits Of The Rule?

EPA estimates that implementation of the Stage 1 Disinfectants and Disinfection Byproducts Rule will result in:

- As many as 140 million people receiving increased protection from DBPs.
- 24 percent national average reduction in TTHM levels.
- Reduction in exposure to the major DBPs from use of ozone (bromate) and chlorine dioxide (chlorite).

The total annual cost of the rule is about \$700 million. EPA believes that the benefits exceed the costs of the Stage 1 Disinfectants and Disinfection Byproducts Rule. An estimated 116 million households are affected by the Stage 1 Disinfectants and Disinfection Byproducts Rule. EPA estimates that 95 percent of the households will incur additional costs of less than \$1 per month on their water bills. An additional four percent will pay between \$1 and \$10 per month more, and one percent are expected to incur increased water bills of \$10 to \$33 per month, if they choose to install treatment. However, many of these systems may chose less costly non-treatment options, such as consolidation. The majority of households incurring the highest costs are small systems serving less than 10,000 people that have never been regulated for DBPs.

²Systems practicing softening must meet the TOC removal requirements in the last column to the right. What Are The Compliance Deadlines?

History of the Periodic Table:

Dimitri Mendeleev created the periodic table when he first listed the elements in order of atomic mass in 1869. He found that the elements with similar properties occur in a periodic manner. Mendeleev was able to arrange the elements in a table form where similar elements are found in the same column.

How is the Periodic Table Organized?

The periodic table is organized with eight principal vertical columns called groups and seven horizontal rows called periods. (The groups are numbered I to VIII from left to right, and the periods are numbered 1 to 7 from top to bottom.)

All the metals are grouped together on the left side of the periodic table, and all the nonmetals are grouped together on the right side of the periodic table. Semimetals are found in between the metals and nonmetals.

What are the eight groups of the Periodic Table?

✓ Group I: Alkali Metals - Li, Na, K, Rb, Cs, Fr

known as alkali metals

most reactive of the metals

react with all nonmetals except the noble gases

contain typical physical properties of metals (ex. shiny solids and good conductors of heat and electricity)

softer than most familiar metals; can be cut with a knife

✓ Group II: Alkaline Earth Metals-Be, Mg, Ca, Sr, Ba, Ra

known as alkaline earth metals

react with nonmetals, but more slowly than the Group I metals

solids at room temperature

have typical metallic properties

harder than the Group I metals

higher melting points than the Group I metals

✓ Group III: B, Al, Ga, In, TI

boron is a semimetal; all the others are metals

✓ Group IV: C, Si, Ge, Sn, Pb

carbon is a nonmetal; silicon and germanium are semimetals; tin and lead are metals

✓ Group V: N, P, As, Sb, Bi

nitrogen and phosphorus are nonmetals; arsenic and antimony are semimetals; bismuth is a metal

✓ Group VI: O, S, Se, Te, Po

oxygen, sulfur, and selenium are nonmetals; tellurium and polonium are semimetals

✓ Group VII: Halogens-F, CI, Br, I, At

very reactive nonmetals

✓ Group VIII: Noble Gases-He, Ne, Ar, Kr, Xe, Rn

very unreactive

How do the properties of metals and nonmetals differ?

Properties of Metals

Solids at room temperature, Conduct heat very well

Have electrical conductivities that increase with decreasing temperature

Have a high flexibility and a shiny metallic luster

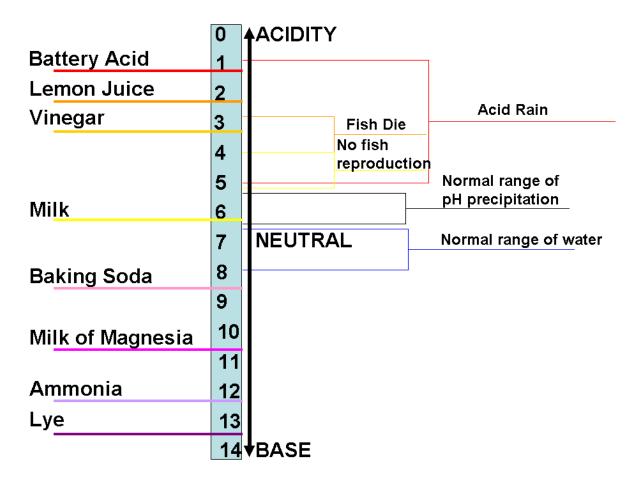
Are malleable-can be beaten out into sheets or foils

Are ductile-can be pulled into thin wires without breaking

Emit electrons when they are exposed to radiation of sufficiently high energy or when They are heated (known as photoelectric effect and thermionic effect)

Properties of Nonmetals

May be gases, liquids, or solids at room temperature, poor conductors of heat


Are insulators-very poor conductors of electricity

Do not have a high reflectivity or a shiny metallic appearance

In solid form generally brittle and fracture easily under stress

Do not exhibit photoelectric or thermionic effects

The pH Scale

pH: A measure of the acidity of water. The pH scale runs from 0 to 14 with 7 being the mid-point or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of greatest basic activity.

pH = (Power of Hydroxyl Ion Activity).

The acidity of a water sample is measured on a pH scale. This scale ranges from $\bf 0$ (maximum acidity) to $\bf 14$ (maximum alkalinity). The middle of the scale, $\bf 7$, represents the neutral point. The acidity increases from neutral toward $\bf 0$.

Because the scale is logarithmic, a difference of one pH unit represents a tenfold change. For example, the acidity of a sample with a pH of **5** is ten times greater than that of a sample with a pH of **6**. A difference of 2 units, from **6** to **4**, would mean that the acidity is one hundred times greater, and so on.

Normal rain has a pH of **5.6** – slightly acidic because of the carbon dioxide picked up in the earth's atmosphere by the rain.

Here is a party that will never stop...

Never keep food or drinks in your sample refrigerator. I know all of you have done this in the past and I know you've seen someone work without gloves, but you need to be strong and remind personnel that you had enough of tasting all the nastiness. If you are new to this industry, don't fret, you will get a free taste very soon, one way or another. My advice, ask for the hepatitis injections and prepare for a case of the runs that will last for about 1-2 days, after this, you should be good to go. All of us have suffered through this ordeal.

What are the symptoms of viral gastroenteritis?

The main symptoms of viral gastroenteritis are watery diarrhea and vomiting. The affected person may also have headache, fever, and abdominal cramps ("stomach ache"). In general, the symptoms begin 1 to 2 days following infection with a virus that causes gastroenteritis and may last for 1 to 10 days, depending on which virus causes the illness.

Drinking Water Analysis Chart

ANALYSIS	METHOD	HOLDING
MALION	<u>III E I I I I I I I I I I I I I I I I I</u>	TIME
Inorganic Compounds (IOC) Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Hardness, Conductivity, Turbidity, Color, Chloride, Cyanide, Fluoride, Nitrate, Nitrite, Sulfate, and Total Dissolved Solids.	(various)	48 hours
Primary Pollutants (Short IOC) Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver, Sodium, Thallium, Turbidity, Fluoride, Cyanide, Nitrate, and Nitrite. Municipal Testing	(various)	48 hours
Lead and Copper	EPA 200.9 for Pb	14 days
Lead and Copper	EPA 200.9 for Pb	14 days
	EPA 200.7 for Cu	
Public or Individual Water Source Testing	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L
Nitrate	SM-4500 NO3 D	48 hours
Total Coliform & E. Coli	SM-9223 B	30 Hours
	1	
Metals Analysis on Drinking Water (per element)		
GFAA	EPA 200.9	6 months
(As, Pb, Sb, Se, TI)		
ICP (Ag, Al, B, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Na, Ni, Zn)	EPA 200.7	6 months
CVAA (Hg)	EPA 245.1	6 months
Primary Pollutant Metals	GFAA/ICP/CVAA	6 months
Drinking Water Analysis		
PH	EPA 150.1	
Acidity	SM-2310 B (4b)	14 days
Alkalinity (Bicarbonate & Carbonate)	SM-2320 B (4a)	14 days
BOD	SM-5210 B	48 hours
Calcium	EPA 200.7	6 months
Chloride	SM-4500 CI	8 days
Chlorine, total	SM-4500 CI	5 hours
Color	SM-2120 B	8 hours
COD	EPA 410.4 (7.3)	28 days
Cyanide	EPA 335.2 (8.7)	28 days
Dissolved Oxygen	SM-4500 O C	8 hours
Fluoride	SM-4500 F C	28 days
Hardness	SM-2340 B	6 months
Magnesium	EPA 200.7	6 months
Nitrogen, ammonia	SM-4500 NH3 E	28 days

	SM-4500 NH3 H	
Nitrogen, nitrate	SM-4500 NO3 D	48 hours
Nitrogen, nitrite	SM-4500 NO2	48 hours
Nitrate + Nitrite	SM-4500 NO3 E	48 hours
Nitrogen, TKN	EPA 351.4	28 days
Odor	SM-2150	6 days
Phosphorous, ortho	EPA 200.7	48 hours
Phosphorous, total	SM-4500 P	28 days
Solids, settle able	SM-2540	7 days
Solids, suspended	SM-2540 D	7 days
	<u>.</u>	
<u>Drinking Water Analysis</u>		
Drinking Water Analysis Solids, total	SM-2540 B	7 days
	SM-2540 B SM-2540 E	7 days
Solids, total Solids, volatile		7 days
Solids, total	SM-2540 E	7 days
Solids, total Solids, volatile Specific Conductance Sulfate	SM-2540 E SM-2510 B	7 days 28 days 28 days
Solids, total Solids, volatile Specific Conductance	SM-2540 E SM-2510 B SM-4500 SO-4 E	7 days 28 days 28 days 28 days
Solids, total Solids, volatile Specific Conductance Sulfate Sulfide Sulfite	SM-2540 E SM-2510 B SM-4500 SO-4 E SM-4500 S-2 D	
Solids, total Solids, volatile Specific Conductance Sulfate Sulfide	SM-2540 E SM-2510 B SM-4500 SO-4 E SM-4500 S-2 D EPA 377.1	7 days 28 days 28 days 28 days 28 days

ORGANICS		
Semi-volatile Organics in Water (SOC)*	(various)	7 days
Volatile Organics in Water*	(various)	7 days
Trihalomethanes*	EPA 501.1	7 days
Gross Alpha & Bata (Radionuclides)*	(various)	7 days
BOD	SM-5210 B	48 hours
COD	EPA 410.4(7.3)	28 days
Oil and Grease	EPA 413.1(1.2)	28 days
Hardness W/digestion	SM-2340 B	6 months
Nitrogen, TKN	EPA 351.4	28 days
Nitrogen, ammonia	SM-4500 NH3 F	28 days
Nitrogen, Total Organic	SM-4500 NorgNH3	28 days
Nitrogen, nitrate	SM-4500 NO3 D	48 hours
Nitrogen, nitrite	SM-4500 NO2 B	48 hours
Phosphorous, ortho	SM-4500 P E	48 hours
Sulfate	SM-4500 SO4 E	28 days
Solids, dissolved	SM-2540	7 days
Solids, settle able	SM-2540 F	7 days
Solids, suspended	SM-2540 D	7 days
Solids, total	SM-2540 B	7 days
Solids, volatile	SM-2540 E	7 days
Total Organic Carbon	EPA 415.1	28 days
РН	EPA 150.1	
Metals (per element)		1
ICP (Ag, Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Sb, V, Zn)	EPA 200.7	6 months

245.1	6 months
	245.1

Definitions:

Action level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - the "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - the "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/L) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

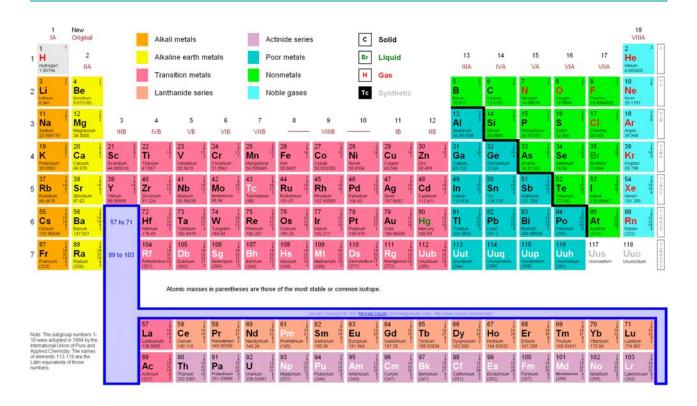
Parts per billion (ppb) or Micrograms per liter (ug/L) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

SAMPLE CONTAINERS and PRESERVATION

Methods used by the laboratory usually specify what type of container and how much sample is required to run an analysis. The following table provides a summary of the sample handling and preservation requirements for some of the most common tests.

Parameter	Bottle	Minimum Sample Size	Maximum	Storage &
	Type	-	Holding Time	Preservation
Acidity	Type P or G ^B	100ml	24 hrs/14 days	refrigerate
Alkalinity	P or G	200ml	24 hrs/14 days	refrigerate
BOD (5 day)	P or G	1L	6 hrs/48 hrs	refrigerate
Boron	Р	100ml	28 days/6 months	
Chloride	P or G	250ml	28 days	
Chlorine, residual	P or G	500ml	0.5 hr/stat	analyze on site ASAP
COD	P or G	500ml	28 days/28 days	analyze on site ASAP
Color	P or G	500ml	48 hrs/48 hrs	refrigerate
Coliform, Total	P or G	125ml	30 hrs	refrigerate
Conductivity	P or G	500ml	48 hrs/48 hrs	refrigerate
Cyanide, Total	P or G	500ml	28 days/28 days	add NaOH to pH>12
				refrigerate in dark
Fluoride	Р	300ml	28days/ 28 days	
Hardness	P or G	100ml	6 months/6 months	add HNO ₃ to pH<2
Metals, general	P ^A or G ^A	250ml	6 months/6 months	add HNO ₃ to pH<2
Furnace	P ^A or G ^A	250ml	6 months/6 months	
Flame	P ^A or G ^A	250ml	6 months/6 months	
Mercury	P ^A or G ^A	500ml	28 days/28 days	add HNO ₃ to pH<2
Nitrogen	P or G	500ml	7 days/ 28 days	ASAP or add H ₂ SO ₄ to pH<2 &
Ammonia				refrigerate
Nitrate	P or G	100ml	48 hrs/48 hrs	ASAP & refrigerate
Nitrate + Nitrite	P or G	200ml	48 hrs/28 days	ASAP & refrigerate
Nitrite	P or G	100ml	none/48 hrs	ASAP & refrigerate
TKN	P or G	500ml	7 days/28	add H ₂ SO ₄ to


			days	pH<2
Oxygen, dissolved	G (BOD)	300ml		
Electrode			0.5 hrs/stat	ASAP on site
Winkler			8hrs/8 hrs	ASAP on site
рН	P or G	50ml	2 hrs/stat	ASAP on site
Phosphate,	G ^A			
Ortho		100ml	48hrs	filter ASAP refrigerate
Total		100ml	28 days/28 days	refrigerate
Solids,	P or G			
Dissolved		250ml	7 days	refrigerate
Settleable		1L	48 hrs	refrigerate
Suspended		250ml	7 days	refrigerate
Total		250ml	7 days	refrigerate
Volatile		250ml	7 days	refrigerate
Silica	Р	200ml	28 days/28 days	refrigerate
Sulfate	P or G	100ml	28 days/28 days	refrigerate
Turbidity	P or G	100ml	24 hrs/48 hrs	ASAP/refrigerate, store in dark up to 24 hrs

Refrigerate = storage at 4 degrees C, in the dark. P = plastic (polyethylene or equivalent); G = glass, G^A or $P^A = rinsed$ with 1:1 HNO3; $G^B = glass$, borosilicate, $G^S = glass$ rinsed with organic solvents; NS = not stated in cited reference; stat = no storage allowed; analyze immediately.

IOC Section

Periodic Table of the Elements

Left, Tellurium, right Astatine with Fluorine

IOC Sample Collection – Things to Remember

Sample instructions should be supplied with the sample containers from the laboratory. If the laboratory fails to include sample instructions, contact the laboratory and request sample instructions.

Some general practices to remember:

- Samples should be collected at the entry point to the distribution system after all treatment (finished water)
- Select a sampling faucet that does NOT have an aerator (sampling must be done with minimum aeration
- Run the water until the temperature is as cold as it gets
- Just before sample collection, adjust to a very low flow. Do not change the flow while collecting the sample
- Routine nitrate and nitrite samples should be collected on a Monday or a Tuesday
- When filling sample bottle, tip bottle slightly so that water flows down the side wall of the container. Bring bottle to an upright position as it fills
- Call the laboratory if bottles are received broken (or break while collecting samples)
- The owner or operator of a water supply must maintain chemical analysis reports (results) or a summary of those reports for at least 10 years

Inorganic Chemicals

Contaminant	MCLG ¹ (mg/L) ²	MCL or TT ¹ (mg/L) ²	Potential Health Effects from Long- Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
Antimony	0.006	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	0 ^Z	0.010 as of 01/23/06	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards, runoff from glass & electronics production wastes
Asbestos (fiber >10 micrometers)	7 million fibers per liter	7 MFL	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits
Barium	2	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	0.004	0.004	Intestinal lesions	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	0.005	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (total)	0.1	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits
			Short term exposure: Gastrointestinal distress	
Copper	1.3	TT ^Z ; Action Level=1.3	Long term exposure: Liver or kidney damage	Corrosion of household plumbing systems; erosion of natural
Leve	L6VGI-1.J	People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	deposits	
Cyanide (as	0.2	0.2	Nerve damage or thyroid problems	Discharge from

Inorganic Chemicals

Contaminant	MCLG ¹ (mg/L) ²	MCL or TT ¹ (mg/L) ²	Potential Health Effects from Long- Term Exposure Above the MCL (unless specified as short-term)	Sources of Contaminant in Drinking Water
free cyanide)				steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	4.0	4.0	Bone disease (pain and tenderness of the bones); Children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	zero	TT ^Z ; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities Adults: Kidney problems; high blood	Corrosion of household plumbing systems; erosion of natural deposits
Mercury (inorganic)	0.002	0.002	pressure Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands
Nitrate (measured as Nitrogen)	10	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits
Nitrite (measured as Nitrogen)	1	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits
Selenium	0.05	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines
Thallium	0.0005	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories

Antimony - Inorganic Contaminant 0.006 mg/L MCL Metalloid

Antimony is a toxic chemical element with symbol **Sb** and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb_2S_3). Antimony compounds have been known since ancient times and were used for cosmetics; metallic antimony was also known, but it was erroneously identified as lead. It was established to be an element around the 17th century.

For some time, China has been the largest producer of antimony and its compounds, with most production coming from the Xikuangshan Mine in Hunan. The industrial methods to produce antimony are roasting and subsequent carbothermal reduction or direct reduction of stibnite with iron.

What are EPA's drinking water regulations for antimony?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of

safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for antimony is 0.006 mg/L or 6 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for antimony, called a maximum contaminant level (MCL), at 0.006 mg/L or 6 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase V Rule, the regulation for antimony, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed antimony as part of the Six Year Review and determined that the 0.006 mg/L or 6 ppb MCLG and 0.006 mg/L or 6 ppb MCL for antimony are still protective of human health.

Applications

The largest applications for metallic antimony are as alloying material for lead and tin and for lead antimony plates in lead-acid batteries. Alloying lead and tin with antimony improves the properties of the alloys which are used in solders, bullets and plain bearings. Antimony compounds are prominent additives for chlorine- and bromine-containing fire retardants found in many commercial and domestic products. An emerging application is the use of antimony in microelectronics.

Antimony is in the nitrogen group (group 15) and has an electronegativity of 2.05. As expected by periodic trends, it is more electronegative than tin or bismuth, and less electronegative than

tellurium or arsenic. Antimony is stable in air at room temperature, but reacts with oxygen if heated to form antimony trioxide, Sb_2O_3 . Antimony is a silvery, lustrous gray metal that has a Mohs scale hardness of 3. Therefore, pure antimony is not used to make hard objects: coins made of antimony were issued in China's Guizhou province in 1931, but because of their rapid wear, their minting was discontinued. Antimony is resistant to attack by acids.

Four allotropes of antimony are known, a stable metallic form and three metastable forms, explosive, black and yellow. Metallic antimony is a brittle, silver-white shiny metal. When molten antimony is slowly cooled, metallic antimony crystallizes in a trigonal cell, isomorphic with that of the gray allotrope of arsenic. A rare explosive form of antimony can be formed from the electrolysis of antimony (III) trichloride. When scratched with a sharp implement, an exothermic reaction occurs and white fumes are given off as metallic antimony is formed; when rubbed with a pestle in a mortar, a strong detonation occurs.

Black antimony is formed upon rapid cooling of vapor derived from metallic antimony. It has the same crystal structure as red phosphorus and black arsenic; it oxidizes in air and may ignite spontaneously. At 100 °C, it gradually transforms into the stable form. The yellow allotrope of antimony is the most unstable. It has only been generated by oxidation of stibine (SbH $_3$) at -90 °C. Above this temperature and in ambient light, this metastable allotrope transforms into the more stable black allotrope.

Metallic antimony adopts a layered structure (space group R3m No. 166) in which layers consist of fused ruffled six-membered rings. The nearest and next-nearest neighbors form a distorted octahedral complex, with the three atoms in the same double-layer being slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 6.697 g/cm³, but the weak bonding between the layers leads to the low hardness and brittleness of antimony.

Isotopes

Antimony exists as two stable isotopes, 121 Sb with a natural abundance of 57.36% and 123 Sb with a natural abundance of 42.64%. It also has 35 radioisotopes, of which the longest-lived is 125 Sb with a half-life of 2.75 years. In addition, 29 metastable states have been characterized. The most stable of these is 124 Sb with a half-life of 60.20 days, which has an application in some neutron sources. Isotopes that are lighter than the stable 123 Sb tend to decay by β^+ decay, and those that are heavier tend to decay by β^- decay, with some exceptions.

Occurrence

The abundance of antimony in the Earth's crust is estimated at 0.2 to 0.5 parts per million, comparable to thallium at 0.5 parts per million and silver at 0.07 ppm. Even though this element is not abundant, it is found in over 100 mineral species. Antimony is sometimes found natively, but more frequently it is found in the sulfide stibnite (Sb₂S₃) which is the predominant ore mineral.

Antimony compounds are often classified into those of Sb(III) and Sb(V). Relative to its congener arsenic, the +5 oxidation state is more stable.

Oxides and hydroxides

Antimony trioxide (Sb_4O_6) is formed when antimony is burnt in air. In the gas phase, this compound exists as Sb_4O_6 , but it polymerizes upon condensing. Antimony pentoxide (Sb_4O_{10}) can only be formed by oxidation by concentrated nitric acid. Antimony also forms a mixed-valence oxide, antimony tetroxide (Sb_2O_4) , which features both Sb(III) and Sb(V). Unlike phosphorus and arsenic, these various oxides are amphoteric, do not form well-defined oxoacids and react with acids to form antimony salts.

Antimonous acid $Sb(OH)_3$ is unknown, but the conjugate base sodium antimonite ([Na₃SbO₃]₄) forms upon fusing sodium oxide and Sb_4O_6 . Transition metal antimonites are also known. Antimonic acid exists only as the hydrate $HSb(OH)_6$, forming salts containing the antimonate anion Sb(OH)-6. Dehydrating metal salts containing this anion yields mixed oxides. Many antimony ores are sulfides, including stibnite (Sb_2S_3), pyrargyrite (Ag_3SbS_3), zinkenite, jamesonite, and boulangerite. Antimony pentasulfide is non-stoichiometric and features antimony in the +3 oxidation state and S-S bonds. Several thioantimonides are known, such as $[Sb_6S_{10}]^{2-}$ and $[Sb_8S_{13}]^{2-}$.

Halides

Antimony forms two series of halides, SbX_3 and SbX_5 . The trihalides SbF_3 , $SbCl_3$, $SbBr_3$, and Sbl_3 are all molecular compounds having trigonal pyramidal molecular geometry. The trifluoride SbF_3 is prepared by the reaction of Sb_2O_3 with HF:

$$Sb_2O_3 + 6 HF \rightarrow 2 SbF_3 + 3 H_2O$$

It is Lewis acidic and readily accepts fluoride ions to form the complex anions SbF-4 and SbF2-5. Molten SbF $_3$ is a weak electrical conductor. The trichloride SbCl $_3$ is prepared by dissolving Sb $_2$ S $_3$ in hydrochloric acid:

$$Sb_2S_3 + 6 HCI \rightarrow 2 SbCl_3 + 3 H_2S$$

The pentahalides SbF_5 and $SbCl_5$ have trigonal bipyramidal molecular geometry in the gas phase, but in the liquid phase, SbF_5 is polymeric, whereas $SbCl_5$ is monomeric. SbF_5 is a powerful Lewis acid used to make the super acid fluoroantimonic acid ("HSbF₆").

Oxyhalides are more common for antimony than arsenic and phosphorus. Antimony trioxide dissolves in concentrated acid to form oxoantimonyl compounds such as SbOCl and (SbO)₂SO₄.

Antimonides, hydrides, and organoantimony compounds

Compounds in this class generally are described as derivatives of Sb³. Antimony forms antimonides with metals, such as indium antimonide (InSb) and silver antimonide (Ag₃Sb). The alkali metal and zinc antimonides, such as Na₃Sb and Zn₃Sb₂, are more reactive. Treating these antimonides with acid produces the unstable gas stibine, SbH₃:

$$Sb^{3-} + 3 H^{+} \rightarrow SbH_{3}$$

Stibine can also be produced by treating Sb³⁺ salts with hydride reagents such as sodium borohydride. Stibine decomposes spontaneously at room temperature. Because stibine has a positive heat of formation, it is thermodynamically unstable and thus antimony does not react with hydrogen directly.

Organoantimony compounds are typically prepared by alkylation of antimony halides with Grignard reagents. A large variety of compounds are known with both Sb(III) and Sb(V) centers, including mixed chloro-organic derivatives, anions, and cations. Examples include Sb(C_6H_5)₃ (triphenylstibine), Sb₂(C_6H_5)₄ (with an Sb-Sb bond), and cyclic [Sb(C_6H_5)]_n. Pentacoordinated organoantimony compounds are common, examples being Sb(C_6H_5)₅ and several related halides.

History

Antimony(III) sulfide, Sb₂S₃, was recognized in predynastic Egypt as an eye cosmetic (kohl) as early as about 3100 BC, when the cosmetic palette was invented.

An artifact, said to be part of a vase, made of antimony dating to about 3000 BC was found at Telloh, Chaldea (part of present-day Iraq), and a copper object plated with antimony dating between 2500 BC and 2200 BC has been found in Egypt. Austen, at a lecture by Herbert Gladstone in 1892 commented that "we only know of antimony at the present day as a highly brittle and crystalline metal, which could hardly be fashioned into a useful vase, and therefore this remarkable 'find' (artifact mentioned above) must represent the lost art of rendering antimony malleable."

Moorey was unconvinced the artifact was indeed a vase, mentioning that Selimkhanov, after his analysis of the Tello object (published in 1975), "attempted to relate the metal to Transcaucasian natural antimony" (i.e. native metal) and that "the antimony objects from Transcaucasia are all small personal ornaments." This weakens the evidence for a lost art "of rendering antimony malleable."

The first European description of a procedure for isolating antimony is in the book *De la pirotechnia* of 1540 by Vannoccio Biringuccio; this predates the more famous 1556 book by Agricola, *De re metallica*. In this context Agricola has been often incorrectly credited with the discovery of metallic antimony. The book *Currus Triumphalis Antimonii* (The Triumphal Chariot of Antimony), describing the preparation of metallic antimony, was published in Germany in 1604. It was purported to have been written by a Benedictine monk, writing under the name Basilius Valentinus, in the 15th century; if it were authentic, which it is not, it would predate Biringuccio.

The first natural occurrence of pure antimony in the Earth's crust was described by the Swedish scientist and local mine district engineer Anton von Swab in 1783; the type-sample was collected from the Sala Silver Mine in the Bergslagen mining district of Sala, Västmanland, Sweden.

Arsenic- Inorganic Contaminant 0.010 mg/L MCL Metalloid

Arsenic is a chemical element with symbol **As** and the atomic number is 33. Arsenic occurs in many minerals, usually in conjunction with sulfur and metals, and also as a pure elemental crystal. It was first documented by Albertus Magnus in 1250. Arsenic is a metalloid. It can exist in

various allotropes, although only the gray form has important use in industry.

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical,

chemical, biological or radiological substances or matter in water.

The MCLG for arsenic is zero. EPA has set this level of protection based on the best available science to prevent potential health problems. Based on the MCLG, EPA has set an enforceable regulation for arsenic, called a maximum contaminant level (MCL), at 0.010 mg/L or 10 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring Final Rule, the regulation for arsenic, became effective in 2002. The Safe Drinking Water Act requires EPA to periodically review and revise contaminants, if appropriate, based on new scientific data. The regulation for arsenic will be included in a future review cycle.

The main uses of metallic arsenic is for strengthening alloys of copper and especially lead (for example, in car batteries). Arsenic is a common n-type dopant in semiconductor electronic devices, and the optoelectronic compound gallium arsenide is the most common semiconductor in use after doped silicon. Arsenic and its compounds, especially the trioxide, are used in the production of pesticides (treated wood products), herbicides, and insecticides. These applications are declining, however.

Arsenic is notoriously poisonous to multicellular life, although a few species of bacteria are able to use arsenic compounds as respiratory metabolites. Arsenic contamination of groundwater is a problem that affects millions of people across the world.

Arsenic, a naturally occurring element, is found throughout the environment; for most people, food is the major source of exposure. Acute (short-term) high-level inhalation exposure to arsenic dust or fumes has resulted in gastrointestinal effects (nausea, diarrhea, abdominal pain); central and peripheral nervous system disorders have occurred in workers acutely exposed to inorganic arsenic. Chronic (long-term) inhalation exposure to inorganic arsenic in humans is associated with irritation of the skin and mucous membranes. Chronic oral exposure has resulted in gastrointestinal effects, anemia, peripheral neuropathy, skin lesions, hyperpigmentation, and liver or kidney damage in humans. Inorganic arsenic exposure in humans, by the inhalation route, has been shown to be strongly associated with lung cancer, while ingestion of inorganic arsenic in humans has been linked to a form of skin cancer and also to bladder, liver, and lung cancer. EPA has classified inorganic arsenic as a Group A, human carcinogen.

Contamination of Groundwater

Arsenic contamination of groundwater is often due to naturally occurring high concentrations of arsenic in deeper levels of groundwater. It is a high-profile problem due to the use of deep tubewells for water supply in the Ganges Delta, causing serious arsenic poisoning to large numbers of people. In addition, mining techniques such as hydraulic fracturing mobilize arsenic in groundwater and aquifers due to enhanced methane 28 transport and resulting changes in redox conditions, and inject fluid containing additional arsenic.

A 2007 study found that over 137 million people in more than 70 countries are probably affected by arsenic poisoning of drinking water. Arsenic contamination of ground water is found in many countries throughout the world, including the USA.

Approximately 20 incidents of groundwater arsenic contamination have been reported from all over the world. Of these, four major incidents were in Asia, including locations in Thailand, Taiwan, and Mainland China. In South America, Argentina and Chile are affected. There are also many locations in the United States where the groundwater contains arsenic concentrations in excess of the Environmental Protection Agency standard of 10 parts per billion adopted in 2001. Millions of private wells have unknown arsenic levels, and in some areas of the US, over 20% of wells may contain levels that are not safe.

Arsine

Arsine is a gas consisting of arsenic and hydrogen. It is extremely toxic to humans, with headaches, vomiting, and abdominal pains occurring within a few hours of exposure. EPA has not classified arsine for carcinogenicity.

Drinking water regulations require public water systems to monitor for arsenic at the entry point to the distribution system. There is no federal requirement for systems to monitor for arsenic within the distribution system. You may, however, want to test your distribution system water for arsenic to be sure that the water being delivered has arsenic levels below the MCL. If you decide to monitor your distribution system, consider testing for arsenic at locations where the settling and accumulation of iron solids or pipe scales are likely (i.e., areas with cast iron pipe, ductile iron pipe, or galvanized iron pipe).

If your water system has installed some form of arsenic treatment, keep in mind that the treatment you installed may change the water quality in other ways. It might cause the water to react differently in the distribution system. Depending on the kind of treatment you've installed, consider what distribution system problems might result.

A change in the taste, odor or appearance of the water at customers' taps may be the first indication of a problem. Some water quality parameters to consider monitoring, depending on your arsenic treatment technology, include iron, pH, manganese, alkalinity, and aluminum.

The current drinking water standard or Maximum Contaminant Level (MCL) set by the U.S. Environmental Protection Agency (EPA) is 0.010 mg/L or parts per million (ppm). This is equivalent to 10 ug/L (micrograms per liter) or 10 ppb. In 2001, the U.S. Environmental Protection Agency (EPA) reduced the regulatory MCL from 50 ppb to 10 ppb on the basis on bladder and lung cancer risks. The MCL is based on the average individual consuming 2 liters of water a day for a lifetime. Long term exposure to drinking water containing arsenic at levels higher than 10 ppb increases the chances of getting cancer, while for lower arsenic water levels the chances are less.

If your water has arsenic levels above 10 ppb, you should obtain drinking water from another source or install a home treatment device. Concentrations above 10 ppb will increase the risk of long-term or chronic health problems, the higher the level and length of exposure, the greater the risk. It is especially important to reduce arsenic water concentrations if you have children or are pregnant. Children are at greater risk (to any agent in water) because of their greater water consumption on a per unit body weight basis.

Pregnant women may wish to reduce their arsenic exposures because arsenic has been found at low levels in mother's milk and will cross the placenta, increasing exposures and risks for the fetus. If your water has arsenic levels above 200 ppb, you should immediately stop drinking the water until you can either obtain water from another source or install and maintain treatment.

Physical Characteristics

The three most common arsenic allotropes are *metallic gray*, *yellow* and *black arsenic*, with gray being the most common. *Gray arsenic* (α-As, space group R3m No. 166) adopts a double-layered structure consisting of many interlocked ruffled six-membered rings. Because of weak bonding between the layers, gray arsenic is brittle and has a relatively low Mohs hardness of 3.5. Nearest and next-nearest neighbors form a distorted octahedral complex, with the three atoms in the same double-layer being slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 5.73 g/cm³. Gray arsenic is a semimetal, but becomes a semiconductor with a bandgap of 1.2–1.4 eV if amorphized. *Yellow arsenic* is soft and waxy, and somewhat similar to tetraphosphorus (P₄). Both have four atoms arranged in a tetrahedral structure in which each atom is bound to each of the other three atoms by a single bond. This unstable allotrope, being molecular, is the most volatile, least dense and most toxic. Solid yellow arsenic is produced by rapid cooling of arsenic vapor, As₄. It is rapidly transformed into the gray arsenic by light. The yellow form has a density of 1.97 g/cm³. *Black arsenic* is similar in structure to red phosphorus.

Isotopes

Naturally occurring arsenic is composed of one stable isotope, 75 As. As of 2003, at least 33 radioisotopes have also been synthesized, ranging in atomic mass from 60 to 92. The most stable of these is 73 As with a half-life of 80.3 days. Isotopes that are lighter than the stable 75 As tend to decay by β^+ decay, and those that are heavier tend to decay by β^- decay, with some exceptions.

At least 10 nuclear isomers have been described, ranging in atomic mass from 66 to 84. The most stable of arsenic's isomers is ^{68m}As with a half-life of 111 seconds.

Chemistry

When heated in air, arsenic oxidizes to arsenic trioxide; the fumes from this reaction have an odor resembling garlic. This odor can be detected on striking arsenide minerals such as arsenopyrite with a hammer. Arsenic (and some arsenic compounds) sublimes upon heating at atmospheric pressure, converting directly to a gaseous form without an intervening liquid state at 887 K (614 °C). The triple point is 3.63 MPa and 1,090 K (820 °C). Arsenic makes arsenic acid with concentrated nitric acid, arsenious acid with dilute nitric acid, and arsenic trioxide with concentrated sulfuric acid.

Compounds

Arsenic compounds resemble in some respects those of phosphorus, which occupies the same group (column) of the periodic table. Arsenic is less commonly observed in the pentavalent state, however. The most common oxidation states for arsenic are: -3 in the arsenides, such as alloy-like intermetallic compounds; and +3 in the arsenites, arsenates (III), and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3-4 ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal, owing to the influence of the lone pair of electrons.

Inorganic

Arsenic forms colorless, odorless, crystalline oxides As_2O_3 ("white arsenic") and As_2O_5 , which are hygroscopic and readily soluble in water to form acidic solutions. Arsenic (V) acid is a weak acid. Its salts are called arsenates, which is the basis of arsenic contamination of groundwater, a problem that affects many people. Synthetic arsenates include Paris Green (copper(II) acetoarsenite), calcium arsenate, and lead hydrogen arsenate. The latter three have been used as agricultural insecticides and poisons.

The protonation steps between the arsenate and arsenic acid are similar to those between phosphate and phosphoric acid. Unlike phosphorus acid, arsenous acid is genuinely tribasic, with the formula As(OH)₃.

A broad variety of sulfur compounds of arsenic are known. Orpiment (As_2S_3) and realgar (As_4S_4) are somewhat abundant and were formerly used as painting pigments. In As_4S_{10} , arsenic has a formal oxidation state of +2 in As_4S_4 , which features As-As bonds so that the total covalency of As is still three.

The trifluoride, tribromide, and triiodide of arsenic (III) are well known, whereas only Arsenic pentafluoride (AsF₅) is the only important pentahalide. Again reflecting the lower stability of the 5+ oxidation state, the pentachloride is stable only below -50 °C.

Organoarsenic Compounds

A large variety of organoarsenic compounds are known. Several were developed as chemical warfare agents during World War I, including vesicants such as lewisite and vomiting agents such as adamsite. Cacodylic acid, which is of historic and practical interest, arises from the methylation of arsenic trioxide, a reaction that has no analogy in phosphorus chemistry.

Alloys

Arsenic is used as the group 5 element in the III-V semiconductors gallium arsenide, indium arsenide, and aluminum arsenide. The valence electron count of GaAs is the same as a pair of Si atoms, but the band structure is completely different, which results distinct bulk properties. Other arsenic alloys include the II-IV semiconductor cadmium arsenide.

Occurrence and Production

Minerals with the formula MAsS and MAs₂ (M = Fe, Ni, Co) are the dominant commercial sources of arsenic, together with realgar (an arsenic sulfide mineral) and native arsenic. An illustrative mineral is arsenopyrite (FeAsS), which is structurally related to iron pyrite. Many minor Ascontaining minerals are known. Arsenic also occurs in various organic forms in the environment. Inorganic arsenic and its compounds, upon entering the food chain, are progressively metabolized to a less toxic form of arsenic through a process of methylation.

Other naturally occurring pathways of exposure include volcanic ash, weathering of arsenic-containing minerals and ores, and dissolved in groundwater. It is also found in food, water, soil, and air. Arsenic is absorbed by all plants, but is more concentrated in leafy vegetables, rice, apple and grape juice, and seafood. An additional route of exposure is through inhalation.

In 2005, China was the top producer of white arsenic with almost 50% world share, followed by Chile, Peru, and Morocco, according to the British Geological Survey and the United States Geological Survey. Most operations in the US and Europe have closed for environmental reasons. The arsenic is recovered mainly as a side product from the purification of copper. Arsenic is part of the smelter dust from copper, gold, and lead smelters.

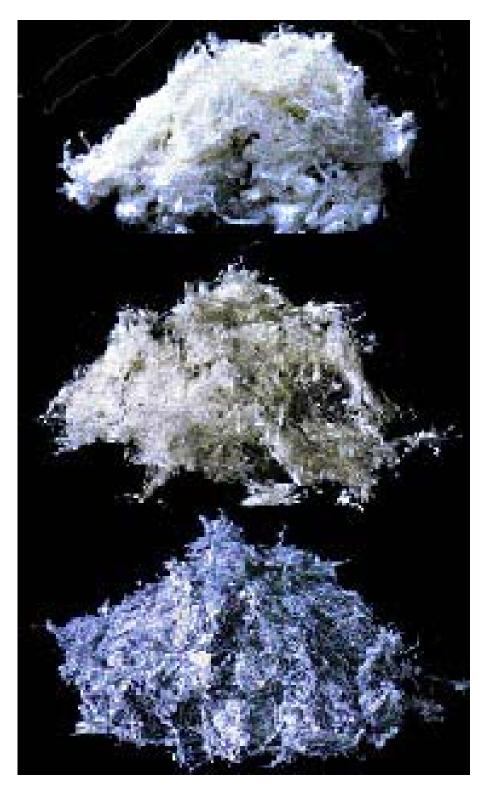
On roasting in air of arsenopyrite, arsenic sublimes as arsenic (III) oxide leaving iron oxides, while roasting without air results in the production of metallic arsenic. Further purification from sulfur and other chalcogens is achieved by sublimation in vacuum or in a hydrogen atmosphere or by distillation from molten lead-arsenic mixture.

Health Hazard Information

Arsenic

Arsenic is known to cause cancer, as well as many other serious health problems. Here we review the hazards of arsenic exposure and ways people can protect themselves from these hazards.

Arsenic is an element in the environment that can be found naturally in rocks and soil, water, air, and in plants and animals. It can also be released into the environment from some agricultural and industrial sources.


Arsenic has no taste or smell. Although sometimes found in its pure form as a steel grey metal, arsenic is usually part of chemical compounds. These compounds are divided into 2 groups:

- Inorganic compounds (combined with oxygen, iron, chlorine, and sulfur)
- Organic compounds (combined with carbon and other atoms)

Inorganic arsenic compounds are found in industry, in building products (in some "pressure-treated" woods), and in arsenic-contaminated water. This is the form of arsenic that tends to be more toxic and has been linked to cancer.

Organic arsenic compounds are much less toxic than the inorganic arsenic compounds and are not thought to be linked to cancer. These compounds are found in some foods, such as fish and shellfish.

While arsenic levels may fluctuate over time, what is most significant from the standpoint of cancer risk is long-term exposure.

Asbestos minerals which have been used commercially from the top: chrysotile, amosite and crocidolite.

Asbestos - Inorganic Contaminant 7 MFL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for asbestos is 7 MFL. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for asbestos, called a maximum contaminant level (MCL), at 7 MFL. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for asbestos, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed asbestos as part of the Six Year Review and determined that the 7 MFL MCLG and 7 MFL MCL for asbestos are still protective of human health.

How does Asbestos get into my Drinking Water?

The major sources of asbestos in drinking water are decay of asbestos cement water mains; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Asbestos is in my Drinking Water?

When routine monitoring indicates that asbestos levels are above the MCL, your water supplier must take steps to reduce the amount of asbestos so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will Asbestos be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing asbestos to below 7 MFL: coagulation/filtration, direct and diatomite filtration, and corrosion control.

Asbestos Cement Pipe (ACP)

Common water distribution pipe, notice that both pipes have been cut with a power saw. You are not allowed to cut this type of pipe with a power saw, because it will spread the Asbestos. Wetting agents may be applied with garden sprayers or hoses. Garden sprayers are hand-held, portable, and have a one- to five-gallon capacity. Water hoses are usually attached to a faucet tap, fire hydrant or water tank. Generally, the hose has a nozzle attached which spreads the water stream so that a fine mist is created.

Asbestos-Cement Products

Asbestos-cement products (such as transite) are commonly used for duct insulation, pipes, and siding. Being a Category II nonfriable ACM, asbestos-cement products need to be removed prior to demolition if they have a high probability of becoming crumbled, pulverized, or reduced to powder during demolition activities. EPA believes that most demolition activities will subject such Category II nonfriable ACM to the regulation.

Asbestos is an Excellent ... Heat Stability

Asbestos will maintain its structural integrity at temperatures well above 800 F. The melting point is at about 2800 F

Thermal Insulation

The fibers have a relatively large surface area, along with numerous pores, and cracks. This allows for a low heat transfer. This makes it useful as an insulator in homes and machinery. The large surface area also absorbs water making it practical as pipe insulator to prevent sweating.

Chemical Resistance

The amphiboles are resistant to aqueous media and chemical attack. They also show high resistance to acids. This makes this class of asbestos useful for battery packing. Chrysotile is significantly less resistant to chemical destruction.

Serpent

Asbestos

OSHA requires that employees who may be exposed to dangerous levels of asbestos must be made aware of the hazards and how to protect themselves. Employees must be told where in their workplace they can find copies of all applicable asbestos standards. Employers must provide any employee with the opportunity to review the regulations if they so desire. It is an

employee's right to have access to the regulations.

What Is Asbestos?

Asbestos is the name given to a number of naturally occurring fibrous silicate minerals that have been mined for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. The three most common types of asbestos are: a) chrysotile, b) amosite and c) crocidolite. Chrysotile, also known as white asbestos and a member of the Serpentine mineral group is the commonest. Asbestos can only be identified under a microscope.

Asbestos differs from other minerals in its crystal development. The crystal formation of asbestos is in the form of long thin fibers. Asbestos is divided into two mineral groups

Serpentine and Amphibole. The division between the two types of asbestos is based upon the crystalline structure.

Serpentines have a sheet or layered structure where amphiboles have a chain-like structure. As the only member of the serpentine group, Chrysotile (A, B) is the most common type of asbestos found in buildings. Chrysotile makes up approximately 90%-95% of all asbestos contained in buildings in the United States.

Unlike most minerals, which turn into dust particles when crushed, asbestos breaks up into fine fibers that are too small to be seen by the human eye. Often, individual fibers are mixed with a material that binds them together, producing asbestos-containing material (**ACM**).

Health Effects of Asbestos Exposure

Asbestos is the largest single cause of fatal disease and ill-health caused by work in Great Britain. Although almost all the deaths and ill health related to asbestos today are due to exposures that happened several decades ago, if you work with asbestos, or come into contact with it as a result of repair and maintenance work, you need to be particularly careful. Asbestos can be found in most buildings built between 1950 and 1980, as insulation and lagging. It is still used in some brake pads and clutch linings and can be met in vehicle servicing and repair.

Asbestos-Related Health Problems

Some people exposed to asbestos develop asbestos-related health problems; some do not. Once inhaled, asbestos fibers can easily penetrate body tissues. They may be deposited and retained in the airways and lung tissue. Because asbestos fibers remain in the body, each exposure increases the likelihood of developing an asbestos-related disease. Asbestos-related diseases may not appear until years after exposure. A medical examination that includes a medical history, breathing capacity test, and chest X ray may detect problems early.

Many substances have a "safe dose" or an exposure that is unlikely to cause any harm. Above the safe dose, a health effect is expected. This concept is known as a dose response. As the dose increases, so does the expected severity of the health effect. However, in the case of asbestos, scientists have not determined a "safe dose" or threshold level for exposure to airborne asbestos. Still, the less exposure a person receives over a lifetime, the less likely it is that that person will develop an asbestos-related health problem.

In addition to breathing it, ingesting asbestos may also be harmful to you, but the consequences of this type of exposure have not been clearly documented. People who touch asbestos may get a rash similar to the rash caused by fiberglass. While the effects of skin exposure to asbestos have not been scientifically documented, it is best to minimize all contact with asbestos.

Asbestos was used in approximately 3,000 products. Two-thirds of this total (2,000) was used in construction products. Appendix A includes a short list of products where asbestos may be found.

Barium - Inorganic Contaminant 2 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for barium is 2 mg/L or 2 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for barium, called a maximum contaminant level (MCL), at 2 mg/L or 2 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase IIB Rule, the regulation for barium, became effective in 1993. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed barium as part of the Six Year Review and determined that the 2 mg/L or 2 ppm MCLG and 2 mg/L or 2 ppm MCL for barium are still protective of human health.

The major sources of barium in drinking water are discharge of drilling wastes; discharge from metal refineries; and erosion of natural deposits. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

When routine monitoring indicates that barium levels are above the MCL, your water supplier must take steps to reduce the amount of barium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will barium be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing barium to below 2 mg/L or 2 ppm: ion exchange, reverse osmosis, lime softening, and electrodialysis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Barium Explained

Barium is a chemical element with symbol **Ba** and atomic number 56. It is the fifth element in Group 2, a soft silvery metallic alkaline earth metal. Because of its high chemical reactivity barium is never found in nature as a free element. Its hydroxide was known in pre-modern history as baryta; this substance does not occur as a mineral, but can be prepared by heating barium carbonate.

The most common naturally occurring minerals of barium are barite (barium sulfate, BaSO₄) and witherite (barium carbonate, BaCO₃), both being insoluble in water. Barium's name originates from the alchemical derivative "baryta", which itself comes from Greek $\beta\alpha\rho\dot{}$ (barys), meaning "heavy." Barium was identified as a new element in 1774, but not reduced to a metal until 1808, shortly after electrolytic isolation techniques became available.

Barium has only a few industrial applications. The metal has been historically used to scavenge air in vacuum tubes. It is a component of YBCO (high-temperature superconductors) and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure of the metal. Barium compounds are added to fireworks to impart a green color. For instance, barium sulfate is used as an insoluble heavy additive to oil well drilling fluid, and in purer form, as X-ray radiocontrast agents for imaging the human gastrointestinal tract. Soluble barium compounds are poisonous due to release of the soluble barium ion, and therefore have been used as rodenticides.

Physical Properties

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure. The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray oxide layer. Barium has a medium specific weight and good electrical conductivity. Ultrapure barium is very hard to prepare, and therefore many properties of barium have not been accurately measured yet.

At room temperature and pressure, barium has a body-centered cubic structure, with a barium—barium distance of 503 picometers, expanding with heating at a rate of approximately 1.8×10^{-5} /°C. It is a very soft metal with a Mohs hardness of 1.25. Its melting temperature of 1000 K (727 °C, 1341 °F) is intermediate between those of the lighter strontium (1050 K) and heavier radium (973 K); however, its boiling point of 2170 K (1897 °C, 3447 °F) exceeds that of strontium (1655 K). The density (3.62 g·cm⁻³) is again intermediate between those of strontium (2.36 g·cm⁻³) and radium (~5 g·cm⁻³).

Chemical Reactivity

Barium is chemically similar to magnesium, calcium, and strontium, being even more reactive. It always exhibits the oxidation state of +2. Reactions with chalcogens are highly exothermic (release energy); the reaction with oxygen or air occurs at room temperature, and therefore barium is stored under oil or inert gas atmosphere. Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, are generally exothermic and proceed upon heating. Reactions with water and alcohols are also very exothermic and release hydrogen gas:

Ba + 2 ROH \rightarrow Ba(OR)₂ + H₂ \uparrow (R is an alkyl or a hydrogen atom)

Additionally, barium reacts with ammonia to form complexes such as Ba(NH₃)₆.

The metal is readily attacked by most acids. Sulfuric acid is a notable exception, as passivation stops the reaction by forming the insoluble barium sulfate. Barium combines with several metals, including aluminum, zinc, lead, and tin, forming intermetallic phases and alloys.

Compounds

Selected alkaline earth and zinc salts densities, g·cm⁻³

$$O^{2-}$$
 S^{2-} $F^ CI^ \frac{SO2-}{4}$ $\frac{CO2-}{3}$ $\frac{O2-}{2}$ $H^ Ca^{2+[9]}$ 3.34 2.59 3.18 2.15 2.96 2.83 2.9 1.7 $Sr^{2+[10]}$ 5.1 3.7 4.24 3.05 3.96 3.5 4.78 3.26 $Ba^{2+[11]}$ 5.72 4.3 2.1 1.9 4.49 4.29 4.96 4.16 $Zn^{2+[12]}$ 5.6 4.09 4.9 2.09 3.8 4.4 1.57 —

Barium salts are typically white when solid and colorless when dissolved, as barium ions provide no specific coloring. They are also denser than their strontium or calcium analogs, except for the halides.

Barium hydroxide ("baryta") was known to alchemists who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little CO_2 in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.

Volatile barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.

Organobarium compounds are a growing class of compounds: for example, dialkylbariums are known, as are alkylhalobariums.

Isotopes of Barium

Barium occurs naturally on Earth as a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138. The first two are thought to be radioactive: barium-130 should decay to xenon-130 via double beta plus decay, and barium-132 should similarly decay to xenon-132. The corresponding half-lives should exceed the age of the Universe by at least thousand times. Their abundances are ~0.1% relative to that of natural barium. Their radioactivity is so weak that they pose no danger to life. Out of the stable isotopes, barium-138 makes up 71.7% of all barium, and the lighter the isotope, the less it is abundant. In total, barium has about 50 known isotopes, ranging in mass between 114 and 153. The most stable metastable isotope is barium-133, which has a half-life of approximately 10.51 years, and five more isotopes have their half-lives longer than a day. Barium also has 10 meta states, out of which barium-133m1 is the most stable, having a half-live of about 39 hours.

Biological Dangers and Precautions

Because of the high reactivity of the metal toxicological data are available only for compounds. Water-soluble barium compounds are poisonous. At low doses, barium ions act as a muscle stimulant, whereas higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, dyspnea and paralysis. This may be due to the ability of Ba²⁺ to block potassium ion channels, which are critical to the proper function of the nervous system. Other target organs for water-soluble barium compounds (i.e., barium ions) are eyes, immune system, heart, respiratory system, and skin. They affect the body strongly, causing, for example, blindness and sensitization.

Barium is not carcinogenic, and it does not bioaccumulate. However, inhaled dust containing insoluble barium compounds can accumulate in the lungs, causing a benign condition called baritosis. For comparison to the soluble poisons, the insoluble sulfate is nontoxic and is thus not classified as a dangerous good.

To avoid a potentially vigorous chemical reaction, barium metal is kept under argon or mineral oils. Contact with air is dangerous, as it may cause ignition. Moisture, friction, heat, sparks, flames, shocks, static electricity, reactions with oxidizers and acids should be avoided. Everything that may make contact with barium should be grounded. Those who work with the metal should wear pre-cleaned non-sparking shoes, flame-resistant rubber clothes, rubber gloves, apron, goggles, and a gas mask; they are not allowed to smoke in the working area and must wash themselves after handling barium.

Beryllium - Inorganic Contaminant 0.004 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for beryllium is 0.004 mg/L or 4 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for beryllium, called a maximum contaminant level (MCL), at 0.004 mg/L or 4 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or

treatment technology do not pose any limitation.

The Phase V Rule, the regulation for beryllium, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed beryllium as part of the Six Year Review and determined that the 0.004 mg/L or 4 ppb MCLG and 0.004 mg/L or 4 ppb MCL for beryllium are still protective of human health.

How does Beryllium get into my Drinking Water?

Beryllium naturally enters surface water and ground water through the weathering of rocks and soils or from industrial wastewater discharges. The major source of environmental releases from human activities are coal and fuel oil combustion.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Beryllium is in my Drinking Water?

When routine monitoring indicates that beryllium levels are above the MCL, your water supplier must take steps to reduce the amount of beryllium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

Beryllium Explained

Beryllium is the chemical element with the symbol **Be** and atomic number 4. Because any beryllium synthesized in stars is short-lived, it is a relatively rare element in both the universe and in the crust of the Earth. It is a divalent element which occurs naturally only in combination with other elements in minerals. Notable gemstones which contain beryllium include beryl (aquamarine, emerald) and chrysoberyl. As a free element it is a steel-gray, strong, lightweight and brittle alkaline earth metal.

Beryllium increases hardness and resistance to corrosion when alloyed to aluminum, cobalt, copper (notably beryllium copper), iron and nickel. In structural applications, high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium a quality aerospace material for high-speed aircraft, missiles, space vehicles and communication satellites. Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and in particle physics experiments. The high thermal conductivities of beryllium and beryllium oxide have led to their use in heat transport and heat sinking applications.

The commercial use of beryllium metal presents technical challenges due to the toxicity (especially by inhalation) of beryllium-containing dusts. Beryllium is corrosive to tissue, and can cause a chronic life-threatening allergic disease called berylliosis in some people. The element is not known to be necessary or useful for either plant or animal life

Characteristics

Physical Properties

Beryllium is a steel gray and hard metal that is brittle at room temperature and has a close-packed hexagonal crystal structure. It has exceptional flexural rigidity (Young's modulus 287 GPa) and a reasonably high melting point. The modulus of elasticity of beryllium is approximately 50% greater than that of steel. The combination of this modulus and a relatively low density results in an unusually fast sound conduction speed in beryllium – about 12.9 km/s at ambient conditions. Other significant properties are high specific heat (1925 $J \cdot kg^{-1} \cdot K^{-1}$) and thermal conductivity (216 $W \cdot m^{-1} \cdot K^{-1}$), which make beryllium the metal with the best heat dissipation characteristics per unit weight. In combination with the relatively low coefficient of linear thermal expansion (11.4×10⁻⁶ K⁻¹), these characteristics result in a unique stability under conditions of thermal loading.

Nuclear Properties

Natural beryllium, save for slight contamination by cosmogenic radioisotopes, is essentially beryllium-9, which has a nuclear spin of 3/2-. Beryllium has a large scattering cross section for high-energy neutrons, about 6 barns for energies above ~0.01 MeV. Therefore, it works as a neutron reflector and neutron moderator, effectively slowing the neutrons to the thermal energy range of below 0.03 eV, where the total cross section is at least an order of magnitude lower – exact value strongly depends on the purity and size of the crystallites in the material.

The single primordial beryllium isotope ⁹Be also undergoes a (n,2n) neutron reaction with neutron energies over about 1.9 MeV, to produce ⁸Be, which almost immediately breaks into two alpha particles. Thus, for high-energy neutrons beryllium is a neutron multiplier, releasing more neutrons than it absorbs.

This nuclear reaction is:

```
9 4Be + n \rightarrow 2(4 2He) + 2n
```

Neutrons are liberated when beryllium nuclei are struck by energetic alpha particles producing the nuclear reaction

```
9
4Be + 4
2He → 12
6C + n , where 4
2He is an alpha particle and 12
6C is a carbon-12 nucleus.
```

Beryllium also releases neutrons under bombardment by gamma rays. Thus, natural beryllium bombarded either by alphas or gammas from a suitable radioisotope is a key component of most radioisotope-powered nuclear reaction neutron sources for the laboratory production of free neutrons.

As a metal, beryllium is transparent to most wavelengths of X-rays and gamma rays, making it useful for the output windows of X-ray tubes and other such apparatus.

Isotopes and Nucleosynthesis

Both stable and unstable isotopes of beryllium are created in stars, but these do not last long. It is believed that most of the stable beryllium in the universe was originally created in the interstellar medium when cosmic rays induced fission in heavier elements found in interstellar gas and dust. Primordial beryllium contains only one stable isotope, ⁹Be, and therefore beryllium is a monoisotopic element.

Plot showing variations in solar activity, including variation in ¹⁰Be concentration. Note that the beryllium scale is inverted, so increases on this scale indicate lower ¹⁰Be levels

Radioactive cosmogenic ¹⁰Be is produced in the atmosphere of the Earth by the cosmic ray spallation of oxygen. ¹⁰Be accumulates at the soil surface, where its relatively long half-life (1.36 million years) permits a long residence time before decaying to boron-10. Thus, ¹⁰Be and its daughter products are used to examine natural soil erosion, soil formation and the development of lateritic soils, and as a proxy for measurement of the variations in solar activity and the age of ice cores. The production of ¹⁰Be is inversely proportional to solar activity, because increased solar wind during periods of high solar activity decreases the flux of galactic cosmic rays that reach the Earth. Nuclear explosions also form ¹⁰Be by the reaction of fast neutrons with ¹³C in the carbon dioxide in air. This is one of the indicators of past activity at nuclear weapon test sites. The isotope ⁷Be (half-life 53 days) is also cosmogenic, and shows an atmospheric abundance linked to sunspots, much like ¹⁰Be.

⁸Be has a very short half-life of about 7×10⁻¹⁷ s that contributes to its significant cosmological role, as elements heavier than beryllium could not have been produced by nuclear fusion in the Big Bang. This is due to the lack of sufficient time during the Big Bang's nucleosynthesis phase to produce carbon by the fusion of ⁴He nuclei and the very low concentrations of available beryllium-8.

The British astronomer Sir Fred Hoyle first showed that the energy levels of ⁸Be and ¹²C allow carbon production by the so-called triple-alpha process in helium-fueled stars where more nucleosynthesis time is available. This process allows carbon to be produced in stars, but not in the Big Bang. Star-created carbon (the basis of carbon-based life) is thus a component in the elements in the gas and dust ejected by AGB stars and supernovae (see also Big Bang nucleosynthesis), as well as the creation of all other elements with atomic numbers larger than that of carbon.

The innermost electrons of beryllium may contribute to chemical bonding. Therefore, when ⁷Be decays by electron capture, it does so by taking electrons from atomic orbitals that may participate in bonding. This makes its decay rate dependent to a measurable degree upon its electron configuration – a rare occurrence in nuclear decay.

The shortest-lived known isotope of beryllium is 13 Be which decays through neutron emission. It has a half-life of 2.7×10^{-21} s. 6 Be is also very short-lived with a half-life of 5.0×10^{-21} s. The exotic isotopes 11 Be and 14 Be are known to exhibit a nuclear halo. This phenomenon can be understood as the nuclei of 11 Be and 14 Be have, respectively, 1 and 4 neutrons orbiting substantially outside the classical Fermi 'water drop' model of the nucleus.

Occurrence

Beryllium has a concentration of 2 to 6 parts per million (ppm) in the Earth's crust. The Sun has a concentration of 0.1 parts per billion (ppb) of beryllium, similar to that of rhenium. It is most concentrated in the soils, 6 ppm, and is found in 0.2 parts per trillion (ppt) of sea water. Trace amounts of ⁹Be are found in the Earth's atmosphere. In sea water, beryllium is exceedingly rare, more so than even scandium, comprising only 0.0006 ppb by weight. In stream water, however, beryllium is more abundant with 0.1 ppb by weight.

Beryllium is found in over 100 minerals, but most are uncommon to rare. The more common beryllium containing minerals include: bertrandite ($Be_4Si_2O_7(OH)_2$), beryl ($Al_2Be_3Si_6O_{18}$), chrysoberyl (Al_2BeO_4) and phenakite (Be_2SiO_4). Precious forms of beryl are aquamarine, bixbite and emerald. The green color in gem-quality forms of beryl comes from varying amounts of chromium (about 2% for emerald).

The two main ores of beryllium, beryl and bertrandite, are found in Argentina, Brazil, India, Madagascar, Russia and the United States. Total world reserves of beryllium ore are greater than 400,000 tons.

Production

The extraction of beryllium from its compounds is a difficult process due to its high affinity for oxygen at elevated temperatures, and its ability to reduce water when its oxide film is removed. The United States, China and Kazakhstan are the only three countries involved in the industrial scale extraction of beryllium.

Beryllium is most-commonly extracted from beryl, which is either sintered using an extraction agent or melted into a soluble mixture. The sintering process involves mixing beryl with sodium fluorosilicate and soda at 770°C to form sodium fluoroberyllate, aluminum oxide and silicon dioxide. Beryllium hydroxide is precipitated from a solution of sodium fluoroberyllate and sodium hydroxide in water. Extraction of beryllium using the melt method involves grinding beryl into a powder and heating it to 1650°C. The melt is quickly cooled with water and then reheated 250 to 300°C in concentrated sulfuric acid, mostly yielding beryllium sulfate and aluminum sulfate. Aqueous ammonia is then used to remove the aluminum and sulfur, leaving beryllium hydroxide.

Cadmium - Inorganic Contaminant 0.005 mg/L MCL

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for cadmium is 0.005 mg/L or 5 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for cadmium, called a maximum contaminant level (MCL), at 0.005 mg/L or 5 ppb. MCLs are set as close to the health goals as possible. considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for cadmium, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed cadmium as part of the Six Year Review and determined that the 0.005 mg/L or 5 ppb MCLG and 0.005 mg/L or 5 ppb MCL for cadmium are still protective of human health.

How does cadmium get into my drinking water?

The major sources of cadmium in drinking water are corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if cadmium is in my drinking water?

When routine monitoring indicates that cadmium levels are above the MCL, your water supplier must take steps to reduce the amount of cadmium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will cadmium be removed from my drinking water?

The following treatment method(s) have proven to be effective for removing cadmium to below 0.005 mg/L or 5 ppb: coagulation/filtration, ion exchange, lime softening, and reverse osmosis.

Cadmium Explained

Cadmium is a chemical element with the symbol **Cd** and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it prefers oxidation state +2 in most of its compounds and like mercury it shows a low melting point compared to transition metals. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. The average concentration of cadmium in the Earth's crust is between 0.1 and 0.5 parts per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate.

Cadmium occurs as a minor component in most zinc ores and therefore is a byproduct of zinc production. It was used for a long time as a pigment and for corrosion resistant plating on steel while cadmium compounds were used to stabilize plastic. With the exception of its use in nickel–cadmium batteries and cadmium telluride solar panels, the use of cadmium is generally decreasing. These declines have been due to competing technologies, cadmium's toxicity in certain forms and concentration and resulting regulations. Although cadmium has no known biological function in higher organisms, a cadmium-dependent carbonic anhydrase has been found in marine diatoms.

Characteristics

Physical Properties

Cadmium is a soft, malleable, ductile, bluish-white divalent metal. It is similar in many respects to zinc but forms complex compounds. Unlike other metals, cadmium is resistant to corrosion and as a result it is used as a protective layer when deposited on other metals. As a bulk metal, cadmium is insoluble in water and is not flammable; however, in its powdered form it may burn and release toxic fumes.

Chemical Properties

Although cadmium usually has an oxidation state of +2, it also exists in the +1 state. Cadmium and its congeners are not always considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. Cadmium burns in air to form brown amorphous cadmium oxide (CdO); the crystalline form of this compound is a dark red which changes color when heated, similar to zinc oxide. Hydrochloric acid, sulfuric acid and nitric acid dissolve cadmium by forming cadmium chloride (CdCl₂), cadmium sulfate (CdSO₄), or cadmium nitrate (Cd(NO₃)₂). The oxidation state +1 can be reached by dissolving cadmium in a mixture of cadmium chloride and aluminum chloride, forming the Cd_2^{2+} cation, which is similar to the Hq_2^{2+} cation in mercury(I) chloride.

$$Cd + CdCl_2 + 2 AlCl_3 \rightarrow Cd_2(AlCl_4)_2$$

Chromium- Inorganic Contaminant 0.1 mg/L MCL

The Safe Drinking Water Act requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based on possible health risks from exposure over a lifetime, are called maximum contaminant level goals (MCLG).

EPA sets enforceable standards for drinking water contaminants based on the best available science to prevent potential health problems. In most cases, the enforceable standard is known as a maximum contaminant level (MCL), the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. MCLs are set as close to the health goals as possible after considering costs, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The national primary drinking water regulation that established the MCL for total chromium was promulgated in 1991. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation

for each contaminant and revise the regulation, if appropriate. EPA reviewed total chromium as part of the second six-year review that was announced in March 2010. The Agency noted in March 2010 that it had initiated a reassessment of the health risks associated with chromium exposure and that the Agency did not believe it was appropriate to revise the national primary drinking water regulation while that effort was in process. In 2008, EPA began a rigorous and comprehensive review of chromium-6 health effects based on new science. When this human health assessment is finalized EPA will carefully review the conclusions and consider all relevant information to determine if the current chromium standard should be revised

Ensuring safe drinking water for all Americans is a top priority for EPA. EPA has an enforceable drinking water standard of 0.1 milligrams per liter (mg/L) for total chromium, which includes chromium-6 and chromium-3. This standard was established in 1991 and was based on the best available science at the time which indicated that some people who use water containing chromium in excess of the drinking water standard over many years could experience allergic dermatitis (skin reactions).

EPA regularly re-evaluates drinking water standards and, based on new science on chromium-6, had begun a rigorous and comprehensive review of its health effects in 2008. In September 2010, EPA released a draft of that scientific assessment for public comment. When this human health assessment is finalized, EPA will carefully review the conclusions and consider all relevant information to determine if a new drinking water standard for chromium-6 or a revision to the current total chromium standard is warranted.

Chromium is an odorless and tasteless metallic element. Chromium is found naturally in rocks, plants, soil and volcanic dust, humans and animals.

The most common forms of chromium that occur in natural waters in the environment are trivalent chromium (chromium-3), and hexavalent chromium (chromium-6).

Chromium-3 is an essential human dietary element and occurs naturally in many vegetables, fruits, meats, grains and yeast. Chromium-6 occurs naturally in the environment from the erosion of natural chromium deposits but it can also be produced by industrial processes. There are demonstrated instances of chromium being released to the environment by leakage, poor storage, or inadequate industrial waste disposal practices.

What are some uses for Chromium?

Metallic chromium is used mainly for making steel and other alloys. Chromium compounds in either the chromium-3 or chromium-6 forms are used for chrome plating, dyes and pigments, leather and wood preservation.

What are Chromium's Health Effects?

Chromium-3 is a nutritionally essential element in humans and is often added to vitamins as a dietary supplement. Chromium-3 has relatively low toxicity and would be a concern in drinking water only at very high levels of contamination; Chromium-6 is more toxic and poses potential health risks. People who use water containing total chromium in excess of the maximum contaminant level (MCL) over many years could experience allergic dermatitis.

EPA proposed to classify chromium-6 as likely to be carcinogenic to humans when ingested. The Agency continues to work towards completing the human health assessment and making a final determination about the carcinogenicity of chromium-6. When the assessment is completed, EPA will determine whether the drinking water standard for total chromium needs to be revised.

What are EPA's drinking water regulations for Chromium?

The Safe Drinking Water Act requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based on possible health risks from exposure over a lifetime are called maximum contaminant level goals (MCLG).

The MCLG for total chromium is 0.1 mg/L or 100 parts per billion (ppb). EPA has set this level of protection based on the best available science at the time the rule was promulgated. EPA has set an enforceable regulation for total chromium, called a maximum contaminant level (MCL), at 0.1 mg/L or 100 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

States may set more stringent drinking water MCLGs and MCLs for total chromium than EPA.

Why are Chromium-6 and Chromium-3 covered in the same Standard?

Chromium-6 and chromium-3 are covered under the total chromium drinking water standard because these forms of chromium can convert back and forth in water and in the human body, depending on environmental conditions. Measuring just one form may not capture all of the chromium that is present. In order to ensure that the greatest potential risk is addressed, EPA's regulation assumes that a measurement of total chromium is 100 percent chromium-6, the more toxic form.

Copper - Inorganic Contaminant 1.3 mg/L MCLG

What are Copper's Health Effects?

Some people who drink water containing copper in excess of the action level may, with short term

exposure, experience gastrointestinal distress, and with long-term exposure may experience liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level.

This health effects language is not intended to catalog all possible health effects for copper. Rather, it is intended to inform consumers of some of the possible health effects associated with copper in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Copper?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for copper is 1.3 mg/L or 1.3 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems.

For most contaminants, EPA sets an enforceable regulation called a maximum contaminant level (MCL) based on the MCLG. MCLs are set as close to the MCLGs as feasible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. However, because copper contamination of drinking water often results from corrosion of the plumbing materials belonging to water system customers, EPA established a treatment technique rather than an MCL for copper.

A treatment technique is an enforceable procedure or level of technological performance which water systems must follow to ensure control of a contaminant. The treatment technique regulation for copper (referred to as the Lead and Copper rule) requires water systems to control the corrosivity of the water. The regulation also requires systems to collect tap samples from sites served by the system that are more likely to have plumbing materials containing lead. If more than 10 percent of tap water samples exceed the copper action level of 1.3 milligrams per Liter (mg/L), water systems must take additional steps to reduce corrosiveness.

EPA promulgated the Lead and Copper Rule in 1991, and revised the regulation in 2000 and in 2007. States may set a more stringent regulation for copper in drinking water than EPA.

How does Copper get into my Drinking Water?

The major sources of copper in drinking water are corrosion of household plumbing systems; and erosion of natural deposits. Copper enters the water ("leaches") through contact with the plumbing. Copper leaches into water through corrosion – a dissolving or wearing away of metal caused by a chemical reaction between water and your plumbing. Copper can leach into water primarily from pipes, but fixtures and faucets (brass), and fittings can also be a source. The amount of copper in your water also depends on the types and amounts of minerals in the water, how long the water stays in the pipes, the amount of wear in the pipes, the water's acidity and its temperature.

How will I know if Copper is in my Drinking Water?

If you are concerned about copper in your drinking water, have the water tested for copper by a certified laboratory. (Lists are available from your state or local drinking water authority.) Since you cannot see, taste, or smell copper dissolved in water, testing is the only sure way of telling whether there are harmful quantities of lead in your drinking water. You should be particularly suspicious if your home has copper pipes. If you see signs of corrosion (frequent leaks, rust-colored water, stained dishes or laundry, or if your non-plastic plumbing is less than five years old. Your water supplier may have useful information, including whether the service connector used in your home or area is made of copper. Testing is especially important in high-rise buildings where flushing might not work.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Copper be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing copper to below the action level of 1.3 mg/L or 1.3 ppm: corrosion control.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Copper Explained

Copper is a chemical element with the symbol **Cu** (from Latin: *cuprum*) and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; a freshly exposed surface has a reddish-orange color. It is used as a conductor of heat and electricity, a building material, and a constituent of various metal alloys.

The metal and its alloys have been used for thousands of years. In the Roman era, copper was principally mined on Cyprus, hence the origin of the name of the metal as *cyprium* (metal of Cyprus), later shortened to *cuprum*.

Its compounds are commonly encountered as copper(II) salts, which often impart blue or green colors to minerals such as turquoise and have been widely used historically as pigments.

Architectural structures built with copper corrode to give green verdigris (or patina). Decorative art prominently features copper, both by itself and as part of pigments.

Copper(II) ions are water-soluble, where they function at low concentration as bacteriostatic substances, fungicides, and wood preservatives. In sufficient amounts, they are poisonous to higher organisms; at lower concentrations it is an essential trace nutrient to all higher plant and animal life. The main areas where copper is found in animals are liver, muscle and bone.

Characteristics

Physical

Copper, silver and gold are in group 11 of the periodic table, and they share certain attributes: they have one s-orbital electron on top of a filled d-electron shell and are characterized by high ductility and electrical conductivity. The filled d-shells in these elements do not contribute much to the interatomic interactions, which are dominated by the s-electrons through metallic bonds. Contrary to metals with incomplete d-shells, metallic bonds in copper are lacking a covalent character and are relatively weak. This explains the low hardness and high ductility of single crystals of copper. At the macroscopic scale, introduction of extended defects to the crystal lattice, such as grain boundaries, hinders flow of the material under applied stress thereby increasing its hardness. For this reason, copper is usually supplied in a fine-grained polycrystalline form, which has greater strength than monocrystalline forms.

The low hardness of copper partly explains its high electrical (59.6×10⁶ S/m) and thus also high thermal conductivity, which are the second highest among pure metals at room temperature. This is because the resistivity to electron transport in metals at room temperature mostly originates from scattering of electrons on thermal vibrations of the lattice, which are relatively weak for a soft metal. The maximum permissible current density of copper in open air is approximately 3.1×10⁶ A/m² of cross-sectional area, above which it begins to heat excessively. As with other metals, if copper is placed against another metal, galvanic corrosion will occur.

Together with caesium and gold (both yellow), copper is one of only three elemental metals with a natural color other than gray or silver. Pure copper is orange-red and acquires a reddish tarnish when exposed to air. The characteristic color of copper results from the electronic transitions between the filled 3d and half-empty 4s atomic shells – the energy difference between these shells is such that it corresponds to orange light. The same mechanism accounts for the yellow color of gold and caesium.

Chemical

Copper forms a rich variety of compounds with oxidation states +1 and +2, which are often called *cuprous* and *cupric*, respectively. It does not react with water, but it slowly reacts with atmospheric oxygen forming a layer of brown-black copper oxide. In contrast to the oxidation of iron by wet air, this oxide layer stops the further, bulk corrosion. A green layer of verdigris (copper carbonate) can often be seen on old copper constructions, such as the Statue of Liberty, the largest copper statue in the world built using repoussé and chasing. Hydrogen sulfides and sulfides react with copper to form various copper sulfides on the surface. In the latter case, the copper corrodes, as is seen when copper is exposed to air containing sulfur compounds.

Oxygen-containing ammonia solutions give water-soluble complexes with copper, as do oxygen and hydrochloric acid to form copper chlorides and acidified hydrogen peroxide to form copper(II) salts. Copper(II) chloride and copper comproportionate to form copper(I) chloride.

Isotopes

There are 29 isotopes of copper. 63 Cu and 65 Cu are stable, with 63 Cu comprising approximately 69% of naturally occurring copper; they both have a spin of 3/2. The other isotopes are radioactive, with the most stable being 67 Cu with a half-life of 61.83 hours. Seven metastable isotopes have been characterized, with 68m Cu the longest-lived with a half-life of 3.8 minutes. Isotopes with a mass number above 64 decay by β^{+} , whereas those with a mass number below 64 decay by β^{+} . 64 Cu, which has a half-life of 12.7 hours, decays both ways.

⁶²Cu and ⁶⁴Cu have significant applications. ⁶⁴Cu is a radiocontrast for X-ray imaging, and complexed with a chelate can be used for treating cancer. ⁶²Cu is used in ⁶²Cu-PTSM that is a radioactive tracer for positron emission tomography.

Occurrence

Copper can be found as either native copper or as part of minerals. Native copper is a polycrystal, with the largest described single crystal measuring 4.4×3.2×3.2 cm. The largest mass of elemental copper weighed 420 tons and was found in 1857 on the Keweenaw Peninsula in Michigan, US. There are many examples of copper-containing minerals: chalcopyrite and chalcocite are copper sulfides, azurite and malachite are copper carbonates and cuprite is a copper oxide. Copper is present in the Earth's crust at a concentration of about 50 parts per million (ppm), and is also synthesized in massive stars.

Compounds

Binary Compounds

As for other elements, the simplest compounds of copper are binary compounds, i.e. those containing only two elements. The principal ones are the oxides, sulfides and halides. Both cuprous and cupric oxides are known. Among the numerous copper sulfides, important examples include copper(I) sulfide and copper(II) sulfide.

The cuprous halides with chlorine, bromine, and iodine are known, as are the cupric halides with fluorine, chlorine, and bromine. Attempts to prepare copper(II) iodide give cuprous iodide and iodine.

$$2 \text{ Cu}^{2+} + 4 \text{ I}^{-} \rightarrow 2 \text{ CuI} + \text{ I}_{2}$$

Coordination Chemistry

Copper, like all metals, forms coordination complexes with ligands. In aqueous solution, copper(II) exists as $[Cu(H_2O)_6]^{2^+}$. This complex exhibits the fastest water exchange rate (speed of water ligands attaching and detaching) for any transition metal aquo complex. Adding aqueous sodium hydroxide causes the precipitation of light blue solid copper(II) hydroxide. A simplified equation is:

$$Cu^{2+} + 2 OH^{-} \rightarrow Cu(OH)_{2}$$

Cyanide - Inorganic Contaminant 0.2 mg/L MCL

Cyanide is a carbon-nitrogen chemical unit which combines with many organic and inorganic compounds.

Uses for Cyanide.

The most commonly used form, hydrogen cyanide, is mainly used to make compounds and other synthetic fibers and resins.

What are Cyanide's Health Effects?

Some people who drink water containing cyanide well in excess of the maximum contaminant level (MCL) for many years could experience nerve damage or problems with their thyroid. This health effects language is not intended to catalog all possible health effects for cyanide. Rather, it is intended to inform consumers of some of the possible health effects associated with cyanide in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Cyanide?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for cyanide is 0.2 mg/L or 200 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for cyanide, called a maximum contaminant level (MCL), at 0.2 mg/L or 200 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase V Rule, the regulation for cyanide, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed cyanide as part of the Six Year Review and determined that the 0.2 mg/L or 200 ppb MCLG and 0.2 mg/L or 200 ppb MCL for cyanide are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for cyanide than EPA.

How does Cyanide get into my Drinking Water?

The major source of cyanide in drinking water is discharge from industrial chemical factories. A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Cyanide is in my Drinking Water?

When routine monitoring indicates that cyanide levels are above the MCL, your water supplier must take steps to reduce the amount of cyanide so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Cyanide be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing cyanide to below 0.2 mg/L or 200 ppb: granular activated carbon in combination with packed tower aeration.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Cyanide Explained

A **cyanide** is a chemical compound that contains the **cyano group**, -C≡N, which consists of a carbon atom triple-bonded to a nitrogen atom. Cyanides most commonly refer to salts of the anion CN⁻, which is isoelectronic with carbon monoxide and with molecular nitrogen. Most cyanides are highly toxic.

Nomenclature and Etymology

In IUPAC nomenclature, organic compounds that have a $-C\equiv N$ functional group are called nitriles. Thus, nitriles are organic compounds. An example of a nitrile is CH_3CN , acetonitrile, also known as methyl cyanide. Nitriles usually do not release cyanide ions. A functional group with a hydroxyl and cyanide bonded to the same carbon is called cyanohydrin. Unlike nitriles, cyanohydridins do release hydrogen cyanide. In inorganic chemistry, salts containing the $C\equiv N^-$ ion are referred to as **cyanides**.

Occurrence and Reactions

Cyanides are produced by certain bacteria, fungi, and algae and are found in a number of plants. Cyanides are found, although in small amounts, in certain seeds and fruit stones, e.g., those of apple, mango, peach, and bitter almonds. In plants, cyanides are usually bound to sugar molecules in the form of cyanogenic glycosides and defend the plant against herbivores. Cassava roots (also called manioc), an important potato-like food grown in tropical countries (and the base from which tapioca is made), also contain cyanogenic glycosides.

A solution of *para*-benzoquinone in DMSO reacts with inorganic cyanide to form a cyanophenol, which is fluorescent. Illumination with a UV light gives a green/blue glow if the test is positive.

Fluoride - Inorganic Contaminant 4.0 mg/L MCL

Fluoride compounds are salts that form when the element, fluorine, combines with minerals in soil or rocks.

Uses for Fluoride.

Many communities add fluoride to their drinking water to promote dental health.

What are Fluoride's Health Effects?

Exposure to excessive consumption of fluoride over a lifetime may lead to increased likelihood of bone fractures in adults, and may result in effects on bone leading to pain and tenderness. Children aged 8 years and younger exposed to excessive amounts of fluoride have an increased chance of developing pits

in the tooth enamel, along with a range of cosmetic effects to teeth.

This health effects language is not intended to catalog all possible health effects for fluoride. Rather, it is intended to inform consumers of some of the possible health effects associated with fluoride in drinking water.

What are EPA's Drinking Water Regulations for Fluoride?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for fluoride is 4.0 mg/L or 4.0 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for fluoride, called a maximum contaminant level (MCL), at 4.0 mg/L or 4.0 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

EPA has also set a secondary standard (SMCL) for fluoride at 2.0 mg/L or 2.0 ppm. Secondary standards are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards.

Tooth discoloration and/or pitting is caused by excess fluoride exposures during the formative period prior to eruption of the teeth in children. The secondary standard of 2.0 mg/L is intended as a guideline for an upper bound level in areas which have high levels of naturally occurring fluoride. The level of the SMCL was set based upon a balancing of the beneficial effects of protection from tooth decay and the undesirable effects of excessive exposures leading to discoloration.

Fluoride is voluntarily added to some drinking water systems as a public health measure for reducing the incidence of cavities among the treated population.

The decision to fluoridate a water supply is made by the State or local municipality, and is not mandated by EPA or any other Federal entity. The Centers for Disease Control and Prevention (CDC) provides recommendations about the optimal levels of fluoride in drinking water in order to prevent tooth decay. Information about CDC's recommendations can be found at: http://www.cdc.gov/fluoridation/

States may set more stringent drinking water MCLGs and MCLs for fluoride than EPA.

The drinking water standards are currently under review. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. In 2003 and as part of the first Six Year Review, EPA reviewed the drinking water standard for fluoride and found that new health and exposure data were available on orally ingested fluoride. EPA requested that the National Research Council (NRC) of the National Academies of Science (NAS) conduct a review of this data and in 2006, the NRC published their evaluation in a report entitled, Fluoride in Drinking Water: A Scientific Review of EPA's Standards. The NRC recommended that EPA update its fluoride risk assessment to include new data on health risks and better estimates of total exposure.

In March 2010 and as part of the second Six Year Review, the Agency indicated that the Office of Water was in the process of developing its health and exposure assessments to address the NRC's recommendations. The Agency finalized the risk and exposure assessments for fluoride in January 2011 and announced its intent to review the drinking water regulations for fluoride to determine whether revisions are appropriate.

How does Fluoride get into my Drinking Water?

Some fluoride compounds, such as sodium fluoride and fluorosilicates, dissolve easily into ground water as it moves through gaps and pore spaces between rocks. Most water supplies contain some naturally occurring fluoride. Fluoride also enters drinking water in discharge from fertilizer or aluminum factories. Also, many communities add fluoride to their drinking water to promote dental health.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Fluoride is in my Drinking Water?

When routine monitoring indicates that fluoride levels are above the MCL, your water supplier must take steps to reduce the amount of fluoride so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household or private well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Fluoride be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing fluoride to below 4.0 mg/L or 4.0 ppm: distillation or reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Fluoride Explained

Fluoride is the anion F^- , the reduced form of fluorine when as an ion and when bonded to another element. Inorganic fluorine containing compounds are called fluorides. Fluoride, like other halides, is a monovalent ion (-1 charge). Its compounds often have properties that are distinct relative to other halides. Structurally, and to some extent chemically, the fluoride ion resembles the hydroxide ion.

Occurrence

Solutions of inorganic fluorides in water contain F⁻ and bifluoride HF-2. Few inorganic fluorides are soluble in water without undergoing significant hydrolysis. In terms of its reactivity, fluoride differs significantly from chloride and other halides, and is more strongly solvated due to its smaller radius/charge ratio. Its closest chemical relative is hydroxide. When relatively unsolvated, fluoride anions are called "naked". Naked fluoride is a very strong lewis base. The presence of fluoride and its compounds can be detected by F NMR spectroscopy.

Natural Occurrence

Many fluoride minerals are known, but of paramount commercial importance are fluorite and fluorapatite.

Fluoride is usually found naturally in low concentration in drinking water and foods. The concentration in seawater averages 1.3 parts per million (ppm). Fresh water supplies generally contain between 0.01–0.3 ppm, whereas the ocean contains between 1.2 and 1.5 ppm. In some locations, the fresh water contains dangerously high levels of fluoride, leading to serious health problems.

Applications

Fluorides are pervasive in modern technology. Hydrofluoric acid is the fluoride synthesized on the largest scale. It is produced by treating fluoride minerals with sulfuric acid. Hydrofluoric acid and its anhydrous form hydrogen fluoride are used in the production of fluorocarbons and aluminum fluorides. Hydrofluoric acid has a variety of specialized applications, including its ability to dissolve glass.

Inorganic Chemicals

Fluoride salts are used in the manufacture of many inorganic chemicals, many of which contain fluoride covalently bonded to the metal or nonmetal in question. Some examples of these are:

- Cryolite (Na₃AlF₆) is a pesticide that can leave fluoride on agricultural commodities. Cryolite was originally utilized in the preparation of aluminum.
- Sulfuryl fluoride (SO₂F₂) is used as a pesticide and fumigant on agricultural crops. In 2010, the United States Environmental Protection Agency proposed to withdraw the use of sulfuryl fluoride on food. Sulfuryl fluoride releases fluoride when metabolized.
- Sulfur hexafluoride is an inert, nontoxic insulator gas that is used in electrical transformers and as a tracer gas in indoor air quality investigations.
- Uranium hexafluoride, although not ionic, is prepared from fluoride reagents. It is utilized
 in the separation of isotopes of uranium between the fissile isotope U-235 and the nonfissile isotope U-238 in preparation of nuclear reactor fuel and atomic bombs. This is due
 to the volatility of fluorides of uranium.

Organic Chemicals

Fluoride reagents are significant in synthetic organic chemistry. Organofluorine chemistry has produced many useful compounds over the last 50 years. Included in this area are polytetrafluorethylene (Teflon), polychlorotrifluoroethylene (moisture barriers), efavirenz (pharmaceutical used for treatment of HIV), fluoxetine (an antidepressant), 5-fluorouracil (an anticancer drug), hydrochlorofluorocarbons and hydrofluorcarbons (refrigerants, blowing agents and propellants).

Due to the affinity of silicon for fluoride, and the ability of silicon to expand its coordination number, silyl ether protecting groups can be easily removed by the fluoride sources such as sodium fluoride and tetra-n-butylammonium fluoride (TBAF). This is quite useful for organic synthesis and the production of fine chemicals. The Si-F linkage is one of the strongest single bonds. In contrast, other silvl halides are easily hydrolyzed.

Cavity Prevention

Fluoride-containing compounds are used in topical and systemic fluoride therapy for preventing tooth decay. They are used for water fluoridation and in many products associated with oral hygiene. Originally, sodium fluoride was used to fluoridate water; hexafluorosilicic acid (H_2SiF_6) and its salt sodium hexafluorosilicate (Na_2SiF_6) are more commonly used additives, especially in the United States. The fluoridation of water is known to prevent tooth decay and is considered by the U.S. Centers for Disease Control and Prevention as "one of 10 great public health achievements of the 20th century". In some countries where large, centralized water systems are uncommon, fluoride is delivered to the populace by fluoridating table salt. Fluoridation of water has its critics (see Water fluoridation controversy).

Lead-Inorganic Contaminant 0.015 Action Level

The United States Environmental Protection Agency (EPA) regulates lead in drinking water to protect public health. Lead may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Lead?

Lead is a toxic metal that was used for many years in products found in and around homes. Even at low levels, lead may cause a range of health effects including behavioral problems and learning disabilities. Children six years old and under are most at risk because this is when the brain is developing. The primary source of lead exposure for most children is lead-based paint in older homes. Lead in drinking water can add to that exposure.

Uses for Lead.

Lead is sometimes used in household plumbing materials or in water service lines used to bring water from the main to the home. A prohibition on lead in plumbing materials has been in effect since 1986. The lead ban, which was included in the 1986 Amendments of the Safe Drinking Water Act, states that only "lead free" pipe, solder, or flux may be used in the installation or repair of (1) public water systems, or (2) any plumbing in a residential or non-residential facility providing water for human consumption, which is connected to a public water system. But even "lead free" plumbing may contain traces of lead. The term "lead free" means that solders and flux may not contain more than 0.2 percent lead, and that pipes and pipe fittings may not contain more than 8.0 percent lead. Faucets and other end use devices must be tested and certified against the ANSI – NSF Standard 61 to be considered lead free.

What are Lead's Health Effects?

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

This health effects language is not intended to catalog all possible health effects for lead. Rather, it is intended to inform consumers of the most significant and probable health effects, associated with lead in drinking water.

What are EPA's Drinking Water Regulations for Lead?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur with an adequate margin of safety. These non-enforceable health goals, based solely on possible health risks are called maximum contaminant level goals (MCLG) The MCLG for lead is zero.

EPA has set this level based on the best available science which shows there is no safe level of exposure to lead.

For most contaminants, EPA sets an enforceable regulation called a maximum contaminant level (MCL) based on the MCLG. MCLs are set as close to the MCLGs as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. However, because lead contamination of drinking water often results from corrosion of the plumbing materials belonging to water system customers, EPA established a treatment technique rather than an MCL for lead.

A treatment technique is an enforceable procedure or level of technological performance which water systems must follow to ensure control of a contaminant. The treatment technique regulation for lead (referred to as the Lead and Copper rule) requires water systems to control the corrosivity of the water. The regulation also requires systems to collect tap samples from sites served by the system that are more likely to have plumbing materials containing lead.

If more than 10% of tap water samples exceed the lead action level of 15 parts per billion, then water systems are required to take additional actions including:

- Taking further steps optimize their corrosion control treatment (for water systems serving 50,000 people that have not fully optimized their corrosion control).
- Educating the public about lead in drinking water and actions consumers can take to reduce their exposure to lead.
- Replacing the portions of lead service lines (lines that connect distribution mains to customers) under the water system's control.

EPA promulgated the Lead and Copper Rule in 1991 and revised the regulation in 2000 and 2007. States may set more stringent drinking water regulations than EPA.

How does Lead get into my Drinking Water?

The major sources of lead in drinking water are corrosion of household plumbing systems; and erosion of natural deposits. Lead enters the water ("leaches") through contact with the plumbing. Lead leaches into water through corrosion – a dissolving or wearing away of metal caused by a chemical reaction between water and your plumbing. Lead can leach into water from pipes, solder, fixtures and faucets (brass), and fittings. The amount of lead in your water also depends on the types and amounts of minerals in the water, how long the water stays in the pipes, the amount of wear in the pipes, the water's acidity and its temperature.

Although the main sources of exposure to lead are ingesting paint chips and inhaling dust, EPA estimates that 10 to 20 percent of human exposure to lead may come from lead in drinking water. Infants who consume mostly mixed formula can receive 40 to 60 percent of their exposure to lead from drinking water.

How will I know if Lead is in my Drinking Water?

Have your water tested for lead. A list of certified laboratory of labs are available from your state or local drinking water authority. Testing costs between \$20 and \$100. Since you cannot see, taste, or smell lead dissolved in water, testing is the only sure way of telling whether there are harmful quantities of lead in your drinking water. You should be particularly suspicious if your home has lead pipes (lead is a dull gray metal that is soft enough to be easily scratched with a house key) or if you see signs of corrosion (frequent leaks, rust-colored water). Your water supplier may have useful information, including whether the service connector used in your home or area is made of lead. Testing is especially important in high-rise buildings where flushing might not work.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How can I Reduce Lead in Drinking Water at Home?

Flush your pipes before drinking, and only use cold water for consumption. The more time water has been sitting in your home's pipes, the more lead it may contain. Anytime the water in a particular faucet has not been used for six hours or longer, "flush" your cold-water pipes by running the water until it becomes as cold as it will get.

This could take as little as five to thirty seconds if there has been recent heavy water use such as showering or toilet flushing. Otherwise, it could take two minutes or longer. Your water utility will inform you if longer flushing times are needed to respond to local conditions.

Use only water from the cold-water tap for drinking, cooking, and especially for making baby formula. Hot water is likely to contain higher levels of lead. The two actions recommended above are very important to the health of your family. They will probably be effective in reducing lead levels because most of the lead in household water usually comes from the plumbing in your house, not from the local water supply.

Should I be concerned about Lead in Drinking water in my child's school or child care facility?

Children spend a significant part of their days at school or in a child care facility. The faucets that provide water used for consumption, including drinking, cooking lunch, and preparing juice and infant formula, should be tested.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect and upgrade the supply of safe drinking water. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Lead Explained

Lead is a chemical element in the carbon group with symbol **Pb** (from Latin: *plumbum*) and atomic number 82. Lead is a soft, malleable poor metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed to air. Lead has a shiny chrome-silver luster when it is melted into a liquid.

Lead is used in building construction, lead-acid batteries, bullets and shot, weights, as part of solders, pewters, fusible alloys, and as a radiation shield. Lead has the highest atomic number of all of the stable elements, although the next higher element, bismuth, has a half-life that is so long (much longer than the age of the universe) that it can be considered stable. Its four stable isotopes have 82 protons, a magic number in the nuclear shell model of atomic nuclei.

Lead, at certain contact degrees, is a poisonous substance to animals, including humans. It damages the nervous system and causes brain disorders. Excessive lead also causes blood disorders in mammals. Like the element mercury, another heavy metal, lead is a neurotoxin that accumulates both in soft tissues and the bones. Lead poisoning has been documented from ancient Rome, ancient Greece, and ancient China.

Characteristics

Lead is a bright and silvery metal with a very slight shade of blue in a dry atmosphere. Upon contact with air, it begins to tarnish by forming a complex mixture of compounds depending on the conditions. The color of the compounds can vary. The tarnish layer can contain significant amounts of carbonates and hydroxycarbonates. It has a few characteristic properties: high density, softness, ductility and malleability, poor electrical conductivity compared to other metals, high resistance to corrosion, and ability to react with organic chemicals.

Various traces of other metals change its properties significantly: the addition of small amounts of antimony or copper increases hardness and improves the corrosion reflection from sulfuric acid for lead. A few other metals also improve only hardness and fight metal fatigue, such as cadmium, tin, or tellurium; metals like sodium or calcium also have this ability, but they weaken the chemical stability. Finally, zinc and bismuth simply impair the corrosion resistance (0.1% bismuth content is the industrial usage threshold). In return, lead impurities mostly worsen the quality of industrial materials, although there are exceptions: for example, small amounts of lead improve the ductility of steel.

Lead has only one common allotrope, which is face-centered cubic, with the lead–lead distance being 349 pm. At 327.5 °C (621.5 °F), lead melts; the melting point is above that of tin (232 °C, 449.5 °F), but significantly below that of germanium (938 °C, 1721 °F). The boiling point of lead is 1749 °C (3180 °F), which is below those of both tin (2602 °C, 4716 °F) and germanium (2833 °C, 5131 °F). Densities increase down the group: the Ge and Sn values (5.23 and 7.29 g•cm⁻³, respectively) are significantly below that of lead: 11.32 g•cm⁻³.

A lead atom has 82 electrons, having an electronic configuration of [Xe] $4f^{14}5d^{10}6s^26p^2$. In its compounds, lead (unlike the other group 14 elements) most commonly loses its two and not four outermost electrons, becoming lead(II) ions, Pb²⁺. Such unusual behavior is rationalized by considering the inert pair effect, which occurs because of the stabilization of the 6s-orbital due to relativistic effects, which are stronger closer to the bottom of the periodic table. Tin shows a weaker such effect: tin(II) is still a reducer.

The figures for electrode potential show that lead is only slightly easier to oxidize than hydrogen. Lead thus can dissolve in acids, but this is often impossible due to specific problems (such as the formation of insoluble salts). Powdered lead burns with a bluish-white flame. As with many metals, finely divided powdered lead exhibits pyrophoricity. Toxic fumes are released when lead is burned.

Isotopes

Lead occurs naturally on Earth exclusively in the form of four isotopes: lead-204, -206, -207, and -208. All four can be radioactive as the hypothetical alpha decay of any would be exothermic, but the lower half-life limit has been put only for lead-204: over 1.4×10¹⁷ years. This effect is, however, so weak that natural lead poses no radiation hazard. Three isotopes are also found in three of the four major decay chains: lead-206, -207 and -208 are final decay products of uranium-238, uranium-235, and thorium-232, respectively.

Mercury - Inorganic Contaminant 0.002 mg/L MCL

EPA regulates mercury in drinking water to protect public health. Mercury may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Mercury?

Mercury is a liquid metal found in natural deposits such as ores containing other elements.

Uses for Mercury.

Electrical products such as dry-cell batteries, fluorescent light bulbs, switches, and other control equipment account for 50 percent of mercury used.

What are Mercury's Health Effects?

Some people who drink water containing mercury well in excess of the maximum contaminant level (MCL) for many years could experience kidney damage.

This health effects language is not intended to catalog

all possible health effects for mercury. Rather, it is intended to inform consumers of some of the possible health effects associated with mercury in drinking water when the rule was finalized.

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for mercury is 0.002 mg/L or 2 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for mercury, called a maximum contaminant level (MCL), at 0.002 mg/L or 2 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for mercury, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed mercury as part of the Six Year Review and determined that the 0.002 mg/L or 2 ppb MCLG and 0.002 mg/L or 2 ppb MCL for mercury are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for mercury than EPA.

How does Mercury get into my Drinking Water?

The major sources of mercury in drinking water are erosion of natural deposits; discharge from refineries and factories; runoff from landfills; and runoff from croplands.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Mercury is in my Drinking Water?

When routine monitoring indicates that mercury levels are above the MCL, your water supplier must take steps to reduce the amount of mercury so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Mercury be removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing mercury to below 0.002 mg/L or 2 ppb: coagulation/filtration, granular activated carbon, lime softening, and reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Mercury Explained

Mercury is a chemical element with the symbol **Hg** and atomic number 80. It is also known as **quicksilver** or **hydrargyrum** (< Greek "hydr-" *water* and "argyros" *silver*). A heavy, silvery d-block element, mercury is the only metal that is liquid at standard conditions for temperature and pressure; the only other element that is liquid under these conditions is bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature. With a freezing point of -38.83 °C and boiling point of 356.73 °C, mercury has one of the narrowest ranges of its liquid state of any metal.

Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is mostly obtained by reduction from cinnabar. Cinnabar is highly toxic by ingestion or inhalation of the dust. Mercury poisoning can also result from exposure to water-soluble forms of mercury (such as mercuric chloride or methylmercury), inhalation of mercury vapor, or eating seafood contaminated with mercury. Mercury is used in thermometers, barometers, manometers, sphygmomanometers, float valves, mercury switches, and other devices though concerns about the element's toxicity have led to mercury thermometers and sphygmomanometers being largely phased out in clinical environments in favor of alcohol-filled, galinstan-filled, digital, or thermistor-based instruments. It remains in use in scientific research applications and in amalgam material for dental restoration.

Nitrate (Measured as Nitrogen) - Inorganic Contaminant 10 mg/L MCL

EPA regulates nitrate in drinking water to protect public health. Nitrate may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Nitrate?

Nitrates and nitrites are nitrogen-oxygen chemical units which combine with various organic and inorganic compounds.

Uses for Nitrate.

The greatest use of nitrates is as a fertilizer. Once taken into the body, nitrates are converted to nitrites.

What are Nitrate's Health Effects? Infants below six months who drink water containing nitrate in excess of the maximum contaminant level (MCL) could become seriously ill and, if

untreated, may die. Symptoms include shortness of breath and blue baby syndrome.

This health effects language is not intended to catalog all possible health effects for nitrate. Rather, it is intended to inform consumers of some of the possible health effects associated with nitrate in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Nitrate?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for nitrate is 10 mg/L or 10 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for nitrate, called a maximum contaminant level (MCL), at 10 mg/L or 10 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for nitrate, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed nitrate as part of the Six Year Review and determined that the 10 mg/L or 10 ppm MCLG and 10 mg/L or 10 ppm MCL for nitrate are still protective of human health.

States may set more stringent drinking water MCLGs and MCLs for nitrate than EPA.

How does Nitrate get into my Drinking Water?

The major sources of nitrates in drinking water are runoff from fertilizer use; leaking from septic tanks, sewage; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Nitrate is in my Drinking Water?

When routine monitoring indicates that nitrate levels are above the MCL, your water supplier must take steps to reduce the amount of nitrate so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 24 hours after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will nitrate be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing nitrate to below 10 mg/L or 10 ppm: ion exchange, reverse osmosis, electrodialysis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Nitrate Explained

The **nitrate ion** is a polyatomic ion with the molecular formula NO_3^- and a molecular mass of 62.0049 g/mol.

Structure

It is the conjugate base of nitric acid, consisting of one central nitrogen atom surrounded by three identically bonded oxygen atoms in a trigonal planar arrangement. The nitrate ion carries a formal charge of -1. This results from a combination formal charge in which each of the three oxygens carries a $-\frac{2}{3}$ charge, whereas the nitrogen carries a +1 charge, all these adding up to formal charge of the polyatomic nitrate ion.

Nitrite (Measured as Nitrogen) - Inorganic Contaminant 1 mg/L MCL

EPA regulates nitrite in drinking water to protect public health. Nitrite may cause health problems if present in public or private water supplies in amounts greater than the drinking water standard set by EPA.

What is Nitrite?

Nitrates and nitrites are nitrogen-oxygen chemical units which combine with various organic and inorganic compounds.

Uses for Nitrite.

The greatest use of nitrates is as a fertilizer. Once taken into the body, nitrates are converted to nitrites.

What are Nitrite's Health Effects?

Infants below six months who drink water containing nitrite in excess of the maximum contaminant level (MCL) could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue baby syndrome.

This health effects language is not intended to catalog all possible health effects for nitrite. Rather, it is intended to inform consumers of some of the possible health effects associated with nitrite in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Nitrite?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for nitrite is 1 mg/L or 1 ppm. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for nitrite, called a maximum contaminant level (MCL), at 1 mg/L or 1 ppm. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for nitrite, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed nitrite as part of the Six Year Review and determined that the 1 mg/L or 1 ppm MCLG and 1 mg/L or 1 ppm MCL for nitrite are still protective of human health. States may set more stringent drinking water MCLGs and MCLs for nitrite than EPA.

How does Nitrite get into my Drinking Water?

The major sources of nitrite in drinking water are runoff from fertilizer use; leaching from septic tanks, sewage; and erosion of natural deposits.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals. For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Nitrite is in my Drinking Water?

When routine monitoring indicates that nitrite levels are above the MCL, your water supplier must take steps to reduce the amount of nitrite so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 24 hours after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

If your water comes from a household well, check with your health department or local water systems that use ground water for information on contaminants of concern in your area.

How will Nitrite be removed from my Drinking Water?

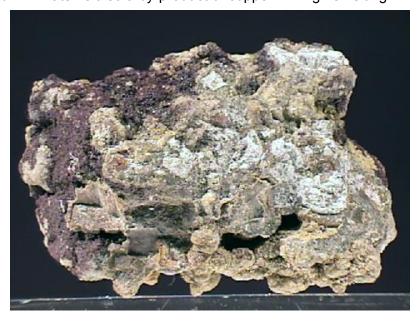
The following treatment method(s) have proven to be effective for removing nitrite to below 1 mg/L or 1 ppm: ion exchange, reverse osmosis.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Nitrite Explained


The **nitrite** ion, which has the chemical formula NO_2^- , is a symmetric anion with equal N-O bond lengths and a O-N-O bond angle of approximately 120°. Upon protonation, the unstable weak acid nitrous acid is produced. Nitrite can be oxidized or reduced, with the product somewhat dependent on the oxidizing/reducing agent and its strength. The nitrite ion is an ambidentate ligand, and is known to bond to metal centers in at least five different ways. Nitrite is also important in biochemistry as a source of the potent vasodilator nitric oxide. In organic chemistry the NO_2 group is present in nitrous acid esters and nitro compounds. Nitrites are also used in the food production industry for curing meat.

Selenium- Inorganic Contaminant 0.05 mg/L MCL

Selenium (Se) is an essential element for human nutrition, with the majority of our intake coming from foods such as nuts, cereals, meat, fish, and eggs. The concentration of Selenium in drinking water is usually low, and comes from natural minerals. In soils, selenium often occurs in soluble forms such as selenate, which are leached into rivers very easily by runoff increasing the amount of selenium in groundwater. Selenium in water is also a by-product of copper mining / smelting.

Selenium is also used in photoelectric devises because its electrical conductivity varies with light.

Naturally occurring selenium compounds have not been shown to be carcinogenic in animals. However, acute toxicity caused by high levels of selenium in water or other sources of intake has been observed in laboratory animals and in animals grazing in areas where high selenium levels exist in the soil. The US EPA has established the MCL for selenium in water at 0.05 mg/l.

What are selenium's health effects?

Some people who drink water containing selenium well in excess of the maximum contaminant level (MCL) for many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.

This health effects language is not intended to catalog all possible health effects for selenium. Rather, it is intended to inform consumers of some of the possible health effects associated with selenium in drinking water when the rule was finalized.

What are EPA's drinking water regulations for selenium?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for selenium is 0.05 mg/L or 50 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for selenium, called a maximum contaminant level (MCL), at 0.05 mg/L or 50 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies. In this case, the MCL equals the MCLG, because analytical methods or treatment technology do not pose any limitation.

The Phase II Rule, the regulation for selenium, became effective in 1992. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed selenium as part of the Six Year Review and determined that the 0.05 mg/L or 50 ppb MCLG and 0.05 mg/L or 50 ppb MCL for selenium are still protective of human health.

Selenium Water Treatment

Selenium contamination of water systems may result whenever new agricultural runoff courses through normally dry undeveloped lands. If you have high levels of selenium in your water the following are recommended selenium water treatment options. Anion exchange can reduce the amount of selenium in drinking water by 60 - 95%. Reverse Osmosis Systems are excellent at removing selenium in drinking water.

Selenium shows borderline metalloid or nonmetal behavior. Its most stable form, the grey trigonal allotrope, is sometimes called 'metallic' selenium. This is because its electrical conductivity is several orders of magnitude greater than that of the red monoclinic form.

The metallic character of selenium is further shown by the following properties:

- Its luster.
- Its crystalline structure, which is thought to include weakly 'metallic' interchain bonding.
- Its capacity, when molten, to be drawn into thin threads.
- Its reluctance to acquire 'the high positive oxidation numbers characteristic of nonmetals'.
- Its capacity to form cyclic polycations (such as Se2+ 8) when dissolved in oleums (an attribute it shares with sulfur and tellurium).
- The existence of a hydrolyzed cationic salt in the form of trihydroxoselenium (IV) perchlorate [Se(OH)₃]⁺.CIO− 4.

The Non-metallic Character of Selenium is shown by:

- Its brittleness.
- Its electronic band structure, which is that of a semiconductor.
- The low electrical conductivity ($\sim 10^{-9}$ to 10^{-12} S·cm⁻¹) of its highly purified form. This is comparable to or less than that of bromine (7.95×10⁻¹² S·cm⁻¹), a nonmetal.
- Its relatively high electronegativity (2.55 revised Pauling scale).
- The retention of its semiconducting properties in liquid form.
- Its reaction chemistry, which is mainly that of its nonmetallic anionic forms Se²⁻, SeO2-3 and SeO2-4.

Thallium- Inorganic Contaminant 0.002 mg/L MCL

Thallium is a metal found in natural deposits such as ores containing other elements.

Uses for Thallium.

The greatest use of thallium is in specialized electronic research equipment.

What are Thallium's Health Effects?

Some people who drink water containing thallium well in excess of the maximum contaminant level (MCL) for many years could experience hair loss, changes in their blood, or problems with their kidneys, intestines, or liver problems.

This health effects language is not intended to catalog all possible health effects for thallium. Rather, it is intended to inform consumers of some of the possible health effects associated with thallium in drinking water when the rule was finalized.

What are EPA's Drinking Water Regulations for Thallium?

In 1974, Congress passed the Safe Drinking Water Act. This law requires EPA to determine the level of contaminants in drinking water at which no adverse health effects are likely to occur. These non-enforceable health goals, based solely on possible health risks and exposure over a lifetime with an adequate margin of safety, are called maximum contaminant level goals (MCLG). Contaminants are any physical, chemical, biological or radiological substances or matter in water.

The MCLG for thallium is 0.0005 mg/L or 0.5 ppb. EPA has set this level of protection based on the best available science to prevent potential health problems. EPA has set an enforceable regulation for thallium, called a maximum contaminant level (MCL), at 0.002 mg/L or 2 ppb. MCLs are set as close to the health goals as possible, considering cost, benefits and the ability of public water systems to detect and remove contaminants using suitable treatment technologies.

The Phase V Rule, the regulation for thallium, became effective in 1994. The Safe Drinking Water Act requires EPA to periodically review the national primary drinking water regulation for each contaminant and revise the regulation, if appropriate. EPA reviewed thallium as part of the Six Year Review and determined that the 0.0005 mg/L or 0.5 ppb MCLG and 0.002 mg/L or 2 ppb MCL for thallium are still protective of human health. States may set more stringent drinking water MCLGs and MCLs for thallium than EPA.

How does Thallium get into my Drinking Water?

The major sources of thallium in drinking water are leaching from ore-processing sites; and discharge from electronics, glass, and drug factories.

A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) requires facilities in certain industries, which manufacture, process, or use significant amounts of toxic chemicals, to report annually on their releases of these chemicals.

For more information on the uses and releases of chemicals in your state, contact the Community Right-to-Know Hotline: (800) 424-9346.

How will I know if Thallium is in my Drinking Water?

When routine monitoring indicates that thallium levels are above the MCL, your water supplier must take steps to reduce the amount of thallium so that it is below that level. Water suppliers must notify their customers as soon as practical, but no later than 30 days after the system learns of the violation. Additional actions, such as providing alternative drinking water supplies, may be required to prevent serious risks to public health.

How will Thallium be Removed from my Drinking Water?

The following treatment method(s) have proven to be effective for removing thallium to below 0.002 mg/L or 2 ppb: activated alumina; ion exchange.

How do I learn more about my Drinking Water?

EPA strongly encourages people to learn more about their drinking water, and to support local efforts to protect the supply of safe drinking water and upgrade the community water system. Your water bill or telephone book's government listings are a good starting point for local information.

Contact your water utility. EPA requires all community water systems to prepare and deliver an annual consumer confidence report (CCR) (sometimes called a water quality report) for their customers by July 1 of each year. If your water provider is not a community water system, or if you have a private water supply, request a copy from a nearby community water system.

Thallium Explained

Thallium is a chemical element with symbol **TI** and atomic number 81. This soft gray poor metal is not found free in nature. When isolated, it resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek $\theta\alpha\lambda\lambda\delta\varsigma$, thallos, meaning "a green shoot or twig," was named by Crookes. It was isolated by electrolysis a year later, by Lamy.

Thallium tends to oxidize to the +3 and +1 oxidation states as ionic salts. The +3 state resembles that of the other elements in thallium's group (boron, aluminum, gallium, indium). However, the +1 state, which is far more prominent in thallium than the elements above it, recalls the chemistry of alkali metals, and thallium(I) ions are found geologically mostly in potassium-based ores, and (when ingested) are handled in many ways like potassium ions (K^{+}) by ion pumps in living cells.

Commercially, however, thallium is produced not from potassium ores, but as a byproduct from refining of heavy metal sulfide ores. Approximately 60–70% of thallium production is used in the electronics industry, and the remainder is used in the pharmaceutical industry and in glass manufacturing. It is also used in infrared detectors. The radioisotope thallium-201 (as the soluble chloride TICI) is used in small, nontoxic amounts as an agent in a nuclear medicine scan, during one type of nuclear cardiac stress test.

Soluble thallium salts (many of which are nearly tasteless) are highly toxic in quantity, and were historically used in rat poisons and insecticides. Use of these compounds has been restricted or banned in many countries, because of their nonselective toxicity. Thallium poisoning notably results in hair loss. Because of its historic popularity as a murder weapon, thallium has gained notoriety as "the poisoner's poison" and "inheritance powder" (alongside arsenic).

SOC Section

Common water sampling bottles.

SOC/VOC bottles are the smaller, thin bottles with the septum tops. Be careful not to get any air bubbles in the SOC/VOC bottles and this may take a few weeks to learn to collect a proper sample.

SOC Introduction

Synthetic Organic Chemicals (SOCs) are organic (carbon based) chemicals that are less volatile than Volatile Organic Compounds (VOCs). SOCs are used as pesticides, defoliants, fuel additives and as ingredients for other organic compounds. They are all man made and do not naturally occur in the environment. Some of the more well-known SOCs are Atrazine, 2,4-D, Dioxin and Polychlorinated Biphenyls (PCBs).

SOCs most often enter the natural environment through application of pesticide (including runoff from areas where they are applied), as part of a legally discharged waste stream, improper or illegal waste disposal, accidental releases or as a byproduct of incineration. Some SOCs are very persistent in the environment, whether in soil or water.

SOCs are generally toxic and can have substantial health impacts from both acute (short-term) and chronic (long-term) exposure. Many are known carcinogens (cancer causing). EPA has set Maximum Contaminant Levels (MCL) for 30 SOCs under the Safe Drinking Water Act.

The Safe Drinking Water Act requires that all water sources of all public water systems be periodically monitored for regulated SOCs. The monitoring frequency can be adjusted through a waiver if SOCs are not detected.

EPA established Maximum Contaminant Levels (MCL), Maximum Contaminant Level Goals (MCLG), monitoring requirements and best available technologies for removal for 65 chemical contaminants over a five year period as EPA gathered and analyzed occurrence and health effects data. This series of rules are known as the Chemical Phase Rules and they define regulations for three contaminant groups:

- Inorganic Chemicals (IOC),
- · Synthetic Organic Chemicals (SOC), and
- Volatile Organic Chemicals (VOC).

The Chemical Phase rules provide public health protection through the reduction of chronic risks from:

- cancer;
- organ damage; and
- circulatory,
- nervous, and
- reproductive system disorders.

They also help to reduce the occurrence of Methemoglobinemia or "blue baby syndrome" from ingestion of elevated levels of nitrate or nitrite. All public water systems must monitor for Nitrate and Nitrite. Community water systems and Non-transient non-community water systems must also monitor for IOCs, SOCs, and VOCs.

This is a list of the organic chemicals—which include pesticides, industrial chemicals, and disinfection by-products—that are tested for in public water systems (those that provide water to the public), along with the maximum standard for the contaminant, and a brief description of the potential health effects associated with long-term consumption of elevated levels of the contaminants.

The federal standard for most contaminants is listed as a Maximum Contaminant Level (MCL), the lowest concentration at which that particular contaminant is believed to represent a potential health concern. Unless otherwise noted, the MCL is expressed as parts per billion (ppb). Also, because of technological limitations or other factors, it is not possible to test for some contaminants in a reliable fashion. Instead, public water systems are required to use specific Treatment Techniques (TT) that are designed to remove these particular contaminants from the water.

In addition to the chemicals listed, monitoring is done for approximately 60 organic chemicals for which MCLs have not been established. If unacceptable levels are found of these "unregulated" contaminants—based on established state health standards and an assessment of the risks they pose—the response is the same as if an MCL has been exceeded: the public water system must notify those served by the system.

Synthetic Organic Chemicals	MCL (ppb)	Potential Health Effects	
Acrylamide	TT	Cancer, nervous system effects	
Alachlor	2	Cancer	
Aldicarb	3	Nervous system effects	
Aldicarb sulfoxide	4	Nervous system effects	
Aldicarb sulfone	2	Nervous system effects	
Atrazine	3	Liver, kidney, lung, cardiovascular effects; possible carcinogen	
Benzo(a)pyrene (PAHs)	0.2	Liver, kidney effects, possible carcinogen	
Carbofuran	40	Nervous system, reproductive system effects	
Chlordane	2	Cancer	
2,4-D	70	Liver, kidney effects	
Di(2-ethylhexyl) adipate	400	Reproductive effects	
Di(2-ethylhexyl) phthalate	6	Cancer	
Dibromochloro-propane (DBCP)	0.2	Cancer	
Dinoseb	7	Thyroid, reproductive effects	
Diquat	20	Ocular, liver, kidney effects	
Endothall	100	Liver, kidney, gastrointestinal effects	
Endrin	2	Liver, kidney effects	
Epichlorohydrin	TT	Cancer	
Ethylene dibromide (EDB)	0.05	Cancer	
Glyphosate	700	Liver, kidney effects	
Heptachlor	0.4	Cancer	
Heptachlor epoxide	0.2	Cancer	

Hexachlorobenzene	1	Cancer	
Hexachlorocyclopentadiene (HEX)	50	Kidney, stomach effects	
Lindane	0.2	Liver, kidney, nervous system, immune system, circulatory system effects	
Methoxychlor	40	Developmental, liver, kidney, nervous system effects	
Oxamyl (Vydate)	200	Kidney effects	
Pentachlorophenol	1	Cancer	
Picloram	500	Kidney, liver effects	
Polychlorinated biphenyls (PCBs)	0.5	Cancer	
Simazine	4	Body weight and blood effects, possible carcinogen	
2,3,7,8-TCDD (Dioxin)	0.00003	Cancer	
Toxaphene	3	Cancer	
2,4,5-TP (Silvex)	50	Liver, kidney effects	

Volatile Organic Compounds (VOCs)

Definitions

Volatile Organic Compounds (VOCs) – "VOCs are ground-water contaminants of concern because of very large environmental releases, human toxicity, and a tendency for some compounds to persist in and migrate with ground-water to drinking-water supply well ... In general, VOCs have high vapor pressures, low-to-medium water solubilities, and low molecular weights. Some VOCs may occur naturally in the environment, other compounds occur only as a result of manmade activities, and some compounds have both origins." - Zogorski and others, 2006

Volatile Organic Compounds (VOCs) – "Volatile organic compounds released into the atmosphere by anthropogenic and natural emissions which are important because of their involvement in photochemical pollution." - Lincoln and others, 1998

Volatile Organic Compounds (VOCs) – "Hydrocarbon compounds that have low boiling points, usually less than 100°C, and therefore evaporate readily. Some are gases at room temperature. Propane, benzene, and other components of gasoline are all volatile organic compounds." - Art, 1993

Volatile Organic Compounds (VOCs) – "VOCs are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are compounds of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinking water supplies is a human-health concern because many are toxic and are known or suspected human carcinogens." - U.S. Geological Survey, 2005

VOCs Explained

Volatile organic compounds (VOCs) are organic chemicals that have a high vapor pressure at ordinary, room-temperature conditions. Their high vapor pressure results from a low boiling point, which causes large numbers of molecules to evaporate or sublimate from the liquid or solid form of the compound and enter the surrounding air. An example is formaldehyde, with a boiling point of -19 °C (-2 °F), slowly exiting paint and getting into the air.

VOCs are numerous, varied, and ubiquitous. They include both human-made and naturally occurring chemical compounds. Most scents or odors are of VOCs. VOCs play an important role in communication between plants. Some VOCs are dangerous to human health or cause harm to the environment. Anthropogenic VOCs are regulated by law, especially indoors, where concentrations are the highest. Harmful VOCs are typically not acutely toxic, but instead have compounding long-term health effects. Because the concentrations are usually low and the symptoms slow to develop, research into VOCs and their effects is difficult.

Specific Components Paints and Coatings

A major source of man-made VOCs are coatings, especially paints and protective coatings. Solvents are required to spread a protective or decorative film. Approximately 12 billion liters of paints are produced annually. Typical solvents are aliphatic hydrocarbons, ethyl acetate, glycol ethers, and acetone. Motivated by cost, environmental concerns, and regulation, the paint and coating industries are increasingly shifting toward aqueous solvents.

Chlorofluorocarbons and Chlorocarbons

Chlorofluorocarbons, which are banned or highly regulated, were widely used cleaning products and refrigerants. Tetrachloroethene is used widely in dry cleaning and by industry. Industrial use of fossil fuels produces VOCs either directly as products (e.g., gasoline) or indirectly as byproducts (e.g., automobile exhaust).

Benzene

One VOC that is a known human carcinogen is benzene, which is a chemical found in environmental tobacco smoke, stored fuels, and exhaust from cars in an attached garage. Benzene also has natural sources such as volcanoes and forest fires. It is frequently used to make other chemicals in the production of plastics, resins, and synthetic fibers. Benzene evaporates into the air quickly and the vapor of benzene is heavier than air allowing the compound to sink into low-lying areas. Benzene has also been known to contaminate food and water and if digested can lead to vomiting, dizziness, sleepiness, rapid heartbeat, and at high levels, even death may occur.

Methylene Chloride

Methylene chloride is another VOC that is highly dangerous to human health. It can be found in adhesive removers and aerosol spray paints and the chemical has been proven to cause cancer in animals. In the human body, methylene chloride is converted to carbon monoxide and a person will suffer the same symptoms as exposure to carbon monoxide. If a product that contains methylene chloride needs to be used the best way to protect human health is to use the product outdoors. If it must be used indoors, proper ventilation is essential to keeping exposure levels down.

Perchloroethylene

Perchloroethylene is a volatile organic compound that has been linked to causing cancer in animals. It is also suspected to cause many of the breathing related symptoms of exposure to VOC's. Perchloroethylene is used mostly in dry cleaning. Studies show that people breathe in low levels of this VOC in homes where dry-cleaned clothes are stored and while wearing dry-cleaned clothing. While dry cleaners attempt to recapture perchlorothylene in the dry cleaning process to reuse it in an effort to save money, they can't recapture it all. To avoid exposure to perchlorothylene, if a strong chemical odor is coming from clothing when picked up from the dry cleaner, do not accept them and request that less of the chemical be used as well as a complete drying of the garments

MTBE

MTBE was banned in the US around 2004 in order to limit further contamination of drinking water aquifers primarily from leaking underground gasoline storage tanks where MTBE was used as an octane booster and oxygenated-additive.

Formaldehyde

Many building materials such as paints, adhesives, wall boards, and ceiling tiles slowly emit formaldehyde, which irritates the mucous membranes and can make a person irritated and uncomfortable. Formaldehyde emissions from wood are in the range of 0.02 – 0.04 ppm. Relative humidity within an indoor environment can also affect the emissions of formaldehyde. High relative humidity and high temperatures allow more vaporization of formaldehyde from wood-materials.

Health Risks

Respiratory, allergic, or immune effects in infants or children are associated with man-made VOCs and other indoor or outdoor air pollutants. Some VOCs, such as styrene and limonene, can react with nitrogen oxides or with ozone to produce new oxidation products and secondary aerosols, which can cause sensory irritation symptoms. Unspecified VOCs are important in the creation of smog.

Health effects include:

Eye, nose, and throat irritation; headaches, loss of coordination, nausea; damage to liver, kidney, and central nervous system. Some organics can cause cancer in animals; some are suspected or known to cause cancer in humans. Key signs or symptoms associated with exposure to VOCs include conjunctival irritation, nose and throat discomfort, headache, allergic skin reaction, dyspnea, declines in serum cholinesterase levels, nausea, emesis, epistaxis, fatigue, dizziness.

The ability of organic chemicals to cause health effects varies greatly from those that are highly toxic, to those with no known health effects. As with other pollutants, the extent and nature of the health effect will depend on many factors including level of exposure and length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment are among the immediate symptoms that some people have experienced soon after exposure to some organics. At present, not much is known about what health effects occur from the levels of organics usually found in homes. Many organic compounds are known to cause cancer in animals; some are suspected of causing, or are known to cause, cancer in humans.

Reducing Exposure

To reduce exposure to these toxins, one should buy products that contain Low-VOC's or No VOC's. Only the quantity which will soon be needed should be purchased, eliminating stockpiling of these chemicals. Use products with VOC's in well ventilated areas. When designing homes and buildings, design teams can implement the best possible ventilation plans, call for the best mechanical systems available, and design assemblies to reduce the amount of infiltration into the building. These methods will help improve indoor air quality, but by themselves they cannot keep a building from becoming an unhealthy place to breathe. While proper building ventilation is a key component to improving indoor air quality, it cannot do the job on its own. As stated earlier, awareness is the key component to improving air quality, when choosing building materials, furnishings, and decorations. When architects and engineers implement best practices in ventilation and mechanical systems, the owner must maintain good air quality levels thereafter.

Limit Values for VOC Emissions

Limit values for VOC emissions into indoor air are published by e.g. AgBB, AFSSET, California Department of Public Health, and others.

Chemical Fingerprinting

The exhaled human breath contains a few hundred volatile organic compounds and is used in breath analysis to serve as a VOC biomarker to test for diseases such as lung cancer. One study has shown that "volatile organic compounds ... are mainly blood borne and therefore enable monitoring of different processes in the body." And it appears that VOC compounds in the body "may be either produced by metabolic processes or inhaled/absorbed from exogenous sources" such as environmental tobacco smoke. Research is still in the process to determine whether VOCs in the body are contributed by cellular processes or by the cancerous tumors in the lung or other organs.

Volatile Organic Chemicals	MCL (ppb)	Potential Health Effects
Benzene	5	Cancer
Carbon tetrachloride	5	Liver effects, cancer
Chlorobenzene	100	Liver, kidney, nervous system effects
o-Dichlorobenzene	600	Liver, kidney, blood cell effects
para-Dichlorobenzene	175	Kidney effects, possible carcinogen
1,2-Dichloroethane	5	Cancer
1,1-Dichloroethylene	7	Liver, kidney effects, possible carcinogen
cis-1,2-Dichloroethylene	70	Liver, kidney, nervous system, circulatory system effects
trans-1,2-Dichloroethylene	100	Liver, kidney, nervous system, circulatory system effects
1,2-Dichloropropane	5	Cancer
Ethylbenzene	700	Liver, kidney, nervous system effects
Methylene chloride	5	Cancer
Styrene	100	Liver, nervous systems effects, possible carcinogen
Tetrachloroethylene (PCE)	5	Cancer
Toluene	1,000	Liver, kidney, nervous system, circulatory system effects
Total trihalomethanes Chloroform Bromoform Bromodichloromethane Chlorodibromomethane	100	Cancer
1,2,4-Trichlorobenzene	70	Liver, kidney effects
1,1,1-Trichloroethane	200	Liver, nervous system effects
1,1,2-Trichloroethane	5	Kidney, liver effects, possible carcinogen
Trichloroethylene (TCE)	5	Cancer
Vinyl chloride	2	Nervous system, liver effects, cancer

Disinfection By-products	MCL (ppb)	Potential Health Effects
Bromate	10	Cancer
Chlorate	1,000	Anemia, nervous system effects
Haloacetic Acids (HAA5)*	60	Cancer
Total trihalomethanes (TTHMs)**	100	Cancer

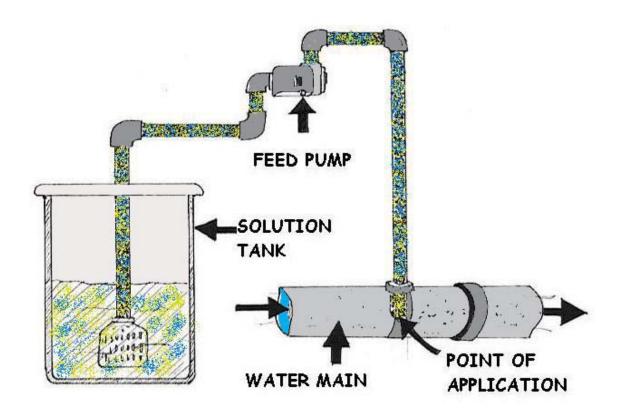
^{*}Haloacetic acids consist of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid.

^{**}Total trihalomethanes consist of chloroform, bromoform, bromodichloromethane, and chlorodibromomethane.

Chlorine Section

1-ton chlorine containers, rear side of container.

Professor Melissa Durbin in front of a Chlorine rotometer.



Top photograph, chlorine container gaskets. Bottom, we often take our students on a walking tours of a large chlorine facilities.

Chlorine Gas

Background: Chlorine gas is a pulmonary irritant with intermediate water solubility that causes acute damage in the upper and lower respiratory tract. Chlorine gas was first used as a chemical weapon at Ypres, France in 1915. Of the 70,552 American soldiers poisoned with various gasses in World War I, 1843 were exposed to chlorine gas. Approximately 10.5 million tons and over 1 million containers of chlorine are shipped in the U.S. each year.

Chlorine is a yellowish-green gas at standard temperature and pressure. It is extremely reactive with most elements. Because its density is greater than that of air, the gas settles low to the ground. It is a respiratory irritant, and burns the skin. Just a few breaths of it are fatal. Cl₂ gas does not occur naturally, although chlorine can be found in a number of compounds.

Atomic Number: 17

Standard State: gas at 298K Melting Point: 171.6K (-101.5 C) Boiling Point: 239.11K (-34.04 C)

Density: N/A

Molar Volume: 17.39 cm³

Electronegativity: 3.16 Pauling Units

Crystal Structure: The Diatomic Chlorine molecules arrange themselves in an orthorhombic

structure.

Pathophysiology: Chlorine is a greenish-yellow, noncombustible gas at room temperature and atmospheric pressure. The intermediate water solubility of chlorine accounts for its effect on the upper airway and the lower respiratory tract. Exposure to chlorine gas may be prolonged because its moderate water solubility may not cause upper airway symptoms for several minutes. In addition, the density of the gas is greater than that of air, causing it to remain near ground level and increasing exposure time.

The odor threshold for chlorine is approximately 0.3-0.5 parts per million (ppm); however, distinguishing toxic air levels from permissible air levels may be difficult until irritative symptoms are present.

Mechanism of Activity

The mechanisms of the above biological activity are poorly understood and the predominant anatomic site of injury may vary, depending on the chemical species produced. Cellular injury is believed to result from the oxidation of functional groups in cell components, from reactions with tissue water to form hypochlorous and hydrochloric acid, and from the generation of free oxygen radicals. Although the idea that chlorine causes direct tissue damage by generating free oxygen radicals was once accepted, this idea is now controversial.

The cylinders on the right contain chlorine gas. The gas comes out of the cylinder through a gas regulator. The cylinders are on a scale that operators use to measure the amount used each day. The chains are used to prevent the tanks from falling over.

Chlorine gas is stored in vented rooms that have panic bar equipped doors. Operators have the equipment necessary to reduce the impact of a gas leak, but rely on trained emergency response teams to contain leaks.

Solubility Effects

Hydrochloric acid is highly soluble in water. The predominant targets of the acid are the epithelia of the ocular conjunctivae and upper respiratory mucus membranes.

Hypochlorous acid is also highly water soluble with an injury pattern similar to hydrochloric acid.

Hypochlorous acid may account for the toxicity of elemental chlorine and hydrochloric acid to the human body.

Early Response to Chlorine Gas

Chlorine gas, when mixed with ammonia, reacts to form chloramine gas. In the presence of water, chloramines decompose to ammonia and hypochlorous acid or hydrochloric acid. The early response to chlorine exposure depends on the concentration of chlorine gas, duration of exposure, water content of the tissues exposed, and individual susceptibility.

Immediate Effects

The immediate effects of chlorine gas toxicity include acute inflammation of the conjunctivae, nose, pharynx, larynx, trachea, and bronchi. Irritation of the airway mucosa leads to local edema secondary to active arterial and capillary hyperemia. Plasma exudation results in filling the alveoli with edema fluid, resulting in pulmonary congestion.

Pathological Findings

Pathologic findings are nonspecific. They include severe pulmonary edema, pneumonia, hyaline membrane formation, multiple pulmonary thromboses, and ulcerative tracheobronchitis.

The hallmark of pulmonary injury associated with chlorine toxicity is pulmonary edema, manifested as hypoxia. Non-cardiogenic pulmonary edema is thought to occur when there is a loss of pulmonary capillary integrity.

Chlorine gas piping.

Using DPD Method for Chlorine Residuals

N, N - diethyl-p-phenylenediame, want to impress someone, memorize that.

Small portable chlorine measuring kit. The redder the mixture, the hotter or stronger the chlorine is in solution.

Measuring Chlorine Residual

Chlorine residual is the amount of chlorine remaining in water that can be used for disinfection. A convenient, simple and inexpensive way to measure chlorine residual is to use a small portable kit with pre-measured packets of chemicals that are added to water. (Make sure you buy a test kit using the *DPD method*, and not the outdated orthotolodine method.)

Chlorine test kits are very useful in adjusting the chlorine dose you apply. You can measure what chlorine levels are being found in your system (especially at the far ends).

Free chlorine residuals need to be checked and recorded daily. These results should be kept on file for a health or regulatory agency inspection during a regular field visit.

The most accurate method for determining chlorine residuals is to use the laboratory amperometric titration method.

Chemistry of Chlorination

Chlorine can be added as sodium hypochlorite, calcium hypochlorite or chlorine gas. When any of these is added to water, chemical reactions occur as these equations show:

CI 2 + H 2 O → HOCI + HCI (chlorine gas) (water) (hypochlorous acid) (hydrochloric acid)

CaOCI + H 2 O → 2HOCI + Ca(OH) (calcium hypochlorite) (water) (hypochlorous acid) (calcium hydroxide)

NaOCI + H 2 O → HOCI + Na(OH) (sodium hypochlorite) (water) (hypochlorous acid) (sodium hydroxide)

All three forms of chlorine produce hypochlorous acid (HOCI) when added to water. Hypochlorous acid is a weak acid but a strong disinfecting agent. The amount of hypochlorous acid depends on the pH and temperature of the water. Under normal water conditions, hypochlorous acid will also chemically react and break down into a hypochlorite ion.

(OCI -): HOCI H + + OCI - Also expressed HOCI \rightarrow H + + OCI - (hypochlorous acid) (hydrogen) (hypochlorite ion)

The hypochlorite ion is a much weaker disinfecting agent than hypochlorous acid, about 100 times less effective.

Let's now look at how pH and temperature affect the ratio of hypochlorous acid to hypochlorite ions. As the temperature is decreased, the ratio of hypochlorous acid increases. Temperature plays a small part in the acid ratio. Although the ratio of hypochlorous acid is greater at lower temperatures, pathogenic organisms are actually harder to kill. All other things being equal, higher water temperatures and a lower pH are more conducive to chlorine disinfection.

Types of Residual

If water were pure, the measured amount of chlorine in the water should be the same as the amount added. But water is not 100% pure. There are always other substances (interfering agents) such as iron, manganese, turbidity, etc., which will combine chemically with the chlorine.

This is called the *chlorine demand*. Naturally, once chlorine molecules are combined with these interfering agents, and they are not capable of disinfection. It is free chlorine which is much more effective as a disinfecting agent.

So let's look now at how free, total, and combined chlorine are related. When a chlorine residual test is taken, either a total or a free chlorine residual can be read.

Total residual is all chlorine that is available for disinfection.

Total chlorine residual = free + combined chlorine residual.

Free chlorine residual is a much stronger disinfecting agent. Therefore, most water regulating agencies will require that your daily chlorine residual readings be of free chlorine residual.

Break-point chlorination is where the chlorine demand has been satisfied, any additional chlorine will be considered *free chlorine*.

Residual Concentration/Contact Time (CT) Requirements

Disinfection to eliminate fecal and coliform bacteria may not be sufficient to adequately reduce pathogens such as Giardia or viruses to desired levels. Use of the "CT" disinfection concept is recommended to demonstrate satisfactory treatment, since monitoring for very low levels of pathogens in treated water is analytically very difficult.

The CT concept, as developed by the United States Environmental Protection Agency (Federal Register, 40 CFR, Parts 141 and 142, June 29, 1989), uses the combination of disinfectant residual concentration (mg/L) and the effective disinfection contact time (in minutes) to measure effective pathogen reduction. The residual is measured at the end of the process, and the contact time used is the T10 of the process unit (time for 10% of the water to pass).

CT = Concentration (mg/L) x Time (minutes)

The effective reduction in pathogens can be calculated by reference to standard tables of required CTs.

500-pound chlorine container and 150 pound chlorine gas cylinders. The 1/2 ton is on a scale. Cylinders stand upright and containers on their sides.

Required Giardia/Virus Reduction

All surface water treatment systems shall ensure a minimum reduction in pathogen levels: 3-log reduction in Giardia and 4-log reduction in viruses. These requirements are based on unpolluted raw water sources with Giardia levels of = 1 cyst/100 L, and a finished water goal of 1 cyst/100,000 L (equivalent to 1 in 10,000 risk of infection per person per year). Higher raw water contamination levels may require greater removals as shown on Table 4.1.

TABLE 4.1 LEVEL OF GIARDIA REDUCTION Raw Water Giardia Levels* Recommended Giardia Log Reduction

< 1 cyst/100 L 3-log

1 cyst/100 L - 10 cysts/100 L 3-log - 4-log

10 cysts/100 L - 100 cysts/100 L 4-log - 5-log

> 100 cvsts/100 L > 5-log

*Use geometric means of data to determine raw water Giardia levels for compliance.

Required CT Value

Required CT values are dependent on pH, residual concentration, temperature, and the disinfectant used. The tables attached to Appendices A and B shall be used to determine the required CT.

Calculation and Reporting of CT Data

Disinfection CT values shall be calculated daily, using either the maximum hourly flow and the disinfectant residual at the same time, or by using the lowest CT value if it is calculated more frequently. Actual CT values are then compared to required CT values. Results shall be reported as a reduction Ratio, along with the appropriate pH, temperature, and disinfectant residual. The reduction Ratio must be greater than 1.0 to be acceptable. Users may also calculate and record actual log reductions. Reduction Ratio = CT actual ÷ CT required.

Here are some important chlorine cylinder parts. Upper left, yoke type connector, upper right cylinder wrenches and fusible plugs.

Chlorine (DDBP)

Today, most of our drinking water supplies are free of the micro-organisms — viruses, bacteria, and protozoa — that cause serious and life-threatening diseases, such as cholera and typhoid fever. This is largely due to the introduction of water treatment, particularly chlorination, at the turn of the century. Living cells react with chlorine and reduce its concentration while they die. Their organic matter and other substances that are present convert to chlorinated derivatives, some of which are effective killing agents. Chlorine present as CI, HOCI, and OCI is called *free available chlorine* and that which is bound but still effective is *combined chlorine*. A particularly important group of compounds with combined chlorine is the chloramines formed by reactions with ammonia.

One especially important feature of disinfection using chlorine is the ease of overdosing to create a residual concentration. There is a constant danger that safe water leaving the treatment plant may become contaminated later. There may be breaks in water mains, loss of pressure that permits an inward leak, or plumbing errors. This residual concentration of chlorine provides some degree of protection right to the water faucet. With free available chlorine, a typical residual is from 0.1 to 0.5 ppm. Because chlorinated organic compounds are less effective, a typical residual is 2 ppm for combined chlorine.

There will be no chlorine residual unless there is an excess over the amount that reacts with the organic matter present. However, reaction kinetics complicates interpretation of chlorination data. The correct excess is obtained in a method called *Break Point Chlorination*.

Chlorine by-products

Chlorination by-products are the chemicals formed when the chlorine used to kill disease-causing micro-organisms reacts with naturally occurring organic matter (i.e., decay products of vegetation) in the water. The most common chlorination by-products found in U.S. drinking water supplies are the trihalomethanes (THMs).

The principal trihalomethanes are:

Chloroform, bromodichloromethane, chlorodibromomethane, and bromoform. Other less common chlorination by-products includes the haloacetic acids and haloacetonitriles.

The amount of THMs formed in drinking water can be influenced by a number of factors, including the season and the source of the water. For example, THM concentrations are generally lower in winter than in summer, because concentrations of natural organic matter are lower and less chlorine is required to disinfect at colder temperatures. THM levels are also low when wells or large lakes are used as the drinking water source, because organic matter concentrations are generally low in these sources. The opposite — high organic matter concentrations and high THM levels — is true when rivers or other surface waters are used as the source of the drinking water.

Health Effects

Laboratory animals exposed to very high levels of THMs have shown increased incidences of cancer. Also, several studies of cancer incidence in human populations have reported associations between long-term exposure to high levels of chlorination by-products and an increased risk of certain types of cancer.

For instance, a recent study conducted in the Great Lakes basin reported an increased risk of bladder and possibly colon cancer in people who drank chlorinated surface water for 35 years or more.

Possible relationships between exposure to high levels of THMs and adverse reproductive effects in humans have also been examined recently. In a California study, pregnant women who consumed large amounts of tap water containing elevated levels of THMs were found to have an increased risk of spontaneous abortion.

The available studies on health effects do not provide conclusive proof of a relationship between exposure to THMs and cancer or reproductive effects, but indicate the need for further research to confirm their results and to assess the potential health effects of chlorination by-products other than THMs.

Chlorine storage room, notice the vents at the bottom and top. The bottom vent will allow the gas to ventilate because Cl₂ gas is 2.5 times heavier than air and 1.2 times heavier than water.

Risks and Benefits of Chlorine

Current evidence indicates the benefits of chlorinating our drinking water — reduced incidence of water-borne diseases — are much greater than the risks of health effects from THMs.

Although other disinfectants are available, chlorine continues to be the choice of water treatment experts. When used with modern water filtration practices, chlorine is effective against virtually all infectious agents — bacteria, viruses, and protozoa. It is easy to apply, and most importantly, small amounts of chlorine remain in the water and continue to disinfect throughout the distribution system. This ensures the water remains free of microbial contamination on its journey from the treatment plant to the consumer's tap.

A number of cities use ozone to disinfect their source water and to reduce THM formation. Although ozone is a highly effective disinfectant, it breaks down quickly, so that small amounts of chlorine or other disinfectants must be added to the water to ensure continued disinfection as the water is piped to the consumer's tap. Modifying water treatment facilities to use ozone can be expensive, and ozone treatment can create other undesirable by-products that may be harmful to health if they are not controlled (i.e., bromate).

Examples of other disinfectants include chloramines and chlorine dioxide. Chloramines are weaker disinfectants than chlorine, especially against viruses and protozoa; however, they are very persistent and, as such, can be useful for preventing re-growth of microbial pathogens in drinking water distribution systems.

Chlorine dioxide can be an effective disinfectant, but it forms chlorate and chlorite, compounds whose toxicity has not yet been fully determined. Assessments of the health risks from these and other chlorine-based disinfectants and chlorination by-products are currently under way.

In general, the preferred method of controlling chlorination by-products is removal of the naturally occurring organic matter from the source water so it cannot react with the chlorine to form by-products. THM levels may also be reduced through the replacement of chlorine with alternative disinfectants.

A third option is removal of the by-products by adsorption on activated carbon beds. It is extremely important that water treatment plants ensure the methods used to control chlorination by-products do not compromise the effectiveness of water disinfection.

Chlorine Piping

Water softening may be needed when your source water is too hard for successful chlorination using HTH.

Chlorinator Parts

- A. Ejector
- **B. Check Valve Assembly**
- C. Rate Valve
- D. Diaphragm Assembly
- **E.** Interconnection Manifold
- F. Rotometer Tube and Float
- G. Pressure Gauge
- H. Gas Supply

Various Chlorine measurement devices or Rotometers.

Safety Information: There is a fusible plug on every chlorine tank. This metal plug will melt at 158° to 165° F. This is to prevent a build-up of excessive pressure and the possibility of cylinder rupture due to fire or high temperatures.

Chlorination Equipment Requirements

For all water treatment facilities, chlorine gas under pressure shall not be permitted outside the chlorine room. The chlorine room is the room where chlorine gas cylinders and/or ton containers are stored. Vacuum regulators shall also be located inside the chlorine room. The chlorinator, which is the mechanical gas proportioning equipment, may or may not be located inside the chlorine room. For new and upgraded facilities, from the chlorine room, chlorine gas vacuum lines should be run as close to the point of solution application as possible. Injectors should be located to minimize the length of pressurized chlorine solution lines. A gas pressure relief system shall be included in the gas vacuum line between the vacuum regulator(s) and the chlorinator(s) to ensure that pressurized chlorine gas does not enter the gas vacuum lines leaving the chlorine room.

The gas pressure relief system shall vent pressurized gas to the atmosphere at a location that is not hazardous to plant personnel; the vent line should be run in such a manner that moisture collecting traps are avoided. The vacuum regulating valve(s) shall have positive shutdown in the event of a break in the downstream vacuum lines. As an alternative to chlorine gas, it is permissible to use hypochlorite with positive displacement pumping. Antisiphon valves shall be incorporated in the pump heads or in the discharge piping.

Capacity

The chlorinator shall have the capacity to dose enough chlorine to overcome the demand and maintain the required concentration of the *free* or *combined* chlorine.

Methods of Control

The chlorine feed system shall be automatic proportional controlled, automatic residual controlled, or compound loop controlled. In the automatic proportional controlled system, the equipment adjusts the chlorine feed rate automatically in accordance with the flow changes to provide a constant pre-established dosage for all rates of flow. In the automatic residual controlled system, the chlorine feeder is used in conjunction with a chlorine residual analyzer which controls the feed rate of the chlorine feeders to maintain a particular residual in the treated water.

In the compound loop control system, the feed rate of the chlorinator is controlled by a flow proportional signal and a residual analyzer signal to maintain particular chlorine residual in the water. Manual chlorine feed systems may be installed for groundwater systems with constant flow rate.

Standby Provision

As a safeguard against malfunction and/or shut-down, standby chlorination equipment having the capacity to replace the largest unit shall be provided. For uninterrupted chlorination, gas chlorinators shall be equipped with an automatic changeover system. In addition, spare parts shall be available for all chlorinators.

Weigh Scales

Scales for weighing cylinders shall be provided at all plants using chlorine gas to permit an accurate reading of total daily weight of chlorine used. At large plants, scales of the recording and indicating type are recommended. As a minimum, a platform scale shall be provided. Scales shall be of corrosion-resistant material.

Securing Cylinders

All chlorine cylinders shall be securely positioned to safeguard against movement. Tag the cylinder *empty* and store upright and chained. Ton containers may not be stacked.

Chlorine Leak Detection

Automatic chlorine leak detection and related alarm equipment shall be installed at all water treatment plants using chlorine gas. Leak detection shall be provided for the chlorine rooms. Chlorine leak detection equipment should be connected to a remote audible and visual alarm system and checked on a regular basis to verify proper operation.

Leak detection equipment shall not automatically activate the chlorine room ventilation system in such a manner as to discharge chlorine gas. During an emergency, if the chlorine room is unoccupied, the chlorine gas leakage shall be contained within the chlorine room itself in order to facilitate a proper method of cleanup.

Consideration should also be given to the provision of caustic soda solution reaction tanks for absorbing the contents of leaking one-ton cylinders where such cylinders are in use.

Chlorine leak detection equipment may not be required for very small chlorine rooms with an exterior door (i.e., floor area less than 3m²).

You can use a spray solution of Ammonia or a rag soaked with Ammonia to detect a small Cl₂ leak. If there is a leak, the ammonia will create a white colored smoke. Ammonium Chloride.

Safety Equipment

The facility shall be provided with personnel safety equipment to include the following:

Respiratory equipment, safety shower, eyewash, gloves, eye protection, protective clothing, cylinder and/or ton repair kits.

Respiratory equipment shall be provided which has been approved under the Occupational Health and Safety Act, General Safety Regulation - Selection of Respiratory Protective Equipment. Equipment shall be in close proximity to the access door(s) of the chlorine room.

Chlorine Room Design Requirements

Where gas chlorination is practiced, the gas cylinders and/or the ton containers up to the vacuum regulators shall be housed in a gas-tight, well illuminated, corrosion resistant and mechanically ventilated enclosure. The chlorinator may or may not be located inside the chlorine room. The chlorine room shall be located at the ground floor level.

Ventilation

Gas chlorine rooms shall have entirely separate exhaust ventilation systems capable of delivering one complete air change per minute during periods of chlorine room occupancy only - there shall be no continuous ventilation. The air outlet from the room shall be 150 mm above the floor and the point of discharge located to preclude contamination of air inlets to buildings or areas used by people. The vents to the outside shall have insect screens.

Air inlets should be louvered near the ceiling, the air being of such temperature as to not adversely affect the chlorination equipment.

Separate switches for fans and lights shall be outside the room at all entrance or viewing points, and a clear wire-reinforced glass window shall be installed in such a manner as to allow the operator to inspect from the outside of the room.

Heating

Chlorine rooms shall have separate heating systems, if a forced air system is used to heat the building. Hot water heating system for the building will negate the need for a separate heating system for the chlorine room. The heat should be controlled at approximately 15°C. Cylinders or containers shall be protected to ensure that the chlorine maintains its gaseous state when entering the chlorinator.

Access

All access to the chlorine room shall only be from the exterior of the building. Visual inspection of the chlorination equipment from inside may be provided by the installation of glass window(s) in the walls of the chlorine room. Windows should be at least 0.20 m2 in area, and be made of clear wire reinforced glass.

There should also be a *panic bar* on the inside of the chlorine room door for emergency exit.

Storage of Chlorine Cylinders

If necessary, a separate storage room may be provided to simply store the chlorine gas cylinders, with no connection to the line. The chlorine cylinder storage room shall have access either to the chlorine room or from the plant exterior, and be arranged to prevent the uncontrolled release of spilled gas.

Chlorine gas storage room shall have provision for ventilation at thirty air changes per hour. Viewing glass windows and panic button on the inside of door should also be provided.

In very large facilities, entry into the chlorine rooms may be through a vestibule from outside.

Scrubbers

For facilities located within residential or densely populated areas, consideration shall be given to provide scrubbers for the chlorine room.

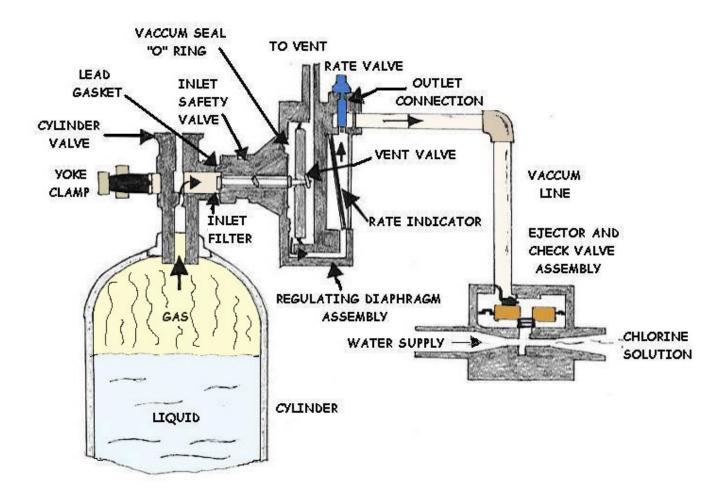
Troubleshooting Hypochlorination Problems

Problem

- 1. Chemical feed pump won't run.
- 2. Low chlorine residual at POE.
- 2. Low chlorine residual at POE.
- 3. Chemical feed pump won't prime.
- 4. Loss of prime

Possible Cause

- 1A. No power.
- 1B. Electrical problem with signal from well pump or flow sensor.
- 1C. Motor failure.
- 2A. Improper procedure for running chlorine residual test or expired chemical reagents.
- 2B. Pump not feeding an adequate quantity of chlorine.
- 2C. Change in raw water quality.
- 2D. Pump air bound.
- 2E. Chlorine supply tank empty.
- 2F. Reduced effectiveness of chlorine solution.
- 2G. Damaged suction or discharge lines. (cracks or crimps)
- 2H. Connection at point of injection clogged or leaking.
- 3A. Speed and stroke setting inadequate.
- 3B. Suction lift too high due to feed pump relocation.
- 3C. Discharge pressure too high.
- 3D. Suction fitting clogged.
- 3E. Trapped air in suction line.
- 3F. Suction line not submerged in solution.
- 4A. Solution tank empty.
- 4B. Air leaks in suction fittings.
- 4C. Foot valve not in vertical position.
- 4D. Air trapped in suction tubing.


Possible Solution

1A. Check to see if plug is securely in place.

Insure that there is power to the outlet and control systems.

- 1B. Check pump motor starter. Bypass flow sensor to determine if pump will operate manually.
- 1C. Check manufacturer's information.
- 2A Check expiration date on chemical reagents. Check test procedure as described in test kit manual. Speed or stroke setting too low.
- 2B. Damaged diaphragm or suction leak.
- 2C. Test raw water for constituents that may cause increased chlorine demand. (i.e. iron, manganese, etc.)
- 2D. Check foot valve.
- 2E. Fill supply tank.
- 2F. Check date that chlorine was received. Sodium hypochlorite solution may lose effectiveness after 30 days. If that is the case, the feed rate must be increased to obtain the desired residual.
- 2G. Clean or repair lines with problems.
- 2H. Flush line and connection with mild acid such as Acetic or Muriatic. Replace any damaged parts that may be leaking.
- 3A. Check manufacturers' recommendations for proper settings to prime pump.
- 3B. Check maximum suction lift for pump and relocate as necessary.

- 3C. Check well pump discharge pressure.
- Check pressure rating on chemical feed pump.
- 3D. Clean or replace screen.
- 3E. Insure all fittings are tight.
- 3F. Add chlorine solution to supply tank.
- 4A. Fill tank.
- 4B. Check for cracked fittings.
- 4C. Adjust foot valve to proper position.
- 4D. Check connections and fittings.

Disinfection Policy Procedure Example

- A. Disinfection may be accomplished with calcium or sodium hypochlorites or gas chlorine or other disinfecting agents approved by the Department. Proposals for the use of disinfecting agents other than those specifically listed above must be approved by the Department prior to preparation of final plans and specifications. The Department will grant approval when all available information establishes that the chemical to be used as a disinfecting agent meets the following conditions: the residual levels created by the use of the chemical will not jeopardize the health of the user of the water, testing procedures for residual elements are recognized in "Standard Methods for the Examination of Water and Wastewater" (1978 Edition-American Public Health Association) (see Section 930.15) and the chemical will destroy bacteria in the water supply.
- B. **Chlorination Equipment.** The Chlorinator shall be designed to provide a free chlorine residual of at least two milligrams per liter in the water after contact time of at least 30 minutes at flow rates as indicated in Exhibit A. The equipment shall be of such design that it will operate accurately over the desired feeding range. Where flow is uniform, actuation of a constant volume feeder by the pump circuit is required. Where flow is variable, automatic flow proportioning is required.
- C. Contact Time and Point of Application. A minimum free chlorine residual of at least 0.1 milligram per liter shall be maintained at distant points in the water distribution system. Chlorine shall be applied after the filter and prior to the filtered water storage tank.
- D. **Testing Equipment.** Chlorine residual test equipment capable of measuring free chlorine residual shall be provided and shall be capable of measuring residuals to the nearest 0.1 mg/1 in the range below 0.5 mg/1, to the nearest 0.3 mg/1 between 0.5 and 1.0 mg/1, and to the nearest 0.5 mg/1 between 1.0 mg/1 and 2.0 mg/1.
- E. **Hypochlorinator.** Positive displacement pumps shall be provided to inject hypochlorite solution. The pump shall be of variable flow type and shall be of sufficient capacity to feed the required amount of disinfectant. If calcium hypochlorite is used, the concentration of calcium hypochlorite in the solution shall not exceed 5 percent. The solution container shall have a minimum capacity equal to the volume of solution required per day. The hypochlorinator shall be electrically interconnected with the raw water feed pump so that both will start and stop together.

The Water Department should maintain an emergency hypochlorinator in reserve status at the operation center to be used during non-routine chlorination occurrences. Additionally, an adequate supply of Sodium Hypochlorite is maintained at all times. All reservoirs are routinely chlorinated to produce a free chlorine residual. Emergency chlorination of any of the Water Department's reservoirs can occur through access ports in each of the reservoir structures.

Alternate Disinfectants

Chloramine

Chloramine is a very weak disinfectant for Giardia and virus reduction. It is recommended that it be used in conjunction with a stronger disinfectant. It is best utilized as a stable distribution system disinfectant.

In the production of chloramines, the ammonia residuals in the finished water, when fed in excess of stoichiometric amount needed, should be limited to inhibit growth of nitrifying bacteria.

Chlorine Dioxide

Chlorine dioxide may be used for either taste or odor control or as a pre-disinfectant. Total residual oxidants (including chlorine dioxide and chlorite, but excluding chlorate) shall not exceed 0.30 mg/L during normal operation or 0.50 mg/L (including chlorine dioxide, chlorite and chlorate) during periods of extreme variations in the raw water supply.

Chlorine dioxide provides good Giardia and virus protection but its use is limited by the restriction on the maximum residual of 0.5 mg/L ClO₂/chlorite/chlorate allowed in finished water. This limits usable residuals of chlorine dioxide at the end of a process unit to less than 0.5 mg/L.

Where chlorine dioxide is approved for use as an oxidant, the preferred method of generation is to entrain chlorine gas into a packed reaction chamber with a 25% aqueous solution of sodium chlorite (NaClO₂).

Warning: Dry sodium chlorite is explosive and can cause fires in feed equipment if leaking solutions or spills are allowed to dry out.

Ozone

Ozone is a very effective disinfectant for both Giardia and viruses. Ozone CT (contact time) values must be determined for the ozone basin alone; an accurate T10 value must be obtained for the contact chamber, residual levels measured through the chamber and an average ozone residual calculated.

Ozone does not provide a system residual and should be used as a primary disinfectant only in conjunction with free and/or combined chlorine.

Ozone does not produce chlorinated byproducts (such as trihalomethanes) but it may cause an increase in such byproduct formation if it is fed ahead of free chlorine; ozone may also produce its own oxygenated byproducts such as aldehydes, ketones or carboxylic acids. Any installed ozonation system must include adequate ozone leak detection alarm systems, and an ozone off-gas destruction system.

Ozone may also be used as an oxidant for removal of taste and odor or may be applied as a pre-disinfectant.

Amperometric Titration

The chlorination of water supplies and polluted waters serves primarily to destroy or deactivate disease-producing microorganisms. A secondary benefit, particularly in treating drinking water, is the overall improvement in water quality resulting from the reaction of chlorine with ammonia, iron, manganese, sulfide, and some organic substances.

Chlorination may produce adverse effects. Taste and odor characteristics of phenols and other organic compounds present in a water supply may be intensified. Potentially carcinogenic chloroorganic compounds such as chloroform may be formed.

Combined chlorine formed on chlorination of ammonia- or amine-bearing waters adversely affects some aquatic life. To fulfill the primary purpose of chlorination and to minimize any adverse effects, it is essential that proper testing procedures be used with a foreknowledge of the limitations of the analytical determination.

Chlorine applied to water in its molecular or hypochlorite form initially undergoes hydrolysis to form free chlorine consisting of aqueous molecular chlorine, hypochlorous acid, and hypochlorite ion. The relative proportion of these free chlorine forms is pH- and temperature-dependent. At the pH of most waters, hypochlorous acid and hypochlorite ion will predominate. Free chlorine reacts readily with ammonia and certain nitrogenous compounds to form combined chlorine. With ammonia, chlorine reacts to form the chloramines: monochloramine, dichloramine, and nitrogen trichloride.

The presence and concentrations of these combined forms depend chiefly on pH, temperature, initial chlorine-to-nitrogen ratio, absolute chlorine demand, and reaction time. Both free and combined chlorine may be present simultaneously. Combined chlorine in water supplies may be formed in the treatment of raw waters containing ammonia or by the addition of ammonia or ammonium salts. Chlorinated wastewater effluents, as well as certain chlorinated industrial effluents, normally contain only combined chlorine. Historically the principal analytical problem has been to distinguish between free and combined forms of chlorine.

Hach's AutoCAT 9000™ Automatic Titrator is the newest solution to hit the disinfection industry – a comprehensive, bench top chlorine-measurement system that does it all: calibration, titration, calculation, real-time graphs, graphic print output, even electrode cleaning. More a laboratory assistant than an instrument, the AutoCAT 9000 gives you:

High throughput, performs the titration and calculates concentration, all automatically:

- Forward titration: USEPA-accepted methods for free and total chlorine and chlorine dioxide with chlorite
- Back titration: USEPA-accepted method for total chlorine in wastewater
- Accurate, yet convenient, the easiest way to complete ppb-level amperometric titration

If you're dechlorinating, modifying your current disinfectant delivery, changing over to another chlorine species, or adjusting disinfection processes to meet new regulations, this is the workhorse system that yields the fast, accurate residual readings you need.

Method Method Focus		Title	Order Number	Source	
4500-Cl ⁻ B	Chloride by Silver Nitrate Titration	Standard Methods for the Examination of Water and Wastewater, 18th & 19th Ed.	Included in Standard Methods	American Water Works Assn.	
4500-Cl ⁻ D	Chloride by Potentiometric Method	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI D	Chlorine Residual by Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI E	Chlorine Residual by Low Level Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI F	Chlorine Residual by DPD Ferrous Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI G	Chlorine Residual by DPD Colorimetric Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI H	Chlorine Residual by Syringaldazine (FACTS) Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CI I	Chlorine Residual by lodometric Electrode Technique (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CIO ₂ C	Chlorine Dioxide by the Amperometric Method I	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CIO₂ D	Chlorine Dioxide by the DPD Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	
4500-CIO ₂ E	Chlorine Dioxide by the Amperometric Method II (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.	

Chlorine Dioxide Methods

Most tests for chlorine dioxide rely upon its oxidizing properties. Consequently, numerous test kits are readily available that can be adapted to measure chlorine dioxide. In addition, new methods that are specific for chlorine dioxide are being developed. The following are the common analytical methods for chlorine dioxide:

	DPD glycine	Chlorophenol Red	Direct Absorbance	lodometric Titration	Amperometric Titration
Method Type:	Colorimetric	Colorimetric	Colorimetric	Titrimetric	Titrimetric
How It Works	Glycine removes Cl ₂ ; ClO ₂ forms a pink color, whose intensity is proportional to the ClO ₂ concentration.	CIO ₂ bleaches chlorophenol red indicator. The degree of bleaching is proportional to the concentration of CIO ₂ .	The direct measurement of CIO ₂ is determined between 350 and 450 nM.	Two aliquots are taken one is sparged with N_2 to remove CIO_2 . KI is added to the other sample at pH7 and titrated to a colorless endpoint. The pH is lower to 2, the color allowed to reform and the titration continued. These titrations are repeated on the sparged sample.	
Range	0.5 to 5.0 ppm.	0.1 to 1.0 ppm	100 to 1000 ppm	> 1 ppm	< 1ppm
Interferences	Oxidizers	None	Color, turbidity	Oxidizers	
Complexity	Simple	Moderate	Simple	Moderate	High
Equipment Required	Spectrophotometer or Colorimeter			Titration equipment	Amperometric Titrator
EPA Status	Approved	Not approved	Not approved	Not approved	Approved
Recommendation	Marginal	Yes	Marginal	Yes	Marginal

Chlorine Exposure Limits

This information is necessary to pass your certification exam.

* OSHA PEL 1 PPM - IDLH 10 PPM and Fatal Exposure Limit 1,000 PPM

The current Occupational Safety and Health Administration (**OSHA**) permissible exposure limit (**PEL**) for chlorine is 1 ppm (3 milligrams per cubic meter (mg/m⁽³⁾)) as a ceiling limit. A worker's exposure to chlorine shall at no time exceed this ceiling level. * **IDLH 10 PPM**

Physical and chemical properties of chlorine: A yellowish green, nonflammable and liquefied gas with an unpleasant and irritating smell. Can be readily compressed into a clear, ambercolored liquid, a noncombustible gas, and a strong oxidizer. Solid chlorine is about 1.5 times heavier than water and gaseous chlorine is about 2.5 times heavier than air. Atomic number of chlorine is 17. Cl is the elemental symbol and Cl₂ is the chemical formula.

Monochloramine, dichloramine, and trichloramine are also known as Combined Available Chlorine. $Cl_2 + NH_4$.

HOCl and OCl-: The OCL- is the hypochlorite ion and both of these species are known as free available chlorine, they are the two main chemical species formed by chlorine in water and they are known collectively as hypochlorous acid and the hypochlorite ion. When chlorine gas is added to water, it rapidly hydrolyzes. The chemical equations best describes this reaction is $Cl_2 + H_2O$ --> H++Cl-+HOCl. Hypochlorous acid is the most germicidal of the chlorine compounds with the possible exception of chlorine dioxide.

Yoke-type connectors should be used on a chlorine cylinder's valve assuming that the threads on the valve may be worn.

The connection from a chlorine cylinder to a chlorinator should be replaced by using a new, approved gasket on the connector. Always follow your manufacturer's instructions.

On a 1 ton Cl₂ gas container, the chlorine pressure reducing valve should be located downstream of the evaporator when using an evaporator. This is the liquid chlorine supply line and it is going to be made into chlorine gas.

Here are several safety precautions when using chlorine gas: In addition to protective clothing and goggles, chlorine gas should be used only in a well-ventilated area so that any leaking gas cannot concentrate. Emergency procedures in the case of a large uncontrolled chlorine leak are to: notify local emergency response team, warn and evacuate people in adjacent areas, and be sure that no one enters the leak area without adequate self-contained breathing equipment.

Here are several symptoms of chlorine exposure: burning of eyes, nose, and mouth; coughing, sneezing, choking; nausea and vomiting; headaches and dizziness; fatal pulmonary edema, pneumonia and skin blisters. A little Cl₂ will corrode the teeth and then progress to throat cancer. Bad news.

Approved method for storing a 150 - 200 pound chlorine cylinder: secure each cylinder in an upright position, attach the protective bonnet over the valve and firmly secure each cylinder. Never store near heat. Always store the empty in an upright, secure position with proper signage.

Chloramines in Drinking Water

Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. The typical purpose of chloramines is to provide longer-lasting water treatment as the water moves through pipes to consumers. This type of disinfection is known as secondary disinfection. Chloramines have been used by water utilities for almost 90 years, and their use is closely regulated. More than one in five Americans uses drinking water treated with chloramines. Water that contains chloramines and meets EPA regulatory standards is safe to use for drinking, cooking, bathing and other household uses.

Many utilities use chlorine as their secondary disinfectant; however, in recent years, some of them changed their secondary disinfectant to chloramines to meet disinfection byproduct regulations. In order to address questions that have been raised by consumers about this switch, EPA scientists and experts have answered 29 of the most frequently asked questions about chloramines. We have also worked with a risk communication expert to help us organize complex information and make it easier for us to express current knowledge.

What are Chloramines?

Chloramines are disinfectants used to treat drinking water.

Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. The most typical purpose of chloramines is to protect water quality as it moves through pipes. Chloramines provide long-lasting protection as they do not break down quickly in water pipes.

The different types of chloramines are monochloramine, dichloramine, trichloramine, and organic chloramines.

When chloramines are used to disinfect drinking water, monochloramine is the most common form.

- ✓ Dichloramine, trichloramine, and organic chloramines are produced when treating drinking water but at much lower levels than monochloramine.
- ✓ Trichloramines are typically associated with disinfected water used in swimming pools.

The Environmental Protection Agency regulates the safe use of chloramines in drinking water

EPA requires water utilities to meet strict health standards when using chloramines to treat water.

EPA chloramines regulations are based on the average concentration of chloramines found in a water system over time.

EPA regulates certain chemicals formed when chloramines react with natural organic matter4 in water.

Additional Supporting Information:

- 1. Dichloramine is formed when the chlorine to ammonia-nitrogen weight ratio is greater than 5:1, however, this reaction is very slow. Organic chloramines are formed when chlorine reacts with organic nitrogen compounds. Source: *Optimizing Chloramine Treatment*, 2nd Edition, AwwaRF, 2004
- 2. Trichloramine formation does not usually occur under normal drinking water treatment conditions. However, if the pH is lowered below 4.4 or the chlorine to ammonia-nitrogen weight ratio becomes greater than 7.6:1, then trichloramine can form. Trichloramine formation can occur at a pH between 7 and 8 if the chlorine to ammonia-nitrogen weight ratio is increased to 15:1. Source: *Optimizing Chloramine Treatment*, 2nd Edition, AwwaRF, 2004

3. The drinking water standard for chloramines is 4 parts per million (ppm) measured as an annual average. More information on water utility use of chloramines is available at http://www.epa.gov/safewater/disinfection/index.html and in the 1997-1998 Information Collection Rule, a national survey of large drinking water utilities for the Stage 2 Disinfection Byproducts Rule (DBPR). Information on the Stage 2 DBPR is available at http://www.epa.gov/safewater/disinfection/stage2/.

More information on EPA's standard setting process may be found at: http://www.epa.gov/OGWDW/standard/setting.html.

Natural Organic Matter: Complex organic compounds that are formed from decomposing plant, animal and microbial material in soil and water. They can react with disinfectants to form disinfection by products. Total organic carbon (TOC) is often measured as an indicator of natural organic matter.

What Disinfectants are Available for Drinking Water?

Most water utilities use chlorine as a primary disinfectant because of its effectiveness in killing potentially harmful organisms. 2 Chlorine is effective in killing bacteria, viruses, and other potentially harmful organisms in water. One disadvantage of chlorine is it can react with natural organic matter3 present in water to form potentially harmful disinfection byproducts. Water utilities sometimes use chlorine several times during treatment because the initial dose loses its effectiveness over time.

Monochloramine is commonly used as a secondary disinfectant to protect the water as it travels from the treatment plant to consumers. Monochloramine is effective in killing bacteria, viruses, and other potentially harmful organisms but takes much longer to act than chlorine. One disadvantage of monochloramine is it can react with natural organic matter present in water to form potentially harmful disinfection byproducts. Monochloramine is more chemically stable than chlorine, which makes it longer lasting and an effective secondary disinfectant.

Water utilities may use ozone, UV light, or chlorine dioxide as primary disinfectants in the treatment plant.

Ozone, UV light, and chlorine dioxide are effective in killing bacteria, viruses, and other potentially harmful organisms in water at the treatment plant. One disadvantage of ozone, UV light, and chlorine dioxide is they do not provide protection as water travels through pipes. Either chlorine or monochloramine should still be used in addition to any primary treatment process to protect the quality of treated water as it travels from the treatment plant to the customer.

How did EPA evaluate the safety of monochloramine for use as a drinking water disinfectant? EPA evaluated monochloramine primarily through an analysis of human health and animal data.

Research reviewed in EPA's safety analysis is contained in EPA's *Drinking Water Criteria Document for Chloramines*. The criteria document for monochloramine provides a complete summary of health and other data considered in establishing a monochloramine standard. EPA periodically updates the monochloramine "criteria document."

EPA's monochloramine standard2 is set at a level where no human health effects are expected to occur.

Data from animal and human studies provide information on the health effects of monochloramine. EPA reviews and considers new research results as they become available. EPA's standard for monochloramine takes data gaps and uncertainty into account by building safety factors into the regulatory standard.

EPA reviewed historical data in its evaluation of monochloramine.

Monochloramine has been in use as a drinking water disinfectant since the 1930's. Decades of use in the US, Canada, and Great Britain shows that monochloramine is an effective secondary drinking water disinfectant. Denver, Philadelphia, and other large cities have used monochloramine as part of their water treatment process for years.

Additional Supporting Information:

- 1. The *Drinking Water Criteria Document for Chloramines* can be found at http://www.epa.gov/ncea/pdfs/water/chloramine/dwchloramine.pdf, Publication No.: ECAO-CIN-D002. March. 1994.
- 2. The Maximum Residual Disinfectant Level (MRDL) for chloramines is 4 parts per million (ppm).
- 3. See the Contaminant Candidate List online at http://www.epa.gov/OGWDW/ccl/ccl3.html for contaminants that EPA proposes to review. EPA scientists review regulations of disinfectants and disinfection byproducts every six years. For information on EPA's six-year review visit: http://epa.gov/safewater/review.html
- 4. For additional information regarding how uncertainty factors (also known as safety factors) are applied to risk assessments to provide a wide margin of safety see: http://epa.gov/risk/dose-response.htm.
- 5. Cleveland, OH, Springfield, IL, and Lansing, MI were among the first cities to use monochloramine in 1929 (see Chapter 1 of *The Quest for Pure Water Vol II*, AWWA, 1981).

Common water sample bottles for distribution systems.

Radiochems, VOCs, (Volatile Organic Compounds), TTHMs, Total Trihalomethanes), Nitrate, Nitrite.

Most of these sample bottles will come with the preservative already inside the bottle.

Some bottles will come with a separate preservative (acid) for the field preservation.

Slowly add the acid or other preservative to the water sample; not water to the acid or preservative.

Corrosion Control

Corrosion is the deterioration of a substance by chemical action. Lead, cadmium, zinc, copper and iron might be found in water when metals in water distribution systems corrode. Drinking water contaminated with certain metals (such as lead and cadmium) can harm human health.

Corrosion also reduces the useful life of water distribution systems and can promote the growth of microorganisms, resulting in disagreeable tastes, odors, slimes and further corrosion. Because it is widespread and highly toxic, lead is the corrosion product of greatest concern. The EPA has banned the use of lead solders, fluxes and pipes in the installation or repair of any public water system. In the past, solder used in plumbing has been 50% tin and 50% lead. Using lead-free solders, such as silver-tin and antimony-tin is a key factor in lead corrosion control.

The highest level of lead in consumers' tap water will be found in water that has been standing in the pipes after periods of nonuse (overnight or longer). This is because standing water tends to leach lead or copper out of the metals in the distribution system more readily than does moving water. Therefore, the simplest short-term or immediate measure that can be taken to reduce exposure to lead in drinking water is to let the water run for two to three minutes before each use. Also, drinking water should not be taken from the hot water tap, as hot water tends to leach lead more readily than cold. Long-term measures for addressing lead and other corrosion by-products include pH and alkalinity adjustment; corrosion inhibitors; coatings and linings; and cathodic protection, all discussed below.

Cathodic Protection

Cathodic protection is an electrical system used for the prevention of rust, corrosion, and pitting of metal surfaces which are in contact with water or soil. Cathodic protection protects steel from corrosion which is the natural electrochemical process that results in the deterioration of a material because of its reaction with its environment. Metallic structures, components and equipment exposed to aqueous environments, soil or seawater can be subject to corrosive attack and accelerated deterioration. Therefore, it is often necessary to utilize either impressed current or sacrificial anode cathodic protection (CP) in combination with coatings as a means of suppressing the natural degradation phenomenon to provide a long and useful service life. However, if proper considerations are not given, problems can arise which can produce unexpected, premature failure. E.M.F. is a crazy term is used to express the electrical pressure available to cause a flow of current when an electric circuit is closed.

There are Two Types of Cathodic Protection:

Ø Sacrificial Anodes (Galvanic Systems) Ù Impressed (Induced) Current Systems

How Does Cathodic Protection Work?

Sacrificial anodes are pieces of metal more electrically active than the steel piping system. Because these anodes are more active, the corrosive current will exit from them rather than the piping system. Thus, the system is protected while the attached anode is "sacrificed."

Sacrificial anodes can be attached to existing piping system or coated steel for a preengineered Cathodic protection system. An asphalt coating is not considered a suitable dielectric coating. Depleted anodes must be replaced for continued Cathodic protection of the system.

Impressed or Induced Current Systems

An impressed current cathodic protection system consists of anodes, cathodes, a rectifier and the soil. The rectifier converts the alternating current to direct current. The direct current is then sent through an insulated copper wire to anodes that are buried in the soil near the piping system. Typical anode materials are ceramic, high silicon cast iron, or graphite. Ceramic anodes are not consumed, whereas high silicon cast iron and graphite anodes partially dissolve each year and must be replaced over time. The direct current then flows from the anode through the soil to the piping system, which acts as the cathode, and back to the rectifier through another insulated copper wire. As a result of the electrochemical properties of the impressed current cathodic protection system, corrosion takes place only at the anodes and not at the piping system. Depleted anodes must be replaced for continued Cathodic protection of the piping system.

Sacrificial Anode System

In this system, a metal or alloy reacting more vigorously than that corroding specimen, acts as an anode and the corroding structure as a whole is rendered Cathodic. These anodes are made of materials such as magnesium, aluminum or zinc, which are anodic with respect to the protected structure. The sacrificial anodes are connected directly to the structure.

Advantages

- 1. Needs no external power source.
- 2. Does not involve maintenance work
- 3. If carefully designed it can render protection for anticipated period.
- 4. Installation is simple
- 5. Does not involve expensive accessories like rectifier unit, etc.,
- 6. Economical for small structures

Disadvantages

- 1. The driving voltage is small and therefore the anodes have to be fitted close to the structure or on the structure, thereby increasing the weight or load on the structure.
- 2. The anodes have to be distributed all over the structure (as throwing power is lower) and therefore have design limitations in certain applications.
- 3. Once designed and installed, protection current cannot be altered or increased as may be needed in case of cathode area extension (unprotected) or foreign structure interference (physical contact).

Impressed Current System

The impressed current anode system, on the other hand, has several advantages over the sacrificial anode systems. In this system the protection current is "*Forced*" through the environment to the structure (cathode) by means of an external D.C. source. Obviously we need some material to function as anodes. It can be high silicon chromium cast iron anodes, graphite anodes, or lead-silver alloy anodes.

Advantages

- 1. Since the driving voltage is large, this system offers freedom of installation design and location.
- 2. Fewer anodes can protect large structure.
- 3. Variations in protection current requirements can be adjusted to some extent (to be incorporated at design stage).

Disadvantages

- 1. Shut down of D.C. supply for a long times allows structure to corrode again.
- 2. Reversal of anode cathode connection at D.C. source will be harmful, as structure will dissolve anodic
- 3. Needs trained staff for maintenance of units and for monitoring
- 4. Initial investments are higher and can pay off only in long run and economic only for large structures
- 5. Power cost must be incorporated in all economic considerations.
- 6. Possibility of over protection should be avoided as it will affect the life of the paint.
- 7. Any foreign structure coming within this field will cause an interference problem.

Alkalinity and pH Adjustment

Adjusting pH and alkalinity is the most common corrosion control method because it is simple and inexpensive. pH is a measure of the concentration of hydrogen ions present in water; alkalinity is a measure of water's ability to neutralize acids.

Generally, water pH less than 6.5 is associated with uniform corrosion, while pH between 6.5 and 8.0 can be associated with pitting corrosion. Some studies have suggested that systems using only pH to control corrosion should maintain a pH of at least 9.0 to reduce the availability of hydrogen ions as electron receptors. However, pH is not the only factor in the corrosion equation; carbonate and alkalinity levels affect corrosion as well.

Generally, an increase in pH and alkalinity can decrease corrosion rates and help form a protective layer of scale on corrodible pipe material. Chemicals commonly used for pH and alkalinity adjustment are hydrated lime (CaOH2 or calcium hydroxide), caustic soda (NaOH or sodium hydroxide), soda ash (Na2CO3 or sodium carbonate), and sodium bicarbonate (NaHCO3, essentially baking soda). Care must be taken, however, to maintain pH at a level that will control corrosion but not conflict with optimum pH levels for disinfection and control of disinfection by-products.

Corrosion Inhibitors

Inhibitors reduce corrosion by forming protective coatings on pipes. The most common corrosion inhibitors are inorganic phosphates, sodium silicates and mixtures of phosphates and silicates. These chemicals have proven successful in reducing corrosion in many water systems.

The phosphates used as corrosion inhibitors include polyphosphates, orthophosphates, glassy phosphates and bimetallic phosphates. In some cases, zinc is added in conjunction with orthophosphates or polyphosphates. Glassy phosphates, such as sodium hexametaphosphate, effectively reduce iron corrosion at dosages of 20 to 40 mg/l. Glassy phosphate has an appearance of broken glass and can cut the operator. Sodium silicates have been used for over 50 years to inhibit corrosion. The effectiveness depends on the water pH and carbonate concentration. Sodium silicates are particularly effective for systems with high water velocities, low hardness, low alkalinity and a pH of less than 8.4. Typical coating maintenance doses range from 2 to 12 mg/1. They offer advantages in hot water systems because of their chemical stability. For this reason, they are often used in boilers of steam heating systems.

Granular Activated Carbon / Powdered Activated Carbon

Along with aeration, granular activated carbon (GAC) and powdered activated carbon (PAC) are suitable treatments for removal of organic contaminants such as VOCs, solvents, PCBs, herbicides and pesticides.

Activated carbon is carbon that has been exposed to very high temperature, creating a vast network of pores with a very large internal surface area; one gram of activated carbon has a surface area equivalent to that of a football field. It removes contaminants through adsorption, a process in which dissolved contaminants adhere to the surface of the carbon particles.

GAC can be used as a replacement for existing media (such as sand) in a conventional filter or it can be used in a separate contactor such as a vertical steel pressure vessel used to hold the activated carbon bed.

After a period of a few months or years, depending on the concentration of the contaminants, the surface of the pores in the GAC can no longer adsorb contaminants and the carbon must be replaced. Several operational and maintenance factors affect the performance of granular activated carbon.

Contaminants in the water can occupy adsorption sites, whether or not they are targeted for removal. Also, adsorbed contaminants can be replaced by other contaminants with which GAC has a greater affinity, so their presence might interfere with removal of contaminants of concern.

A significant drop in the contaminant level in influent water can cause a GAC filter to desorb, or slough off, adsorbed contaminants, because GAC is essentially an equilibrium process. As a result, raw water with frequently changing contaminant levels can result in treated water of unpredictable quality.

Bacterial growth on the carbon is another potential problem. Excessive bacterial growth may cause clogging and higher bacterial counts in the treated water. The disinfection process must be carefully monitored in order to avoid this problem.

Powdered activated carbon consists of finely ground particles and exhibits the same adsorptive properties as the granular form. PAC is normally applied to the water in a slurry and then filtered out. The addition of PAC can improve the organic removal effectiveness of conventional treatment processes and also remove tastes and odors.

Advantages of PAC are that it can be used on a short-term or emergency basis with conventional treatment, creates no headloss, does not encourage microbial growth, and has relatively small capital costs.

The main disadvantage is that some contaminants require large doses of PAC for removal. It is also somewhat ineffective in removing natural organic matter due to the competition from other contaminants for surface adsorption and the limited contact time between the water and the carbon.

Disinfection Review Summary

Chlorine

Upon adding chlorine to water, two chemical species, known together as free chlorine, are formed. These species, hypochlorous acid (HOCl, electrically neutral) and hypochlorite ion (OCl-, electrically negative), behave very differently. Hypochlorous acid is not only more reactive than the hypochlorite ion, but is also a stronger disinfectant and oxidant.

The ratio of hypochlorous acid to hypochlorite ion in water is determined by the pH. At low pH (higher acidity), hypochlorous acid dominates while at high pH hypochlorite ion dominates. Thus, the speed and efficacy of chlorine disinfection against pathogens may be affected by the pH of the water being treated. Fortunately, bacteria and viruses are relatively easy targets of chlorination over a wide range of pH. However, treatment operators of surface water systems treating raw water contaminated by the parasitic protozoan Giardia may take advantage of the pH-hypochlorous acid relationship and adjust the pH to be effective against Giardia, which is much more resistant to chlorination than either viruses or bacteria.

Another reason for maintaining a predominance of hypochlorous acid during treatment has to do with the fact that pathogen surfaces carry a natural negative electrical charge. These surfaces are more readily penetrated by the uncharged, electrically neutral hypochlorous acid than the negatively charged hypochlorite ion. Moving through slime coatings, cell walls and resistant shells of waterborne microorganisms, hypochlorous acid effectively destroys these pathogens. Water is made microbiologically safe as pathogens either die or are rendered incapable of reproducing. A typical bacterium has a negatively charged slime coating on its exterior cell wall, which is effectively penetrated by electrically neutral hypochlorous acid, favored by lower pH's.

Factors in Chlorine Disinfection: Concentration and Contact Time

In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

Chloramines

Chloramines are chemical compounds formed by combining a specific ratio of chlorine and ammonia in water. Because chloramines are relatively weak as a disinfectant, they are almost never used as a primary disinfectant. Chloramines provide a durable residual, and are often used as a secondary disinfectant for long distribution lines and where free chlorine demand is high. Chloramines may also be used instead of chlorine in order to reduce chlorinated byproduct formation and to remove some taste and odor problems.

Advantages

- Reduced formation of THMs, HAAs
- Will not oxidize bromide to bromine forming brominated byproducts
- More stable residual than free chlorine
- Excellent secondary disinfectant, has been found to be better than free chlorine at controlling coliform bacteria and biofilm growth
- Lower taste and odor than free chlorine

Limitations

- Weak disinfectant and oxidant
- Requires shipment and handling of ammonia or ammonia compounds as well as chlorinating chemicals
- Ammonia is toxic to fish, and may pose problems for aquarium owners
- Will cause problems for kidney dialysis if not removed from water

Chlorine Dioxide

Chlorine dioxide (CIO₂) is generated on-site at water treatment facilities. In most generators sodium chlorite and elemental chlorine are mixed in solution, which almost instantaneously forms chlorine dioxide. Chlorine dioxide characteristics are quite different from chlorine. In solution it is a dissolved gas, which makes it largely unaffected by pH but volatile and relatively easily stripped from solution. Chlorine dioxide is also a strong disinfectant and a selective oxidant. While chlorine dioxide does produce a residual it is only rarely used for this purpose.

Advantages

- ✓ Effective against Cryptosporidium
- ✓ Up to five times faster than chlorine at inactivating Giardia
- ✓ Disinfection is only moderately affected by pH
- ✓ Will not form chlorinated byproducts (THMs, HAAs)
- ✓ Does not oxidize bromide to bromine (can form bromate in sunlight)
- ✓ More effective than chlorine in treating some taste and odor problems
- Selective oxidant used for manganese oxidation and targeting some chlorine resistant organics

Limitations

- ✓ Inorganic byproduct formation (chlorite, chlorate)
- ✓ Highly volatile residuals
- ✓ Requires on-site generation equipment and handling of chemicals (chlorine and sodium chlorite)
- ✓ Requires a high level of technical competence to operate and monitoring equipment, product
 and residuals
- ✓ Occasionally poses unique odor and taste problems
- ✓ High operating cost (chlorite chemical cost is high)

Understanding Chlorine Basics

Chlorine is applied to water in one of three forms: elemental chlorine (chlorine gas), hypochlorite solution (bleach), or dry calcium hypochlorite. All three forms produce free chlorine in water.

Advantages

✓ Highly effective against most pathogens

- ✓ Provides a residual to protect against recontamination and to reduce bio-film growth in the distribution system
- ✓ Easily applied, controlled, and monitored
- ✓ Strong oxidant meeting most preoxidation objectives
- ✓ Operationally the most reliable
- ✓ The most cost-effective disinfectant

Limitations

- ✓ Byproduct formation (THMs, HAAs)
- ✓ Will oxidize bromide to bromine, forming brominated organic byproducts
- ✓ Not effective against Cryptosporidium
- ✓ Requires transport and storage of chemicals

Elemental Chlorine

Elemental chlorine is the most commonly used form of chlorine. It is transported and stored as a liquefied gas under pressure. Water treatment facilities typically use chlorine in 100 and 150-lb cylinders or one-ton containers. Some large systems use railroad tank cars or tanker trucks.

Advantages

- ✓ Lowest cost of chlorine forms
- ✓ Unlimited shelf-life

Limitations

- ✓ Hazardous gas requires special handling and operator training
- ✓ Additional regulatory requirements, including EPA's Risk Management Program and the Occupational Safety and Health Administration's Process Safety Management program

Factors in Chlorine Disinfection: Concentration and Contact Time

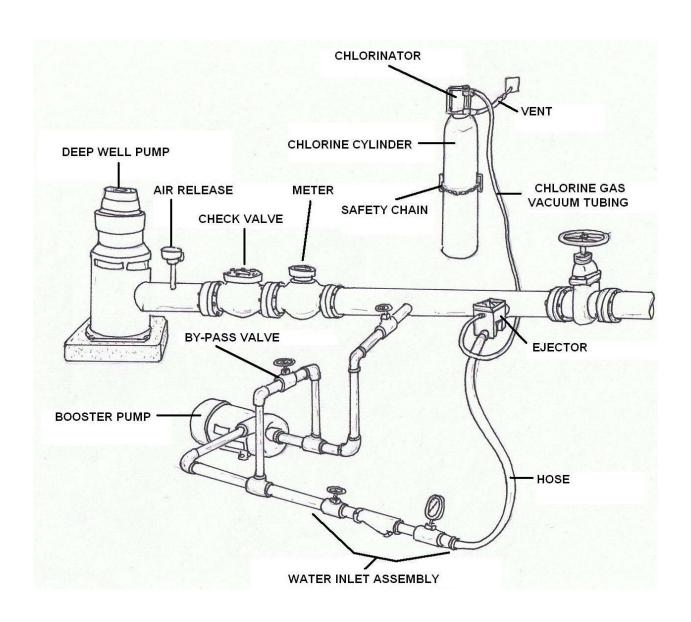
In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

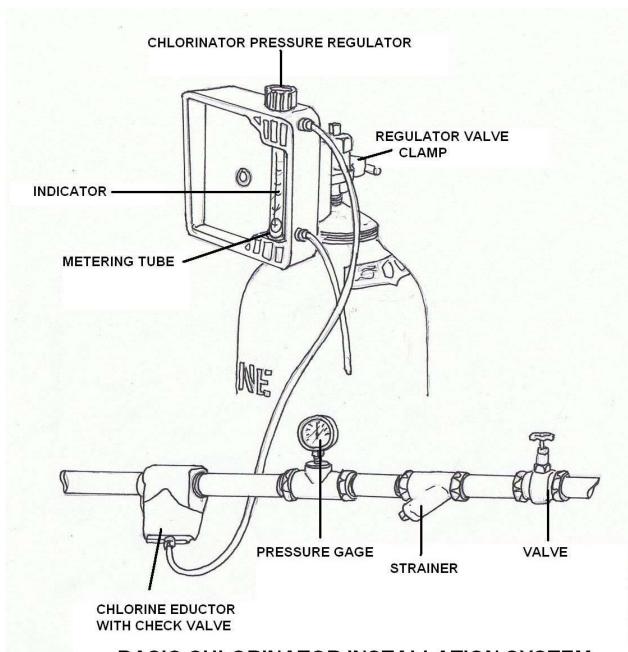
Disinfection and Bioterrorism

Disinfection is crucial to water system security, providing the 'front line' of defense against biological contamination. Normal filtration and disinfection processes would dampen or remove the threats posed by a number of potential bioterrorism agents. In addition, water systems should maintain an ability to increase disinfection doses in response to a particular threat. However, conventional treatment barriers in no way guarantee safety from biological attacks. For many potential bioterrorism agents, there is little scientific information about what levels of reduction can be achieved with chlorine or other disinfectants. In addition, contamination of water after it is treated could overwhelm the residual disinfectant levels in distribution systems. Furthermore, typical water quality monitoring does not provide real-time data to warn of potential problems (Rose 2002). Additional research and funding are needed to improve prevention, detection, and responses to potential threats.

Protecting Chlorine and Other Treatment Chemicals

As part of its vulnerability assessment, each water system must consider its transportation, storage and use of treatment chemicals. These chemicals are both critical assets (necessary for delivering safe water) and potential vulnerabilities (may pose significant hazards, if released). For example, a release of chlorine gas would pose an immediate threat to system operators, and a large release may pose a danger to the surrounding community. As part of its vulnerability assessment, a water system using chlorine must determine if existing layers of protection are adequate. If not, a system should consider additional measures to reduce the likelihood of an attack or to mitigate the potential consequences.


Possible measures to address chlorine security include: enhanced physical barriers (e.g., constructing secure chemical storage facilities), policy changes (e.g., tightening procedures for receiving chemical shipments), reducing quantities stored on site, or adopting alternative disinfection methods. These options must be weighed and prioritized, considering the unique characteristics and resources of each system. Water system officials must evaluate the risk-tradeoffs associated with each option. For example, reducing the chemical quantities on-site may reduce a system's ability to cope with an interruption of chemical supplies. Furthermore, changing disinfection technologies will not necessarily improve overall safety and security.


Understanding Calculation and Reporting of CT Data

Basically, log inactivation is a measurement of how effective a disinfection process is at killing microorganisms in a specific environment. Operationally, directly measuring log inactivation is not practical, but determining the microbial inactivation for an individual water treatment plant (WTP) can be achieved using the log inactivation calculations. The log inactivation calculation adjusts the WTP's CT value to account for the disinfection chemical reaction process variables that influence the disinfection process efficiency.

Log Inactivation

"Log inactivation" is a convenient way to express the number or percent of microorganisms inactivated (killed or unable to replicate) through the disinfection process. For example, a 3 log inactivation value means that 99.9% of microorganisms of interest have been inactivated. Log inactivation measures the effectiveness of the disinfection process, which is influenced by variables including disinfectant concentration, temperature, pH and disinfectant type (e.g., lower temperature results in less inactivation since the reactions slow down as temperature decreases).

BASIC CHLORINATOR INSTALLATION SYSTEM

CT and Log Inactivation Calculation Overview

This reference takes you step by step through the CT and log inactivation calculation procedure, through an example calculation, and presents the disinfection segment concept.

"CT" (minutes•mg/L) in the context of water treatment is defined as the product of: C, for "residual disinfectant concentration" in mg/L (determined before or at the first customer) and T, for the corresponding "disinfectant contact time" in minutes. CT is a measure of the disinfection process reaction time, but CT is only one of several variables that control the effectiveness of the disinfection process.

CTCALC = Concentration Time, Calculated Value (minutes•mg/L)

C = Residual disinfectant concentration measured during peak flow (mg/L)

T = Actual Detention Time (minutes)

 $CTCALC = C \times T$

TDT = Theoretical Detention Time (minutes)

V = Volume, based on low water level (gallons)

Q = Peak hourly flow (gpm)

TDT = V/Q

Volume Equations:

Cylindrical: π x r2 x d Pipeline: π x r2 x I Rectangular: I x w x d d = minimum water depth π = 3.1416

Disinfection Segments

Total inactivation = Σ log inactivation from each disinfection segment Disinfection Profile

Almost all community and non-transient, non-community public water systems that use Surface Water or Ground Water Under the Direct Influence of Surface Water sources are required to develop a disinfection profile. Systems are required to retain the disinfection profile in graphic form and it must be available for review by the state as part of a sanitary survey.

Disinfection Profile and Benchmark

- A disinfection profile is a graphical representation of a system's level of *Giardia lamblia* or virus inactivation measured, at least weekly, during the course of a year.
- A benchmark is the lowest monthly average microbial inactivation during the disinfection profile time period.

The EPA has developed a disinfection profile spreadsheet calculator that calculates and graphs the disinfection profile for *Giardia* and viruses. The spreadsheet can be downloaded from: http://www.epa.gov/safewater/mdbp/lt1eswtr.html.

Understanding Chlorine Demand

The amount of chlorine used by reactions with substances that oxidize in the water before chlorine residual can be measured. It is the difference between the amount of chlorine added to wastewater and the amount of chlorine residual remaining after a given contact time. Chlorine demand may change with dosage, time, temperature, pH, and the type and amount of pollutants in the water.

The presence of chlorine residual in drinking water indicates that: 1) a sufficient amount of chlorine was added initially to the water to inactivate the bacteria and some viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during storage. The presence of free residual chlorine in drinking water is correlated with the absence of disease-causing organisms, and thus is a measure of the potability of water.

While chlorine's most important attributes are its broad-spectrum germicidal potency and persistence in water distribution systems, its ability to efficiently and economically address many other water treatment concerns has also supported its wide use. Chlorine-based compounds are the only major disinfectants exhibiting lasting residual properties. Residual protection guards against microbial regrowth and prevents contamination of the water as it moves from the treatment plant to household taps.

Definitions

When chlorine is added to water, some of the chlorine reacts first with organic materials and metals in the water and is not available for disinfection (this is called the chlorine demand of the water). The remaining chlorine concentration after the chlorine demand is accounted for is called total chlorine. Total chlorine is further divided into: 1) the amount of chlorine that has reacted with nitrates and is unavailable for disinfection which is called combined chlorine and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and thus a measure to determine the potability of water.

For example, if using completing clean water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be present. Thus, the free chlorine concentration will be equal to the concentration of chlorine initially added. In natural waters, especially surface water supplies such as rivers, organic material will exert a chlorine demand, and nitrates will form combined chlorine. Thus, the free chlorine concentration will be less than the concentration of chlorine initially added.

Chlorine Dose, Demand, and Residual

Most water treatment plants are required to disinfect the water, a process used to kill harmful bacteria. The most frequently used method of disinfection is the addition of chlorine. Here, we will briefly introduce three terms used during chlorination - chlorine dose, chlorine demand, and chlorine residual. These three characteristics are related to each other using the following equation:

(Chlorine demand) = (Chlorine dose) - (Chlorine residual)

The amount of chlorine added to the water is known as the chlorine dose. This is a measured quantity chosen by the operator and introduced into the water using a chlorinator or hypochlorinator.

As the chlorine reacts with bacteria and chemicals in the water, some of the chlorine is used up. The amount of chlorine used up by reacting with substances in the water is known as the chlorine demand. If nothing reacts with the chlorine (as would be the case in distilled water), then the chlorine demand is zero. However, in most cases the operator should count on some of the chlorine dose being used up when it reacts with substances in the water.

The amount of chlorine remaining in the water after some of the chlorine reacts with substances in the water is known as the chlorine residual. This lab introduces a test which can be used to calculate the chlorine residual. The chlorine residual is the most important of these three values - dose, demand, and residual - because it represents the actual amount of chlorine remaining in the water to act as a disinfectant.

The test for chlorine residual is performed frequently at most water treatment plants. Since regulations require a certain level of chlorine in water at the far ends of the distribution system, operators should be sure to test the chlorine residual in the distribution system as well as in the clear well.

Combined residual chlorination involves the addition of chlorine to water to produce, with natural ammonia present or with ammonia added, a combined available chlorine residual. Combined available chlorine forms have lower oxidation potentials than free available chlorine forms and are less effective as oxidants. They are also less effective as disinfectants. In fact, 25 times more combined available residual chlorine must be obtained to meet the same disinfectant level as a free available residual. The contact time has to be up to 100 times greater to obtain the same level of bacterial kill at the same pH and temperature conditions.

When a combined available chlorine residual is desired, the character of the water determines how it can be accomplished. These conditions may have to be considered:

- 1. If the water contains sufficient ammonia to produce the desired level of combined residual, the application of sufficient chlorine alone is all that is needed.
- 2. If the water contains too little or no ammonia, then addition of both chlorine and ammonia is required.
- 3. If the water has a free available chlorine, the addition of ammonia alone is all that is required. A combined chlorine residual should contain little or no free available chlorine.

The practice of combined residual chlorination is the most effective way of maintaining a stable residual throughout the distribution system to the point of consumer use. Combined residuals in the distribution system are generally longer-lasting and will carry farther into the system, but they are not as effective as free residuals are at disinfecting. The levels required by the regulatory agencies, when using combined residuals, is 1.0 ppm to 2.0 ppm.

Understanding Chlorine Residual

The amount of available chlorine present in wastewater after a given contact time (20 minutes at peak flow; 30 minutes at average flow), and under specific conditions including pH and temperature.

For effective water treatment, the water supply industry has recognized the need for adequate exposure to the disinfectant and sufficient disinfectant dosage for a certain amount of time. In the 1980s, the two functions were combined with the development of the CT values for various disinfectants.

CT represents the combination of the disinfectant dosage and the length of time water has been exposed to a minimum amount of the disinfectant residual.

Mathematically it is represented as CT = concentration x time concentration = final disinfectant concentration in mg/l time = minimum exposure time in minutes

In an assessment of disinfection effectiveness, two types of organisms have been chosen as disinfection surrogates – the protozoan Giardia and viruses. CT values established for disinfection of surface waters require treatment plants to achieve a three-log or 99.9% reduction in Giardia and a four-log or 99.99% virus reduction. It is important to recognize that the use of chlorine as the disinfectant is only one part of the treatment process. Equally important is the need for improved filtration to remove organisms. A combination of proper disinfection and filtration is most effective in providing safe drinking water. Recent experiments in controlling Cryptosporidium also suggest the effectiveness of filtration in the water treatment process.

Free residual chlorination involves the application of chlorine to water to produce--either directly or by first destroying any naturally present ammonia--a free available chlorine residual and to maintain this residual through part or all of the water treatment plant and distribution system. Free available residual forms have higher oxidation potentials than combined available chlorine forms and are more effective as disinfectants.

When free available chlorine residuals are desired, the characteristics of the water will determine how this will be accomplished. This may have to be considered:

1. If the water contains no ammonia or other nitrogen compounds, any application of chlorine will yield a free residual once it has reacted with any bacteria, virus and other microorganisms present in the water.

2. If the water contains ammonia, it results in the formation of a combined residual, which must be destroyed by applying an excess of chlorine.

Breakpoint Chlorination

Breakpoint chlorination is the name of the process of adding chlorine to water until the chlorine demand has been satisfied. Chlorine demand equals the amount of chlorine used up before a free available chlorine residual is produced. Further additions of chlorine will result in a chlorine residual that is directly proportional to the amount of chlorine added beyond the breakpoint. Public water supplies normally chlorinate past the breakpoint.

When chlorine is initially added to water, the following may happen:

- 1. If the water contains some iron, manganese, organic matter, and ammonia, the chlorine reacts with these materials and no residual is formed, meaning that no disinfection has taken place.
- 2. If additional chlorine is added at this point, it will react with the organics and ammonia to form chloramines. The chloramines produce a combined chlorine residual. As the chlorine is combined with other substances, it loses some of the disinfection strength. Combined residuals have poor disinfection power and may be the cause of taste and odor problems.
- 3. With a little more chlorine added, the chloramines and some of the chlororganics are destroyed.
- 4. With still more chlorine added, a free chlorine residual is formed, free in the sense that it can react quickly.

Free available chlorine is the best residual for disinfection. It disinfects faster and without the swimming-pool odor of combined residual chlorine. The free available residual forms at the breakpoint; therefore, the process is called breakpoint chlorination. The common practice today is to go just beyond the breakpoint to a residual of about .2 to .5 ppm.

A variety of reactions take place during chlorination. When chlorine is added to a water containing ammonia (NH₃), the ammonia reacts with hypochlorous acid (HOCL) to form monochloramine, dichloramine, and trichloramine. The formation of these chloramines depends on the pH of the water and the initial chlorine-ammonia ratio.

Ammonia + Hypochlorous acid> Chloramine + Water					
NH3 + HOC1> NH2C1 + H20 Monochloramine					
NH2C1 + HOC1> NHC12 + H20 Dichloramine					
NHC12 + HOC1> NC13 + H20 Trichloramine					

At the pH of most natural water (pH 6.5 to 7.5), monochloramine and dichloramine exist together. At pH levels below 5.5, dichloramine exists by itself. Below pH 4.0, trichloramine is the only compound found. The monochloramine and dichloramine forms have a definite disinfection power. Dichloramine is a more effective disinfecting agent than monochloramine. However, dichloramine is not recommended as a disinfectant due to the possibility of the formation of taste and odor compounds. Chlorine reacts with phenol and salicylic acid to form chlorophenol, which has an intense medicinal odor. This reaction is much slower in the presence of monochloramines.

Both the chlorine residual and the contact time are essential for effective disinfection. It is important to have complete mixing. The operator also needs to be aware that changes in the pH may affect the ability of the chlorine to disinfect the water. The operator must examine the application and select the best point of feed and the best contact time to achieve the results desired. The operator needs to consider:

1. Whether the injection point and the method of mixing is designed so that the disinfectant is able to get into contact with all of the water to be disinfected. This also depends on whether pre- and/or post-chlorination is being used.

- 2. Contact time. In situations of good initial mixing, the longer the contact time, the more effective the disinfection
- 3. Effectiveness of upstream treatment processes. The lower the turbidity of the water, the more effective the disinfection.
- 4. Temperature. At higher temperatures the rate of disinfection is more rapid.
- 5. Dosage and type of chemical. Usually the higher the dose, the quicker the disinfection rate. The form of disinfectant (chloramine or free chlorine) and the type of chemical used influence the disinfection rate.
- 6. pH. The lower the pH, the better the disinfection.

Emergency Disinfection of Drinking Water USE ONLY WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH

- 1. Use bottled water that has not been exposed to flood waters if it is available.
- 2. If you don't have bottled water, you should boil water to make it safe. Boiling water will kill most types of disease-causing organisms that may be present. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for boiling. Boil the water for one minute, let it cool, and store it in clean containers with covers.
- 3. If you can't boil water, you can disinfect it using household bleach. Bleach will kill some, but not all, types of disease-causing organisms that may be in the water. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for disinfection. Add 1/8 teaspoon (or 8 drops) of regular, unscented, liquid household bleach for each gallon of water, stir it well and let it stand for 30 minutes before you use it. Store disinfected water in clean containers with covers.
- 4. If you have a well that has been flooded, the water should be tested and disinfected after flood waters recede. If you suspect that your well may be contaminated, contact your local or state health department or agriculture extension agent for specific advice.
- (U.S. federal agencies and the Red Cross recommend these same four steps to disinfect drinking water in an emergency. Please, read the text below for important details about disinfection.

 More information about disinfection
 - ✓ In times of crisis, follow advice from local officials. Local health departments or public water systems may urge consumers to use more caution or to follow additional measures than the information provided here.
 - ✓ Look for other sources of potable water in and around your home.
 - ✓ When your home water supply is interrupted by natural or other forms of disaster, you can obtain limited amounts of water by draining your hot water tank or melting ice cubes. In most cases, well water is the preferred source of drinking water. If it is not available and river or lake water must be used, avoid sources containing floating material and water with a dark color or an odor. Generally, flowing water is better quality than stagnant water.

Examine the physical condition of the water.

When emergency disinfection is necessary, disinfectants are less effective in cloudy, murky or colored water. Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter. After filtering until it is clear, or allowing all dirt and other particles to settle, draw off the clean and clear water for disinfection. Water prepared for disinfection should be stored only in clean, tightly covered, containers, not subject to corrosion.

- ✓ Choose a disinfection method.
- ✓ Boiling and chemical treatment are two general methods used to effectively disinfect small quantities of filtered and settled water.

Boiling

Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes. These disease-causing organisms are less likely to occur in well water (as long as it has not been affected by flood waters). If not treated properly and neutralized, Giardia may cause diarrhea, fatigue, and cramps after ingestion. Cryptosporidium is highly resistant to disinfection. It may cause diarrhea, nausea and/or stomach cramps. People with severely weakened immune systems are likely to have more severe and more persistent symptoms than healthy individuals.

Boil filtered and settled water vigorously for one minute (at altitudes above one mile, boil for three minutes). To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.

If boiling is not possible, chemical disinfection of filtered and settled water collected from a well, spring, river, or other surface water body will still provide some health benefits and is better than no treatment at all.

Chemical Treatment

When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. For chemical disinfection to be effective, the water must be filtered and settled first. Chlorine and iodine are the two chemicals commonly used to treat water. They are somewhat effective in protecting against exposure to Giardia, but may not be effective in controlling more resistant organisms like Cryptosporidium. Chlorine is generally more effective than iodine in controlling Giardia, and both disinfectants work much better in warm water. You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. Do not use non-chlorine bleach to disinfect water. Typically, household chlorine bleaches will be 5.25% available chlorine. Follow the procedure written on the label. When the necessary procedure is not given, find the percentage of available chlorine on the label and use the information in the following table as a guide. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)

Available Chlorine

```
Drops per Quart/Gallon of Clear Water
Drops per Liter of Clear Water

1%
10 per Quart - 40 per Gallon
10 per Liter

4-6%
2 per Quart - 8 per Gallon (1/8 teaspoon)
2 per Liter

7-10%
1 per Quart - 4 per Gallon
1 per Liter
```

(If the strength of the bleach is unknown, add ten drops per quart or liter of filtered and settled water. Double the amount of chlorine for cloudy, murky or colored water or water that is extremely cold.)

Mix the treated water thoroughly and allow it to stand, preferably covered, for 30 minutes. The water should have a slight chlorine odor. If not, repeat the dosage and allow the water to stand for an additional 15 minutes. If the treated water has too strong a chlorine taste, allow the water to stand exposed to the air for a few hours or pour it from one clean container to another several times.

You can use granular calcium hypochlorite to disinfect water.

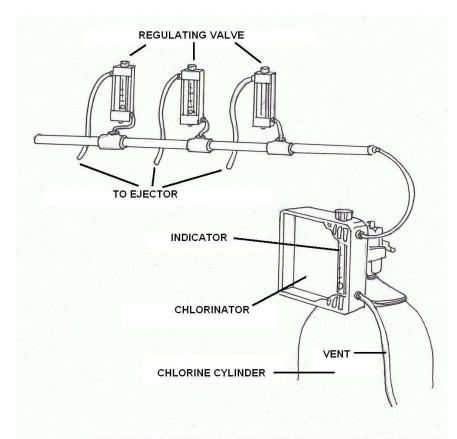
Add and dissolve one heaping teaspoon of high-test granular calcium hypochlorite (approximately ¼ ounce) for each two gallons of water, or 5 milliliters (approximately 7 grams) per 7.5 liters of water. The mixture will produce a stock chlorine solution of approximately 500 milligrams per liter, since the calcium hypochlorite has available chlorine equal to 70 percent of its weight. To disinfect water, add the chlorine solution in the ratio of one part of chlorine solution to each 100 parts of water to be treated. This is roughly equal to adding 1 pint (16 ounces) of stock chlorine to each 12.5 gallons of water or (approximately ½ liter to 50 liters of water) to be disinfected. To remove any objectionable chlorine odor, aerate the disinfected water by pouring it back and forth from one clean container to another.

You can use chlorine tablets to disinfect filtered and settled water.

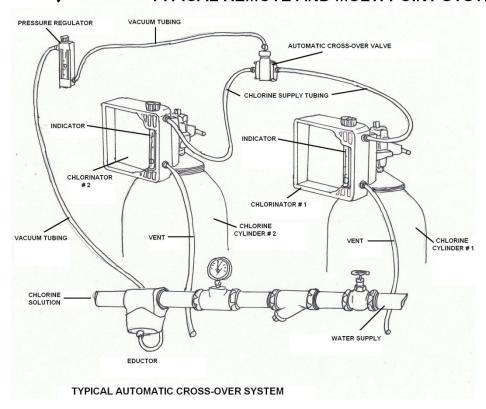
Chlorine tablets containing the necessary dosage for drinking water disinfection can be purchased in a commercially prepared form. These tablets are available from drug and sporting goods stores and should be used as stated in the instructions. When instructions are not available, use one tablet for each quart or liter of water to be purified.

You can use tincture of iodine to disinfect filtered and settled water.

Common household iodine from the medicine chest or first aid kit may be used to disinfect water. Add five drops of 2 percent U.S. or your country's approved Pharmacopeia tincture of iodine to each quart or liter of clear water. For cloudy water add ten drops and let the solution stand for at least 30 minutes.


You can use iodine tablets to disinfect filtered and settled water.

Purchase commercially prepared iodine tablets containing the necessary dosage for drinking water disinfection at drug and sporting goods stores. Use as stated in instructions. When instructions are not available, use one tablet for each quart or liter of filtered and settled water to be purified.


ONLY USE WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH.

Summary and Illustration of Key Points

- ✓ Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter.
- ✓ Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes.
- ✓ To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.
- ✓ When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. Chlorine (in the form of unscented bleach) and iodine are the two chemicals commonly used to treat water.
- ✓ You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)
- ✓ You can use tincture of iodine to disinfect filtered and settled water. Common household iodine
 from the medicine chest or first aid kit may be used to disinfect water.
- ✓ Tincture of iodine. For cloudy water add ten drops and let the solution stand for at least 30 minutes.

TYPICAL REMOTE AND MULTI-POINT SYSTEM

Understanding Combined Chlorine Residual

The residual consisting of chlorine that is combined with ammonia, nitrogen, or nitrogenous compounds (chloramines).

Understanding Free Available Chlorine

The residual consisting of hypochlorite ions (OCI-), hypochlorous acid (HOCI) or a combination of the two. These are the most effective in killing bacteria.

Total Combined Chlorine Residual

The total amount of chlorine present in a sample. This is the sum of the free chlorine residual and the combined available chlorine residual.

Understanding Pre-Chlorination

Chlorination is the application of chlorine to water to accomplish some definite purpose. In this lesson, we will be concerned with the application of chlorine for the purpose of disinfection, but you should be aware that chlorination can also be used for taste and odor control, iron and manganese removal, and to remove some gases such as ammonia and hydrogen sulfide. Chlorination is currently the most frequently used form of disinfection in the water treatment field. However, other disinfection processes have been developed. These alternatives will be discussed at the end of this lesson.

Pre-Chlorination and Post-Chlorination

Like several other water treatment processes, chlorination can be used as a pretreatment process (prechlorination) or as part of the primary treatment of water (postchlorination). Treatment usually involves either postchlorination only or a combination of prechlorination and postchlorination.

Pre-chlorination is the act of adding chlorine to the raw water. The residual chlorine is useful in several stages of the treatment process - aiding in coagulation, controlling algae problems in basins, reducing odor problems, and controlling mudball formation. In addition, the chlorine has a much longer contact time when added at the beginning of the treatment process, so prechlorination increases safety in disinfecting heavily contaminated water.

Post-chlorination is the application of chlorine after water has been treated but before the water reaches the distribution system. At this stage, chlorination is meant to kill pathogens and to provide a chlorine residual in the distribution system. Post-chlorination is nearly always part of the treatment process, either used in combination with prechlorination or used as the sole disinfection process.

Until the middle of the 1970s, water treatment plants typically used both prechlorination and postchlorination. However, the longer contact time provided by prechlorination allows the chlorine to react with the organics in the water and produce carcinogenic substances known as trihalomethanes. As a result of concerns over trihalomethanes, prechlorination has become much less common in the United States. Currently, prechlorination is only used in plants where trihalomethane formation is not a problem.

Understanding Breakpoint Chlorination

Addition of chlorine to water until the chlorine demand has been satisfied. Since ammonia is present in all domestic wastewaters, the reaction of ammonia with chlorine is a great significance. When chlorine is added to waters containing ammonia, the ammonia reacts with hypochlorous acid (HOCI) to form monochloramine, dichloramine and trichloramine. The formation of these chloramines depends on the pH of the solution and the initial chlorine-ammonia ratio.

Chlor-Alkali Membrane Process

The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride solution (brine). Depending on the method, several products besides hydrogen can be produced. If the products are separated, chlorine and sodium hydroxide (caustic soda) are the products; by mixing, sodium hypochlorite or sodium chlorate are produced, depending on the temperature. Higher temperatures are needed for the production of sodium chlorate instead of sodium hypochlorite. Industrial scale production began in 1892. When using calcium chloride or potassium chloride, the products contain calcium or potassium instead of sodium.

The process has a high energy consumption, for example over 4 billion kWh per year in West Germany in 1985, and produces equal (molar) amounts of chlorine and sodium hydroxide, which makes it necessary to find a use for the product for which there is less demand, usually the chlorine. There are three production methods in use. While the mercury cell method produces chlorine-free sodium hydroxide, the use of several tons of mercury leads to serious environmental problems. In a normal production cycle a few hundred pounds of mercury per year are emitted, which accumulate in the environment. Additionally, the chlorine and sodium hydroxide produced via the mercury-cell chloralkali process are themselves contaminated with trace amounts of mercury. The membrane and diaphragm method use no mercury, but the sodium hydroxide contains chlorine, which must be removed.

Understanding Chlorine's Effectiveness

In 1881, German bacteriologist Robert Koch demonstrated under controlled laboratory conditions that pure cultures of bacteria could be destroyed by hypochlorite (bleach). The bulk of chlorine disinfection research, which was conducted from the 1940s to the 1970s with a focus on bacteria, provided observations as to how chlorine kills the microorganism. The observations that (1) bacterial cells dosed with chlorine release nucleic acids, proteins and potassium and (2) membrane functions such as respiration and active transport are affected more by chlorine than are cytoplasmic processes, directed researchers' attention to the surface of the bacterial cell. The hypothesis was that the bacterial cell wall, under environmental stress, could interact with chlorine.

Chlorine exposure appears to cause physical, chemical, and biochemical alterations to the cell wall, thus destroying the cell's protective barrier, terminating vital functions, resulting in death of the microorganism. A possible sequence of events during chlorination would be: (1) disruption of the cell wall barrier by reactions of chlorine with target sites at the cell surface, (2) release of vital cellular constituents from the cell, (3) termination of membrane-associated functions, and (4) termination of cellular functions within the cell. During the course of this sequence of events, the microorganism dies, meaning it is no longer capable of growing or causing disease.

Understanding Chlorine Solubility Effects

Chlorine is only slightly soluble in water; its maximum solubility is approximately one percent at 49° C. At temperatures below this point it combines with water to form chlorine ice, a crystalline substance. When the water supply to a gas chlorinator is below normal room temperature, it may cool the chlorine gas to the point at which chlorine ice is formed and accumulates on the needle valve and gas outlet tube, resulting in erratic feed results. Because the vapor pressure of chlorine increases with rising temperatures, its solubility also decreases. At 212° F. chlorine is insoluble in water.

Chlorine dissolved in water forms a weak corrosive mixture of hydrochloric and hypochlorous acid. The corrosivity of chlorine solutions in water creates problems in handling chlorine spills and chlorine containers. Chlorine reacts with many compounds. Because of its great affinity for hydrogen, it removes hydrogen from some compounds, such as hydrogen sulfide. It also reacts with ammonia or other nitrogen-containing compounds to form various mixtures of chloramines. It reacts with organic materials, sometimes with explosive violence.

Chemicals like chlorine, bromine, and ozone are examples of oxidizers. It is their ability to oxidize or steal electrons from other substances that makes them good water sanitizers. As soon as the oxidizing agent is added to the water, it begins to combine with microorganisms like bacteria, algae, and whatever else the water may contain.

Now the free and available oxidizer is combining with contaminants and its effectiveness is reduced according to how much combining took place. Although the hydrogen ion does not play a direct reduction role on copper surfaces, pH can influence copper corrosion by altering the equilibrium potential of the oxygen reduction half-reaction and by changing the speciation of copper in solution (Reiber, 1989). Copper corrosion increases rapidly as the pH drops below 6; in addition, uniform corrosion rates can be high at low pH values (below about pH 7), causing metal thinning. At higher pH values (above about pH 8), copper corrosion problems are almost always associated with non-uniform or pitting corrosion processes (Edwards et al., 1994a; Ferguson et al., 1996). Edwards et al. (1994b) found that for new copper surfaces exposed to simple solutions that contained bicarbonate, chloride, nitrate, perchlorate or sulphate, increasing the pH from 5.5 to 7.0 roughly halved corrosion rates, but further increases in pH yielded only subtle changes.

The prediction of copper levels in drinking water relies on the solubility and physical properties of the cupric oxide, hydroxide and basic carbonate solids that comprise most scales in copper water systems (Schock et al., 1995). In the cupric hydroxide model of Schock et al. (1995), a decrease in copper solubility with higher pH is evident. Above a pH of approximately 9.5, an upturn in solubility is predicted, caused by carbonate and hydroxide complexes increasing the solubility of cupric hydroxide. Examination of experience from 361 utilities reporting copper levels under the U.S. EPA Lead and Copper Rule revealed that the average 90th-percentile copper levels were highest in waters with pH below 7.4 and that no utilities with pH above 7.8 exceeded the U.S. EPA's action level for copper of 1.3 mg/L (Dodrill and Edwards, 1995). However, problems associated with copper solubility were also found to persist up to about pH 7.9 in cold, high-alkalinity and high-sulphate groundwater (Edwards et al., 1994a).

In the pH range of 7-9, both the corrosion rate and the degree of tuberculation of iron distribution systems generally increase with increasing pH (Larson and Skold, 1958; Stumm, 1960; Hatch, 1969; Pisigan and Singley, 1987). Iron levels, however, were usually reported to decrease with increasing pH (Karalekas et al., 1983; Kashinkunti et al., 1999; Broo et al., 2001; Sarin et al., 2003). In a pipe loop system constructed from 90- to100-year-old unlined cast iron pipes taken from a Boston distribution system, iron concentrations were found to steadily decrease when the pH was raised from 7.6 to 9.5 (Sarin et al., 2003). Similarly, when iron was measured in the distribution system following a pH increase from 6.7 to 8.5, a consistent downward trend in iron concentrations was found over 2 years (Karalekas et al., 1983). These observations are consistent with the fact that the solubility of iron-based corrosion by-products decreases with increasing pH.

Water with low pH, low alkalinity and low calcium is particularly aggressive towards cement materials. The water quality problems that may occur are linked to the chemistry of the cement. Lime from the cement releases calcium ions and hydroxyl ions into the drinking water. This, in turn, may result in a substantial pH increase, depending on the buffering capacity of the water (Leroy et al., 1996). Pilot-scale tests were conducted to simulate low-flow conditions of newly lined cement mortar pipes carrying low-alkalinity water (Douglas et al., 1996). In the water with an initial pH of 7.2, alkalinity of 14 mg/L as calcium carbonate and calcium at 13 mg/L as calcium carbonate, measures of pH as high as 12.5 were found.

Similarly, in the water with an initial pH of 7.8, alkalinity of 71 mg/L as calcium carbonate and calcium at 39 mg/L as calcium carbonate, measures of pH as high as 12 were found. The most significant pH increases were found during the 1st week of the experiment, and pH decreased slowly with aging of the lining. In a series of field and test rig trials to determine the impact of in situ cement mortar lining on water quality, Conroy et al. (1994) observed that in low-flow and low-alkalinity water (around 10 mg/L as calcium carbonate), pH increases exceeding 9.5 could occur for over 2 years following the lining.

Understanding Amperometric Titration

It appears that DPD colorimetric determination and amperometric titration as described in Standard Methods are the procedures most commonly used for routine measurement of total chlorine. Few studies have been conducted to evaluate these or other total residual chlorine measurement techniques. Bender5 studied approximately 10 test procedures and found that results using the DPD colorimetric procedure were consistently higher than those using amperometric titration. Brooks and Seegert6 described an amperometric titration procedure employing a recording polargraph and microburette, which was reported to be accurate and free from interference. The reliability of the DPD colorimetric method for free chlorine has been increasingly questioned in recent years. The suitability of that procedure for accurate total chlorine determinations appears to the authors to be questionable, as well. Amperometric titration as described in Standard Methods cannot be used to measure total chlorine concentrations less than about 0.05 mg/L, which is at least an order of magnitude greater than levels of concern in natural waters for potential toxicity to aquatic organisms. A reliable, simple procedure for low-level total chlorine determinations is clearly needed.

Analytical Procedure

Section 409C of Standard Methods includes a General Discussion section on amperometric titration for the determination of chlorine in aqueous solutions. That discussion is applicable to the procedure used by the authors. Also included in Standard Methods is a section concerning the titration apparatus. Basically, the titration equipment consists of a buret capable of accurately delivering 0.01 mL of titrant, a sample cup, and a stirring device in which is housed a platinum electrode and a KCI reference electrode. Several companies manufacture amperometric titrators that fit this general description. The experience of the senior author is that some of the commercial titrators are less suitable than others, primarily because of the small surface area of some of the electrodes employed. A Wallace and Tiernan amperometric titrator was used by the authors in developing and applying the procedure described below.

Reagents

- a. Chlorine-free water. Only distilled or demineralized water that is free of chlorine should be used in preparing reagents. Chlorine-free water may be prepared by passing distilled or demineralized water through a suitable activated carbon filter adsorption column. The water may be tested for the presence of chlorine by titrating a sample as described in the Procedure section. Any deflection in the meter upon the addition of PAO titrant indicates the presence of chlorine or other oxidants that would interfere in the titration procedure.
- b. Standard phenylarsine oxide (PAO), 0.00564 N. See Standard Methods Section 409B, paragraph 3a. Standardization Dilute 50.00 mL of freshly prepared 0.0002256 N potassium biniodate to 200 mL in chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section. If the standard PAO is 0.00564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.
- c. Phenylarsine oxide titrant, 0.000564 N. Dilute 10.00 mL of 0.00564 N PAO to 100.0 mL in chlorine-free water.
- Standardization Dilute 5.00 mL of 0.0002256 N potassium biniodate to 200 mL with chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section below. If the PAO titrant is 0.000564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.
- d. Potassium biniodate, 0.0002256 N. Dissolve 0.7332 g reagent grade KH(IO_3)2 in 500 mL chlorine-free water and dilute to 1.00 L. Dilute 10.00 mL of that solution to 100.0 mL with chlorine-free water. That solution is used for the standardization of the PAO and should be freshly prepared.
- e. Acetate buffer solution, pH 4. See Standard Methods1 Section 409B, paragraph 3e.
- f. Potassium iodide, (KI), reagent grade crystals.

Procedure

a. Titrant selection. Normally a 200-mL sample is used in titration. Each 0.1 mL of 0.000564 N PAO corresponds to 0.01 mg/L in a 200-mL sample. The titrant normality should be selected such that no more than about 4 mL of titrant will be required to reach the equivalence point. Thus, if the chlorine concentration in the majority of the samples to be titrated is less than about 0.4 mg/L, use 0.000564 N PAO as the titrant. If only samples containing chlorine concentrations in excess of 0.4 mg/L are to be analyzed, use 0.00564 N PAO as the titrant. If samples containing concentrations of chlorine in excess of about 0.4 mg/L are to be titrated only occasionally and the volume of 0.000564 N PAO required for titration is found to be excessive, a suitable subsample may be used and diluted to 200 mL with chlorine-free water.

b. Titration procedure (total residual chlorine). Prior to beginning the titration, rinse the buret with PAO titrant by filling it completely and allowing the titrant to run into an empty sample cup. Repeating this operation three or four times will ensure that the correct titrant concentration reaches the sample cup. Remove the sample cup and rinse with distilled water and with the sample to be titrated. Add 200 mL of the sample to the sample cup. Add approximately 1.5 g (\pm 0.2 g) crystalline KI and allow to dissolve, using the agitator on the titrator for mixing.

The exact amount of KI added is not critical, but the analyst should weigh 1.5 g of this reagent periodically to become familiar with the approximate amount required. Add 1 mL of acetate buffer and allow the microammeter on the titrator to reach a stable reading; the titration should be started within about 30 seconds following the addition of the KI to the sample.

Full-scale deflection on the microammeter is 100 units. The meter should be initially adjusted to read between 90 and 100 units. Record the initial reading prior to the addition of titrant. Titrate by adding suitable volumes of titrant and recording the titrant volume added and the resultant current reading. At least three (and preferably five to ten) readings of current and titrant volume added should be obtained prior to passing the equivalence point; then add excess titrant to ensure that there is no further meter deflection. Record the final meter reading. If, during the titration, the meter reading falls to near or below 10 units, record the low reading, re-adjust the meter to read between 90 and 100 units, record the high reading, and continue the titration. This approach allows calculation of the total meter deflection, which is used in determining the equivalence point.

The equivalence point is determined by plotting the total meter deflection as a function of titrant volume added. It is important that the total meter deflection be used in preparing this plot. A straight line is drawn through the first few points in the plot and a second straight line is drawn parallel to the abscissa and corresponding to the final total deflection in the meter reading. The equivalence point is determined by the intersection of those two lines. When 0.000564 N PAO is used as the titrant, the chlorine concentration is 0.1-times the titrant volume at the equivalence point. This plotting procedure is also outlined in the ASTM Water Manual8 under procedures ASTM D1253 (Tests for Residual Chlorine in Water) and ASTM D1427 (Tests for Residual Chlorine in Waste Water).

c. Sample storage and handling. Chlorine measurements should be made as soon after sample collection as possible. Samples to be analyzed for chlorine should be stored in the dark and packed on ice if they must be held for more than a few minutes before analysis. Chlorine compounds are highly reactive and may be rapidly lost from samples due to the effects of volatilization, phototransformation, and chlorine demand. Storage of samples on ice and in the dark between sampling and analysis will help minimize the rate of dissipation. It is important to estimate the changes that occur in chlorine content in the subject water between sample collection and analysis.

This can be accomplished by performing a "time-lag" test. To perform a time-lag test, a single large (approximately 2-L) sample of the water being analyzed is collected. The chlorine concentration in that sample is determined six to ten times over a period of one to three hours, depending on the normal sample holding time. The measured concentrations are then plotted as a function of time, normally on semilog paper. In most cases, the decrease in chlorine concentration over time can be described by first-order reaction kinetics.

The original chlorine content in any sample can be computed given the measured concentration and the holding time. A time-lag study should be performed on a regular basis for each type of water being analyzed because of variability in water compositions. The sample set used for the study should be handled in the same way as other samples (i.e., the samples should be kept cold and in the dark). Even when time-lag studies are made a part of the routine analytical procedure, it is important that the delay between sample collection and chlorine analysis be held to a minimum.

Sodium Hypochlorite

Sodium Hypochlorite, or bleach, is produced by adding elemental chlorine to sodium hydroxide. Typically, hypochlorite solutions contain from 5 to 15% chlorine, and are shipped by truck in one- to 5,000- gallon containers.

Advantages

- ✓ Solution is less hazardous and easier to handle than elemental chlorine
- √ Fewer training requirements and regulations than elemental chlorine

Limitations

- ✓ Limited shelf-life
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water
- Corrosive to some materials and more difficult to store than most solution chemicals
- ✓ Higher chemical costs than elemental chlorine

Calcium Hypochlorite

Calcium hypochlorite is another chlorinating chemical used primarily in smaller applications. It is a white, dry solid containing approximately 65% chlorine, and is commercially available in granular and tablet forms.

Advantages

- ✓ More stable than sodium hypochlorite, allowing longer storage
- ✓ Fewer training requirements and regulations than elemental chlorine

Limitations

- ✓ Dry chemical requires more handling than sodium hypochlorite
- ✓ Precipitated solids formed in solution complicate chemical feeding
- ✓ Higher chemical costs than elemental chlorine
- ✓ Fire or explosive hazard if handled improperly
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water

Onsite Hypochlorite Generation

In recent years some municipalities have installed on-site hypochlorite generators that produce weak hypochlorite solutions (~0.8%) using an electrolytic cell and a solution of salt water.

Advantages

✓ Minimal chemical storage and transport

Limitations

- ✓ More complex and requires a higher level of maintenance and technical expertise
- √ High capital cost
- ✓ Operating costs are often higher than for commercial hypochlorite
- ✓ Requires careful control of salt quality
- ✓ Weak solution requires high volume chemical feed and control
- ✓ Byproducts in generated hypochlorite may be difficult to monitor and control
- ✓ System backup may be more difficult and costly

More on Ozone

Ozone (O_3) is generated on-site at water treatment facilities by passing dry oxygen or air through a system of high voltage electrodes. Ozone is one of the strongest oxidants and disinfectants available. Its high reactivity and low solubility, however, make it difficult to apply and control. Contact chambers are fully contained and non-absorbed ozone must be destroyed prior to release to avoid corrosive and toxic conditions. Ozone is more often applied for oxidation rather than disinfection purposes.

Advantages

- ✓ Strongest oxidant/disinfectant available
- ✓ Produces no chlorinated THMs, HAAs
- ✓ Effective against Cryptosporidium at higher concentrations
- ✓ Used with Advanced Oxidation processes to oxidize refractory organic compounds

Limitations

- √ Process operation and maintenance requires a high level of technical competence
- Provides no protective residual
- ✓ Forms brominated byproducts (bromate, brominated organics)
- ✓ Forms nonhalogenated byproducts (ketenes, organic acids, aldehydes)
- ✓ Breaks down more complex organic matter; smaller compounds can enhance microbial regrowth in distribution systems and increase DBP formation during secondary disinfection processes.
- ✓ Higher operating and capital costs than chlorination
- Difficult to control and monitor particularly under variable load conditions

Ultraviolet Radiation

Ultraviolet (UV) radiation, generated by mercury arc lamps, is a non-chemical disinfectant. When UV radiation penetrates the cell wall of an organism, it damages genetic material, and prevents the cell from reproducing. Although it has a limited track record in drinking water applications, UV has been shown to effectively inactivate many pathogens while forming limited disinfection byproducts.

Advantages

- ✓ Effective at inactivating most viruses, spores and cysts
- ✓ No chemical generation, storage, or handling
- ✓ Effective against Cryptosporidium
- ✓ No known byproducts at levels of concern

Limitations

- ✓ No residual protection
- ✓ Low inactivation of some viruses (reoviruses and rotaviruses)
- ✓ Difficult to monitor efficacy

- ✓ Irradiated organisms can sometimes repair and reverse the destructive effects of UV through a process known as photo-reactivation
- ✓ May require additional treatment steps to maintain high-clarity water
- ✓ Does not provide oxidation, or taste and odor control
- ✓ High cost of adding backup/emergency capacity
- ✓ Mercury lamps may pose a potable water and environmental toxicity risk

Alternative Disinfectants

Up until the late 1970s, chlorine was virtually the only disinfectant used to treat drinking water. Chlorine was considered an almost ideal disinfectant, based on its proven characteristics:

- ✓ Effective against most known pathogens
- ✓ Provides a residual to prevent microbial re-growth and protect treated water throughout the distribution system
- ✓ Suitable for a broad range of water quality conditions
- ✓ Easily monitored and controlled

Glossary

ABANDONED WELL: Wells that have been or need to be sealed by an approved method.

ABSENCE OF OXYGEN: The complete absence of oxygen in water described as Anaerobic.

ACCURACY: How closely an instrument measures the true or actual value.

ACID AND BASE ARE MIXED: When an acid and a base are mixed, an explosive reaction occurs and decomposition products are created under certain conditions.

ACID: Slowly add the acid to water while stirring. An operator should not mix acid and water or acid to a strong base.

ACID RAIN: A result of airborne pollutants.

ACTIVATED CHARCOAL (GAC or PAC): Granular Activated Charcoal or Powered Activated Charcoal. Used for taste and odor removal. A treatment technique that is not included in the grading of a water facility.

ACTIVATED CARBON FILTRATION: Can remove organic chemicals that produce off-taste and odor. These compounds are not dangerous to health but can make the water unpleasant to drink. Carbon filtration comes in several forms, from small filters that attach to sink faucets to large tanks that contain removable cartridges. Activated carbon filters require regular maintenance or they can become a health hazard.

ADSORPTION: Not to be confused with absorption. Adsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a film of molecules or atoms (the adsorbate). It is different from absorption, in which a substance diffuses into a liquid or solid to form a solution. The term sorption encompasses both processes, while desorption is the reverse process. Adsorption is present in many natural physical, biological, and chemical systems, and is widely used in industrial applications such as activated charcoal, synthetic resins, and water purification.

ADSORPTION CLARIFIERS: The concept of the adsorption clarifier package plant was developed in the early 1980s. This technology uses an up-flow clarifier with low-density plastic bead media, usually held in place by a screen. This adsorption media is designed to enhance the sedimentation/clarification process by combining flocculation and sedimentation into one step. In this step, turbidity is reduced by adsorption of the coagulated and flocculated solids onto the adsorption media and onto the solids already adsorbed onto the media. Air scouring cleans adsorption clarifiers followed by water flushing. Cleaning of this type of clarifier is initiated more often than filter backwashing because the clarifier removes more solids. As with the tube-settler type of package plant, the sedimentation/ clarification process is followed by mixed-media filtration and disinfection to complete the water treatment.

AIR GAP SEPARATION: A physical separation space that is present between the discharge vessel and the receiving vessel; for an example, a kitchen faucet.

AIR HAMMER: A pneumatic cylindrical hammering device containing a piston used on air rotary rigs. The air hammer's heavy piston moves up and down by the introduction of compressed air creating a hammering action on the bit.

AIR HOOD: The most suitable protection when working with a chemical that produces dangerous fumes.

AIR ENTRAINMENT: The dissolution or inclusion of air bubbles into water.

AIRLIFT: The lifting of water and/or cuttings to the surface by the injection of high pressure bursts of air. Airlift occurs continuously when drilling with air rotary and can be used for well development with a surging technique.

AIR PUMPING: Continuous airlifting to remove water from the well.

AIR ROTARY: A method of rotary well drilling that utilizes compressed air as the primary drilling fluid.

AGGLOMERATION: A jumbled cluster or mass of varied parts. The act or process of agglomerating.

ALKALINITY: Alkalinity or AT is a measure of the ability of a solution to neutralize acids to the equivalence point of carbonate or bicarbonate. Alkalinity is closely related to the acid neutralizing capacity (ANC) of a solution and ANC is often incorrectly used to refer to alkalinity. However, the acid neutralizing capacity refers to the combination of the solution and solids present (e.g., suspended matter, or aquifer solids), and the contribution of solids can dominate the ANC (see carbonate minerals below).

ALTERNATIVE DISINFECTANTS: Disinfectants - other than chlorination (halogens) - used to treat water, e.g. ozone, ultraviolet radiation, chlorine dioxide, and chloramine. There is limited experience and scientific knowledge about the by-products and risks associated with the use of alternatives.

ALGAE: Microscopic plants that are free-living and usually live in water. They occur as single cells floating in water, or as multicellular plants like seaweed or strands of algae that attach to rocks.

ALPHA AND BETA RADIOACTIVITY: Represent two common forms of radioactive decay. Radioactive elements have atomic nuclei so heavy that the nucleus will break apart, or disintegrate spontaneously. When decay occurs, high-energy particles are released. These high-energy particles are called radioactivity. Although radioactivity from refined radioactive elements can be dangerous, it is rare to find dangerous levels of radioactivity in natural waters. An alpha particle is a doubly-charged helium nucleus comprised of two protons, two neutrons, and no electrons. A beta particle is a high-speed electron. Alpha particles do not penetrate matter easily, and are stopped by a piece of paper. Beta particles are much more penetrating and can pass through a millimeter of lead.

ALUMINUM SULFATE: The chemical name for Alum. The molecular formula of Alum is $Al_2(SO_4)3\sim14H_2O$. It is a cationic polymer.

AMOEBA: Amoeba (sometimes amœba or ameba, plural amoebae) is a genus of protozoa that moves by means of pseudopods, and is well-known as a representative unicellular organism. The word amoeba or ameba is variously used to refer to it and its close relatives, now grouped as the Amoebozoa, or to all protozoa that move using pseudopods, otherwise termed amoeboids.

AMMONIA: NH₃ A chemical made with Nitrogen and Hydrogen and used with chlorine to disinfect water. Most ammonia in water is present as the ammonium ion rather than as ammonia.

AMMONIATOR: A control device which meters gaseous ammonia directly into water under positive pressure.

ANAEROBIC: An abnormal condition in which color and odor problems are most likely to occur.

ANAEROBIC CONDITIONS: When anaerobic conditions exist in either the metalimnion or hypolimnion of a stratified lake or reservoir, water quality problems may make the water unappealing for domestic use without costly water treatment procedures. Most of these problems are associated with Reduction in the stratified waters.

ANEROID: Using no fluid, as in aneroid barometer.

ASEPTIC: Free from the living germs of disease, fermentation, or putrefaction.

ANNULAR SPACE: The space between the borehole wall and either drill piping or casing within a well.

ANNULUS: See Annular Space.

AMMONIA: A chemical made with Nitrogen and Hydrogen and used with chlorine to disinfect water.

AQUICLUDE: A layer or layers of soils or formations which water cannot pass through (ex - solid bedrock or very stiff clay). The opposite of aquifer.

AQUIFER: A saturated layer or layers of soils or formations which water can pass through and be provided in usable quantities to supply wells or springs (ex – saturated semi consolidated sediment or saturated fractured bedrock.) An underground geologic formation capable of storing significant amounts of water.

AQUIFER PARAMETERS: Referring to such attributes as specific capacity, aquifer storage, transmissivity, hydraulic conductivity, gradient, and water levels. Refers to all of the components of Darcy's Law and related parameters.

ARTESIAN AQUIFER: A confined aquifer in which the pressure head results in a water elevation higher than the land surface.

ARTESIAN WELL: A well constructed within an artesian aquifer. When an artesian well is opened it will flow naturally.

As: The chemical symbol of Arsenic.

AS NITROGEN: An expression that tells how the concentration of a chemical is expressed mathematically. The chemical formula for the nitrate ion is NO_3 , with a mass of 62. The concentration of nitrate can be expressed either in terms of the nitrate ion or in terms of the principal element, nitrogen. The mass of the nitrogen atom is 14. The ratio of the nitrate ion mass to the nitrogen atom mass is 4.43. Thus a concentration of 10 mg/L nitrate expressed as nitrogen would be equivalent to a concentration of 44.3 mg/L nitrate expressed as nitrate ion. When dealing with nitrate numbers it is very important to know how numeric values are expressed.

ASYNCHRONOUS: Not occurring at the same time.

AUGER RIG: A drilling rig, which drives a rotating spiral flange to drill into the earth.

ATOM: The general definition of an ion is an atom with a positive or negative charge. Electron is the name of a negatively charged atomic particle.

BACKFLOW PREVENTION: To stop or prevent the occurrence of, the unnatural act of reversing the normal direction of the flow of liquid, gases, or solid substances back in to the public potable (drinking) water supply. See Cross-connection control.

BACKFLOW: To reverse the natural and normal directional flow of a liquid, gases, or solid substances back in to the public potable (drinking) water supply. This is normally an undesirable effect.

BACKSIPHONAGE: A liquid substance that is carried over a higher point. It is the method by which the liquid substance may be forced by excess pressure over or into a higher point.

BACTERIA: Small, one-celled animals too small to be seen by the naked eye. Bacteria are found everywhere, including on and in the human body. Humans would be unable to live without the bacteria that inhabit the intestines and assist in digesting food. Only a small percentage of bacteria cause disease in normal, healthy humans. Other bacteria can cause infections if they get into a cut or wound. Bacteria are the principal concern in evaluating the microbiological quality of drinking water, because some of the bacteria-caused diseases that can be transmitted by drinking water are potentially life-threatening.

BACTERIOPHAGE: Any of a group of viruses that infect specific bacteria, usually causing their disintegration or dissolution. A bacteriophage (from 'bacteria' and Greek phagein, 'to eat') is any one of a number of viruses that infect bacteria. The term is commonly used in its shortened form, phage. Typically, bacteriophages consist of an outer protein hull enclosing genetic material. The genetic material can be ssRNA (single stranded RNA), dsRNA, ssDNA, or dsDNA between 5 and 500 kilo base pairs long with either circular or linear arrangement. Bacteriophages are much smaller than the bacteria they destroy - usually between 20 and 200 nm in size.

BAILER: A device used to withdrawal water or sediment from a well utilizing a check valve type mechanism.

BARITE: Processed barium sulfate, often used to increase drilling fluid densities in mud rotary.

BATTERY: A source of direct current (**DC**) may be used for standby lighting in a water treatment facility. The electrical current used in a DC system may come from a battery.

BENTONITE: High quality clay composed primarily of montmorillonite. Used to thicken drilling mud in mud rotary drilling and used to form seals in well construction or abandonment.

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT): A level of technology based on the best existing control and treatment measures that are economically achievable within the given industrial category or subcategory.

BEST MANAGEMENT PRACTICES (BMPs): Schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the U.S. BMPs also include treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT): A level of technology represented by the average of the best existing wastewater treatment performance levels within an industrial category or subcategory.

BEST PROFESSIONAL JUDGMENT (BPJ): The method used by a permit writer to develop technology-based limitations on a case-by-case basis using all reasonably available and relevant data.

BIT: The primary cutting edge of a drill string.

BLANK CASING: A section of well casing that is solid.

BLOWDOWN: The discharge of water with high concentrations of accumulated solids from boilers to prevent plugging of the boiler tubes and/or steam lines. In cooling towers, blowdown is discharged to reduce the concentration of dissolved salts in the recirculating cooling water.

BOREHOLE DEVIATION: A boreholes' orientation deviates from vertical while drilling.

BOREHOLE GEOPHYSICS: A surveying technique of utilizing specialized tools to measure various physical parameters of the aquifer, formation, and well.

BOREHOLE: The hole that is formed when drilling into the earth.

BOULDER: An individual rock or solid mass of rock larger than 10 inches in diameter.

BREAK POINT CHLORINATION: The process of chlorinating the water with significant quantities of chlorine to oxidize all contaminants and organic wastes and leave all remaining chlorine as free chlorine.

BRIDGING: The tendency of sediment, filter, or seal media to create an obstruction if installed in too small an annulus or to rapidly. Also can occur within filter packs requiring development.

BROMINE: Chemical disinfectant (HALOGEN) that kills bacteria and algae. This chemical disinfectant has been used only on a very limited scale for water treatment because of its handling difficulties. This chemical causes skin burns on contact, and a residual is difficult to obtain.

BUCKET AUGER: A single cylindrical type of auger flight consisting of offset cutting blades at the bottom. A bucket auger rig rotates the bucket and its blades cut into the earth and fill the bucket with cuttings, which are dumped on the surface as needed.

BUFFER: Chemical that resists pH change, e.g. sodium bicarbonate

BUTTON BIT: A bit that is constructed with raised (typically carbide) buttons that strengthen the bit and aid in crushing and grinding efficiency. A button bit may be of a roller, hammer, or percussion type.

CABLE TOOL: (Also called Percussion Drilling) A method of drilling which utilizes the consecutive lifting and dropping of a heavy drill string via a system of cables.

CALCIUM HARDNESS: A measure of the calcium salts dissolved in water.

Ca: The chemical symbol for calcium.

CADMIUM: A contaminant that is usually not found naturally in water or in very small amounts.

CALCIUM HARDNESS: A measure of the calcium salts dissolved in water.

CALCIUM ION: Is divalent because it has a valence of +2.

CALCIUM, MAGNESIUM AND IRON: The three elements that cause hardness in water.

CaOCl₂.4H₂O: The molecular formula of Calcium hypochlorite.

CAPILLARY ACTION: The occurrence of an upward movement of fluid into previously unsaturated soil due to adhesion and surface tension which develops between the fluid and soil particles.

CAPILLARY FRINGE: The uppermost portion of an aquifer where the vadose zone ends. The capillary action of soils permits moisture to extend upwards into the vadose zone within the capillary fringe.

CARBON DIOXIDE GAS: The pH will decrease and alkalinity will change as measured by the Langelier index after pumping carbon dioxide gas into water.

CARBONATE HARDNESS: Carbonate hardness is the measure of Calcium and Magnesium and other hard ions associated with carbonate (CO₃2') and bicarbonate (HCO₃-) ions contained in a solution, usually water. It is usually expressed either as parts per million (ppm or mg/L), or in degrees (KH - from the German "Karbonathärte"). One German degree of carbonate hardness is equivalent to about 17.8575 mg/L. Both measurements (mg/L or KH) are usually expressed "as CaCO₃" – meaning the amount of hardness expressed as if calcium carbonate was the sole source of hardness. Every bicarbonate ion only counts for half as much carbonate hardness as a carbonate ion does. If a solution contained 1 liter of water and 50 mg NaHCO₃ (baking soda), it would have a carbonate hardness of about 18 mg/L as CaCO₃. If you had a liter of water containing 50 mg of Na₂CO₃, it would have a carbonate hardness of about 29 mg/L as CaCO₃.

CARBONATE, **BICARBONATE AND HYDROXIDE**: Chemicals that are responsible for the alkalinity of water.

CARBONATE ROCK: Rock that is composed primarily of calcium carbonate.

CASING DRIVER: A percussion or hammering device used to force casing into the subsurface.

CASING: A column of specially designed pipe of metal or plastic material installed in wells in order to keep a borehole open to permit serviceability of and/or construction and completion of a well within it.

CATHEAD: A specially designed auxiliary reel that normally utilizes heavy rope rather than steel cable. Often used on cable tool or percussion drilling rigs for the operation of drive blocks.

CATHODIC PROTECTION: An operator should protect against corrosion of the anode and/or the cathode by painting the copper cathode. Cathodic protection interrupts corrosion by supplying an electrical current to overcome the corrosion-producing mechanism. Guards against stray current corrosion.

CAUSTIC: NaOH (also called Sodium Hydroxide) is a strong chemical used in the treatment process to neutralize acidity, increase alkalinity or raise the pH value.

CAUSTIC SODA: Also known as sodium hydroxide and is used to raise pH.

CAVERN: Large open spaces (>5ft.) encountered while drilling. More often associated with limestone formations in a karst environment.

CEILING AREA: The specific gravity of ammonia gas is 0.60. If released, this gas will accumulate first at the ceiling area. Cl₂ gas will settle on the floor.

CEMENT GROUT: Cement of fine consistency, capable of being pumped. Used to seal in and around wells.

CENTRALIZER: Stand offs attached to well casing and screen to maintain annular space. In drilling, it has the same meaning as stabilizer or drill collar.

CENTRIFUGAL FORCE: That force when a ball is whirled on a string that pulls the ball outward. On a centrifugal pump, it is that force which throws water from a spinning impeller.

CENTRIFUGAL PUMP: A pump consisting of an impeller fixed on a rotating shaft and enclosed in a casing, having an inlet and a discharge connection. The rotating impeller creates pressure in the liquid by the velocity derived from centrifugal force.

CESIUM (also Caesium): Symbol Cs- A soft, silvery-white ductile metal, liquid at room temperature, the most electropositive and alkaline of the elements, used in photoelectric cells and to catalyze hydrogenation of some organic compounds.

CHAIN OF CUSTODY (COC): A record of each person involved in the possession of a sample from the person who collects the sample to the person who analyzes the sample in the laboratory.

CHAIN OF CUSTODY (COC): A record of each person involved in the possession of a sample from the person who collects the sample to the person who analyzes the sample in the laboratory.

CHECK VALVE: Allows water to flow in only one direction.

CHELATION: A chemical process used to control scale formation in which a chelating agent "captures" scale-causing ions and holds them in solution.

CHEMICAL FEED RATE: Chemicals are added to the water in order to improve the subsequent treatment processes. These may include pH adjusters and coagulants. Coagulants are chemicals, such as alum, that neutralize positive or negative charges on small particles, allowing them to stick together and form larger particles that are more easily removed by sedimentation (settling) or filtration. A variety of devices, such as baffles, static mixers, impellers and in-line sprays, can be used to mix the water and distribute the chemicals evenly.

CHEMICAL OXIDIZER: KMnO4 or Potassium Permanganate is used for taste and odor control because it is a strong oxidizer which eliminates many organic compounds.

CHEMICAL REATION RATE: In general, when the temperature decreases, the chemical reaction rate also decreases. The opposite is true for when the temperature increases.

CHEMISORPTION: (or chemical adsorption) Is adsorption in which the forces involved are valence forces of the same kind as those operating in the formation of chemical compounds.

CHLORAMINATION: Treating drinking water by applying chlorine before or after ammonia. This creates a persistent disinfectant residual called chloramines.

CHLORAMINES: A group of chlorine ammonia compounds formed when chlorine combines with organic wastes in the water. Chloramines are not effective as disinfectants and are responsible for eye and skin irritation as well as strong chlorine odors.

CHLORINATION: The process in water treatment of adding chlorine (gas or solid hypochlorite) for purposes of disinfection.

CHLORINE: A chemical used to disinfect water. Chlorine is extremely reactive, and when it comes in contact with microorganisms in water it kills them. Chlorine is added to swimming pools to keep the water safe for swimming. Chlorine is available as solid tablets for swimming pools. Some public water system's drinking water treatment plants use chlorine in a gas form because of the large volumes required. Chlorine is very effective against algae, bacteria and viruses. Protozoa are resistant to chlorine because they have thick coats; protozoa are removed from drinking water by filtration.

CHLORINE DEMAND: Amount of chlorine required to react on various water impurities before a residual is obtained. Also, means the amount of chlorine required to produce a free chlorine residual of 0.1 mg/l after a contact time of fifteen minutes as measured by iodmetic method of a sample at a temperature of twenty degrees in conformance with Standard methods.

CHLORINE FEED: Chlorine may be delivered by vacuum-controlled solution feed chlorinators. The chlorine gas is controlled, metered, introduced into a stream of injector water and then conducted as a solution to the point of application.

CHLORINE, FREE: Chlorine available to kill bacteria or algae. The amount of chlorine available for sanitization after the chlorine demand has been met. Also known as chlorine residual.

CIRCULATION: The continual flow of drilling fluid from injection to recovery and recirculation at the surface.

CLEAR WELL: A large underground storage facility sometimes made of concrete. A clear well or a plant storage reservoir is usually filled when demand is low. The final step in the conventional filtration process, the clearwell provides temporary storage for the treated water. The two main purposes for this storage are to have filtered water available for backwashing the filter and to provide detention time (or contact time) for the chlorine (or other disinfectant) to kill any microorganisms that may remain in the water.

CIO₂: The molecular formula of Chlorine dioxide.

COAGULATION: The best pH range for coagulation is between 5 and 7. Mixing is an important part of the coagulation process you want to complete the coagulation process as quickly as possible.

COBBLES: A rock smaller than a boulder but larger than a pebble. A cobble is greater than 2.5 inches in diameter and smaller than 10 inches in diameter.

COLIFORM: Bacteria normally found in the intestines of warm-blooded animals. Coliform bacteria are present in high numbers in animal feces. They are an indicator of potential contamination of water. Adequate and appropriate disinfection effectively destroys coliform bacteria. Public water systems are required to deliver safe and reliable drinking water to their customers 24 hours a day, 365 days a year. If the water supply becomes contaminated, consumers can become seriously ill. Fortunately, public water systems take many steps to ensure that the public has safe, reliable drinking water. One of the most important steps is to regularly test the water for coliform bacteria. Coliform bacteria are organisms that are present in the environment and in the feces of all warm-blooded animals and humans. Coliform bacteria will not likely cause illness. However, their presence in drinking water indicates that disease-causing organisms (pathogens) could be in the water system. Most pathogens that can contaminate water supplies come from the feces of humans or animals. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. It is relatively easy and inexpensive to test for coliform bacteria. If coliform bacteria are found in a water sample, water system operators work to find the source of contamination and restore safe drinking water. There are three different groups of coliform bacteria; each has a different level of risk.

COLIFORM TESTING: The effectiveness of disinfection is usually determined by Coliform bacteria testing. A positive sample is a bad thing and indicates that you have bacteria contamination.

COLLOIDAL SUSPENSIONS: Because both iron and manganese react with dissolved oxygen to form insoluble compounds, they are not found in high concentrations in waters containing dissolved oxygen except as colloidal suspensions of the oxide.

COLORIMETRIC MEASUREMENT: A means of measuring an unknown chemical concentration in water by measuring a sample's color intensity.

COMMUTATOR: A device for reversing the direction of a current. (in a DC motor or generator) a cylindrical ring or disk assembly of conducting members, individually insulated in a supporting structure with an exposed surface for contact with current-collecting brushes and mounted on the armature shaft, for changing the frequency or direction of the current in the armature windings.

CHRONIC: A stimulus that lingers or continues for a relatively long period of time, often one-tenth of the life span or more. Chronic should be considered a relative term depending on the life span of an organism. The measurement of chronic effect can be reduced growth, reduced reproduction, etc., in addition to lethality.

COMBINED CHLORINE: The reaction product of chlorine with ammonia or other pollutants, also known as chloramines.

COMMUNITY WATER SYSTEM: A water system which supplies drinking water to 25 or more of the same people year-round in their residences.

COMPLIANCE CYCLE: A 9-calendar year time-frame during which a public water system is required to monitor. Each compliance cycle consists of 3 compliance periods.

COMPLAINCE PERIOD: A 3-calendar year time-frame within a compliance cycle.

COMPLETION (WELL COMPLETION): Refers to the final construction of the well including the installation of pumping equipment.

COMPOSITE SAMPLE: A water sample that is a combination of a group of samples collected at various intervals during the day.

CONDENSATION: The process that changes water vapor to tiny droplets or ice crystals.

CONE OF DEPRESSION: That portion of the water table or potentiometric surface that experiences drawdown from a pumped well.

CONFINED AQUIFER: An aquifer that is isolated by confining layers on both its top and bottom. Pressures within a confined aquifer are normally greater than atmospheric pressure resulting in a potentiometric head.

CONFINING LAYER: An extensive layer of soil or formation that resists the movement of water from an aquifer below or above it. Confining layers isolate aquifers thereby confining them. May or may not be an aquiclude. (ex – Clay or silt rich layer)

CONSOLIDATED: Soil, sediment, or formation that is solidified or cemented together as a unit.

CONTACT TIME, pH and LOW TURBIDITY: Factors which are important in providing good disinfection using chlorine.

CONTACT TIME: If the water temperature decreases from 70°F (21°C) to 40°F (4°C). The operator needs to increase the detention time to maintain good disinfection of the water.

CONTAINS THE ELEMENT CARBON: A simple definition of an organic compound.

CONTAMINANT: Any natural or man-made physical, chemical, biological, or radiological substance or matter in water, which is at a level that may have an adverse effect on public health, and which is known or anticipated to occur in public water systems.

CONTAMINATE: tr.v. con·tam·i·nated, con·tam·i·nat·ing, con·tam·i·nates

- 1. To make impure or unclean by contact or mixture.
- 2. To expose to or permeate with radioactivity.

CONTAMINATION: A degradation in the quality of groundwater in result of the it's becoming polluted with unnatural or previously non-existent constituents.

CONTINUOUS SLOT SCREEN: A wire wrapped or plastic slotted screen in which the slot openings completely encircle the inner ribs of the screen.

CONTROL TASTE AND ODOR PROBLEMS: KMnO₄ Potassium permanganate is a strong oxidizer commonly used to control taste and odor problems.

CONVENTIONAL: A standard or common procedure to a group of more complex methods. (ex – Direct Rotary *conventional* vs. Reverse *non-conventional*)

COPPER: The chemical name for the symbol Cu.

CORROSION: The removal of metal from copper, other metal surfaces and concrete surfaces in a destructive manner. Corrosion is caused by improperly balanced water or excessive water velocity through piping or heat exchangers.

CORROSIVITY: The Langelier Index measures corrosivity.

COUPON: A coupon placed to measure corrosion damage in the water mains.

CROSS-CONNECTION: A physical connection between a public water system and any source of water or other substance that may lead to contamination of the water provided by the public water system through backflow. Might be the source of an organic substance causing taste and odor problems in a water distribution system.

CROSS-CONTAMINATION: The mixing of two unlike qualities of water. For example, the mixing of good water with a polluting substance like a chemical.

CUTTING HEAD (CUTTER HEAD): The bit portion of auger flighting that serves as the primary cutting edge of the auger.

CUTTING SHOE: A hardened steel sleeve with a wedged or armored cutting edge that is installed on well casing that is to be driven into the earth.

CUTTINGS: Crushed rock, soil, or formation material generated by the drilling action of a bit.

CRYPTOSPORIDIUM: A disease-causing parasite, resistant to chlorine disinfection. It may be found in fecal matter or contaminated drinking water. Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis. Other apicomplexan pathogens include the malaria parasite Plasmodium, and Toxoplasma, the causative agent of toxoplasmosis. Unlike Plasmodium, which transmits via a mosquito vector, Cryptosporidium does not utilize an insect vector and is capable of completing its life cycle within a single host, resulting in cyst stages which are excreted in feces and are capable of transmission to a new host.

CYANURIC ACID: White, crystalline, water-soluble solid, $C_3H_3O_3N_3$: $2H_2O$, used chiefly in organic synthesis. Chemical used to prevent the decomposition of chlorine by ultraviolet (UV) light.

CYANOBACTERIA: Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name "cyanobacteria" comes from the color of the bacteria (Greek: kyanós = blue). They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean, but are also found on land.

DAILY MAXIMUM LIMITATIONS: The maximum allowable discharge of pollutants during a 24 hour period. Where daily maximum limitations are expressed in units of mass, the daily discharge is the total mass discharged over the course of the day. Where daily maximum limitations are expressed in terms of a concentration, the daily discharge is the arithmetic average measurement of the pollutant concentration derived from all measurements taken that day.

DANGEROUS CHEMICALS: The most suitable protection when working with a chemical that produces dangerous fumes is to work under an air hood or fume hood.

DARCY'S LAW: (Q=KIA) A fundamental equation used in the groundwater sciences to determine aquifer characteristics, where Q=Flux, K=Hydraulic Conductivity (Permeability), I = Hydraulic Gradient (change in head), and A = Cross Sectional Area of flow.

DECIBELS: The unit of measurement for sound.

DECOMPOSE: To decay or rot.

DECOMPOSTION OF ORGANIC MATERIAL: The decomposition of organic material in water produces taste and odors.

DEMINERALIZATION PROCESS: Mineral concentration of the feed water is the most important consideration in the selection of a demineralization process. Acid feed is the most common method of scale control in a membrane demineralization treatment system.

DENTAL CARIES PREVENTION IN CHILDREN: The main reason that fluoride is added to a water supply.

DEPOLARIZATION: The removal of hydrogen from a cathode.

DESICCANT: When shutting down equipment which may be damaged by moisture, the unit may be protected by sealing it in a tight container. This container should contain a desiccant.

DESORPTION: Desorption is a phenomenon whereby a substance is released from or through a surface. The process is the opposite of sorption (that is, adsorption and absorption). This occurs in a system being in the state of sorption equilibrium between bulk phase (fluid, i.e. gas or liquid solution) and an adsorbing surface (solid or boundary separating two fluids). When the concentration (or pressure) of substance in the bulk phase is lowered, some of the sorbed substance changes to the bulk state. In chemistry, especially chromatography, desorption is the ability for a chemical to move with the mobile phase. The more a chemical desorbs, the less likely it will adsorb, thus instead of sticking to the stationary phase, the chemical moves up with the solvent front. In chemical separation processes, stripping is also referred to as desorption as one component of a liquid stream moves by mass transfer into a vapor phase through the liquid-vapor interface.

DEVELOPMENT: The cleaning of the well and bore once construction is complete.

DETENTION LAG: Is the period of time between the moment of change in a chlorinator control system and the moment when the change is sensed by the chlorine residual indicator.

DETENTION LAG TIME: The minimum detention time range recommended for flocculation is 5-20 minutes for direct filtration and up to 30 minutes for conventional filtration.

DIATOMACEOUS EARTH: A fine silica material containing the skeletal remains of algae.

DIRECT CURRENT: A source of direct current (**DC**) may be used for standby lighting in a water treatment facility. The electrical current used in a DC system may come from a battery.

DIRECT ROTARY: The conventional method of rotary drilling involving the rotation of a drill string and standard use of drilling fluid to penetrate the earth.

DISCHARGE HEAD: See Total Dynamic Head.

DISINFECT: The application of a chemical to kill most, but not all, microorganisms that may be present. Chlorine is added to public water drinking systems drinking water for disinfection. Depending on your state rule, drinking water must contain a minimum of 0.2 mg/L free chlorine. Disinfection makes drinking water safe to consume from the standpoint of killing pathogenic microorganisms including bacteria and viruses. Disinfection does not remove all bacteria from drinking water, but the bacteria that can survive disinfection with chlorine are not pathogenic bacteria that can cause disease in normal healthy humans.

DISINFECTION: The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, viruses, protozoa, and other parasites.

DISINFECTION BY-PRODUCTS (DBPs): The products created due to the reaction of chlorine with organic materials (e.g. leaves, soil) present in raw water during the water treatment process. The EPA has determined that these DBPs can cause cancer. Chlorine is added to drinking water to kill or inactivate harmful organisms that cause various diseases. This process is called disinfection. However, chlorine is a very active substance and it reacts with naturally occurring substances to form compounds known as disinfection byproducts (DBPs). The most common DBPs formed when chlorine is used are trihalomethanes (THMs), and haloacetic acids (HAAs).

DISSOLVED OXYGEN: Can be added to zones within a lake or reservoir that would normally become anaerobic during periods of thermal stratification.

DISSOLUTION: The chemical and physical process of dissolving rock. Typically, limestone or carbonate rocks can be dissolved via the percolation or movement of groundwater that, in its infancy, is slightly acidic. As time goes on, the rock may also be physically worn away by the rapid movement of groundwater through the interconnected open spaces created by the initial chemical dissolving process.

DISTILLATION, REVERSE OSMOSIS AND FREEZING: Processes that can be used to remove minerals from the water.

DRAG BIT: A style of drill bit used in rotary drilling when soil or formation conditions are loosely consolidated and are comprised of fine-grained sediments.

DRAWDOWN: The change in water level from static to pumping level.

DRILL COLLAR: A section of the drill string that provides sufficient mass and diameter to maintain vertical borehole alignment and consistent borehole diameter.

DRILL FOAM: Surfactant used in air rotary drilling and well development.

DRILL PIPE: Sections of the drill string that are connected one to another in order to achieve a desired length while also providing a pathway for the circulation of drilling fluid.

DRILL STEM: The complete drill string or, in cable drilling, the equivalent of a drill collar.

DRILL STRING: The complete drilling assembly in rotary drilling including drill pipe, subs, collars, and bit.

DRILLER: A specially trained individual that operates the drilling rig.

DRILLING FLUID: Fluid circulated through the borehole in rotary drilling methods used to lift cuttings to the surface, provide borehole stability, and cool the bit. Drilling Fluid may consist of mud, water, air, foam, or other additives.

DRILLING PERMIT: A certificate of approval to drill and construct a well often required by the state or local regulating authority.

DRILLING PRESSURE: The pressure exerted within the borehole during drilling. The pressure required to circulate drilling fluid to the surface.

DRIVE BLOCK: A heavy collar that attaches over the drill pipe and is dropped successively to advance casing into the earth. Used primarily in cable tool or percussion drilling methods.

DRIVE CLAMP: A fitting that is attached to the top of a drill string or stem serving as a striking surface for driving casing into the earth.

DRIVE UNIT: The portion of a rotary rig that provides the rotation to the drill string. (ex – top drive or table drive unit). Also may be called the drive head.

DRIVING: The installation of a well or casing via forcing of it into the earth by repeated striking.

DRY ACID: A granular chemical used to lower pH and or total alkalinity.

E. COLI, Escherichia coli: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

EFFECTIVENESS OF CHLORINE: The factors which influence the effectiveness of chlorination the most are pH, turbidity and temperature. Effectiveness of Chlorine decreases occurs during disinfection in source water with excessive turbidity.

ELECTRON: The name of a negatively charged atomic particle.

ELEMENTARY BUSINESS PLAN: Technical Capacity, Managerial Capacity, and Financial Capacity make up the elementary business plan. To become a new public water system, an owner shall file an elementary business plan for review and approval by state environmental agency.

EMERGENCY RESPONSE TEAM: A local team that is thoroughly trained and equipped to deal with emergencies, e.g. chlorine gas leak. In case of a chlorine gas leak, get out of the area and notify your local emergency response team in case of a large uncontrolled chlorine leak.

ENHANCED COAGULATION: The process of joining together particles in water to help remove organic matter.

ENTAMOEBA HISTOLYTICA: Entamoeba histolytica, another water-borne pathogen, can cause diarrhea or a more serious invasive liver abscess. When in contact with human cells, these amoebae are cytotoxic. There is a rapid influx of calcium into the contacted cell, it quickly stops all membrane movement save for some surface blebbing. Internal organization is disrupted, organelles lyse, and the cell dies. The ameba may eat the dead cell or just absorb nutrients released from the cell.

ENTEROVIRUS: A virus whose presence may indicate contaminated water; a virus that may infect the gastrointestinal tract of humans.

EUGLENA: Euglena are common protists, of the class Euglenoidea of the phylum Euglenophyta. Currently, over 1000 species of Euglena have been described. Marin et al. (2003) revised the genus so and including several species without chloroplasts, formerly classified as Astasia and Khawkinea. Euglena sometimes can be considered to have both plant and animal features. Euglena gracilis has a long hair-like thing that stretches from its body. You need a very powerful microscope to see it. This is called a flagellum, and the euglena uses it to swim. It also has a red eyespot. Euglena gracilis uses its eyespot to locate light. Without light, it cannot use its chloroplasts to make itself food.

EVOLUTION: Any process of formation or growth; development: the evolution of a language; the evolution of the airplane. A product of such development; something evolved: The exploration of space is the evolution of decades of research.

Biology. Change in the gene pool of a population from generation to generation by such processes as mutation, natural selection, and genetic drift. A process of gradual, peaceful, progressive change or development, as in social or economic structure or institutions, a motion incomplete in itself, but combining with coordinated motions to produce a single action, as in a machine. A pattern formed by or as if by a series of movements: the evolutions of a figure skater.

An evolving or giving off of gas, heat, etc. **evolutional**, adjective ev·o·lu·tion·al·ly, adverb Synonyms 1. unfolding, change, progression, metamorphosis. Antonyms 1. stasis, inactivity, changelessness.

F: The chemical symbol of Fluorine.

FAUCET WITH AN AERATOR: When collecting a water sample from a distribution system, a faucet with an aerator should not be used as a sample location.

FAULT: A break in the earth's crust where movement has occurred.

FAULTING: A geological process involving the breaking and displacement of rock or formation through movements within the earth's crust along a fault.

FECAL COLIFORM: A group of bacteria that may indicate the presence of human or animal fecal matter in water. Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

FILTRATION: The process of passing water through materials with very small holes to strain out particles. Most conventional water treatment plants used filters composed of gravel, sand, and anthracite. These materials settle into a compact mass that forms very small holes. Particles are filtered out as treated water passes through these holes. These holes are small enough to remove microorganisms including algae, bacteria, and protozoans, but not viruses. Viruses are eliminated from drinking water through the process of disinfection using chlorine. A series of processes that physically removes particles from water. A water treatment step used to remove turbidity, dissolved organics, odor, taste and color.

FILTER CLOGGING: An inability to meet demand may occur when filters are clogging.

FILTRATION METHODS: The conventional type of water treatment filtration method includes coagulation, flocculation, sedimentation, and filtration. Direct filtration method is similar to conventional except that the sedimentation step is omitted. Slow sand filtration process does not require pretreatment, has a flow of 0.1 gallons per minute per square foot of filter surface area, and is simple to operate and maintain. The Diatomaceous earth method uses a thin layer of fine siliceous material on a porous plate. This type of filtration medium is only used for water with low turbidity. Sedimentation, adsorption, and biological action treatment methods are filtration processes that involve a number of interrelated removal mechanisms. Demineralization is primarily used to remove total dissolved solids from industrial wastewater, municipal water, and seawater.

FINISHED WATER: Treated drinking water that meets minimum state and federal drinking water regulations.

FLIGHTING: The spiral flanged drill pipe used in auger drilling.

FLOATING SUB: A collapsible section of drill pipe shorter than primary drill pipe. Used to provide a cushion between the drive unit and the drill string.

FLOCCULATION: The process of bringing together destabilized or coagulated particles to form larger masses that can be settled and/or filtered out of the water being treated. Conventional coagulation–flocculation-sedimentation practices are essential pretreatments for many water purification systems—especially filtration treatments. These processes agglomerate suspended solids together into larger bodies so that physical filtration processes can more easily remove them. Particulate removal by these methods makes later filtering processes far more effective. The process is often followed by gravity separation (sedimentation or flotation) and is always followed by filtration. A chemical coagulant, such as iron salts, aluminum salts, or polymers, is added to source water to facilitate bonding among particulates. Coagulants work by creating a chemical reaction and eliminating the negative charges that cause particles to repel each other. The coagulant-source water mixture is then slowly stirred in a process known as flocculation. This water churning induces particles to collide and clump together into larger and more easily removable clots, or "flocs." The process requires chemical knowledge of source water characteristics to ensure that an effective coagulant mix is employed. Improper coagulants make these treatment methods ineffective. The ultimate effectiveness of coagulation/flocculation is also determined by the efficiency of the filtering process with which it is paired.

FLOCCULANTS: Flocculants, or flocculating agents, are chemicals that promote flocculation by causing colloids and other suspended particles in liquids to aggregate, forming a floc. Flocculants are used in water treatment processes to improve the sedimentation or filterability of small particles. For example, a flocculant may be used in swimming pool or drinking water filtration to aid removal of microscopic particles which would otherwise cause the water to be cloudy and which would be difficult or impossible to remove by filtration alone. Many flocculants are multivalent cations such as aluminum, iron, calcium or magnesium. These positively charged molecules interact with negatively charged particles and molecules to reduce the barriers to aggregation. In addition, many of these chemicals, under appropriate pH and other conditions such as temperature and salinity, react with water to form insoluble hydroxides which, upon precipitating, link together to form long chains or meshes, physically trapping small particles into the larger floc.

Long-chain polymer flocculants, such as modified polyacrylamides, are manufactured and sold by the flocculant producing business. These can be supplied in dry or liquid form for use in the flocculation process. The most common liquid polyacrylamide is supplied as an emulsion with 10-40 % actives and the rest is a carrier fluid, surfactants and latex. Emulsion polymers require activation to invert the emulsion and allow the electrolyte groups to be exposed.

FLOC SHEARING: Likely to happen to large floc particles when they reach the flocculation process.

FLOCCULATION BASIN: A compartmentalized basin with a reduction of speed in each compartment. This set-up or basin will give the best overall results.

FLOOD RIM: The point of an object where the water would run over the edge of something and begin to cause a flood.

FLOW MUST BE MEASURED: A recorder that measures flow is most likely to be located in a central location.

FLUORIDE: High levels of fluoride may stain the teeth of humans. This is called Mottling. This chemical must not be overfed due to a possible exposure to a high concentration of the chemical. The most important safety considerations to know about fluoride chemicals are that all fluoride chemicals are extremely corrosive. These are the substances most commonly used to furnish fluoride ions to water: Sodium fluoride, Sodium silicofluoride and Hydrofluosilicic acid.

FLUORIDE FEEDING: Always review fluoride feeding system designs and specifications to determine whether locations for monitoring readouts and dosage controls are convenient to the operation center and easy to read and correct.

FLUX: The term flux describes the rate of water flow through a semipermeable membrane. When the water flux decreases through a semipermeable membrane, it means that the mineral concentration of the water is increasing.

FORMATION: A series of layers, deposits, or bodies of rock, which are geologically similar and related in depositional environment or origin. A formation can be clearly distinguished relative to bounding deposits or formations due to its particular characteristics and composition.

FORMATION OF TUBERCLES: This condition is of the most concern regarding corrosive water effects on a water system. It is the creation of mounds of rust inside the water lines.

FRACTURE: A discrete break in a rock or formation.

FRACTURED AQUIFER: An aquifer within and otherwise massive block that has been made permeable due to the concentrated presence of fractures typically resultant of faulting or concentrated joints.

FREE CHLORINE: In disinfection, chlorine is used in the form of free chlorine or as hypochlorite ion.

FREE CHLORINE RESIDUAL: Regardless of whether pre-chloration is practiced or not, a free chlorine residual of at least 10 mg/L should be maintained in the clear well or distribution reservoir immediately downstream from the point of post-chlorination. The reason for chlorinating past the breakpoint is to provide protection in case of backflow.

GATE VALVE: The most common type of valve used in isolating a small or medium sized section of a distribution system and is the only linear valve used in water distribution. All the other valves are in the rotary classification.

GIARDIA LAMLIA: Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

GIARDIASAS, HEPATITIS OR TYHOID: Diseases that may be transmitted through the contamination of a water supply but not AIDS.

GIS – GRAPHIC INFORMATION SYSTEM: Detailed information about the physical locations of structures such as pipes, valves, and manholes within geographic areas with the use of satellites.

GEOTECHNICAL: Characteristics of soil, rock, or formation such as grain size, shear strength, porosity, and compressibility, etc. Of particular concern to a geologist or engineer relative to soil or aquifer characteristics.

GLOBE VAVLVE: The main difference between a globe valve and a gate valve is that a globe valve is designed as a controlling device.

GOOD CONTACT TIME, pH and LOW TURBIDITY: These are factors that are important in providing good disinfection when using chlorine.

GPM: Gallons per minute.

GRAB SAMPLE: A sample which is taken from a water or wastestream on a one-time basis with no regard to the flow of the water or wastestream and without consideration of time. A single grab sample should be taken over a period of time not to exceed 15 minutes.

GRAINSIZE: The dimension of particle classifications such as gravel, sand, silt, and clay. Often based on the unified soil classification system.

GROUNDWATER: Water that percolates through and exists within saturated portions of the earth's crust and is replenished by the hydrologic cycle.

GROUT: A type of cement that is normally fine grained and used to effectively construct well seals and used in well abandonment. Grout may also be used to stabilize otherwise unstable boreholes, permitting continued drilling.

GT: Represents (Detention time) x (mixing intensity) in flocculation.

H₂SO₄: The molecular formula of Sulfuric acid.

HALIDES: A halide is a binary compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative than the halogen, to make a fluoride, chloride, bromide, iodide, or astatide compound. Many salts are halides. All Group 1 metals form halides with the halogens and they are white solids. A halide ion is a halogen atom bearing a negative charge. The halide anions are fluoride (F), chloride (CI), bromide (Br), iodide (I) and astatide (At). Such ions are present in all ionic halide salts.

HALL EFFECT: Refers to the potential difference (Hall voltage) on the opposite sides of an electrical conductor through which an electric current is flowing, created by a magnetic field applied perpendicular to the current. Edwin Hall discovered this effect in 1879.

HALOACETIC ACIDS: Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH_2CICO_2H . In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms $(CHCl_2CO_2H)$.

HAMMER BIT: The bit driven by the hammer to cut into rock or formation.

HAMMER: See Air Hammer

HARD ROCK: Consolidated formation or solid rock.

HARD WATER: Hard water causes a buildup of scale in household hot water heaters. Hard water is a type of water that has high mineral content (in contrast with soft water). Hard water primarily consists of calcium (Ca2+), and magnesium (Mg2+) metal cations, and sometimes other dissolved compounds such as bicarbonates and sulfates. Calcium usually enters the water as either calcium carbonate (CaCO₃), in the form of limestone and chalk, or calcium sulfate (CaSO₄), in the form of other mineral deposits. The predominant source of magnesium is dolomite (CaMg(CO₃)2). Hard water is generally not harmful. The simplest way to determine the hardness of water is the lather/froth test: soap or toothpaste, when agitated, lathers easily in soft water but not in hard water. More exact measurements of hardness can be obtained through a wet titration. The total water 'hardness' (including both Ca2+ and Mg2+ ions) is read as parts per million or weight/volume (mg/L) of calcium carbonate (CaCO₃) in the water. Although water hardness usually only measures the total concentrations of calcium and magnesium (the two most prevalent, divalent metal ions), iron, aluminum, and manganese may also be present at elevated levels in some geographical locations.

HARDNESS: A measure of the amount of calcium and magnesium salts in water. More calcium and magnesium lead to greater hardness. The term "hardness" comes from the fact that it is hard to get soap suds from soap or detergents in hard water. This happens because calcium and magnesium react strongly with negatively-charged chemicals like soap to form insoluble compounds.

HARTSHORN: The antler of a hart, formerly used as a source of ammonia. Ammonium carbonate.

HAZARDS OF POLYMERS: Slippery and difficult to clean-up are the most common hazards associated with the use of polymers in a water treatment plant.

HEAD: The measure of the pressure of water expressed in feet of height of water. 1 PSI = 2.31 feet of water or 1 foot of head equals about a half a pound of pressure or .433 PSI. There are various types of heads of water depending upon what is being measured. Static (water at rest) and Residual (water at flow conditions).

HEADWORKS: The facility at the "head" of the water source where water is first treated and routed into the distribution system.

HEALTH ADVISORY: An EPA document that provides guidance and information on contaminants that can affect human health and that may occur in drinking water, but which the EPA does not currently regulate in drinking water.

HERTZ: The term used to describe the frequency of cycles in an alternating current (AC) circuit.

HETEROTROPHIC PLATE COUNT: A test performed on drinking water to determine the total number of all types of bacteria in the water.

HF: The molecular formula of Hydrofluoric acid.

HIGH TURBIDITY CAUSING INCREASED CHLORINE DEMAND: May occur or be caused by the inadequate disinfection of water.

HOLLOW STEM (AUGER): An auger form of drilling in which the flighting is hollow.

HOLLOW STEM FLIGHT: The hollow spiral flanged drill pipe used on hollow stem auger rigs.

HOMOPOLAR: Of uniform polarity; not separated or changed into ions; not polar in activity. Electricity. unipolar.

HYDRAULIC CONDUCTIVITY: A primary factor in Darcy's Law, the measure of a soil or formations ability to transmit water, measured in gallons per day (gpd) See also Permeability and Darcy's Law.

HYDRIDES: Hydride is the name given to the negative ion of hydrogen, H. Although this ion does not exist except in extraordinary conditions, the term hydride is widely applied to describe compounds of hydrogen with other elements, particularly those of groups 1–16. The variety of compounds formed by hydrogen is vast, arguably greater than that of any other element. Various metal hydrides are currently being studied for use as a means of hydrogen storage in fuel cell-powered electric cars and batteries. They also have important uses in organic chemistry as powerful reducing agents, and many promising uses in hydrogen economy.

HYDROCHLORIC AND HYPOCHLOROUS ACIDS: HCL and HOCL The compounds that are formed in water when chlorine gas is introduced.

HYDROFLUOSILIC ACID: (H_2SiF_6) a clear, fuming corrosive liquid with a pH ranging from 1 to 1.5. Used in water treatment to fluoridate drinking water.

HYDROGEN SULFIDE OR CHLORINE GAS: These chemicals can cause olfactory fatigue.

HYDROLOGIC CYCLE: (Water Cycle) The continual process of precipitation (rain and snowfall), evaporation (primarily from the oceans), peculation (recharge to groundwater), runoff (surface water), and transpiration (plants) constituting the renew ability and recycling of each component.

HYDROPHOBIC: Does not mix readily with water.

HYGROSCOPIC: Absorbing or attracting moisture from the air.

HYPOCHLORITE (OCL-) AND ORGANIC MATERIALS: Heat and possibly fire may occur when hypochlorite is brought into contact with an organic material.

HYPOLIMNION: The layer of water in a thermally stratified lake that lies below the thermocline, is noncirculating, and remains perpetually cold.

IMPELLERS: The semi-open or closed props or blades of a turbine pump that when rotated generate the pumping force.

IMPERVIOUS: Not allowing, or allowing only with great difficulty, the movement of water.

IN SERIES: Several components being connected one to the other without a bypass, requiring each component to work dependent on the one before it.

INFILTRATION: The percolation of fluid into soil or formation. See also percolation.

INFECTIOUS PATHOGENS/MICROBES/GERMS: Are considered disease-producing bacteria, viruses and other microorganisms.

INFLATABLE PACKER: A rubber or fiber bladder device that is inflated to seal against either casing or borehole walls.

INFORMATION COLLECTION RULE: ICR EPA collected data required by the Information Collection Rule (May 14, 1996) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule was intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

INITIAL MONITORING YEAR: An initial monitoring year is the calendar year designated by the Department within a compliance period in which a public water system conducts initial monitoring at a point of entry.

INORGANIC CONTAMINANTS: Mineral-based compounds such as metals, nitrates, and asbestos. These contaminants are naturally-occurring in some water, but can also get into water through farming, chemical manufacturing, and other human activities. EPA has set legal limits on 15 inorganic contaminants.

INORGANIC IONS: Present in all waters. Inorganic ions are essential for human health in small quantities, but in larger quantities they can cause unpleasant taste and odor or even illness. Most community water systems will commonly test for the concentrations of seven inorganic ions: nitrate, nitrite, fluoride, phosphate, sulfate, chloride, and bromide. Nitrate and nitrite can cause an illness in infants called methemoglobinemia. Fluoride is actually added to the drinking water in some public water systems to promote dental health. Phosphate, sulfate, chloride, and bromide have little direct effect on health, but high concentrations of inorganic ions can give water a salty or briny taste.

INSOLUBLE COMPOUNDS: Are types of compounds cannot be dissolved. When iron or manganese reacts with dissolved oxygen (DO) insoluble compound are formed.

INTAKE FACILITIES: One of the more important considerations in the construction of intake facilities is the ease of operation and maintenance over the expected lifetime of the facility. Every intake structure must be constructed with consideration for operator safety and for cathodic protection.

ION EXCHANGE: An effective treatment process used to remove iron and manganese in a water supply. The hardness of the source water affects the amount of water an ion exchange softener may treat before the bed requires regeneration.

IRON: Fe The elements iron and manganese are undesirable in water because they cause stains and promote the growth of iron bacteria.

IRON AND MANGANESE: Fe and Mn In water they can usually be detected by observing the color of the inside walls of filters and the filter media. If the raw water is pre-chlorinated, there will be black stains on the walls below the water level and a black coating over the top portion of the sand filter bed. When significant levels of dissolved oxygen are present, iron and manganese exist in an oxidized state and normally precipitate into the reservoir bottom sediments. The presence of iron and manganese in water promote the growth of Iron bacteria. Only when a water sample has been acidified then you can perform the analysis beyond the 48 hour holding time. Iron and Manganese in water may be detected by observing the color of the of the filter media. Maintaining a free chlorine residual and regular flushing of water mains may control the growth of iron bacteria in a water distribution system.

IRON BACTERIA: Perhaps the most troublesome consequence of iron and manganese in the water is they promote the growth of a group of microorganism known as Iron Bacteria.

IRON FOULING: You should look for an orange color on the resin and backwash water when checking an ion exchange unit for iron fouling

JARS (DRILLING JARS): Metal sections of a drill string that when released provide a jarring force or action to aid in removing drill string. Used primarily in cable tool or percussion drilling methods.

JETTING: The process of injecting high velocity streams of water and/or air through a system of nozzles or jets into the well screen and filter pack for well development.

KARST TOPOGRAPHY: The visual presence of karst on the surface.

KARST: The presence of caverns, voids, sink holes as characteristic features of a weathered limestone or other carbonate formation on or beneath the surface.

KELLY: A multi-faceted section of drill pipe driven by a kelly drive (table or top drive).

KILL = C X T: Where other factors are constant, the disinfecting action may be represented by: Kill=C x T. C= Chlorine T= Contact time.

KINETIC ENERGY: The ability of an object to do work by virtue of its motion. The energy terms that are used to describe the operation of a pump are pressure and head.

LACRIMATION: The secretion of tears, esp. in abnormal abundance Also, lachrymation, lachrimation.

LANGELIER INDEX: A measurement of Corrosivity. The water is becoming corrosive in the distribution system causing rusty water if the Langelier index indicates that the pH has decreased from the equilibrium point. Mathematically derived factor obtained from the values of calcium hardness, total alkalinity, and pH at a given temperature. A Langelier index of zero indicates perfect water balance (i.e., neither corroding nor scaling). The Langelier Saturation Index (sometimes Langelier Stability Index) is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. Langelier developed a method for predicting the pH at which water is saturated in calcium carbonate (called pHs). The LSI is expressed as the difference between the actual system pH and the saturation pH.

LSI = pH - pHs

LEACHING: A chemical reaction between water and metals that allows for removal of soluble materials.

LEAD AND COPPER: Initial tap water monitoring for lead and copper must be conducted during 2 consecutive 6-month periods.

LIME: Is a chemical that may be added to water to reduce the corrosivity. When an operator adds lime to water, Calcium and magnesium become less soluble.

LIME SODA SOFTENING: In a lime soda softening process, to the pH of the water is raised to 11.0. In a lime softening process, excess lime is frequently added to remove Calcium and Magnesium Bicarbonate. The minimum hardness which can be achieved by the lime-soda ash process is 30 to 40 mg/L as calcium carbonate. The hardness due to noncarbonate hardness is most likely to determine the choice between lime softening and ion exchange to remove hardness.

LIME SOFTENING: Lime softening is primarily used to "soften" water—that is to remove calcium and magnesium mineral salts. But it also removes harmful toxins like radon and arsenic. Though there is no consensus, some studies have even suggested that lime softening is effective at removal of Giardia. Hard water is a common condition responsible for numerous problems. Users often recognize hard water because it prevents their soap from lathering properly. However, it can also cause buildup ("scale") in hot water heaters, boilers, and hot water pipes. Because of these inconveniences, many treatment facilities use lime softening to soften hard water for consumer use. Before lime softening can be used, managers must determine the softening chemistry required. This is a relatively easy task for groundwater sources, which remain more constant in their composition. Surface waters, however, fluctuate widely in quality and may require frequent changes to the softening chemical mix. In lime softening, lime and sometimes sodium carbonate are added to the water as it enters a combination solids contact clarifier. This raises the pH (i.e., increases alkalinity) and leads to the precipitation of calcium carbonate. Later, the pH of the effluent from the clarifier is reduced again, and the water is then filtered through a granular media filter. The water chemistry requirements of these systems require knowledgeable operators, which may make lime softening an economic challenge for some very small systems.

LINE SHAFT TURBINE: See vertical turbine.

LOGGED (LOGGING): The assessment and documentation of geological and water production data obtained while drilling progresses or following drilling through the use of borehole geophysical logging tools.

L.O.T.O.: Lock Out, Tag Out. If a piece of equipment is locked out, the key to the lock-out device the key should be held by the person who is working on the equipment. The tag is an identification device and the lock is a physical restraint.

M-ENDO BROTH: The coliform group is used as indicators of fecal pollution in water, for assessing the effectiveness of water treatment and disinfection, and for monitoring water quality. m-Endo Broth is used for selectively isolating coliform bacteria from water and other specimens using the membrane filtration technique. m-Endo Broth is prepared according to the formula of Fifield and Schaufus.1 It is recommended by the American Public Health Association in standard total coliform membrane filtration procedure for testing water, wastewater, and foods.2,3 The US EPA specifies using m-Endo Broth in the total coliform methods for testing water using single-step, two-step, and delayed incubation membrane filtration methods.

MAGNESIUM HARDNESS: Measure of the magnesium salts dissolved in water – it is not a factor in water balance

MAGNETIC STARTER: Is a type of motor starter should be used in an integrated circuit to control flow automatically.

MARBLE AND LANGELIER TESTS: Are used to measure or determine the corrosiveness of a water source.

MAXIMUM CONTAMINANT LEVEL (MCLs): The maximum allowable level of a contaminant that federal or state regulations allow in a public water system. If the MCL is exceeded, the water system must treat the water so that it meets the MCL.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The level of a contaminant at which there would be no risk to human health. This goal is not always economically or technologically feasible, and the goal is not legally enforceable.

MCL for TURBIDITY: Turbidity is undesirable because it causes health hazards. An MCL for turbidity was established by the EPA because turbidity does not allow for proper disinfection.

MEASURE CORROSION DAMAGE: A coupon such as a strip of metal and is placed to measure corrosion damage in the distribution system in a water main.

MECHANICAL SEAL: A mechanical device used to control leakage from the stuffing box of a pump. Usually made of two flat surfaces, one of which rotates on the shaft. The two flat surfaces are of such tolerances as to prevent the passage of water between them. Held in place with spring pressure.

MEDIUM WATER SYSTEM: More than 3,300 persons and 50,000 or fewer persons.

MEGGER: Is a portable instrument used to measure insulation resistance. The megger consists of a hand-driven DC generator and a direct reading ohm meter. Used to test the insulation resistance on a motor.

M-ENDO BROTH: The media shall be brought to the boiling point when preparing M-Endo broth to be used in the membrane filter test for total coliform.

METALIMNION: Thermocline, middle layer of a thermally stratified lake which is characterized by a rapid decrease in temperature in proportion to depth.

METALLOID: Metalloid is a term used in chemistry when classifying the chemical elements. On the basis of their general physical and chemical properties, nearly every element in the periodic table can be termed either a metal or a nonmetal. A few elements with intermediate properties are, however, referred to as metalloids. (In Greek metallon = metal and eidos = sort)

METHANE: Methane is a chemical compound with the molecular formula CH₄. It is the simplest alkane, and the principal component of natural gas. Methane's bond angles are 109.5 degrees. Burning methane in the presence of oxygen produces carbon dioxide and water. The relative abundance of methane and its clean burning process makes it a very attractive fuel. However, because it is a gas at normal temperature and pressure, methane is difficult to transport from its source. In its natural gas form, it is generally transported in bulk by pipeline or LNG carriers; few countries still transport it by truck.

MILLILITER: One one-thousandth of a liter; A liter is a little more than a quart. A milliliter is about two drops from an eye dropper.

Mg/L: Stands for "milligrams per liter." A common unit of chemical concentration. It expresses the mass of a chemical that is present in a given volume of water. A milligram (one one-thousandth of a gram) is equivalent to about 18 grains of table salt. A liter is equivalent to about one quart.

MICROBIOLOGICAL: Is a type of analysis in which a composite sample unacceptable.

MICROBE OR MICROBIAL: Any minute, simple, single-celled form of life, especially one that causes disease.

MICROBIAL CONTAMINANTS: Microscopic organisms present in untreated water that can cause waterborne diseases.

MICROORGANISMS: Very small animals and plants that are too small to be seen by the naked eye and must be observed using a microscope. Microorganisms in water include algae, bacteria, viruses, and protozoa. Algae growing in surface waters can cause off-taste and odor by producing the chemicals MIB and geosmin. Certain types of bacteria, viruses, and protozoa can cause disease in humans. Bacteria are the most common microorganisms found in treated drinking water. The great majority of bacteria are not harmful. In fact, humans would not be able to live without the bacteria that inhabit the intestines. However, certain types of bacteria called coliform bacteria can signal the presence of possible drinking water contamination.

MILLILITER: One one-thousandth of a liter. A liter is a little more than a quart. A milliliter is about two drops from an eye dropper.

MOISTURE: If a material is hygroscopic, it must it be protected from water.

MOISTURE AND POTASSIUM PERMANGANATE: The combination of moisture and potassium permanganate produces heat.

MOLECULAR WEIGHT: The molecular mass (abbreviated Mr) of a substance, formerly also called molecular weight and abbreviated as MW, is the mass of one molecule of that substance, relative to the unified atomic mass unit u (equal to 1/12 the mass of one atom of carbon-12). This is distinct from the relative molecular mass of a molecule, which is the ratio of the mass of that molecule to 1/12 of the mass of carbon 12 and is a dimensionless number. Relative molecular mass is abbreviated to Mr.

MOTTLING: High levels of fluoride may stain the teeth of humans.

M.S.D.S.: Material Safety Data Sheet. A safety document must an employer provide to an operator upon request.

MUD BALLS IN FILTER MEDIA: Is a possible result of an ineffective or inadequate filter backwash.

MUD CAKE: A film of mud drilling fluid that builds up on borehole walls adding to borehole stability and limits the groundwater's ability to enter the borehole while drilling.

MUD CAKING: The process of building up the mud cake.

MUD ENGINEER: A specially trained individual who's responsible for maintaining proper drilling fluid densities and viscosity.

MUD PIT: Single or multiple subsurface or surface containment system used for settling cuttings out of drilling fluid and for recirculation of drilling fluid.

MUD PUMP: A specially designed pump that can pass particles of mud and cuttings (drilling fluid) at variable pressures, serving as the primary component in a mud rotary drilling system (similar to a grout or cement pump).

MUD ROTARY: The method of rotary drilling with mud circulation as the drilling fluid.

MURIATIC ACID: An acid used to reduce pH and alkalinity. Also used to remove stain and scale.

MYCOTOXIN: A toxin produced by a fungus.

NaOCI: Is the molecular formula of Sodium hypochlorite.

NaOH: Is the molecular formula of Sodium hydroxide.

NASCENT: Coming into existence; emerging.

NATURAL GRAVEL PACK (NATURALLY PACKED): Refers to a well that has no gravel pack installed but is simply allowed to develop a filter pack composed of the aquifer particles itself. Usually coarse grained and hard rock aquifers are naturally packed.

NH₃: The molecular formula of Ammonia.

NH₄+: The molecular formula of the Ammonium ion.

NITRATES: A dissolved form of nitrogen found in fertilizers and sewage by-products that may leach into groundwater and other water sources. Nitrates may also occur naturally in some waters. Over time, nitrates can accumulate in aquifers and contaminate groundwater.

NITROGEN: Nitrogen is a nonmetal, with an electronegativity of 3.0. It has five electrons in its outer shell and is therefore trivalent in most compounds. The triple bond in molecular nitrogen (N_2) is one of the strongest in nature. The resulting difficulty of converting (N_2) into other compounds, and the ease (and associated high energy release) of converting nitrogen compounds into elemental N_2 , have dominated the role of nitrogen in both nature and human economic activities.

NITROGEN AND PHOSPHORUS: Pairs of elements and major plant nutrients that cause algae to grow.

NO₃: The molecular formula of the Nitrate ion.

NON-CARBONATE HARDNESS: The portion of the total hardness in excess of the alkalinity.

NON-CARBONATE IONS: Water contains non-carbonate ions if it cannot be softened to a desired level through the use of lime only.

NON-POINT SOURCE POLLUTION: Air pollution may leave contaminants on highway surfaces. This non-point source pollution adversely impacts reservoir water and groundwater quality.

NON-TRANSIENT, NON-COMMUNITY WATER SYSTEM: A water system which supplies water to 25 or more of the same people at least six months per year in places other than their residences. Some examples are schools, factories, office buildings, and hospitals which have their own water systems.

NORMALITY: It is the number of equivalent weights of solute per liter of solution. Normality highlights the chemical nature of salts: in solution, salts dissociate into distinct reactive species (ions such as H^+ , Fe_3^+ , or CI^-). Normality accounts for any discrepancy between the concentrations of the various ionic species in a solution. For example, in a salt such as $MgCl_2$, there are two moles of CI^- for every mole of Mg_2^+ , so the concentration of CI^- as well as of Mg_2^+ is said to be 2 N (read: "two normal"). Further examples are given below. A normal is one gram equivalent of a solute per liter of solution. The definition of a gram equivalent varies depending on the type of chemical reaction that is discussed - it can refer to acids, bases, redox species, and ions that will precipitate. It is critical to note that normality measures a single ion which takes part in an overall solute. For example, one could determine the normality of hydroxide or sodium in an aqueous solution of sodium hydroxide, but the normality of sodium hydroxide itself has no meaning. Nevertheless it is often used to describe solutions of acids or bases, in those cases it is implied that the normality refers to the H+ or OH- ion. For example, 2 Normal sulfuric acid (H_2SO_4), means that the normality of H+ ions is 2, or that the molarity of the sulfuric acid is 1. Similarly for 1 Molar H_3PO_4 the normality is 3 as it contains three H+ ions.

NTNCWS: Non-transient non-community water system.

NTU (Nephelometric turbidity unit): A measure of the clarity or cloudiness of water.

O₃: The molecular formula of ozone.

OIL TUBE: A tubular enclosure that houses the line shaft and bearings of a vertical turbine pump. Oil is allowed to pass through the oil tube in order to lubricate the pumps drive shaft and bearings.

OLIGOTROPHIC: A reservoir that is nutrient-poor and contains little plant or animal life. An oligotrophic ecosystem or environment is one that offers little to sustain life. The term is commonly utilized to describe bodies of water or soils with very low nutrient levels. It derives etymologically from the Greek oligo (small, little, few) and trophe (nutrients, food). Oligotrophic environments are of special interest for the alternative energy sources and survival strategies upon which life could rely.

ORGANIC PRESURSORS: Natural or man-made compounds with chemical structures based upon carbon that, upon combination with chlorine, leading to trihalomethane formation.

OSMOSIS: Osmosis is the process by which water moves across a semi permeable membrane from a low concentration solute to a high concentration solute to satisfy the pressure differences caused by the solute.

OVERBURDEN: Normally a thin loosely consolidated or unconsolidated sediment overlying competent formation.

OVER-RANGE PROTECTION DEVICES: Mechanical dampers, snubbers and an air cushion chamber are examples of surging and overrange protection devices.

OXIDE: An oxide is a chemical compound containing at least one oxygen atom as well as at least one other element. Most of the Earth's crust consists of oxides. Oxides result when elements are oxidized by oxygen in air. Combustion of hydrocarbons affords the two principal oxides of carbon, carbon monoxide and carbon dioxide. Even materials that are considered to be pure elements often contain a coating of oxides. For example, aluminum foil has a thin skin of Al_2O_3 that protects the foil from further corrosion.

OXIDIZED:

- 1. to convert (an element) into an oxide; combine with oxygen.
- 2. to cover with a coating of oxide or rust.
- 3. to take away hydrogen, as by the action of oxygen; add oxygen or any nonmetal.
- 4. to remove electrons from (an atom or molecule), thereby increasing the valence. Compare REDUCE (def. 12).
- -verb (used without object)
- 5. to become oxidized.

OXIDIZING: The process of breaking down organic wastes into simpler elemental forms or by products. Also used to separate combined chlorine and convert it into free chlorine.

OXYGEN DEFICIENT ENVIRONMENT: One of the most dangerous threats to an operator upon entering a manhole.

OZONE: Ozone or trioxygen (O_3) is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic O_2 . Ground-level ozone is an air pollutant with harmful effects on the respiratory systems of animals. Ozone in the upper atmosphere filters potentially damaging ultraviolet light from reaching the Earth's surface. It is present in low concentrations throughout the Earth's atmosphere. It has many industrial and consumer applications. Ozone, the first allotrope of a chemical element to be recognized by science, was proposed as a distinct chemical compound by Christian Friedrich Schönbein in 1840, who named it after the Greek word for smell (ozein), from the peculiar odor in lightning storms. The formula for ozone, O_3 , was not determined until 1865 by Jacques-Louis Soret and confirmed by Schönbein in 1867. Ozone is a powerful oxidizing agent, far better than dioxygen. It is also unstable at high concentrations, decaying to ordinary diatomic oxygen (in about half an hour in atmospheric conditions): $O_3 = O_3 = O_3 = O_3 = O_3 = O_3$

This reaction proceeds more rapidly with increasing temperature and decreasing pressure. Deflagration of ozone can be triggered by a spark, and can occur in ozone concentrations of 10 wt% or higher.

OZONE DOES NOT PROVIDE A RESIDUAL: One of the major drawbacks to using ozone as a disinfectant.

OZONE, CHLORINE DIOXIDE, UV, CHLORAMINES: These chemicals may be used as alternative disinfectants.

PAC: A disadvantage of using PAC is it is very abrasive and requires careful maintenance of equipment. One precaution that should be taken in storing PAC is that bags of carbon should not be stored near bags of HTH. Removes tastes and odors by adsorption only. Powered activated carbon frequently used for taste and odor control because PAC is non-specific and removes a broad range of compounds. Jar tests and threshold odor number testing determines the application rate for powdered activated carbon. Powdered activated carbon, or PAC, commonly used for in a water treatment plant for taste and odor control. Powdered activated carbon may be used with some success in removing the precursors of THMs

PACKING: Material, usually of woven fiber, placed in rings around the shaft of a pump and used to control the leakage from the stuffing box.

PARAMECIUM: Paramecia are a group of unicellular ciliate protozoa formerly known as slipper animalcules from their slipper shape. They are commonly studied as a representative of the ciliate group. Simple cilia cover the body which allows the cell to move with a synchronous motion (like a caterpilla). There is also a deep oral groove containing inconspicuous compound oral cilia (as found in other peniculids) that is used to draw food inside. They generally feed upon bacteria and other small cells. Osmoregulation is carried out by a pair of contractile vacuoles, which actively expel water absorbed by osmosis from their surroundings. Paramecia are widespread in freshwater environments, and are especially common in scums. Paramecia are attracted by acidic conditions. Certain single-celled eukaryotes, such as Paramecium, are examples for exceptions to the universality of the genetic code (translation systems where a few codons differ from the standard ones).

PATHOGENS: Disease-causing pathogens; waterborne pathogens A pathogen may contaminate water and cause waterborne disease.

Pb: The chemical symbol of Lead.

PCE: Perchloroethylene. Known also as perc or tetrachloroethylene, perchloroethylene is a clear, colorless liquid with a distinctive, somewhat ether-like odor. It is non-flammable, having no measurable flashpoint or flammable limits in air. Effective over a wide range of applications, perchloroethylene is supported by closed loop transfer systems, stabilizers and employee exposure monitoring.

PEAK DEMAND: The maximum momentary load placed on a water treatment plant, pumping station or distribution system.

PERCOLATION: The process of fluid penetrating or slowly flowing through soil, rock, or formation. See also infiltration.

PERCUSSION RIG: See Cable Tool.

PERFORATED SCREEN: Well screen that has openings mechanically cut into it.

PERFORMANCE CURVE: A graphical representation of a pumps efficiency relative to gpm and feet of head.

PEPTIDOGLYCAN: A polymer found in the cell walls of prokaryotes that consists of polysaccharide and peptide chains in a strong molecular network. Also called *mucopeptide*, *murein*.

PERMEATE: The term for water which has passed through the membrane of a reverse osmosis unit.

PERMEABILITY: A measure of a soil or formation's capacity to transmit water, typically in volume per time units. Equivalent to Darcy's hydraulic conductivity.

PERMEABLE: Soil or formation of which water can pass through.

pH: A unit of measure which describes the degree of acidity or alkalinity of a solution. The pH scale runs from 0 to 14 with 7 being the mid-point or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of greatest basic activity. The term pH is derived from "p", the mathematical symbol of the negative logarithm, and "H", the chemical symbol of Hydrogen. The definition of pH is the negative logarithm of the Hydrogen ion activity. pH=-log[H[†]].

pH OF SATURATION: The ideal pH for perfect water balance in relation to a particular total alkalinity level and a particular calcium hardness level, at a particular temperature. The pH where the Langelier Index equals zero.

PHENOLPHTHALEIN/TOTAL ALKALINITY: The relationship between the alkalinity constituent's bicarbonate, carbonate, and hydroxide can be based on the P and T alkalinity measurement.

PHENOL RED: Chemical reagent used for testing pH in the range of 6.8 - 8.4.

PHOSPHATE, NITRATE AND ORGANIC NITROGEN: Nutrients in a domestic water supply reservoir may cause water quality problems if they occur in moderate or large quantities.

PHYSISORPTION: (Or physical adsorption) Is adsorption in which the forces involved are intermolecular forces (van der Waals forces) of the same kind as those responsible for the imperfection of real gases and the condensation of vapors, and which do not involve a significant change in the electronic orbital patterns of the species involved. The term van der Waals adsorption is synonymous with physical adsorption, but its use is not recommended.

PICOCURIE: A unit of radioactivity. "Pico" is a metric prefix that means one one-millionth of one one-millionth. A picocurie is one one-millionth of one one-millionth of a Curie. A Curie is that quantity of any radioactive substance that undergoes 37 billion nuclear disintegrations per second. Thus a picocurie is that quantity of any radioactive substance that undergoes 0.037 nuclear disintegrations per second.

pCi/L: Picocuries per liter A curie is the amount of radiation released by a set amount of a certain compound. A picocurie is one quadrillionth of a curie.

PICOCURIE: A unit of radioactivity. "Pico" is a metric prefix that means one one-millionth of one one-millionth. A picocurie is one one-millionth of one one-millionth of a Curie. A Curie is that quantity of any radioactive substance that undergoes 37 billion nuclear disintegrations per second. Thus a picocurie is that quantity of any radioactive substance that undergoes 0.037 nuclear disintegrations per second.

PIEZOMETRIC SURFACE: See potentiometric surface.

PILOT BIT: A bit used on auger rigs to cut a pilot hole ahead of the cutter head when drilling into more resistant formations.

PIPELINE APPURTENANCE: Pressure reducers, bends, valves, regulators (which are a type of valve), etc.

PITLESS ADAPTER: A fitting installed on a section of column pipe and well casing permitting piping from the well to be installed below grade. (Often requires a special permit for construction)

PLANKTON: The aggregate of passively floating, drifting, or somewhat motile organisms occurring in a body of water, primarily comprising microscopic algae and protozoa.

PLATFORM: The portion of the drilling rig where a driller and crew operate the drill rig.

PLUG: A removable cap installed behind the pilot and cutter bits on hollow stem auger flighting.

PLUNGER: See Surge-block.

POINT OF ENTRY: POE.

POLLUTION: To make something unclean or impure. See Contaminated.

POLYPHOSPHATES: Chemicals that may be added to remove low levels of iron and manganese.

POLYMER: A type of chemical when combined with other types of coagulants aid in binding small suspended particles to larger particles to help in the settling and filtering processes.

PORE SPACE: The interstitial space between sediments and fractures that is capable of storing and transmitting water.

POROSITY: A factor representing a rock, soil, or formations percentage of open space available for the percolation and storage of groundwater.

POST-CHLORINE: Where the water is chlorinated to make sure it holds a residual in the distribution system.

POTABLE: Good water which is safe for drinking or cooking purposes. Non-Potable: A liquid or water that is not approved for drinking.

POTENTIAL ENERGY: The energy that a body has by virtue of its position or state enabling it to do work.

POTENTIOMETRIC SURFACE: An imaginary surface representing the height a column of water will reach at any location within a confined aquifer. The measured surface of a confined aquifer related to the aquifer's pressure head.

PPM: Abbreviation for parts per million.

PRE-CHLORINE: Where the raw water is dosed with a large concentration of chlorine.

PRE-CHLORINATION: The addition of chlorine before the filtration process will help:

- > Control algae and slime growth
- > Control mud ball formation
- > Improve coagulation
- > Precipate iron

The addition of chlorine to the water prior to any other plant treatment processes.

PERKINESIS: The aggregation resulting from random thermal motion of fluid molecules.

PRESSURE: Pressure is defined as force per unit area. It is usually more convenient to use pressure rather than force to describe the influences upon fluid behavior. The standard unit for pressure is the Pascal, which is a Newton per square meter. For an object sitting on a surface, the force pressing on the surface is the weight of the object, but in different orientations it might have a different area in contact with the surface and therefore exert a different pressure.

PRESSURE HEAD: The height of a column of water capable of being maintained by pressure. See also Total Head, Total Dynamic Head.

PRESSURE MEASUREMENT: Bourdon tube, Bellows gauge and Diaphragm are commonly used to measure pressure in waterworks systems. A Bellows-type sensor reacts to a change in pressure.

PREVENTION: To take action; stop something before it happens.

PROTON, NEUTRON AND ELECTRON: Are the 3 fundamental particles of an atom.

PRODUCING ZONE: A specific productive interval.

PRODUCTIVE INTERVAL: The portion or portions of an aquifer in which significant water production is obtained within the well.

PROTIST: Any of a group of eukaryotic organisms belonging to the kingdom Protista according to some widely used modern taxonomic systems. The protists include a variety of unicellular, coenocytic, colonial, and multicellular organisms, such as the protozoans, slime molds, brown algae, and red algae. A unicellular protoctist in taxonomic systems in which the protoctists are considered to form a kingdom.

PROTOCTIST: Any of various unicellular eukaryotic organisms and their multicellular, coenocytic, or colonial descendants that belong to the kingdom Protoctista according to some taxonomic systems. The protoctists include the protozoans, slime molds, various algae, and other groups. In many new classification systems, all protoctists are considered to be protists.

PROTOZOA: Microscopic animals that occur as single cells. Some protozoa can cause disease in humans. Protozoa form cysts, which are specialized cells like eggs that are very resistant to chlorine. Cysts can survive the disinfection process, then "hatch" into normal cells that can cause disease. Protozoa must be removed from drinking water by filtration, because they cannot be effectively killed by chlorine.

PUBLIC NOTIFICATION: An advisory that EPA requires a water system to distribute to affected consumers when the system has violated MCLs or other regulations. The notice advises consumers what precautions, if any, they should take to protect their health.

PUBLIC WATER SYSTEM (PWS): Any water system which provides water to at least 25 people for at least 60 days annually. There are more than 170,000 PWSs providing water from wells, rivers and other sources to about 250 million Americans. The others drink water from private wells. There are differing standards for PWSs of different sizes and types.

PUMP SURGING: A process of well development whereby water is pumped nearly to the surface and then is allowed to fall back into the well. The process creates a backwashing action that cleans the well and nearby formation.

PUMPING LIFT: The height to which water must be pumped or lifted to, feet of head.

PWS: 3 types of public water systems. Community water system, non-transient non-community water system, transient non-community water system.

RADIOCHEMICALS: (Or radioactive chemicals) Occur in natural waters. Naturally radioactive ores are particularly common in the Southwestern United States, and some streams and wells can have dangerously high levels of radioactivity. Total alpha and beta radioactivity and isotopes of radium and strontium are the major tests performed for radiochemicals. The federal drinking water standard for gross alpha radioactivity is set at 5 picocuries per liter.

RADIUS OF INFLUENCE: The distance away from a pumping well that water levels are affected by a wells cone of depression.

RAWHIDING: See Pump Surging.

RAW TURBIDITY: The turbidity of the water coming to the treatment plant from the raw water source.

RAW WATER: Water that has not been treated in any way; it is generally considered to be unsafe to drink.

REAGENT: A substance used in a chemical reaction to measure, detect, examine, or produce other substances.

REAM: The process of enlarging a borehole.

REAMER BIT: A special bit designed to ream existing boreholes.

RECHARGE: The infiltration component of the hydrologic cycle. Often used in the context of referring to: The infiltration of water back into an aquifer, resulting in the restoration of lost storage and water levels which had been decreased due to pumping and/or natural discharges from the aquifer.

RECIRCULATING SYSTEM: A system of constructed or surface mud pits that settle out cuttings from drilling fluid to be circulated back down the borehole.

RECORDER, FLOW: A flow recorder that measures flow is most likely to be located anywhere in the plant where a flow must be measured and in a central location.

RED WATER AND SLIME: Iron bacteria are undesirable in a water distribution system because of red water and slime complaints.

REDOX POTENTIAL: Reduction potential (also known as redox potential, oxidation / reduction potential or ORP) is the tendency of a chemical species to acquire electrons and thereby be reduced. Each species has its own intrinsic reduction potential; the more positive the potential, the greater the species' affinity for electrons and tendency to be reduced. In aqueous solutions, the reduction potential is the tendency of the solution to either gain or lose electrons when it is subject to change by introduction of a new species. A solution with a higher (more positive) reduction potential than the new species will have a tendency to gain electrons from the new species (i.e. to be reduced by oxidizing the new species) and a solution with a lower (more negative) reduction potential will have a tendency to lose electrons to the new species (i.e. to be oxidized by reducing the new species).

RELAY LOGIC: The name of a popular method of automatically controlling a pump, valve, chemical feeder, and other devices.

RESERVOIR: An impoundment used to store water.

RESIDUAL DISINFECTION PROTECTION: A required level of disinfectant that remains in treated water to ensure disinfection protection and prevent recontamination throughout the distribution system (i.e., pipes).

REVERSE MUD ROTARY: A non-conventional drilling method in which drilling fluid is injected through the borehole annulus downward through the bit and circulated back to the surface through the drill string.

REVERSE OSMOSIS: Forces water through membranes that contain holes so small that even salts cannot pass through. Reverse osmosis removes microorganisms, organic chemicals, and inorganic chemicals, producing very pure water. For some people, drinking highly purified water exclusively can upset the natural balance of salts in the body. Reverse osmosis units require regular maintenance or they can become a health hazard.

RIBBED STABILIZER: A stabilizer or drill collar that has cutting ribs attached to its side. Ribs are normally installed in vertical or spiral arrangements.

ROLLER BIT: A rotary drill bit having rotating cutting heads.

ROTAMETER: The name of transparent tube with a tapered bore containing a ball is often used to measure the rate of flow of a gas or liquid.

ROTARY RIG: A conventional rotary drill rig. Can be either an air or mud rotary rig.

ROTIFER: Rotifers get their name (derived from Greek and meaning "wheel-bearer"; they have also been called wheel animalcules) from the corona, which is composed of several ciliated tufts around the mouth that in motion resemble a wheel. These create a current that sweeps food into the mouth, where it is chewed up by a characteristic pharynx (called the mastax) containing a tiny, calcified, jaw-like structure called the trophi. The cilia also pull the animal, when unattached, through the water. Most free-living forms have pairs of posterior toes to anchor themselves while feeding. Rotifers have bilateral symmetry and a variety of different shapes.

There is a well-developed cuticle which may be thick and rigid, giving the animal a box-like shape, or flexible, giving the animal a worm-like shape; such rotifers are respectively called loricate and illoricate.

RUNOFF: Surface water sources such as a river or lake are primarily the result of natural processes of runoff.

SAFE YIELD: A possible consequence when the "safe yield" of a well is exceeded and water continues to be pumped from a well, is land subsidence around the well will occur. Safe yield refers to a long-term balance between the water that is naturally and artificially recharged to an aquifer and the groundwater that is pumped out. When more water is removed than is recharged, the aquifer is described as being out of safe yield. When the water level in the aquifer then drops, we are said to be mining groundwater.

SALTS ARE ABSENT: Is a strange characteristic that is unique to water vapor in the atmosphere.

SAMPLE: The water that is analyzed for the presence of EPA-regulated drinking water contaminants. Depending on the regulation, EPA requires water systems and states to take samples from source water, from water leaving the treatment facility, or from the taps of selected consumers.

SAMPLING LOCATION: A location where soil or cuttings samples may be readily and accurately collected.

SAND, ANTHRACITE AND GARNET: Mixed media filters are composed of these three materials.

SANITARY SURVEY: Persons trained in public health engineering and the epidemiology of waterborne diseases should conduct the sanitary survey. The importance of a detailed sanitary survey of a new water source cannot be overemphasized. An on-site review of the water sources, facilities, equipment, operation, and maintenance of a public water systems for the purpose of evaluating the adequacy of the facilities for producing and distributing safe drinking water. The purpose of a non-regulatory sanitary survey is to identify possible biological and chemical pollutants which might affect a water supply.

SANITIZER: A disinfectant or chemical which disinfects (kills bacteria), kills algae and oxidizes organic matter.

SATURATION INDEX: See Langelier's Index.

SATURATOR: A device which produces a fluoride solution for the fluoride process. Crystal-grade types of sodium fluoride should be fed with a saturator. Overfeeding must be prevented to protect public health when using a fluoridation system.

SATURATED ZONE: Where an unconfined aguifer becomes saturated beneath the capillary fringe.

SCADA: A remote method of monitoring pumps and equipment. 130 degrees F is the maximum temperature that transmitting equipment is able to with stand. If the level controller may be set with too close a tolerance 45 could be the cause of a control system that is frequently turning a pump on and off.

SCALE: Crust of calcium carbonate, the result of unbalanced water. Hard insoluble minerals deposited (usually calcium bicarbonate) which forms on pool and spa surfaces and clog filters, heaters and pumps. Scale is caused by high calcium hardness and/or high pH. The regular use of stain prevention chemicals can prevent scale.

SCHMUTZDECKE: German, "grime or filth cover", sometimes spelt schmutzedecke) is a complex biological layer formed on the surface of a slow sand filter. The schmutzdecke is the layer that provides the effective purification in potable water treatment, the underlying sand providing the support medium for this biological treatment layer. The composition of any particular schmutzdecke varies, but will typically consist of a gelatinous biofilm matrix of bacteria, fungi, protozoa, rotifera and a range of aquatic insect larvae. As a schmutzdecke ages, more algae tend to develop, and larger aquatic organisms may be present including some bryozoa, snails and annelid worms.

SCROLL AND BASKET: The two basic types of centrifuges used in water treatment.

SEAL: For wells: to abandon a well by filling up the well with approved seal material including cementing with grout from a required depth to the land surface.

SECONDARY DRINKING WATER STANDARDS: Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water.

SECTIONAL MAP: The name of a map that provides detailed drawings of the distribution system's zones. Sometimes we call these quarter-sections.

SEDIMENTATION BASIN: Where the thickest and greatest concentration of sludge will be found. Twice a year sedimentation tanks should be drained and cleaned if the sludge buildup interferes with the treatment process.

SEDIMENTATION: The process of suspended solid particles settling out (going to the bottom of the vessel) in water.

SEDIMENT: Grains of soil, sand, gravel, or rock deposited by and generated by water movement.

SENSOR: A float and cable system are commonly found instruments that may be used as a sensor to control the level of liquid in a tank or basin.

SESSILE: Botany. attached by the base, or without any distinct projecting support, as a leaf issuing directly from the stem. Zoology. permanently attached; not freely moving.

SETTLED SOLIDS: Solids that have been removed from the raw water by the coagulation and settling processes.

SHAKER: A device used in mud containment systems that vibrates various sized screens as drilling fluid passes through it, thereby separating cuttings from drilling fluid and providing a good sampling location.

SHOCK: Also known as superchlorination or break point chlorination. Ridding a water of organic waste through oxidization by the addition of significant quantities of a halogen.

SHORT-CIRCUITING: Short Circuiting is a condition that occurs in tanks or basins when some of the water travels faster than the rest of the flowing water. This is usually undesirable since it may result in shorter contact, reaction or settling times in comparison with the presumed detention times.

SHROUD: A baffle or piece of pipe installed over a pump to force water to pass the pumps motor.

SIEVE ANALYSIS: The process of sifting soil or formation samples through a series of screens to determine percentages of particle sizes.

SINGLE PHASE POWER: The type of power used for lighting systems, small motors, appliances, portable power tools and in homes.

SINUSOID: A curve described by the equation $y = a \sin x$, the ordinate being proportional to the sine of the abscissa.

SINUSOIDAL: Mathematics. Of or pertaining to a sinusoid. Having a magnitude that varies as the sine of an independent variable: a sinusoidal current.

SLUDGE BASINS: After cleaning sludge basins and before returning the tanks into service the tanks should be inspected, repaired if necessary, and disinfected.

SLUDGE REDUCTION: Organic polymers are used to reduce the quantity of sludge. If a plant produces a large volume of sludge, the sludge could be dewatered, thickened, or conditioned to decrease the volume of sludge. Turbidity of source water, dosage, and type of coagulant used are the most important factors which determine the amount of sludge produced in a treatment of water.

SLURRY: A mixture of crushed rock and water.

SMALL WATER SYSTEM: 3,300 or fewer persons.

SOC: Synthetic organic chemical. A common way for a synthetic organic chemical such as dioxin to be introduced to a surface water supply is from an industrial discharge, agricultural drainage, or a spill.

SODA ASH: Chemical used to raise pH and total alkalinity (sodium carbonate)

SODIUM BICARBONATE: Commonly used to increase alkalinity of water and stabilize pH.

SODIUM BISULFATE: Chemical used to lower pH and total alkalinity (dry acid).

SODIUM HYDROXIDE: Also known as caustic soda, a by-product chlorine generation and often used to raise pH.

SOIL MOISTURE: A relative consideration of the degree to which a soil is saturated.

SOFTENING WATER: When the water has a low alkalinity it is advantageous to use soda ash instead of caustic soda for softening water.

SOFTENING: The process that removes the ions which cause hardness in water.

SOLAR DRYING BEDS OR LAGOONS: Are shallow, small-volume storage pond where sludge is concentrated and stored for an extended periods.

SOLAR DRYING BEDS, CENTRIFUGES AND FILTER PRESSES: Are procedures used in the dewatering of sludge.

SOLID, LIQUID AND VAPOR: 3 forms of matter.

SOLDER: A fusible alloy used to join metallic parts.

SOLID STEM (AUGER): An auger that is constructed of solid stem drill flights.

SPADNS: The lab reagent called SPADNS solution is used in performing the Fluoride test.

SPECIFIC CAPACITY (Sc): A measure of a well's pumping performance in gallons per minute per foot of drawdown.

SPIDER: A bearing or flange used in vertical turbine pumps to stabilize the drive shaft or shaft tube and seal column joints.

SPIRAL FLANGE: A continuous blade that wraps spirally around auger flighting.

SPIRIT OF HARTSHORN: A colorless, pungent, suffocating, aqueous solution of about 28.5 percent ammonia gas: used chiefly as a detergent, for removing stains and extracting certain vegetable coloring agents, and in the manufacture of ammonium salts.

SPLIT SPOON: A sampling device that is driven into the earth and operated by a wire line for the retrieval of soil or formation samples.

SPLIT FLOW CONTROL SYSTEM: This type of control system is to control the flow to each filter influent which is divided by a weir.

SPRAY BOTTLE OF AMMONIA: An operator should use ammonia to test for a chlorine leak around a valve or pipe. You will see white smoke if there is a leak.

SPRING PRESSURE: Is what maintains contact between the two surfaces of a mechanical seal.

STABILE: Reference to formation, soil, or sediments of sufficient strength to remain in place under its own weight and existing pressures.

STABILIZE: Actions taken to enhance borehole stability or vertical rotational when drilling.

STABILIZER: The portion of a drill string used to stabilize rotation.

STANDPIPE: A water tank that is taller than it is wide. Should not be found in low point.

STERILIZED GLASSWARE: The only type of glassware that should be used in testing for coliform bacteria.

STORAGE TANKS: Three types of water usage that determine the volume of a storage tank are fire suppression storage, equalization storage, and emergency storage. Equalization storage is the volume of water needed to supply the system for periods when demand exceeds supply. Generally, a water storage tank's interior coating (paint) protects the interior about 3-5 years.

S.T.P.: Standard temperature and pressure standard temperature and pressure the temperature of 0°C and pressure of 1 atmosphere, usually taken as the conditions when stating properties of gases.

STRATIFIED: Layered.

STUFFING BOX: That portion of the pump that houses the packing or mechanical seal.

SUB: A small section of drill pipe used to connect larger sections.

SUBMERSIBLE PUMP: A turbine pump that has the motor attached directly to it and therefore is operated while submerged.

SULFATE: Will readily dissolve in water to form an anion. Sulfate is a substance that occurs naturally in drinking water. Health concerns regarding sulfate in drinking water have been raised because of reports that diarrhea may be associated with the ingestion of water containing high levels of sulfate. Of particular concern are groups within the general population that may be at greater risk from the laxative effects of sulfate when they experience an abrupt change from drinking water with low sulfate concentrations to drinking water with high sulfate concentrations.

Sulfate in drinking water currently has a secondary maximum contaminant level (SMCL) of 250 milligrams per liter (mg/L), based on aesthetic effects (i.e., taste and odor). This regulation is not a federally enforceable standard, but is provided as a guideline for States and public water systems. EPA estimates that about 3% of the public drinking water systems in the country may have sulfate levels of 250 mg/L or greater. The Safe Drinking Water Act (SDWA), as amended in 1996, directs the U.S. Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) to jointly conduct a study to establish a reliable dose-response relationship for the adverse human health effects from exposure to sulfate in drinking water, including the health effects that may be experienced by sensitive subpopulations (infants and travelers). SDWA specifies that the study be based on the best available peer-reviewed science and supporting studies, conducted in consultation with interested States, and completed in February 1999.

SULFIDE: The term sulfide refers to several types of chemical compounds containing sulfur in its lowest oxidation number of -2. Formally, "sulfide" is the dianion, S_2 , which exists in strongly alkaline aqueous solutions formed from H_2S or alkali metal salts such as Li_2S , Na_2S , and K_2S . Sulfide is exceptionally basic and, with a pKa > 14, it does not exist in appreciable concentrations even in highly alkaline water, being undetectable at pH < ~15 (8 M NaOH). Instead, sulfide combines with electrons in hydrogen to form HS, which is variously called hydrogen sulfide ion, hydrosulfide ion, sulfhydryl ion, or bisulfide ion. At still lower pH's (<7), HS- converts to H_2S , hydrogen sulfide. Thus, the exact sulfur species obtained upon dissolving sulfide salts depends on the pH of the final solution. Aqueous solutions of transition metals cations react with sulfide sources (H_2S , NaSH, Na₂S) to precipitate solid sulfides. Such inorganic sulfides typically have very low solubility in water and many are related to minerals. One famous example is the bright yellow species CdS or "cadmium yellow". The black tarnish formed on sterling silver is Ag_2S . Such species are sometimes referred to as salts. In fact, the bonding in transition metal sulfides is highly covalent, which gives rise to their semiconductor properties, which in turn is related to the practical applications of many sulfide materials.

SUPERNATANT: The liquid layer which forms above the sludge in a settling basin.

SURFACE SEAL: The upper portion of a wells construction where surface contaminants are adequately prevented from entering the well, normally consisting of surface casing and neat cement grout.

SURFACE WATER SOURCES: Surface water sources such as a river or lake are primarily the result of Runoff.

SURFACE WATER: Water that is open to the atmosphere and subject to surface runoff; generally, lakes, streams, rivers.

SURFACTANT: Surfactants reduce the surface tension of water by adsorbing at the liquid-gas interface. They also reduce the interfacial tension between oil and water by adsorbing at the liquid-liquid interface. Many surfactants can also assemble in the bulk solution into aggregates. Examples of such aggregates are vesicles and micelles. The concentration at which surfactants begin to form micelles is known as the critical micelle concentration or CMC. When micelles form in water, their tails form a core that can encapsulate an oil droplet, and their (ionic/polar) heads form an outer shell that maintains favorable contact with water. When surfactants assemble in oil, the aggregate is referred to as a reverse micelle. In a reverse micelle, the heads are in the core and the tails maintain favorable contact with oil. Surfactants are also often classified into four primary groups; anionic, cationic, non-ionic, and zwitterionic (dual charge).

SUSCEPTIBILITY WAIVER: A waiver that is granted based upon the results of a vulnerability assessment.

SURGE-BLOCK: A disc shaped device that fits tightly into a well and is moved up and down to agitate the water column in order to develop a well.

SURGING: The process of purging a well rapidly for well development.

SWAB: See Surge-block.

SWING ARM: A large moveable arm on a bucket auger rig that pulls the bucket auger out away from the drilling rig for dumping.

SYNCHRONY: Simultaneous occurrence; synchronism.

TABLE DRIVE: A drilling rig that uses a rotating table within the platform to turn a kelly driven drill string.

TABLE: The back portion of a drill rig where the drill pipe is inserted (or driven if a table drive), adjacent to or within the driller's platform.

TAPPING VALVE: The name of the valve that is specifically designed for connecting a new water main to an existing main that is under pressure.

TARGET DEPTH: The proposed construction depth of a well prior to drilling.

TASTE AND ODORS: The primary purpose to use potassium permanganate in water treatment is to control taste and odors. Anaerobic water undesirable for drinking water purposes because of color and odor problems are more likely to occur under these conditions. Taste and odor problems in the water may happen if sludge and other debris are allowed to accumulate in a water treatment plant.

TCE, *trichloroethylene*: A solvent and degreaser used for many purposes; for example dry cleaning, it is a common groundwater contaminant. Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

TDS-TOTAL DISSOLVED SOLIDS: An expression for the combined content of all inorganic and organic substances contained in a liquid which are present in a molecular, ionized or micro-granular (colloidal sol) suspended form. Generally, the operational definition is that the solids (often abbreviated TDS) must be small enough to survive filtration through a sieve size of two micrometers. Total dissolved solids are normally only discussed for freshwater systems, since salinity comprises some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers and lakes, although TDS is generally considered not as a primary pollutant (e.g. it is not deemed to be associated with health effects), but it is rather used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of presence of a broad array of chemical contaminants. Ion exchange is an effective treatment process used to remove iron and manganese in a water supply. This process is ideal as long as the water does not contain a large amount of TDS. When determining the total dissolved solids, a sample should be filtered before being poured into an evaporating dish and dried. Demineralization may be necessary in a treatment process if the water has a very high value Total Dissolved Solids.

TELEMETERING: The use of a transmission line with remote signaling to monitor a pumping station or motors. Can be used to accomplish accurate and reliable remote monitoring and control over a long distribution system.

TEMPERATURE SAMPLE: This test should be performed immediately in the field, this is a grab sample.

TELESCOPING KELLY: A kelly with successively smaller sized pipe within itself that drops out as a borehole is drilled. This permits that drilling may proceed without adding drill pipe. Normally found on bucket auger rigs.

TELESCOPING: The successive decrease in borehole size with depth.

THE RATE DECREASES: In general, when the temperature decreases, the chemical reaction rate decreases also.

THICKENING, CONDITIONING AND DEWATERING: Common processes that are utilized to reduce the volume of sludge.

TIME FOR TURBIDITY BREAKTHROUGH AND MAXIMUM HEADLOSS: Are the two factors which determine whether or not a change in filter media size should be made.

TITRATION: A method of testing by adding a reagent of known strength to a water sample until a specific color change indicates the completion of the reaction.

TITRIMETRIC: Chemistry. Using or obtained by titration. Titrimetrically, adverb.

TOP DRIVE: A rotary type drill head that moves freely up and down the rigs mast while driving the drill string.

TOROID: A surface generated by the revolution of any closed plane curve or contour about an axis lying in its plane. The solid enclosed by such a surface.

TOTAL ALKALINITY: A measure of the acid-neutralizing capacity of water which indicates its buffering ability, i.e. measure of its resistance to a change in pH. Generally, the higher the total alkalinity, the greater the resistance to pH change.

TOTAL COLIFORM: Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

TOTAL DISSOLVED SOLIDS (TDS): The accumulated total of all solids that might be dissolved in water.

TOTAL DYNAMIC HEAD: The pressure (psi) or equivalent feet of water, required for a pump to lift water to its point of storage overcoming elevation head, friction loss, line pressure, drawdown and pumping lift.

TRANSIENT, NON-COMMUNITY WATER SYSTEM: TNCWS A water system which provides water in a place such as a gas station or campground where people do not remain for long periods of time. These systems do not have to test or treat their water for contaminants which pose long-term health risks because fewer than 25 people drink the water over a long period. They still must test their water for microbes and several chemicals. A Transient Non-community Water System: Is not required to sample for VOC's.

TREATED WATER: Disinfected and/or filtered water served to water system customers. It must meet or surpass all drinking water standards to be considered safe to drink.

TRIHALOMETHANES (THM): Four separate compounds including chloroform, dichlorobromomethane, dibromochloromethane, and bromoform. The most common class of disinfection by-products created when chemical disinfectants react with organic matter in water during the disinfection process. See Disinfectant Byproducts.

TRICONE BIT: A roller bit with three independent rolling bits with teeth or buttons that intermesh for efficient rock crushing and cutting.

TUBE SETTLERS: This modification of the conventional process contains many metal tubes that are placed in the sedimentation basin, or clarifier. These tubes are approximately 1 inch deep and 36 inches long, splithexagonal shape and installed at an angle of 60 degrees or less. These tubes provide for a very large surface area upon which particles may settle as the water flows upward. The slope of the tubes facilitates gravity settling of the solids to the bottom of the basin, where they can be collected and removed. The large surface settling area also means that adequate clarification can be obtained with detention times of 15 minutes or less. As with conventional treatment, this sedimentation step is followed by filtration through mixed media.

TUBERCLES: The creation of this condition is of the most concern regarding corrosive water effects on a water system. Tubercles are formed due to joining dissimilar metals, causing electro-chemical reactions. Like iron to copper pipe. We have all seen these little rust mounds inside cast iron pipe.

TURBIDIMETER: Monitoring the filter effluent turbidity on a continuous basis with an in-line instrument is a recommended practice. Turbidimeter is best suited to perform this measurement.

TURBIDITY: A measure of the cloudiness of water caused by suspended particles.

TURBINE PUMP: A pump that utilizes rotating impellers on a shaft that generate centrifugal force for pumping water.

UNCONFINED AQUIFER: An aguifer that exists under atmospheric pressure and is not confined.

UNCONSOLIDATED: Sediment that is not cemented or is loosely arranged.

UNDER-REAM: The process of reaming, from within the borehole, a section of an existing smaller borehole area.

UNSATURATED ZONE: That portion of the subsurface, including the capillary fringe that is not saturated but may contain water in both vapor and liquid form. See also Vadose Zone.

UNSTABLE: Sediment or other material that cannot exit without rapidly decomposing or collapsing in on itself. (ex. unconsolidated sediment)

U.S. ENVIRONMENTAL PROTECTION AGENCY: In the United States, this agency responsible for setting drinking water standards and for ensuring their enforcement. This agency sets federal regulations which all state and local agencies must enforce.

UNDER PRESSURE IN STEEL CONTAINERS: After chlorine gas is manufactured, it is primarily transported in steel containers.

UNIT FILTER RUN VOLUME (UFRV): One of the most popular ways to compare filter runs. This technique is the best way to compare water treatment filter runs.

VADOSE ZONE: A portion of the subsurface above the water table that is not saturated but contains water in both vapor and liquid form. The portion of the subsurface where water percolates through to the saturated zone. See also Unsaturated Zone.

VANE: That portion of an impeller that throws the water toward the volute.

VARIABLE DISPLACEMENT PUMP: A pump that will produce different volumes of water dependent on the pressure head against it.

VELOCITY HEAD: The vertical distance a liquid must fall to acquire the velocity with which it flows through the piping system. For a given quantity of flow, the velocity head will vary indirectly as the pipe diameter varies.

VENTURI: If water flows through a pipeline at a high velocity, the pressure in the pipeline is reduced. Velocities can be increased to a point that a partial vacuum is created.

VERTICAL TURBINE: A type of variable displacement pump in which the motor or drive head is mounted on the wellhead and rotates a drive shaft connected to the pump impellers.

VIRION: A complete viral particle, consisting of RNA or DNA surrounded by a protein shell and constituting the infective form of a virus.

VIRUSES: Very small disease-causing microorganisms that are too small to be seen even with microscopes. Viruses cannot multiply or produce disease outside of a living cell.

VITRIFICATION: Vitrification is a process of converting a material into a glass-like amorphous solid that is free from any crystalline structure, either by the quick removal or addition of heat, or by mixing with an additive. Solidification of a vitreous solid occurs at the glass transition temperature (which is lower than melting temperature, Tm, due to supercooling). When the starting material is solid, vitrification usually involves heating the substances to very high temperatures. Many ceramics are produced in such a manner. Vitrification may also occur naturally when lightning strikes sand, where the extreme and immediate heat can create hollow, branching rootlike structures of glass, called fulgurite. When applied to whiteware ceramics, vitreous means the material has an extremely low permeability to liquids, often but not always water, when determined by a specified test regime. The microstructure of whiteware ceramics frequently contain both amorphous and crystalline phases.

VOC WAIVER: The longest term VOC waiver that a public water system using groundwater could receive is 9 years.

VOLATILE ORGANIC COMPOUNDS: (**VOCs**) Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

VOID: An opening, gap, or space within rock or sedimentary formations formed at the time of origin or deposition.

VOLTAGE: Voltage (sometimes also called electric or electrical tension) is the difference of electrical potential between two points of an electrical or electronic circuit, expressed in volts. It measures the potential energy of an electric field to cause an electric current in an electrical conductor. Depending on the difference of electrical potential it is called extra low voltage, low voltage, high voltage or extra high voltage. Specifically Voltage is equal to energy per unit charge.

VOLUTE: The spiral-shaped casing surrounding a pump impeller that collects the liquid discharge by the impeller.

VORTEX: The helical swirling of water moving towards a pump.

VIRUSES: Are very small disease-causing microorganisms that are too small to be seen even with microscopes. Viruses cannot multiply or produce disease outside of a living cell.

VOLATILE ORGANIC COMPOUNDS: (**VOCs**) Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents.

VULNERABILITY ASSESSMENT: An evaluation of drinking water source quality and its vulnerability to contamination by pathogens and toxic chemicals.

WAIVERS: Monitoring waivers for nitrate and nitrite are prohibited.

WASHOUT: The rapid erosion of aquifer material from the borehole walls while a well is being drilled, which often results in a loss of circulation.

WATER COURSE: An opening within a cable tool drill string that allows fluid to flow in and out of the drill string thereby minimizing friction loss to the slurry.

WATER HAMMER: A surge in a pipeline resulting from the rapid increase or decrease in water flow. Water hammer exerts tremendous force on a system and can be highly destructive.

WATER PURVEYOR: The individuals or organization responsible to help provide, supply, and furnish quality water to a community.

WATER QUALITY: The 4 broad categories of water quality are: Physical, chemical, biological, radiological. Pathogens are disease causing organisms such as bacteria and viruses. A positive bacteriological sample indicates the presence of bacteriological contamination. Source water monitoring for lead and copper be performed when a public water system exceeds an action level for lead of copper.

WATER QUALITY CRITERIA: Comprised of both numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal.

WATER QUALITY STANDARD: A statute or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.

WATER TABLE: The measured water level surface of an unconfined aquifer.

WATER VAPOR: A characteristic that is unique to water vapor in the atmosphere is that water does not contain any salts.

WATERBORNE DISEASE: A disease, caused by a virus, bacterium, protozoan, or other microorganism, capable of being transmitted by water (e.g., typhoid fever, cholera, amoebic dysentery, gastroenteritis).

WATERSHED: An area that drains all of its water to a particular water course or body of water. The land area from which water drains into a stream, river, or reservoir.

WEATHERED: The existence of rock or formation in a chemically or physically broken down or decomposed state. Weathered material is in an unstable state.

WELL ABANDONMENT: The process of sealing a well by approved means. The filling of a well to the surface with cement grout.

WELL HEAD: The upper portion of the well that is constructed on the land surface, including the well manifold. Also a term used to refer to the area near the well that is subject to wellhead protection.

WELL HEAD PROTECTION: Programs designed to maintain the quality of groundwater used as public drinking water sources, by managing the land uses around the well field. A government program that encourages the limitation and elimination of activities, near and within a wells recharge area, which present a potential risk to the wells water supply.

WELL MANIFOLD: The piping, valves, and metering equipment used to connect the well to the distribution system, installed on the wellhead.

WELL SCREEN: A section of well casing that contains openings which permit water to enter the well but limit or prevent sediment from entering the well while pumping.

WELL SEAL: The watertight cap or seal installed within and between the well casing and pumping equipment. The metal or plastic plug or seal, which the pumping column rests on the top of casing.

WHOLE EFFLUENT TOXICITY: The total toxic effect of an effluent measured directly with a toxicity test.

YIELD: The volume of water measured in flow rates that are produced from the well.

ZONE OF AERATION: See Saturated Zone or Vadose Zone.

ZONE OF SATURATION: See Saturated Zone.

A cross completely blown out. A major job. Good thing it wasn't under the blacktop.

Common Water Treatment and Distribution Chemicals

Common Water Treatment and Distribution Chemicals					
Chemical Name	Common Name	Chemical Formula			
Aluminum hydroxide		Al(OH)₃			
Aluminum sulfate	Alum, liquid	$AL_2(SO_4)3 . 14(H_2O)$			
Ammonia		NH_3			
Ammonium		NH ₄			
Bentonitic clay	Bentonite				
Calcium bicarbonate		Ca(HCO ₃)2			
Calcium carbonate	Limestone	CaCO ₃			
Calcium chloride		CaCl ₂			
Calcium Hypochlorite	HTH	Ca(OCI) ₂ . 4H ₂ O			
Calcium hydroxide	Slaked Lime	Ca(OH) ₂			
Calcium oxide Calcium sulfate	Unslaked (Quicklime) Gypsum	CaO CaSO₄			
Carbon Carbon dioxide	Activated Carbon	C CO ₂			
Carbonic acid		H2CO₃			
Chlorine gas		Cl ₂			
Chlorine Dioxide		CIO ₂			
Copper sulfate	Blue vitriol	CuSO ₄ . 5H ₂ O			
Dichloramine		NHCl ₂			
Ferric chloride	Iron chloride	FeCl ₃			
Ferric hydroxide		Fe(OH) ₃			
Ferric sulfate	Iron sulfate	$Fe_2(SO_4)_3$			
Ferrous bicarbonate		Fe(HCO ₃) ₂			
Ferrous hydroxide		Fe(OH) ₃			
Ferrous sulfate	Copperas	FeSO ₄ .7H ₂ 0			
Hydrofluorsilicic acid		H ₂ SiF ₆			
Hydrochloric acid Hydrogen sulfide	Muriatic acid	HCI H₂S			
Hypochlorus acid Magnesium bicarbonate		HOCL Mg(HCO₃)2			
Magnesium carbonate		MgCO₃			
Magnesium chloride		MgCl ₂			
Magnesium hydroxide		$Mg(OH)_2$			
Magnesium dioxide		MgO_2			
Manganous bicarbonate		Mn(HCO ₃)2			
Manganous sulfate		MnSO ₄			
Monochloramine		NH₂CI			
Potassium bicarbonate		KHCO ₃			
Potassium permanganate		KMnO ₄			

Chemical Name	Common Name	Chemical Formula
Sodium carbonate	Soda ash	Na ₂ CO ₃
Sodium chloride Sodium chlorite	Salt	NaCl NaClO ₂
Sodium fluoride Sodium fluorsilicate		NaF Na₂SiF ₆
Sodium hydroxide Sodium hypochlorite Sodium Metaphosphate	Lye Hexametaphosphate	NaOH NaOCI NaPO₃
Sodium phosphate	Disodium phosphate	Na ₃ PO ₄
Sodium sulfate		Na_2SO_4
Sulfuric acid		H ₂ SO ₄

Fluoride. Many communities add fluoride to their drinking water to promote dental health. Each community makes its own decision about whether or not to add fluoride. The EPA has set an enforceable drinking water standard for fluoride of 4 mg/L (some people who drink water containing fluoride in excess of this level over many years could develop bone disease, including pain and tenderness of the bones). The EPA has also set a secondary fluoride standard of 2 mg/L to protect against dental fluorosis.

REFERENCES

Benenson, Abram S., editor. 1990. *Control of Communicable Diseases in Man.* 15th ed. Baltimore: Victor Graphics, Inc.

Bick, H. 1972. Ciliated protozoa. An illustrated guide to the species used as biological indicators in freshwater biology. World Health Organization, Geneva. 198 pp.

Born, Stephen M., Douglas A. Yanggen, and Alexander Zaporozec. *A Guide to Groundwater Quality Planning and Management for Local Governments*. Wisconsin Geological and Natural History Survey, Madison, WI, 1987.

Cairns, J., and J.A. Ruthven. 1972. A test of the cosmopolitan distribution of fresh-water protozoans. Hydrobiologia 39:405-427.

Cairns, J., and W.H. Yongue. 1977. Factors affecting the number of species of freshwater protozoan communities. Pages 257-303 in J. Cairns, ed. Aquatic microbial communities. Garland, New York.

Cairns, J., G.R. Lanza, and B.C. Parker. 1972. Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proceedings of the National Academy of Sciences 124:79-127.

Concern, Inc. Groundwater: A Community Action Guide. Washington, D.C., 1989.

Cross, Brad L and Jack Schulze. *City of Hurst (A Public Water Supply Protection Strategy)*. Texas Water Commission, Austin, TX, 1989.

Curds, C.R. 1992. Protozoa and the water industry. Cambridge University Press, MA. 122 pp. Curtis, Christopher and Teri Anderson. *A Guidebook for Organizing a Community Collection Event: Household Hazardous Waste*. Pioneer Valley Planning Commission and Western Massachusetts Coalition for Safe Waste Management, West Springfield, MA, 1984.

Curtis, Christopher, Christopher Walsh, and Michael Przybyla. *The Road Salt Management Handbook: Introducing a Reliable Strategy to Safeguard People & Water Resources*. Pioneer Valley Planning Commission, West Springfield, MA, 1986.

Fenchel, T. 1974. Intrinsic rate increase: the relationship with body size. Oecologia 14:317-326.

Fenchel, T., T. Perry, and A. Thane. 1977. Anaerobiosis and symbiosis with bacteria in free-living ciliates. Journal of Protozoology 24:154-163.

Foissner, W. 1987. Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protistology 2:69-212.

Foissner, W. 1988. Taxonomic and nomenclatural revision of Stádecek's list of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiologia 166:1-64.

Foster, Laurence, M.D. 1985. "Waterborne Disease - It's Our Job to Prevent It". PIPELINE newsletter, Oregon Health Division, Drinking Water Program, Portland, Oregon 1(4): 1-3.

Foster, Laurence, M.D. 1990. "Waterborne *Disease," Methods for the Investigation and Prevention of Waterborne Disease Outbreaks*. Ed. Gunther F. Craun. Cincinnati: U.S. Environmental Protection Agency.

Giese, A.C. 1973. Blepharisma. Stanford University Press, CA. 366 pp.

Gordon, Wendy. *A Citizen's Handbook on Groundwater Protection*. Natural Resources Defense Council, New York, NY 1984.

Harrison, Ellen Z. and Mary Ann Dickinson. *Protecting Connecticut's Groundwater: A Guide to Groundwater Protection for Local Officials*. Connecticut Department of Environmental Protection, Hartford, CT, 1984.

Hrezo, Margaret and Pat Nickinson. *Protecting Virginia's Groundwater A Handbook for Local Government Officials*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1986.

Jaffe, Martin and Frank Dinovo. *Local Groundwater Protection*. American Planning Association, Chicago, IL, 1987.

Kreier, J.P., and J.R. Baker. 1987. Parasitic protozoa. Allen and Unwin, Boston, MA. 241 pp. Laybourn, J., and B.J. Finlay. 1976. Respiratory energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 44:165-174.

Lee, C.C., and T. Fenchel. 1972. Studies on ciliates associated with sea ice from Antarctica. II. Temperature responses and tolerances in ciliates from Antarctica, temperate and tropical habitats. Archive für Protistenkunde 114:237-244.

Loomis, George and Yael Calhoon. "Natural Resource Facts: Maintaining Your Septic System." University of Rhode Island, Providence, RI, 1988.

Macozzi, Maureen. *Groundwater- Protecting Wisconsin's Buried Treasure*. Wisconsin Department of Natural Resources, Madison, WI, 1989.

Maine Association of Conservation Commissions. *Ground Water... Maine's Hidden Resource*. Hallowell, ME, 1985.

Massachusetts Audubon Society "Local Authority for Groundwater Protection." Groundwater Information Flyer #4. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Groundwater and Contamination: From the Watershed into the Well." Groundwater Information Flyer # 2. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Mapping Aquifers and Recharge Areas." Groundwater Information Flyer # 3. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Road Salt and Groundwater Protection." Groundwater Information Flyer # 9. Lincoln, MA, 1987.

McCann, Alyson and Thomas P Husband. "Natural Resources Facts: Household Hazardous Waste." University of Rhode Island, Providence, RI; 1988.

Miller, David W. *Groundwater Contamination: A Special Report*. Geraghty & Miller, Inc., Syosset, NY 1982.

Montagnes, D.J.S., D.H. Lynn, J.C. Roff, and W.D. Taylor. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology 99:21-30.

Mullikin, Elizabeth B. *An Ounce of Prevention: A Ground Water Protection Handbook for Local Officials*. Vermont Departments of Water Resources and Environmental Engineering, Health, and Agriculture, Montpelier, VT, 1984.

Murphy, Jim. "Groundwater and Your Town: What Your Town Can Do Right Now."

Connecticut Department of Environmental Protection, Hartford, CT.

National Research Council. *Ground Water Quality Protection: State and Local Strategies.* National Academy Press, Washington, D.C., 1986.

New England Interstate Water Pollution Control Commission. "Groundwater: Out of Sight Not Out of Danger." Boston, MA, 1989.

Niederlehner, B.R., K.W. Pontasch, J.R. Pratt, and J. Cairns. 1990. Field evaluation of predictions of environmental effects from multispecies microcosm toxicity test. Archives of Environmental Contamination and Toxicology 19:62-71.

Noake, Kimberly D. Guide to *Contamination Sources for Wellhead Protection*. Draft. Massachusetts Department of Environmental Quality Engineering, Boston, MA, 1988. Office of Drinking Water. *A Local Planning Process for Groundwater Protection*. U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Guidelines for Delineation of Wellhead Protection Areas*. U.S. EPA, Washington, D.C., 1987.

Office of Ground-Water Protection. Survey of State Ground Water Quality Protection Legislation Enacted From 1985 Through 1987. U.S. EPA, Washington, D.C., 1988. Office of Ground-Water Protection. Wellhead Protection Programs. - Tools for Local Governments. U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Wellhead Protection: A Decision-Makers' Guide.* U.S. EPA, Washington, D.C., 1987

Office of Pesticides and Toxic Substances. *Citizen's Guide to Pesticides.* U.S. EPA, Washington, D.C., 1989.

Office of Underground Storage Tanks. *Musts for USGS. - A Summary of the New Regulations for Underground Storage Tank Systems.* U.S. EPA, Washington, D.C., 1988.

Ohio Environmental Protection Agency. Ground Water. Columbus, OH.

Redlich, Susan. Summary of Municipal Actions for Groundwater Protection in the New England/New York Region. New England Interstate Water Pollution Control Commission, Boston, MA, 1988.

Southern Arizona Water Resources Association. "Water Warnings: Our Drinking Water.... It Takes Everyone to Keep It Clean." Tucson, AZ.

Sponenberg, Torsten D. and Jacob H. Kahn. *A Groundwater Primer for Virginians*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1984.

Taylor, W., and R. Sanders. 1991. Protozoa. Pages 37-93 in J.H. Thorp and A.P. Covich, eds. Ecology and classification of North American freshwater invertebrates. Academic Press, New York.

Texas Water Commission. "On Dangerous Ground: The Problem of Abandoned Wells in Texas." Austin, TX, 1989.

Texas Water Commission. *The Underground Subject: An Introduction to Ground Water Issues in Texas.* Austin, TX, 1989.

U.S. Environmental Protection Agency. *Seminar Publication: Protection of Public Water Supplies from Ground-Water Contaminants.* Center for Environmental Research Information, Cincinnati, OH, 1985.

Waller, Roger M. *Ground Water and the Rural Homeowner*. U.S. Geological Survey, Reston, VA, 1988.

Math Conversion Factors

1 PSI = 2.31 Feet of Water 1 Foot of Water = .433 PSI

1.13 Feet of Water = 1 Inch of Mercury

454 Grams = 1 Pound

2.54 CM =Inch

1 Gallon of Water = 8.34 Pounds

1 mg/L = 1 PPM

17.1 mg/L = 1 Grain/Gallon

1% = 10,000 mg/L

694 Gallons per Minute = MGD

1.55 Cubic Feet per Second = 1 MGD

60 Seconds = 1 Minute

1440 Minutes = 1 Day

.746 kW = 1 Horsepower

LENGTH

12 Inches = 1 Foot 3 Feet = 1 Yard 5280 Feet = 1 Mile

AREA

144 Square Inches = 1 Square Foot

43,560 Square Feet =1 Acre

VOLUME

1000 Milliliters = 1 Liter

3.785 Liters = 1 Gallon

231 Cubic Inches = 1 Gallon

7.48 Gallons = 1 Cubic Foot of water

62.38 Pounds = 1 Cubic Foot of water

Dimensions

SQUARE: Area (sq.ft.) = Length X Width

Volume (cu.ft.) = Length (ft) X Width (ft) X Height (ft)

CIRCLE: Area (sq.ft.) = 3.14 X Radius (ft) X Radius (ft)

CYLINDER: Volume (Cu. ft) = 3.14 X Radius (ft) X Radius (ft) X Depth (ft)

PIPE VOLUME: .785 X Diameter ² X Length = ? To obtain gallons multiply by 7.48

SPHERE: (3.14) (Diameter)³ Circumference = 3.14 X Diameter

General Conversions

Flowrate

Multiply	>	to get
to get	<	Divide
cc/min	1	mL/min
cfm (ft ³ /min)	28.31	L/min
cfm (ft ³ /min)	1.699	m³/hr
cfh (ft³/hr)	472	mL/min
cfh (ft ³ /hr)	0.125	GPM
GPH	63.1	mL/min
GPH	0.134	cfh
GPM	0.227	m ³ /hr
GPM	3.785	L/min
oz/min	29.57	mL/min

PERCENT EFFICIENCY = $\frac{\text{In} - \text{Out}}{\text{In}}$ X 100

TEMPERATURE: ${}^{0}F = ({}^{0}C \times 9/5) + 32 \qquad 9/5 = 1.8$ ${}^{0}C = ({}^{0}F - 32) \times 5/9 \qquad 5/9 = .555$

CONCENTRATION: Conc. (A) X Volume (A) = Conc. (B) X Volume (B)

FLOW RATE (Q): Q = A X V (Quantity = Area X Velocity)

FLOW RATE (gpm): Flow Rate (gpm) = $\frac{2.83 \text{ (Diameter, in)}^2 \text{ (Distance, in)}}{\text{Height, in}}$

% **SLOPE** = Rise (feet) \times 100 Run (feet)

ACTUAL LEAKAGE = Leak Rate (GPD)
Length (mi.) X Diameter (in)

VELOCITY = <u>Distance (ft)</u> Time (Sec)

N = Manning's Coefficient of Roughness

R = Hydraulic Radius (ft.) **S** = Slope of Sewer (ft/ft.)

HYDRAULIC RADIUS (ft) = Cross Sectional Area of Flow (ft)

Wetted pipe Perimeter (ft)

WATER HORSEPOWER = Flow (gpm) X Head (ft) 3960

BRAKE HORSEPOWER = Flow (gpm) X Head (ft)

3960 X Pump Efficiency

MOTOR HORSEPOWER = Flow (gpm) X Head (ft)

3960 X Pump Eff. X Motor Eff.

MEAN OR AVERAGE = Sum of the Values

Number of Values

TOTAL HEAD (ft) = Suction Lift (ft) X Discharge Head (ft)

SURFACE LOADING RATE = Flow Rate (gpm) (gal/min/sq.ft) Surface Area (sq. ft)

MIXTURE = (Volume 1, gal) (Strength 1, %) + (Volume 2, gal) (Strength 2,%)

STRENGTH (%) (Volume 1, gal) + (Volume 2, gal)

INJURY FREQUENCY RATE = (Number of Injuries) 1,000,000

Number of hours worked per year

DETENTION TIME (hrs) = Volume of Basin (gals) X 24 hrs
Flow (GPD)

SLOPE = $\frac{\text{Rise (ft)}}{\text{Run (ft)}}$

SLOPE (%) = $\frac{\text{Rise (ft)}}{\text{Run (ft)}}$

POPULATION EQUIVALENT (PE):

1 PE = .17 Pounds of BOD per Day 1 PE = .20 Pounds of Solids per Day

1 PE = 100 Gallons per Day

LEAKAGE (GPD/inch) = Leakage of Water per Day (GPD)

Sewer Diameter (inch)

CHLORINE DEMAND (mg/L) = Chlorine Dose (mg/L) – Chlorine Residual (mg/L)

 τQ = Allowable time for decrease in pressure from 3.5 PSU to 2.5 PSI

 $\tau q = As below$

 $\tau Q = (0.022) (d_1^2 L_1)/Q$ $\tau q = [0.085] [(d_1^2 L_1)/(d_1 L_1)]$

Q = 2.0 cfm air loss

 θ = .0030 cfm air loss per square foot of internal pipe surface

 δ = Pipe diameter (inches)

L = Pipe Length (feet)

 $V = 1.486 R^{2/3} S^{1/2}$

ν

V = Velocity (ft./sec.)

v = Pipe Roughness

R = Hydraulic Radius (ft)

S= Slope (ft/ft)

HYDRAULIC RADIUS (ft) = Flow Area (ft. 2)
Wetted Perimeter (ft.)

WIDTH OF TRENCH (ft) = Base (ft) + (2 Sides) X <u>Depth (ft 2)</u> Slope

If you are poor at math, don't be embarrassed come to a TLC review class.

We welcome you to complete the assignment in Microsoft Word. You can find the assignment at www.abctlc.com. Once complete, just simply fax or e-mail the answer key along with the registration page to us and allow two weeks for grading. Once we grade it, we will mail a certificate of completion to you. Call us if you need any help. If you need your certificate back within 48 hours, you may be asked to pay a rush service fee of \$50.00.

You can download the assignment in Microsoft Word from TLC's website under the Assignment Page. www.abctlc.com You will have 90 days to successfully complete this assignment with a score of 70% or better. If you need any assistance, please contact TLC's Student Services.