WATER TREAMENT PRIMER 3

CONTINUING EDUCATION
PROFESSIONAL DEVELOPMENT COURSE

Printing and Saving Instructions

The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat reader.

Abode Acrobat reader is a free computer software program and you can find it at Abode Acrobat's website.

You can complete the course by viewing the course materials on your computer or you can print it out. We give you permission to print this document.

Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided.

This course booklet does not have the assignment. Please visit our website and download the assignment also.

Internet Link to Assignment...

http://www.abctlc.com/PDF/WTPrimer3ASS.pdf

State Approval Listing Link, check to see if your State accepts or has pre-approved this course. Not all States are listed. Not all courses are listed. If the course is not accepted for CEU credit, we will give you the course free if you ask your State to accept it for credit.

Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies acceptance or approvals.

State Approval Listing URL...

http://www.tlch2o.com/PDF/CEU%20State%20Approvals.pdf

You can obtain a printed version from TLC for an additional \$49.95 plus shipping charges.

Chlorine Container Safety Information

- 1. Never expose a container to excessive heat.
- 2. Never tamper with a fusible plug.
- 3. Do not move filled ton containers with equipment rated under two-ton capacity.
- 4. Do not connect liquid valves of two or more contain- ers to a common manifold.
- 5. Store containers in separately marked areas protected from heat sources.
- 6. Do not use or store containers near air intakes or basements where fumes could spread to other areas.

We have taught this course to over 5,000 students in a conventional classroom setting. Call and schedule a class at your facility or utilize the distance learning course to obtain your CEUs.

Contributing Editors

Joseph Camerata has a BS in Management with honors (magna cum laude). He retired as a Chemist in 2006 having worked in the field of chemical, environmental, and industrial hygiene sampling and analysis for 40 years. He has been a professional presenter at an EPA analytical conference at the Biosphere in Arizona and a presenter at an AWWA conference in Mesa, Arizona. He also taught safety classes at the Honeywell and City of Phoenix, and is a motivational/inspirational speaker nationally and internationally.

Dr. Eric Pearce S.M.E., chemistry and biological review.

Dr. Pete Greer, S.M.E., retired biology instructor.

Jack White, Environmental, Health, Safety expert, City of Phoenix. Art Credits.

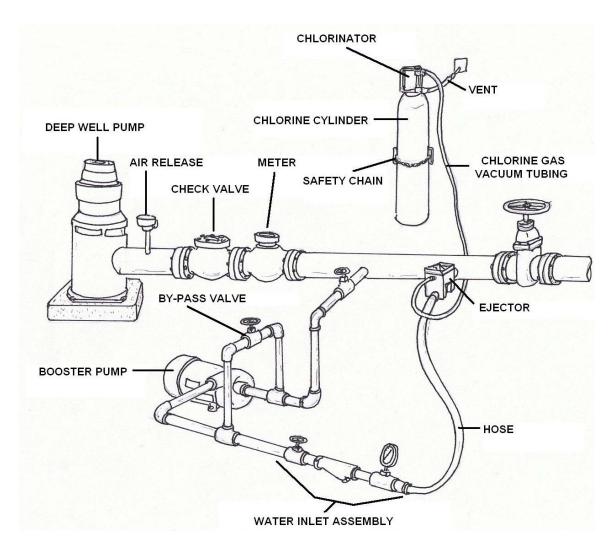
Important Information about this Manual

Disclaimer

This CEU training manual has been prepared to assist employees in the general awareness of the water distribution system and groundwater production system, complex pumping ideas, dangerous excavation techniques, water regulatory sampling and dealing with often-complex procedures and requirements for safely handling hazardous and toxic materials. The scope of the material is quite large, requiring a major effort to bring it under control. Employee health and safety, as well as that of the public, depend upon careful application of federal and state regulations and safe working procedures.

This manual will cover general laws, regulations, required procedures and work rules relating to water distribution and sampling. It should be noted, however, that the federal and state regulations are an ongoing process and subject to change over time. For this reason, a list of resources and hyperlinks is provided to assist in obtaining the most up-to-date information on various subjects. You can find these on our website or in this manual. This manual is a guidance document for employees who are involved with water distribution, water quality and pollution control. It is not designed to meet the full requirements of the United States Environmental Protection Agency (EPA) or the Department of Labor-Occupational Safety and Health Administration (OSHA) rules and regulations.

This course manual will provide general guidance and should not be used as a preliminary basis for developing general water/wastewater sampling plans or water distribution safety plans or procedures. This document is not a detailed water/wastewater textbook or a comprehensive source book on water/wastewater/safety rules and regulations. Technical Learning College makes no warranty, guarantee or representation as to the absolute correctness or appropriateness of the information in this manual and assumes no responsibility in connection with the implementation of this information.


It cannot be assumed that this manual contains all measures and concepts required for specific conditions or circumstances. This document should be used for guidance and is not considered a legal document. Individuals who are responsible for water distribution, production and/or sampling and the health and safety of workers at hazardous waste sites should obtain and comply with the most recent federal, state, and local regulations relevant to these sites and are urged to consult with OSHA, the EPA and other appropriate federal, state, and local agencies.

Copyright Notice

©2002 Technical Learning College (TLC). No part of this work may be reproduced or distributed in any form or by any means without TLC's prior written approval. Permission has been sought for all images and text where we believe copyright exists and where the copyright holder is traceable and contact-able. All material that is not credited or acknowledged is the copyright of Technical Learning College. This information is intended for educational purposes only. Most unaccredited photographs have been taken by TLC instructors or TLC students. We will be pleased to hear from any copyright holder and will make proper attribution for your work if any unintentional copyright infringements were made as soon as these issues are brought to the editor's attention.

Every possible effort is made to ensure that all information provided in this course is accurate. All written, graphic, photographic, or other material is provided for information only. Therefore, Technical Learning College (TLC) accepts no responsibility or liability whatsoever for the application or misuse of any information included herein. Requests for permission to make copies should be made to the following address:

TLC, P.O. Box 420, Payson, AZ 85547-0420 Information in this document is subject to change without notice. TLC is not liable for errors or omissions appearing in this document.

- 1. Turn valve stem clockwise to close cylinder valve.
- 2. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should indicate no gas.
- 3. Wait approximately one minute; float should re main at zero. If float flutters or does not drop to zero, valve may not be closed tightly. Make certain valve is closed before proceeding.
- 4. Turn off ejector and make certain the gas supply indicator stays in the "No Gas" position by turning the "Reset" knob. If the indicator resets, either gas pres sure is still present or there is an air leak in the system. Refer to the instruction manual if an air leak is evident.
- 5. Loosen gas feeder yoke screw. Remove gas feeder from valve.
- 6. Replace gas cylinder
- 7. Remove old lead gasket. Inspect and clean mating surfaces of gas feeder and valve. Install new unused lead gasket.

Technical Learning College's Scope and Function

Technical Learning College (TLC) offers affordable continuing education for today's working professionals who need to maintain licenses or certifications. TLC holds approximately eighty different governmental approvals for granting of continuing education credit.

TLC's delivery method of continuing education can include traditional types of classroom lectures and distance-based courses or independent study. Most TLC's distance based or independent study courses are offered in a print based format and you are welcome to examine this material on your computer with no obligation. Our courses are designed to be flexible and for you do finish the material on your leisure. Students can also receive course materials through the mail. The CEU course or e-manual will contain all your lessons, activities and assignments. Most CEU courses allow students to submit lessons using e-mail or fax; however some courses require students to submit lessons by postal mail. (See the course description for more information.) Students have direct contact with their instructor—primarily by e-mail. TLC's CEU courses may use such technologies as the World Wide Web, e-mail, CD-ROMs, videotapes and hard copies. (See the course description.) Make sure you have access to the necessary equipment before enrolling, i.e., printer, Microsoft Word and/or Adobe Acrobat Reader. Some courses may require proctored exams depending upon your state requirements.

Flexible Learning

At TLC, there are no scheduled online sessions you need contend with, nor are you required to participate in learning teams or groups designed for the "typical" younger campus based student. You will work at your own pace, completing assignments in time frames that work best for you. TLC's method of flexible individualized instruction is designed to provide each student the guidance and support needed for successful course completion.

We will beat any other training competitor's price for the same CEU material or classroom training. Student satisfaction is guaranteed.

Course Structure

TLC's online courses combine the best of online delivery and traditional university textbooks. Online you will find the course syllabus, course content, assignments, and online open book exams. This student friendly course design allows you the most flexibility in choosing when and where you will study.

Classroom of One

TLC Online offers you the best of both worlds. You learn on your own terms, on your own time, but you are never on your own. Once enrolled, you will be assigned a personal Student Service Representative who works with you on an individualized basis throughout your program of study. Course specific faculty members are assigned at the beginning of each course providing the academic support you need to successfully complete each course.

Satisfaction Guaranteed

Our Iron-Clad, Risk-Free Guarantee ensures you will be another satisfied TLC student.

We have many years of experience, dealing with thousands of students. We assure you, our customer satisfaction is second to none. This is one reason we have taught more than 20,000 students.

Our administrative staff is trained to provide the best customer service in town. Part of that training is knowing how to solve most problems on the spot with an exchange or refund.

TLC Continuing Education Course Material Development

Technical Learning College's (TLC's) continuing education course material development was based upon several factors; extensive academic research, advice from subject matter experts, data analysis, task analysis and training needs assessment process information gathered from other states.

Rush Grading Service

If you need this assignment graded and the results mailed to you within a 48-hour period, prepare to pay an additional rush service handling fee of \$50.00. This fee may not cover postage costs. If you need this service, simply write RUSH on the top of your Registration Form. We will place you in the front of the grading and processing line.

For security purposes, please fax or e-mail a copy of your driver's license and always call us to confirm we've received your assignment and to confirm your identity.

Thank you...

Please fax or e-mail the answer key to TLC Western Campus Fax (928) 272-0747 Back-up Fax (928) 468-0675.

CEU Course Description

WATER TREATMENT PRIMER 3 CEU TRAINING COURSE

An 8 hour continuing education review of various water treatment disinfection components, chlorination systems and disinfection byproduct information. This course will cover disinfection, disinfection byproducts, chlorination, sampling and commonly found waterborne diseases and bacteriological sampling. You will not need any other materials for this course.

Water Distribution, Well Drillers, Pump Installers, Water Treatment Operators.

The target audience for this course is the person interested in working in a water treatment or distribution facility and/or wishing to maintain CEUs for certification license or to learn how to do the job safely and effectively, and/or to meet education needs for promotion.

Final Examination for Credit

Opportunity to pass the final comprehensive examination is limited to three attempts per course enrollment.

Course Procedures for Registration and Support

All of Technical Learning College's correspondence courses have complete registration and support services offered. Delivery of services will include, e-mail, web site, telephone, fax and mail support. TLC will attempt immediate and prompt service.

When a student registers for a distance or correspondence course, he/she is assigned a start date and an end date. It is the student's responsibility to note dates for assignments and keep up with the course work. If a student falls behind, he/she must contact TLC and request an end date extension in order to complete the course. It is the prerogative of TLC to decide whether to grant the request. All students will be tracked by a unique number assigned to the student.

Instructions for Written Assignments

The Water Treatment Primer 3 training CEU course uses a multiple choice answer key. If you should need any assistance, please email all concerns and the final test to: info@tlch2o.com.

You may write your answers or type out your own answer key. TLC would prefer that you utilize the answer key found on the TLC website under Assignments and e-mail the answer key to TLC, but it is not required. You may also fax the answer key. Please call us a couple hours later to ensure we received your information.

Feedback Mechanism (examination procedures)

Each student will receive a feedback form as part of their study packet. You will be able to find this form in the rear of the course or lesson.

Security and Integrity

All students are required to do their own work. All lesson sheets and final exams are not returned to the student to discourage sharing of answers. Any fraud or deceit and the student will forfeit all fees and the appropriate agency will be notified.

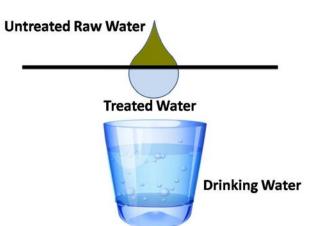
Grading Criteria

TLC will offer the student either pass/fail or a standard letter grading assignment. If TLC is not notified, you will only receive a pass/fail notice.

Required Texts

The Water Treatment Primer 3 training CEU course will not require any other materials. This course comes complete. No other materials are needed.

Recordkeeping and Reporting Practices


TLC will keep all student records for a minimum of seven years. It is the student's responsibility to give the completion certificate to the appropriate agencies.

ADA Compliance

TLC will make reasonable accommodations for persons with documented disabilities. Students should notify TLC and their instructors of any special needs. Course content may vary from this outline to meet the needs of this particular group.

You will have 90 days from receipt of this manual to complete it in order to receive your Continuing

Education Units (**CEUs**) or Professional Development Hours (**PDHs**). A score of 70% or better is necessary to pass this course.

Educational Mission

The educational mission of TLC is:

To provide TLC students with comprehensive and ongoing training in the theory and skills needed for the environmental education field.

To provide TLC students with opportunities to apply and understand the theory and skills needed for operator certification,

To provide opportunities for TLC students to learn and practice environmental educational skills with members of the community for the purpose of sharing diverse perspectives and experience,

To provide a forum in which students can exchange experiences and ideas related to environmental education.

To provide a forum for the collection and dissemination of current information related to environmental education, and to maintain an environment that nurtures academic and personal growth.

TABLE OF CONTENTS

Water Disinfection	. 13
Understanding Disinfection	15
Chlorine Dioxide	
Hypochlorites	19
Haloacetic Acids	20
Sodium Chlorite	21
Giardia Lamblia	26
Chlorine Section	27
DPD Residual Method	32
Chemistry of Chlorination	33
Chlorinator Parts	41
Troubleshooting Hypochlorination	45
Disinfection Policy	
Alternant Disinfectants	48
Amperometric Titration	49
Chlorine Dioxide	51
Corrosion Control	53
Alkalinity / pH Adjustment	55
Disinfection Summary	57
CT and Log Inactivation	65
Emergency Disinfection	57
Combined Chlorine Residual	75
Amperometric Titration	79
More on Ozone	83
Chlorine Test Methods	85
Oxidizing Agents	93
Disinfection Byproducts	95
Microorganism Section	. 97
Protozoa	
Amoeba	
Giardia lamblia	
Cryptosporidium	111
Bacteria Section	. 121
Shigella dysenteriae	123
Salmonella	127
Escherichia Coli	129
Legionnaire's Disease	137
Virus	. 141
Protozoan Pathogens	147
Understanding Coliforms	151
Understanding Waterborne Diseases	. 161
Laboratory Analysis	165
Glossary	167

Instructions for Changing Ton Containers

- 1. Turn valve stem clockwise to close ton contain valve.
- 2. Allow float in flow meter to drop to zero. Indicator on front of gas feeder should show red indicating *no* gas. All liquid must be vaporized from the trap.
- 3. Wait approximately one minute. Float should remain at zero. If float flutters or does not drop to zero, valve may not be closed tightly. Make certain valve is closed before proceeding.
- 4. Turn off ejector and make certain the gas supply indicator stays in the "No Gas" position by turning the "Reset" knob. If the indicator resets, either gas pressure is still present or there is an air leak in the system. Refer to the instruction manual if an air leak is evident.
- 5. Loosen gas feeder yoke screw. Remove gas feeder from valve.
- 6. Replace ton container, make sure the full container is oriented with the valves in the vertical position, one valve above the other.
- 7. Remove old lead gasket. Inspect and clean mating surfaces of gas feeder and valve. Install new unused lead gasket.
- 8. Position gas feeder on new gas cylinder and tighten yoke screw. Do not tighten excessively.
- 9. Be sure heater is plugged in and operating. An operating heater provides the heat of vaporization to any trapped liquid.
- 10. Crack open gas cylinder valve and re-close quickly. Check for leaks. If leaks exist turn on ejector and repeat steps (2), (3), and (4) and correct leaks.
- 11. Open ton container valve slowly approximately 1/4 turn only and leave cylinder wrench on valve.
- 12. Turn on ejector.

Water Disinfection

In storage and distribution, drinking water must be kept safe from microbial contamination. Frequently, slippery films of bacteria, known as biofilms, develop on the inside walls of pipes and storage containers. Among disinfection techniques, chlorination is unique in that a pre-determined chlorine concentration may be designed to remain in treated water as a measure of protection against harmful microbes encountered after leaving the treatment facility. In the event of a significant intrusion of pathogens resulting, for example, from a broken water main, the level of the average "chlorine residual" will be insufficient to disinfect contaminated water. In such cases, it is the monitoring of the sudden drop in the chlorine residual that provides the critical indication to water system operators that there is a source of contamination in the system.

The Challenge of Disinfection Byproducts

While protecting against microbial contamination is the top priority, water systems must also control disinfection byproducts (DBPs), chemical compounds formed unintentionally when chlorine and other disinfectants react with natural organic matter in water. In the early 1970s, EPA scientists first determined that drinking water chlorination could form a group of byproducts known as trihalomethanes (THMs), including chloroform, EPA set the first regulatory limits for THMs in 1979. While the available evidence does not prove that DBPs in drinking water cause adverse health effects in humans,

high levels of these chemicals are certainly undesirable. Cost-effective methods to reduce DBP formation are available and should be adopted where possible.

Chemical Safety (IPCS 2000) Strongly Cautions:

The health risks from these byproducts at the levels at which they occur in drinking water are extremely small in comparison with the risks associated with inadequate disinfection. Thus, it is important that disinfection not be compromised in attempting to control such byproducts. Recent EPA regulations have further limited THMs and other DBPs in drinking water. Most water systems are meeting these new standards by controlling the amount of natural organic material prior to disinfection.

Chlorine and Water System Security

The prospect of a terrorist attack has forced all water systems, large and small, to re-evaluate and upgrade existing security measures. Since September 11th, 2001, water system managers have taken unprecedented steps to protect against possible attacks such as chemical or biological contamination of the water supply, disruption of water treatment or distribution, and intentional release of treatment chemicals.

With passage of the Public Health Security and Bioterrorism Response Act of 2002, Congress required community water systems to assess their vulnerability to a terrorist attack and other intentional acts. As part of these vulnerability assessments, systems assess the transportation, storage and use of treatment chemicals. These chemicals are both critical assets (necessary for delivering safe water) and potential vulnerabilities (may pose significant hazards, if released). Water systems using elemental chlorine, in particular, must determine whether existing protection systems are adequate. If not, they must consider additional measures to reduce the likelihood of an attack or to mitigate the potential consequences.

Disinfection is crucial to water system security, providing the "front line" of defense against biological contamination. However, conventional treatment barriers in no way guarantee safety from biological attacks. Additional research and funding are needed to improve prevention, detection and responses to potential threats.

The Future of Chlorine Disinfection

Despite a range of new challenges, drinking water chlorination will remain a cornerstone of waterborne disease prevention. Chlorine's wide array of benefits cannot be provided by any other single disinfectant. While alternative disinfectants (including chlorine dioxide, ozone, and ultraviolet radiation) are available, all disinfection methods have unique benefits, limitations, and costs. Water system managers must consider these factors, and design a disinfection approach to match each system's characteristics and source water quality.

The Benefits of Chlorine Potent Germicide

Chlorine disinfectants can reduce the level of many disease-causing microorganisms in drinking water to almost immeasurable levels. Chlorine is added to drinking water to destroy pathogenic (disease-causing) organisms. It can be applied in several forms: elemental chlorine (chlorine gas), sodium hypochlorite solution (bleach) and dry calcium hypochlorite.

When applied to water, each of these forms "free chlorine". One pound of elemental chlorine provides approximately as much free available chlorine as one gallon of sodium hypochlorite (12.5% solution) or approximately 1.5 pounds of calcium hypochlorite (65% strength). While any of these forms of chlorine can effectively disinfect drinking water, each has distinct advantages and limitations for particular applications. Almost all water systems that disinfect their water use some type of chlorine-based process, either alone or in combination with other disinfectants.

Taste and Odor Control

Chlorine disinfectants reduce many disagreeable tastes and odors. Chlorine oxidizes many naturally occurring substances such as foul-smelling algae secretions, sulfides and odors from decaying vegetation.

Biological Growth Control

Chlorine disinfectants eliminate slime bacteria, molds and algae that commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks.

Chemical Control

Chlorine disinfectants destroy hydrogen sulfide (which has a rotten egg odor) and remove ammonia and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. They also help to remove iron and manganese from raw water.

Water Treatment

Every day, approximately 170,000 (U.S. EPA, 2002) public water systems treat and convey billions of gallons of water through approximately 880,000 miles (Kirmeyer, 1994) of distribution system piping to U.S. homes, farms and businesses. Broadly speaking, water is treated to render it suitable for human use and consumption. While the primary goal is to produce a biologically (disinfected) and chemically safe product, other objectives also must be met, including: no objectionable taste or odor; low levels of color and turbidity (cloudiness); and chemical stability (non-corrosive and non-scaling). Individual facilities customize treatment to address the particular natural and manmade contamination characteristic of their raw water.

Surface water usually presents a greater treatment challenge than groundwater, which is naturally filtered as it percolates through sediments. Surface water is laden with organic and mineral particulate matter, and may harbor protozoan parasites such as Cryptosporidium parvum and Giardia lamblia.

Understanding Disinfection

Water Disinfection

Disinfection is usually the final stage in the water treatment process in order to limit the effects of organic material, suspended solids and other contaminants. Like the disinfection of wastewater, the primary methods used for the disinfection of water in very small (25-500 people) and small (501-3,300 people) treatment systems are ozone, ultraviolet irradiation (UV) and chlorine. There are numerous alternative disinfection processes that have been less widely used in small and very small water treatment systems, including chlorine dioxide, potassium permanganate, chloramines and peroxone (ozone/hydrogen peroxide).

Surface waters have been the focal point of water disinfection regulations since their inception, as groundwaters (like wells) have been historically considered to be free of microbiological contamination. Current data indicates this to not be true. Amendments to the Safe Drinking Water Act in 1996 mandate the development of regulations to require disinfection of groundwater "as necessary." While these regulations will apply to very small systems serving twenty-five people at least 60 days out of the year, the rules will not apply to private wells. However, the EPA recommends that wells be tested at least once per year and disinfected as necessary. While these proposed regulations have not yet been finalized, they will likely include; testing by each state, identification of contaminated water supplies, corrective action requiring disinfection and compliance monitoring.

Residual Disinfection

The EPA requires a residual level of disinfection of water in pipelines to prevent microbial re-growth and help protect treated water throughout the distribution system. EPA's maximum residual disinfection levels (MRDLs) are 4 mg/l for chlorine, 4 mg/l for chloramines and 0.8 mg/l for chlorine dioxide. Although chlorine levels are usually significantly lower in tap water, EPA believes that levels as high as the MRDLs pose no risk of adverse health effects, allowing for an adequate margin of safety (U.S. EPA, 1998a).

Chlorate Ion

The chlorate anion has the formula CIO-3. In this case, the chlorine atom is in the +5 oxidation state. "Chlorate" can also refer to chemical compounds containing this anion; chlorates are the salts of chloric acid. "Chlorate", when followed by a roman numeral in parentheses, e.g. chlorate (VII), refers to a particular oxyanion of chlorine. As predicted by VSEPR, chlorate anions have trigonal pyramidal structures.

Chlorates are powerful oxidizers and should be kept away from organics or easily oxidized materials. Mixtures of chlorate salts with virtually any combustible material (sugar, sawdust, charcoal, organic solvents, metals, etc.) will readily deflagrate. Chlorates were once widely used in pyrotechnics for this reason, though their use has fallen due to their instability. Most pyrotechnic applications which formerly used chlorates in the past now use the more stable perchlorates instead

Examples of chlorates include

- √ potassium chlorate, KClO₃
- ✓ sodium chlorate, NaClO₃
- ✓ magnesium chlorate, Mg(ClO₃)2

Chloride Ion

The chloride ion is formed when the element chlorine, a halogen, gains an electron to form an anion (negatively-charged ion) CI-. The salts of hydrochloric acid contain chloride ions and can also be called chlorides. The chloride ion, and its salts such as sodium chloride, are very soluble in water. It is an essential electrolyte located in all body fluids responsible for maintaining acid/base balance, transmitting nerve impulses and regulating fluid in and out of cells.

The word chloride can also form part of the name of chemical compounds in which one or more chlorine atoms are covalently bonded. For example, methyl chloride, more commonly called chloromethane, (CH₃CI) is an organic covalently bonded compound, which does not contain a chloride ion.

Chloride is used to form salts that can preserve food such as sodium chloride. Other salts such as calcium chloride, magnesium chloride, potassium chloride have varied uses ranging from medical treatments to cement formation.

An example is table salt, which is sodium chloride with the chemical formula NaCl. In water, it dissociates into Na+ and Cl- ions.

Examples of inorganic covalently bonded chlorides that are used as reactants are:

- ✓ Phosphorus trichloride, phosphorus pentachloride, and thionyl chloride, all three of which reactive chlorinating reagents that have been used in a laboratory.
- ✓ Disulfur dichloride (S₂Cl₂), used for vulcanization of rubber.

A chloride ion is also the prosthetic group present in the amylase enzyme. Another example is calcium chloride with the chemical formula CaCl₂. Calcium chloride is a salt that is marketed in pellet form for removing dampness from rooms. Calcium chloride is also used for maintaining unpaved roads and for sanite fortifying roadbases for new construction. In addition, Calcium chloride is widely used as a deicer since it is effective in lowering the melting point when applied to ice.

In the petroleum industry, the chlorides are a closely monitored constituent of the mud system. An increase of the chlorides in the mud system may be an indication of drilling into a high-pressure saltwater formation. Its increase can also indicate the poor quality of a target sand. Chloride is also a useful and reliable chemical indicator of river / groundwater fecal contamination, as chloride is a non-reactive solute and ubiquitous to sewage & potable water. Many water regulating companies around the world utilize chloride to check the contamination levels of the rivers and potable water sources.

Chlorite Ion

The chlorite ion is ClO_{2^-} . A chlorite (compound) is a compound that contains this group, with chlorine in oxidation state +3. Chlorites are also known as salts of chlorous acid. Chlorine can assume oxidation states of -1, +1, +3, +5, or +7 within the corresponding anions Cl-, ClO-, ClO-, ClO-, ClO-, or ClO-, known commonly and respectively as chloride, hypochlorite, chlorite, chlorate, and perchlorate. An additional oxidation state of +4 is seen in the neutral compound chlorine dioxide ClO-, which has a similar structure to chlorite ClO- (oxidation state +3) and the cation chloryl (ClO-+) (oxidation state +5).

Chlorine Dioxide

Chlorine dioxide is a chemical compound with the formula ClO₂. This yellowish-green gas crystallizes as bright orange crystals at -59 °C. As one of several oxides of chlorine, it is a potent and useful oxidizing agent used in water treatment and in bleaching. The molecule ClO2 has an odd number of valence electrons and it is therefore a paramagnetic radical. Its electronic structure has long baffled chemists because none of the possible Lewis structures are very satisfactory. In 1933 L.O. Brockway proposed a structure that involved a three-electron bond.

Chemist Linus Pauling further developed this idea and arrived at two resonance structures involving a double bond on one side and a single bond plus three-electron bond on the other. In Pauling's view the latter combination should represent a bond that is slightly weaker than the double bond. In molecular orbital theory this idea is commonplace if the third electron is placed in an anti-bonding orbital. Later work has confirmed that the HOMO is indeed an incompletely-filled orbital.

Chlorine dioxide is a highly endothermic compound that can decompose extremely violently when separated from diluting substances. As a result, preparation methods that involve producing solutions of it without going through a gas phase stage are often preferred. Arranging handling in a safe manner is essential.

In the laboratory, ClO₂ is prepared by oxidation of sodium chlorite:

Over 95% of the chlorine dioxide produced in the world today is made from sodium chlorate and is used for pulp bleaching. It is produced with high efficiency by reducing sodium chlorate in a strong acid solution with a suitable reducing agent such as methanol, hydrogen peroxide, hydrochloric acid or sulfur dioxide. Modern technologies are based on methanol or hydrogen peroxide, as these chemistries allows the best economy and do not co-produce elemental chlorine. The overall reaction can be written;

```
Chlorate + Acid + reducing agent - Chlorine Dioxide + By-products
```

The reaction of sodium chlorate with hydrochloric acid in a single reactor is believed to proceed via the following pathway:

```
HCIO_3 + HCI - HCIO_2 + HOCI

HCIO_3 + HCIO_2 - 2 CIO_2 + CI_2 + 2 H_2O

HOCI + HCI - CI_2 + H_2O
```

The commercially more important production route uses methanol as the reducing agent and sulfuric acid for the acidity. Two advantages by not using the chloride-based processes are that there is no formation of elemental chlorine, and that sodium sulfate, a valuable chemical for the pulp mill, is a side-product. These methanol-based processes provide high efficiency and can be made very safe.

A much smaller, but important, market for chlorine dioxide is for use as a disinfectant. Since 1999 a growing proportion of the chlorine dioxide made globally for water treatment and other small-scale applications has been made using the chlorate, hydrogen peroxide and sulfuric acid method, which can produce a chlorine-free product at high efficiency.

Traditionally, chlorine dioxide for disinfection applications has been made by one of three methods using sodium chlorite or the sodium chlorite - hypochlorite method:

or the sodium chlorite - hydrochloric acid method:

All three sodium chlorite chemistries can produce chlorine dioxide with high chlorite conversion yield, but unlike the other processes the chlorite-HCl method produces completely chlorine-free chlorine dioxide but suffers from the requirement of 25% more chlorite to produce an equivalent amount of chlorine dioxide. Alternatively, hydrogen peroxide may efficiently be used also in small scale applications.

Very pure chlorine dioxide can also be produced by electrolysis of a chlorite solution:

High purity chlorine dioxide gas (7.7% in air or nitrogen) can be produced by the Gas: Solid method, which reacts dilute chlorine gas with solid sodium chlorite.

These processes and several slight variations have been reviewed.

Haloacetic Acids

Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH₂CICO₂H. In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms (CHCl₂CO₂H). The inductive effect caused by the electronegative halogens often result in the higher acidity of these compounds by stabilizing the negative charge of the conjugate base.

Contaminants in Drinking Water

Haloacetic acids (HAAs) are a common undesirable by-product of drinking water chlorination. Exposure to such disinfection by-products in drinking water has been associated with a number of health outcomes by epidemiological studies, although the putative agent in such studies has not been identified.

In water, HAAs are stable, with the five most common being:

- ✓ monochloroacetic acid (MCA) CICH₂COOH;
- √ dichloroacetic acid (DCA) Cl₂CHCOOH;
- √ trichloroacetic acid (TCA) Cl₃CCOOH;
- ✓ monobromoacetic acid (MBA) BrCH₂COOH;
- ✓ dibromoacetic acid (DBA) Br₂CHCOOH.

Collectively, these are referred to as the HAA5. HAAs can be formed by chlorination, ozonation or chloramination of water with formation promoted by slightly acidic water, high organic matter content and elevated temperature. Chlorine from the water disinfection process can react with organic matter and small amounts of bromide present in water to produce various HAAs. A study published in August 2006 found that total levels of HAAs in drinking water were not affected by storage or boiling, but that filtration was effective in decreasing levels.

Hypochlorites

Hypochlorites are calcium or sodium salts of hypochlorous acid and are supplied either dry or in liquid form (as, for instance, in commercial bleach). The same residuals are obtained as with gas chlorine, but the effect on the pH of the treated water is different. Hypochlorite compounds contain an excess of alkali and tend to raise the pH of the water. Calcium hypochlorite tablets are the predominant form in use in the United States for swimming pools. Sodium hypochlorite is the only liquid hypochlorite disinfectant in current use. There are several grades and proprietary forms available. Pound-for-pound of available chlorine, hypochlorite compounds have oxidizing powers equal to gas chlorine and can be employed for the same purposes in water treatment. Gas chlorination requires a larger initial investment for feed equipment than what is needed for hypochlorite compounds.

Calcium hypochlorite materials used in the water industry are chemically different from those materials variously marketed for many years as bleaching powder, chloride of lime, or chlorinated lime. Materials now in common use are high-test calcium hypochlorites containing about 70 percent available chlorine and marketed under several trade names.

High-test calcium hypochlorites are white corrosive solids that give off a strong chlorine odor. Granular powdered or tablet forms are commercially available and all are readily soluble in water.

Sodium hypochlorite is sold only as a liquid and is normally referred to as liquid bleach. It is generally available in concentrations of 5 to 15 percent available chlorine. These solutions are clear, light yellow, strongly alkaline, and corrosive in addition to having a strong chlorine smell.

High-test hypochlorites, though highly active, are relatively stable throughout production, packaging, distribution, and storage. Storage at 86° F. for a year may reduce the available chlorine by about 10 percent. Storing at lower temperatures reduces the loss. All sodium-hypochlorite solutions are unstable to some degree and deteriorate more rapidly than the dry compounds. Most producers recommend a shelf life of 60 to 90 days. Because light and heat accelerate decomposition, containers should be stored in a dry, cool, and dark area.

Disinfection Byproducts

Disinfection byproducts are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection byproducts for which regulations have been established have been identified in drinking water, including trihalomethanes, haloacetic acids, bromate, and chlorite.

Trihalomethanes (THM)

Trihalomethanes (THM) are a group of four chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The trihalomethanes are chloroform, bromodichloromethane, dibromochloromethane, and bromoform. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate total trihalomethanes (TTHM) at a maximum allowable annual average level of 80 parts per billion. This standard will replace the current standard of a maximum allowable annual average level of 100 parts per billion in December 2001 for large surface water public water systems. The standard became effective for the first time in December 2003 for small surface water and all ground water systems.

Haloacetic Acids (HAA5)

Haloacetic Acids (HAA5) are a group of chemicals that are formed along with other disinfection byproducts when chlorine or other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic matter in water. The regulated haloacetic acids, known as HAA5, are: monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate HAA5 at 60 parts per billion annual average. This standard became effective for large surface water public water systems in December 2001 and for small surface water and all ground water public water systems in December 2003.

Bromate is a chemical that is formed when ozone used to disinfect drinking water reacts with naturally occurring bromide found in source water. EPA has established the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate bromate at annual average of 10 parts per billion in drinking water. This standard became effective for large public water systems by December 2001 and for small surface water and all ground public water systems in December 2003.

Chlorite

Chlorite is a byproduct formed when chlorine dioxide is used to disinfect water. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate chlorite at a monthly average level of 1 part per million in drinking water. This standard became effective for large surface water public water systems in December 2001 and for small surface water and all ground water public water systems in December 2003.

Chloroform

Chloroform, typically the most prevalent THM measured in chlorinated water, is probably the most thoroughly studied disinfection byproduct. Toxicological studies have shown that high levels of chloroform can cause cancer in laboratory animals. Extensive research conducted since the early 1990s provides a clearer picture of what this means for humans exposed to far lower levels through drinking water.

One study (Larson et al. 1994a) conducted by the Centers for Health Research (CIIT) observed that a very large dose of chloroform, when given to mice once per day into the stomach (a procedure known as gavage), produced liver damage and eventually cancer. In a second CIIT cancer study (Larson et al., 1994b), mice were given the same daily dose of chloroform through the animals' drinking water. This time, no cancer was produced. Follow-up research showed that the daily gavage doses overwhelmed the capability of the liver to detoxify the chloroform, causing liver damage, cell death and regenerative cell growth, thereby increasing risks for cell mutation and cancer in exposed organs. When chloroform was given through drinking water, however, the liver could continually detoxify the chloroform as the mice sipped the water throughout the day. Without the initial liver toxicity, there was no cancer in the liver, kidney or other exposed organs (Butterworth et al., 1998).

In its most recent risk assessment, EPA considered the wealth of available information on chloroform, including the important work done at CIIT. EPA concludes that exposure to chloroform below the threshold level that causes cell damage is unlikely to increase the risk of cancer. While chloroform is likely to be carcinogenic at a high enough dose, exposures below a certain dose range are unlikely to pose any cancer risk to humans (US EPA, 2002a). For drinking water meeting EPA standards, chloroform is unlikely to be a health concern.

Sodium Chlorate

Sodium chlorate is a chemical compound with the chemical formula (NaClO₃). When pure, it is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 250 °C to release oxygen and leave sodium chloride. Industrially, sodium chlorate is synthesized from the electrolysis of a hot sodium chloride solution in a mixed electrode tank:

$$NaCl + 3H2O - NaClO3 + 3H2$$

It can also be synthesized by passing chlorine gas into a hot sodium hydroxide solution. It is then purified by crystallization.

Chemical Oxygen Generation

Chemical oxygen generators, such as those in commercial aircraft, provide emergency oxygen to passengers to protect them from drops in cabin pressure by catalytic decomposition of sodium chlorate. The catalyst is normally iron powder. Barium peroxide (BaO₂) is used to absorb the chlorine which is a minor product in the decomposition. Iron powder is mixed with sodium chlorate and ignited by a charge which is activated by pulling on the emergency mask. The reaction produces more oxygen than is required for combustion. Similarly, the Solidox welding system used pellets of sodium chlorate mixed with combustible fibers to generate oxygen.

Toxicity in Humans

Due to its oxidative nature, sodium chlorate can be very toxic if ingested. The oxidative effect on hemoglobin leads to methaemoglobin formation, which is followed by denaturation of the globin protein and a cross-linking of erythrocyte membrane proteins with resultant damage to the membrane enzymes.

This leads to increased permeability of the membrane, and severe hemolysis. The denaturation of hemoglobin overwhelms the capacity of the G6PD metabolic pathway. In addition, this enzyme is directly denatured by chlorate reducing its activity. Therapy with ascorbic acid and methylene blue are frequently used in the treatment of methemoglobinemia. However, since methylene blue requires the presence of NADPH that requires normal functioning of G6PD system, it is less effective than in other conditions characterized by hemoglobin oxidation.

Acute severe hemolysis results, with multi-organ failure, including DIC and renal failure. In addition there is a direct toxicity to the proximal renal tubule. The treatment will consist of exchange transfusion, peritoneal dialysis or hemodialysis.

Developmental and Reproductive Effects

Several epidemiology studies have reported a possible association between disinfection byproducts and adverse reproductive outcomes, including spontaneous abortion (miscarriage). One study of women in several California communities (Waller et al. 1998) found a stronger association with bromodichloromethane (BDCM) than with other byproducts. Because the available studies have significant limitations, EPA and the American Water Works Association Research Foundation are sponsoring a new epidemiology study to replicate the 1998 Waller study.

When the Waller study was published, the available toxicology data on reproductive and developmental effects of some DBPs was quite limited. It was recognized that BDCM, in particular, should be thoroughly studied for a potential causal relationship to reproductive and developmental toxicity. The Research Foundation for Health and Environmental Effects, a tax-exempt foundation established by the Chlorine Chemistry Division of the American Chemistry Council, sponsored a set of animal studies (Christian et al. 2001, 2002) including two developmental toxicity studies on BDCM, a reproductive toxicity study on BDCM, and a reproductive toxicity study on dibromoacetic acid (DBA).

The studies, published in the International Journal of Toxicology, found no adverse effects from BDCM and DBA at dose levels thousands of times higher than what humans are exposed to through drinking water. The studies were designed to comply with stringent EPA guidelines, and each study was independently monitored and peer reviewed.

Formulations

Sodium chlorate comes in dust, spray and granule formulations. There is a risk of fire and explosion in dry mixtures with other substances, especially organic materials, and other herbicides, sulfur, phosphorus, powdered metals, strong acids. In particular, when mixed with sugar, it has explosive properties. If accidentally mixed with one of these substances it should not be stored in human dwellings. Marketed formulations contain a fire retardant, but this has little effect if deliberately ignited. Most commercially available chlorate weedkillers contain approximately 53% sodium chlorate with the balance being a fire depressant such as sodium metaborate or ammonium phosphates.

Sodium Chlorite

Sodium chlorite, like many oxidizing agents, should be protected from inadvertent contamination by organic materials to avoid the formation of an explosive mixture. The chemical explodes on percussive impact, and will ignite if combined with a strong reducing agent.

Toxicity

Sodium chlorite is a strong oxidant and can therefore be expected to cause clinical symptoms similar to the well-known sodium chlorate: methemoglobinemia, hemolysis, renal failure.[14] A dose of 10-15 grams of sodium chlorate can be lethal. Methemoglobemia had been demonstrated in rats and cats, and recent studies by the EMEA have confirmed that the clinical symptomatology is very similar to the one caused by sodium chlorate in the rat, mouse, rabbit, and the green monkey. There is only one human case in the medical literature of chlorite poisoning. It seems to confirm that the toxicity is equal to sodium chlorate. From the analogy with sodium chlorate, even small amounts of about 1 gram can be expected to cause nausea, vomiting and even life-threatening hemolysis in Glucose-6-Phosphate Dehydrogenase deficient persons. The EPA has set a maximum contaminant level of 1 milligram of chlorite per liter (1 mg/L) in drinking water.

Manufacture

The free acid, chlorous acid, $HCIO_2$, is only stable at low concentrations. Since it cannot be concentrated, it is not a commercial product. However, the corresponding sodium salt, sodium chlorite, $NaCIO_2$ is stable and inexpensive enough to be commercially available. The corresponding salts of heavy metals (Ag+, Hg+, Tl+, Pb2+, and also Cu2+ and NH_4 +) decompose explosively with heat or shock. Sodium chlorite is derived indirectly from sodium chlorate, $NaCIO_3$. First, the explosive (only at concentrations greater than 10% in atmosphere) chlorine dioxide, CIO_2 is produced by reducing sodium chlorate in a strong acid solution with a suitable reducing agent (for example, sodium sulfite, sulfur dioxide, or hydrochloric acid). The chlorine dioxide is then absorbed into an alkaline solution and reduced with hydrogen peroxide (H_2O_2), yielding sodium chlorite.

Stachybotrys

Stachybotrys is a genus of molds, or asexually-reproducing, filamentous fungi. Closely related to the genus Memnoniella, most Stachybotrys species inhabit materials rich in cellulose. The genus has a widespread distribution, and contains about 50 species. The most infamous species, S. chartarum (also known as S. atra) and S. chlorohalonata are known as "black mold" or "toxic black mold" in the U.S. and are frequently associated with poor indoor air quality that arises after fungal growth on water-damaged building materials

Symptoms of Stachybotrys Exposure in Humans

Exposure to the mycotoxins present in Stachybotrys chartarum or Stachybotrys atra can have a wide range of effects. Depending on the length of exposure and volume of spores inhaled or ingested, symptoms can manifest as chronic fatigue or headaches, fever, irritation to the eyes, mucous membranes of the mouth, nose and throat, sneezing, rashes, and chronic coughing. In severe cases of exposure or cases exacerbated by allergic reaction, symptoms can be extreme including nausea, vomiting, and bleeding in the lungs and nose.

Understanding Commonly Used Water Disinfectants

Almost all U.S. systems that disinfect their water use some type of chlorine-based process, either alone or in combination with other disinfectants. In addition to controlling disease-causing organisms, chlorination offers a number of benefits including:

- Reduces many disagreeable tastes and odors:
- Eliminates slime bacteria, molds and algae that commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks;
- > Removes chemical compounds that have unpleasant tastes and hinder disinfection; and
- Helps remove iron and manganese from raw water.

As importantly, only chlorine-based chemicals provide "residual disinfectant" levels that prevent microbial re-growth and help protect treated water throughout the distribution system.

The Risks of Waterborne Disease

Where adequate water treatment is not readily available, the impact on public health can be devastating. Worldwide, about 1.2 billion people lack access to safe drinking water, and twice that many lack adequate sanitation. As a result, the World Health Organization estimates that 3.4 million people, mostly children, die every year from water-related diseases.

Even where water treatment is widely practiced, constant vigilance is required to guard against waterborne disease outbreaks. Well-known pathogens such as E. coli are easily controlled with chlorination, but can cause deadly outbreaks given conditions of inadequate or no disinfection. A striking example occurred in May 2000 in the Canadian town of Walkerton, Ontario. Seven people died and more than 2,300 became ill after E. coli and other bacteria infected the town's water supply. A report published by the Ontario Ministry of the Attorney General concludes that, even after the well was contaminated, the Walkerton disaster could have been prevented if the required chlorine residuals had been maintained.

Some emerging pathogens such as Cryptosporidium are resistant to chlorination and can appear even in high quality water supplies. Cryptosporidium was the cause of the largest reported drinking water outbreak in U.S. history, affecting over 400,000 people in Milwaukee in April 1993. More than 100 deaths are attributed to this outbreak. New regulations from the U.S. Environmental Protection Agency (EPA) will require water systems to monitor Cryptosporidium and adopt a range of treatment options based on source water Cryptosporidium concentrations. Most water systems are expected to meet EPA requirements while continuing to use chlorination.

Understanding Disinfection Byproducts (DBPS)

Chlorine and other chemical disinfectants have been widely used by public water systems (along with filtration) to protect the public from microbial pathogens in drinking water. DBPs are formed when certain disinfectants react with DBP precursors (organic and inorganic materials) in source waters. In most cases, natural organic matter (NOM) is an important factor that affects the levels of DBPs that form (NOM is usually measured as TOC). The levels of DBPs in drinking water can vary significantly from one point in a distribution system to another, as many continue to form in the distribution system. DBP levels are generally higher in surface water systems because surface water usually contains higher DBP precursor levels and requires stronger disinfection.

Updating the Safe Drinking Water Act Regulations

EPA has regulated DBPs in drinking water since 1979. The first DBP standards limited THM levels to 100 parts per billion (ppb) for systems serving more the 10,000 people. In the 1996 Safe Drinking Water Act (SDWA) reauthorization, Congress called for EPA to revise its standards for disinfectants and DBPs in two stages. The revised regulations are designed to reduce potential DBP risks, while ensuring that drinking water is protected from microbial contamination.

Stage 1 DBP Rule

In December 1998 USEPA issued the Stage 1 Disinfectants and Disinfection Byproducts (Stage 1 DBP) rule. The regulations are based on an agreement between members of a Federal Advisory Committee that included representatives from water utilities, the Chlorine Chemistry Division of the American Chemistry Council, public health officials, environmentalists and other stakeholder groups. This diverse group of experts developed a consensus set of recommendations to cost-effectively reduce DBP levels, without compromising protection from microbial contaminants.

The Stage 1 DBP rule mandates a process called enhanced coagulation to remove natural organic matter, reducing the potential for DBPs to form. The rule also sets enforceable Maximum Contaminant Levels (MCLs) for total trihalomethanes at 80 ppb and the sum of five Haloacetic Acids (HAAs) at 60 ppb. These MCLs are based on system-wide running annual averages, meaning that concentrations may be higher at certain times and at certain points in the system, as long as the system-wide average for the year is below the MCL. In developing the Stage 1 DBP rule, EPA was very cautious about encouraging the use of alternative disinfectants. The Agency recognized that alternative disinfectants might reduce THMs and HAAs, but produce other, less understood, byproducts. The Agency also avoided making recommendations that would encourage utilities to reduce the level of disinfection currently being practiced.

Large water systems (those serving more than 10,000 persons) were required to comply with the Stage 1 DBP rule by December 2001. Systems serving fewer than 10,000 persons must comply by December 2003.

Stage 2 DBP Rule

As the Stage 1 rule is coming into full force, EPA is completing work on its Stage 2 DBP rule. The Stage 2 rule is being developed simultaneously with the Long Term 2 Enhanced Surface Water Treatment Rule (LT2) in order to address the risk trade-offs between pathogen control and exposure to DBPs. The LT2 rule deals primarily with controlling Cryptosporidium and other resistant pathogens discussed in Chapter 3. Again, the EPA sought recommendations from an advisory group, the Stage 2 Microbial and Disinfection Byproducts Federal Advisory Committee.

As outlined in the advisory committee's September 2000 Agreement in Principle, the MCLs for THMs and five HAAs will remain 80 ppb and 60 ppb respectively, based on each utility's system-wide running annual averages. However, the Stage 2 rule will also limit DPB levels at specific locations within distribution systems. When fully implemented, these locational running annual average limits will mean that no part of the distribution system will be allowed to exceed the MCLs for these substances.

Total Trihalomethanes

Trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Many trihalomethanes find uses in industry as solvents or refrigerants. THMs are also environmental pollutants, and many are considered carcinogenic. Trihalomethanes with all the same halogen atoms are called haloforms. Trihalomethanes are formed as a by-product predominantly when chlorine is used to disinfect water for drinking. They represent one group of chemicals generally referred to as disinfection by-products. They result from the reaction of chlorine and/or bromine with organic matter present in the water being treated. The THMs produced have been associated through epidemiological studies with some adverse health effects. Many governments set limits on the amount permissible in drinking water. However, trihalomethanes are only one group of many hundreds of possible disinfection by-products—the vast majority of which are not monitored—and it has not yet been clearly demonstrated which of these are the most plausible candidate for causation of these health effects. In the United States, the EPA limits the total concentration of the four chief constituents (chloroform, bromoform, bromodichloromethane, and dibromochloromethane), referred to as total trihalomethanes (TTHM), to 80 parts per billion in treated water.

THM Treatment

THM levels tend to increase with pH, temperature, time, and the level of "precursors" present. Precursors are organic material which reacts with chlorine to form THM's. One way to decrease THM's is to eliminate or reduce chlorination before the filters and to reduce precursors. There are more precursors present before filtration, so we want to reduce or eliminate the time chlorine is in contact with this water. If some oxidation before filtration is required, an alternative disinfectant like potassium permanganate or peroxide could be considered. Note that this may not be an option if prechlorination is necessary to achieve required CT values.

The EPA has indicated that the best available technology for THM control at treatment plants is removal of precursors through "enhanced coagulation". Enhanced coagulation refers to the process of optimizing the filtration process to maximize removal of precursors. Removal is improved by decreasing pH (to levels as low as 4 or 5), increasing the feed rate of coagulants, and possibly using ferric coagulants instead of alum.

Understanding Cryptosporidiosis

Cryptosporidium is an emerging parasitic protozoan pathogen because its transmission has increased dramatically over the past two decades. Evidence suggests it is newly spread in increasingly popular day-care centers and possibly in widely distributed water supplies, public pools and institutions such as hospitals and extended-care facilities for the elderly. Recognized in humans largely since 1982 and the start of the AIDS epidemic, Cryptosporidium is able to cause potentially life-threatening disease in the growing number of immunocompromised patients. Cryptosporidium was the cause of the largest reported drinking water outbreak in U.S. history, affecting over 400,000 people in Milwaukee in April, 1993. More than 100 deaths are attributed to this outbreak. Cryptosporidium remains a major threat to the U.S. water supply (Ibid.).

The EPA is developing new drinking water regulations to reduce Cryptosporidium and other resistant parasitic pathogens. Key provisions of the Long Term 2 Enhanced Surface Water Treatment Rule include source water monitoring for Cryptosporidium; inactivation by all unfiltered systems; and additional treatment for filtered systems based on source water Cryptosporidium concentrations. EPA will provide a range of treatment options to achieve the inactivation requirements. Systems with high concentrations of Cryptosporidium in their source water may adopt alternative disinfection methods (e.g., ozone, UV, or chlorine dioxide). However, most water systems are expected to meet EPA requirements while continuing to use chlorination. Regardless of the primary disinfection method used, water systems must continue to maintain residual levels of chlorine-based disinfectants in their distribution systems.

Understanding Giardia lamblia

Giardia lamblia, discovered approximately 20 years ago, is another emerging waterborne pathogen. This parasitic microorganism can be transmitted to humans through drinking water that might otherwise be considered pristine. In the past, remote water sources that were not affected by human activity were thought to be pure, warranting minimal treatment. However, it is known now that all warm-blooded animals may carry Giardia and that beaver are prime vectors for its transmission to water supplies.

There is a distinct pattern to the emergence of new pathogens. First, there is a general recognition of the effects of the pathogen in highly susceptible populations such as children, cancer patients and the immunocompromised. Next, practitioners begin to recognize the disease and its causative agent in their own patients, with varied accuracy. At this point, some may doubt the proposed agent is the causative agent, or insist that the disease is restricted to certain types of patients. Finally, a single or series of large outbreaks result in improved attention to preventive efforts. From the 1960's to the 1980's this sequence of events culminated in the recognition of Giardia lamblia as a cause of gastroenteritis (Lindquist, 1999).

Understanding Waterborne Diseases

Detection and investigation of waterborne disease outbreaks is the primary responsibility of local, state and territorial public health departments, with voluntary reporting to the CDC. The CDC and the U.S. Environmental Protection Agency (EPA) collaborate to track waterborne disease outbreaks of both microbial and chemical origins. Data on drinking water and recreational water outbreaks and contamination events have been collected and summarized since 1971.

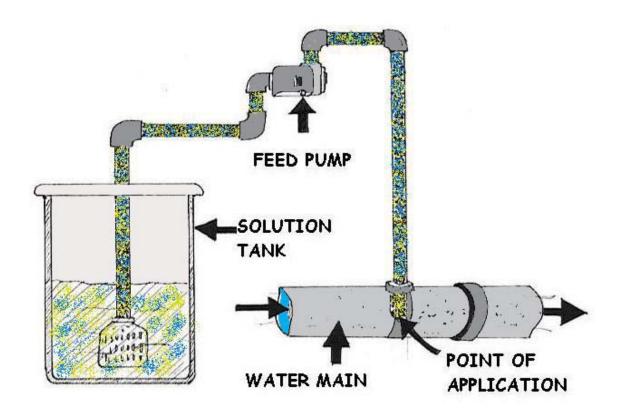
While useful, statistics derived from surveillance systems do not reflect the true incidence of waterborne disease outbreaks because many people who fall ill from such diseases do not consult medical professionals. For those who do seek medical attention, attending physicians and laboratory and hospital personnel are required to report diagnosed cases of waterborne illness to state health departments. Further reporting of these illness cases by state health departments to the CDC is voluntary, and statistically more likely to occur for large outbreaks than small ones.

Despite these limitations, surveillance data may be used to evaluate the relative degrees of risk associated with different types of source water and systems, problems in current technologies and operating conditions, and the adequacy of current regulations. (Craun, Nwachuku, Calderon, and Craun, 2002).

Chlorine Section

1-ton chlorine containers, rear side of container.

Professor Melissa Durbin in front of a Chlorine rotometer.



Top photograph, chlorine container gaskets. Bottom, we often take our students on a walking tours of a large chlorine facilities.

Chlorine Gas

Background: Chlorine gas is a pulmonary irritant with intermediate water solubility that causes acute damage in the upper and lower respiratory tract. Chlorine gas was first used as a chemical weapon at Ypres, France in 1915. Of the 70,552 American soldiers poisoned with various gasses in World War I, 1843 were exposed to chlorine gas. Approximately 10.5 million tons and over 1 million containers of chlorine are shipped in the U.S. each year.

Chlorine is a yellowish-green gas at standard temperature and pressure. It is extremely reactive with most elements. Because its density is greater than that of air, the gas settles low to the ground. It is a respiratory irritant, and burns the skin. Just a few breaths of it are fatal. Cl₂ gas does not occur naturally, although chlorine can be found in a number of compounds.

Atomic Number: 17

Standard State: gas at 298K Melting Point: 171.6K (-101.5 C) Boiling Point: 239.11K (-34.04 C)

Density: N/A

Molar Volume: 17.39 cm³

Electronegativity: 3.16 Pauling Units

Crystal Structure: The Diatomic Chlorine molecules arrange themselves in an orthorhombic

structure.

Pathophysiology: Chlorine is a greenish-yellow, noncombustible gas at room temperature and atmospheric pressure. The intermediate water solubility of chlorine accounts for its effect on the upper airway and the lower respiratory tract. Exposure to chlorine gas may be prolonged because its moderate water solubility may not cause upper airway symptoms for several minutes. In addition, the density of the gas is greater than that of air, causing it to remain near ground level and increasing exposure time.

The odor threshold for chlorine is approximately 0.3-0.5 parts per million (ppm); however, distinguishing toxic air levels from permissible air levels may be difficult until irritative symptoms are present.

Mechanism of Activity

The mechanisms of the above biological activity are poorly understood and the predominant anatomic site of injury may vary, depending on the chemical species produced. Cellular injury is believed to result from the oxidation of functional groups in cell components, from reactions with tissue water to form hypochlorous and hydrochloric acid, and from the generation of free oxygen radicals. Although the idea that chlorine causes direct tissue damage by generating free oxygen radicals was once accepted, this idea is now controversial.

The cylinders on the right contain chlorine gas. The gas comes out of the cylinder through a gas regulator. The cylinders are on a scale that operators use to measure the amount used each day. The chains are used to prevent the tanks from falling over.

Chlorine gas is stored in vented rooms that have panic bar equipped doors. Operators have the equipment necessary to reduce the impact of a gas leak, but rely on trained emergency response teams to contain leaks.

Solubility Effects

Hydrochloric acid is highly soluble in water. The predominant targets of the acid are the epithelia of the ocular conjunctivae and upper respiratory mucus membranes.

Hypochlorous acid is also highly water soluble with an injury pattern similar to hydrochloric acid.

Hypochlorous acid may account for the toxicity of elemental chlorine and hydrochloric acid to the human body.

Early Response to Chlorine Gas

Chlorine gas, when mixed with ammonia, reacts to form chloramine gas. In the presence of water, chloramines decompose to ammonia and hypochlorous acid or hydrochloric acid. The early response to chlorine exposure depends on the concentration of chlorine gas, duration of exposure, water content of the tissues exposed, and individual susceptibility.

Immediate Effects

The immediate effects of chlorine gas toxicity include acute inflammation of the conjunctivae, nose, pharynx, larynx, trachea, and bronchi. Irritation of the airway mucosa leads to local edema secondary to active arterial and capillary hyperemia. Plasma exudation results in filling the alveoli with edema fluid, resulting in pulmonary congestion.

Pathological Findings

Pathologic findings are nonspecific. They include severe pulmonary edema, pneumonia, hyaline membrane formation, multiple pulmonary thromboses, and ulcerative tracheobronchitis.

The hallmark of pulmonary injury associated with chlorine toxicity is pulmonary edema, manifested as hypoxia. Non-cardiogenic pulmonary edema is thought to occur when there is a loss of pulmonary capillary integrity.

Chlorine gas piping.

Using DPD Method for Chlorine Residuals

N, N – diethyl-p-phenylenediame, want to impress someone, memorize that.

Small portable chlorine measuring kit. The redder the mixture, the hotter or stronger the chlorine is in solution.

Measuring Chlorine Residual

Chlorine residual is the amount of chlorine remaining in water that can be used for disinfection. A convenient, simple and inexpensive way to measure chlorine residual is to use a small portable kit with pre-measured packets of chemicals that are added to water. (Make sure you buy a test kit using the *DPD method*, and not the outdated orthotolodine method.)

Chlorine test kits are very useful in adjusting the chlorine dose you apply. You can measure what chlorine levels are being found in your system (especially at the far ends).

Free chlorine residuals need to be checked and recorded daily. These results should be kept on file for a health or regulatory agency inspection during a regular field visit.

The most accurate method for determining chlorine residuals is to use the laboratory amperometric titration method.

Chemistry of Chlorination

Chlorine can be added as sodium hypochlorite, calcium hypochlorite or chlorine gas. When any of these is added to water, chemical reactions occur as these equations show:

CI 2 + H 2 O → HOCI + HCI (chlorine gas) (water) (hypochlorous acid) (hydrochloric acid)

CaOCI + H 2 O → 2HOCI + Ca(OH) (calcium hypochlorite) (water) (hypochlorous acid) (calcium hydroxide)

NaOCI + H 2 O → HOCI + Na(OH) (sodium hypochlorite) (water) (hypochlorous acid) (sodium hydroxide)

All three forms of chlorine produce hypochlorous acid (HOCI) when added to water. Hypochlorous acid is a weak acid but a strong disinfecting agent. The amount of hypochlorous acid depends on the pH and temperature of the water. Under normal water conditions, hypochlorous acid will also chemically react and break down into a hypochlorite ion.

(OCI -): HOCI H + + OCI - Also expressed HOCI \rightarrow H + + OCI - (hypochlorous acid) (hydrogen) (hypochlorite ion)

The hypochlorite ion is a much weaker disinfecting agent than hypochlorous acid, about 100 times less effective.

Let's now look at how pH and temperature affect the ratio of hypochlorous acid to hypochlorite ions. As the temperature is decreased, the ratio of hypochlorous acid increases. Temperature plays a small part in the acid ratio. Although the ratio of hypochlorous acid is greater at lower temperatures, pathogenic organisms are actually harder to kill. All other things being equal, higher water temperatures and a lower pH are more conducive to chlorine disinfection.

Types of Residual

If water were pure, the measured amount of chlorine in the water should be the same as the amount added. But water is not 100% pure. There are always other substances (interfering agents) such as iron, manganese, turbidity, etc., which will combine chemically with the chlorine.

This is called the *chlorine demand*. Naturally, once chlorine molecules are combined with these interfering agents, and they are not capable of disinfection. It is free chlorine which is much more effective as a disinfecting agent.

So let's look now at how free, total, and combined chlorine are related. When a chlorine residual test is taken, either a total or a free chlorine residual can be read.

Total residual is all chlorine that is available for disinfection.

Total chlorine residual = free + combined chlorine residual.

Free chlorine residual is a much stronger disinfecting agent. Therefore, most water regulating agencies will require that your daily chlorine residual readings be of free chlorine residual.

Break-point chlorination is where the chlorine demand has been satisfied, any additional chlorine will be considered *free chlorine*.

Residual Concentration/Contact Time (CT) Requirements

Disinfection to eliminate fecal and coliform bacteria may not be sufficient to adequately reduce pathogens such as Giardia or viruses to desired levels. Use of the "CT" disinfection concept is recommended to demonstrate satisfactory treatment, since monitoring for very low levels of pathogens in treated water is analytically very difficult.

The CT concept, as developed by the United States Environmental Protection Agency (Federal Register, 40 CFR, Parts 141 and 142, June 29, 1989), uses the combination of disinfectant residual concentration (mg/L) and the effective disinfection contact time (in minutes) to measure effective pathogen reduction. The residual is measured at the end of the process, and the contact time used is the T10 of the process unit (time for 10% of the water to pass).

CT = Concentration (mg/L) x Time (minutes)

The effective reduction in pathogens can be calculated by reference to standard tables of required CTs.

500-pound chlorine container and 150 pound chlorine gas cylinders. The 1/2 ton is on a scale. Cylinders stand upright and containers on their sides.

Required Giardia/Virus Reduction

All surface water treatment systems shall ensure a minimum reduction in pathogen levels: 3-log reduction in Giardia and 4-log reduction in viruses. These requirements are based on unpolluted raw water sources with Giardia levels of = 1 cyst/100 L, and a finished water goal of 1 cyst/100,000 L (equivalent to 1 in 10,000 risk of infection per person per year). Higher raw water contamination levels may require greater removals as shown on Table 4.1.

TABLE 4.1 LEVEL OF GIARDIA REDUCTION Raw Water Giardia Levels* Recommended Giardia Log Reduction

< 1 cyst/100 L 3-log

1 cyst/100 L - 10 cysts/100 L 3-log - 4-log

10 cysts/100 L - 100 cysts/100 L 4-log - 5-log

> 100 cysts/100 L > 5-log

*Use geometric means of data to determine raw water Giardia levels for compliance.

Required CT Value

Required CT values are dependent on pH, residual concentration, temperature, and the disinfectant used. The tables attached to Appendices A and B shall be used to determine the required CT.

Calculation and Reporting of CT Data

Disinfection CT values shall be calculated daily, using either the maximum hourly flow and the disinfectant residual at the same time, or by using the lowest CT value if it is calculated more frequently. Actual CT values are then compared to required CT values. Results shall be reported as a reduction Ratio, along with the appropriate pH, temperature, and disinfectant residual. The reduction Ratio must be greater than 1.0 to be acceptable. Users may also calculate and record actual log reductions. Reduction Ratio = CT actual ÷ CT required.

Here are some important chlorine cylinder parts. Upper left, yoke type connector, upper right cylinder wrenches and fusible plugs.

Chlorine (DDBP)

Today, most of our drinking water supplies are free of the micro-organisms — viruses, bacteria, and protozoa — that cause serious and life-threatening diseases, such as cholera and typhoid fever. This is largely due to the introduction of water treatment, particularly chlorination, at the turn of the century. Living cells react with chlorine and reduce its concentration while they die. Their organic matter and other substances that are present convert to chlorinated derivatives, some of which are effective killing agents. Chlorine present as CI, HOCI, and OCI is called *free available chlorine* and that which is bound but still effective is *combined chlorine*. A particularly important group of compounds with combined chlorine is the chloramines formed by reactions with ammonia.

One especially important feature of disinfection using chlorine is the ease of overdosing to create a residual concentration. There is a constant danger that safe water leaving the treatment plant may become contaminated later. There may be breaks in water mains, loss of pressure that permits an inward leak, or plumbing errors. This residual concentration of chlorine provides some degree of protection right to the water faucet. With free available chlorine, a typical residual is from 0.1 to 0.5 ppm. Because chlorinated organic compounds are less effective, a typical residual is 2 ppm for combined chlorine.

There will be no chlorine residual unless there is an excess over the amount that reacts with the organic matter present. However, reaction kinetics complicates interpretation of chlorination data. The correct excess is obtained in a method called *Break Point Chlorination*.

Chlorine by-products

Chlorination by-products are the chemicals formed when the chlorine used to kill disease-causing micro-organisms reacts with naturally occurring organic matter (i.e., decay products of vegetation) in the water. The most common chlorination by-products found in U.S. drinking water supplies are the trihalomethanes (THMs).

The principal trihalomethanes are:

Chloroform, bromodichloromethane, chlorodibromomethane, and bromoform. Other less common chlorination by-products includes the haloacetic acids and haloacetonitriles.

The amount of THMs formed in drinking water can be influenced by a number of factors, including the season and the source of the water. For example, THM concentrations are generally lower in winter than in summer, because concentrations of natural organic matter are lower and less chlorine is required to disinfect at colder temperatures. THM levels are also low when wells or large lakes are used as the drinking water source, because organic matter concentrations are generally low in these sources. The opposite — high organic matter concentrations and high THM levels — is true when rivers or other surface waters are used as the source of the drinking water.

Health Effects

Laboratory animals exposed to very high levels of THMs have shown increased incidences of cancer. Also, several studies of cancer incidence in human populations have reported associations between long-term exposure to high levels of chlorination by-products and an increased risk of certain types of cancer.

For instance, a recent study conducted in the Great Lakes basin reported an increased risk of bladder and possibly colon cancer in people who drank chlorinated surface water for 35 years or more.

Possible relationships between exposure to high levels of THMs and adverse reproductive effects in humans have also been examined recently. In a California study, pregnant women who consumed large amounts of tap water containing elevated levels of THMs were found to have an increased risk of spontaneous abortion.

The available studies on health effects do not provide conclusive proof of a relationship between exposure to THMs and cancer or reproductive effects, but indicate the need for further research to confirm their results and to assess the potential health effects of chlorination by-products other than THMs.

Chlorine storage room, notice the vents at the bottom and top. The bottom vent will allow the gas to ventilate because Cl₂ gas is 2.5 times heavier than air and 1.2 times heavier than water.

Risks and Benefits of Chlorine

Current evidence indicates the benefits of chlorinating our drinking water — reduced incidence of water-borne diseases — are much greater than the risks of health effects from THMs.

Although other disinfectants are available, chlorine continues to be the choice of water treatment experts. When used with modern water filtration practices, chlorine is effective against virtually all infectious agents — bacteria, viruses, and protozoa. It is easy to apply, and most importantly, small amounts of chlorine remain in the water and continue to disinfect throughout the distribution system. This ensures the water remains free of microbial contamination on its journey from the treatment plant to the consumer's tap.

A number of cities use ozone to disinfect their source water and to reduce THM formation. Although ozone is a highly effective disinfectant, it breaks down quickly, so that small amounts of chlorine or other disinfectants must be added to the water to ensure continued disinfection as the water is piped to the consumer's tap. Modifying water treatment facilities to use ozone can be expensive, and ozone treatment can create other undesirable by-products that may be harmful to health if they are not controlled (i.e., bromate).

Examples of other disinfectants include chloramines and chlorine dioxide. Chloramines are weaker disinfectants than chlorine, especially against viruses and protozoa; however, they are very persistent and, as such, can be useful for preventing re-growth of microbial pathogens in drinking water distribution systems.

Chlorine dioxide can be an effective disinfectant, but it forms chlorate and chlorite, compounds whose toxicity has not yet been fully determined. Assessments of the health risks from these and other chlorine-based disinfectants and chlorination by-products are currently under way.

In general, the preferred method of controlling chlorination by-products is removal of the naturally occurring organic matter from the source water so it cannot react with the chlorine to form by-products. THM levels may also be reduced through the replacement of chlorine with alternative disinfectants.

A third option is removal of the by-products by adsorption on activated carbon beds. It is extremely important that water treatment plants ensure the methods used to control chlorination by-products do not compromise the effectiveness of water disinfection.

Chlorine Piping

Water softening may be needed when your source water is too hard for successful chlorination using HTH.

Chlorinator Parts

- A. Ejector
- **B.** Check Valve Assembly
- C. Rate Valve
- D. Diaphragm Assembly
- **E.** Interconnection Manifold
- F. Rotometer Tube and Float
- G. Pressure Gauge
- H. Gas Supply

Various Chlorine measurement devices or Rotometers.

Safety Information: There is a fusible plug on every chlorine tank. This metal plug will melt at 158° to 165° F. This is to prevent a build-up of excessive pressure and the possibility of cylinder rupture due to fire or high temperatures.

Chlorination Equipment Requirements

For all water treatment facilities, chlorine gas under pressure shall not be permitted outside the chlorine room. The chlorine room is the room where chlorine gas cylinders and/or ton containers are stored. Vacuum regulators shall also be located inside the chlorine room. The chlorinator, which is the mechanical gas proportioning equipment, may or may not be located inside the chlorine room. For new and upgraded facilities, from the chlorine room, chlorine gas vacuum lines should be run as close to the point of solution application as possible. Injectors should be located to minimize the length of pressurized chlorine solution lines. A gas pressure relief system shall be included in the gas vacuum line between the vacuum regulator(s) and the chlorinator(s) to ensure that pressurized chlorine gas does not enter the gas vacuum lines leaving the chlorine room.

The gas pressure relief system shall vent pressurized gas to the atmosphere at a location that is not hazardous to plant personnel; the vent line should be run in such a manner that moisture collecting traps are avoided. The vacuum regulating valve(s) shall have positive shutdown in the event of a break in the downstream vacuum lines. As an alternative to chlorine gas, it is permissible to use hypochlorite with positive displacement pumping. Antisiphon valves shall be incorporated in the pump heads or in the discharge piping.

Capacity

The chlorinator shall have the capacity to dose enough chlorine to overcome the demand and maintain the required concentration of the *free* or *combined* chlorine.

Methods of Control

The chlorine feed system shall be automatic proportional controlled, automatic residual controlled, or compound loop controlled. In the automatic proportional controlled system, the equipment adjusts the chlorine feed rate automatically in accordance with the flow changes to provide a constant pre-established dosage for all rates of flow. In the automatic residual controlled system, the chlorine feeder is used in conjunction with a chlorine residual analyzer which controls the feed rate of the chlorine feeders to maintain a particular residual in the treated water.

In the compound loop control system, the feed rate of the chlorinator is controlled by a flow proportional signal and a residual analyzer signal to maintain particular chlorine residual in the water. Manual chlorine feed systems may be installed for groundwater systems with constant flow rate.

Standby Provision

As a safeguard against malfunction and/or shut-down, standby chlorination equipment having the capacity to replace the largest unit shall be provided. For uninterrupted chlorination, gas chlorinators shall be equipped with an automatic changeover system. In addition, spare parts shall be available for all chlorinators.

Weigh Scales

Scales for weighing cylinders shall be provided at all plants using chlorine gas to permit an accurate reading of total daily weight of chlorine used. At large plants, scales of the recording and indicating type are recommended. As a minimum, a platform scale shall be provided. Scales shall be of corrosion-resistant material.

Securing Cylinders

All chlorine cylinders shall be securely positioned to safeguard against movement. Tag the cylinder *empty* and store upright and chained. Ton containers may not be stacked.

Chlorine Leak Detection

Automatic chlorine leak detection and related alarm equipment shall be installed at all water treatment plants using chlorine gas. Leak detection shall be provided for the chlorine rooms. Chlorine leak detection equipment should be connected to a remote audible and visual alarm system and checked on a regular basis to verify proper operation.

Leak detection equipment shall not automatically activate the chlorine room ventilation system in such a manner as to discharge chlorine gas. During an emergency, if the chlorine room is unoccupied, the chlorine gas leakage shall be contained within the chlorine room itself in order to facilitate a proper method of cleanup.

Consideration should also be given to the provision of caustic soda solution reaction tanks for absorbing the contents of leaking one-ton cylinders where such cylinders are in use.

Chlorine leak detection equipment may not be required for very small chlorine rooms with an exterior door (i.e., floor area less than 3m²).

You can use a spray solution of Ammonia or a rag soaked with Ammonia to detect a small Cl₂ leak. If there is a leak, the ammonia will create a white colored smoke. Ammonium Chloride.

Safety Equipment

The facility shall be provided with personnel safety equipment to include the following:

Respiratory equipment, safety shower, eyewash, gloves, eye protection, protective clothing, cylinder and/or ton repair kits.

Respiratory equipment shall be provided which has been approved under the Occupational Health and Safety Act, General Safety Regulation - Selection of Respiratory Protective Equipment. Equipment shall be in close proximity to the access door(s) of the chlorine room.

Chlorine Room Design Requirements

Where gas chlorination is practiced, the gas cylinders and/or the ton containers up to the vacuum regulators shall be housed in a gas-tight, well illuminated, corrosion resistant and mechanically ventilated enclosure. The chlorinator may or may not be located inside the chlorine room. The chlorine room shall be located at the ground floor level.

Ventilation

Gas chlorine rooms shall have entirely separate exhaust ventilation systems capable of delivering one complete air change per minute during periods of chlorine room occupancy only - there shall be no continuous ventilation. The air outlet from the room shall be 150 mm above the floor and the point of discharge located to preclude contamination of air inlets to buildings or areas used by people. The vents to the outside shall have insect screens.

Air inlets should be louvered near the ceiling, the air being of such temperature as to not adversely affect the chlorination equipment.

Separate switches for fans and lights shall be outside the room at all entrance or viewing points, and a clear wire-reinforced glass window shall be installed in such a manner as to allow the operator to inspect from the outside of the room.

Heating

Chlorine rooms shall have separate heating systems, if a forced air system is used to heat the building. Hot water heating system for the building will negate the need for a separate heating system for the chlorine room. The heat should be controlled at approximately 15°C. Cylinders or containers shall be protected to ensure that the chlorine maintains its gaseous state when entering the chlorinator.

Access

All access to the chlorine room shall only be from the exterior of the building. Visual inspection of the chlorination equipment from inside may be provided by the installation of glass window(s) in the walls of the chlorine room. Windows should be at least 0.20 m2 in area, and be made of clear wire reinforced glass.

There should also be a *panic bar* on the inside of the chlorine room door for emergency exit.

Storage of Chlorine Cylinders

If necessary, a separate storage room may be provided to simply store the chlorine gas cylinders, with no connection to the line. The chlorine cylinder storage room shall have access either to the chlorine room or from the plant exterior, and be arranged to prevent the uncontrolled release of spilled gas.

Chlorine gas storage room shall have provision for ventilation at thirty air changes per hour. Viewing glass windows and panic button on the inside of door should also be provided.

In very large facilities, entry into the chlorine rooms may be through a vestibule from outside.

Scrubbers

For facilities located within residential or densely populated areas, consideration shall be given to provide scrubbers for the chlorine room.

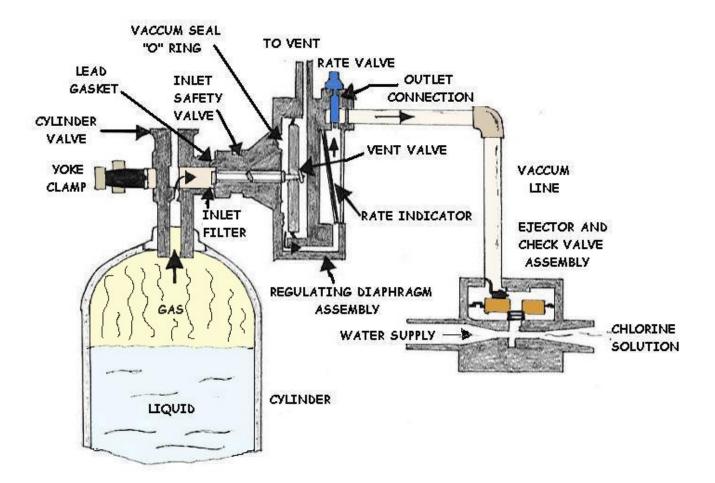
Troubleshooting Hypochlorination Problems

Problem

- 1. Chemical feed pump won't run.
- 2. Low chlorine residual at POE.
- 2. Low chlorine residual at POE.
- 3. Chemical feed pump won't prime.
- 4. Loss of prime

Possible Cause

- 1A. No power.
- 1B. Electrical problem with signal from well pump or flow sensor.
- 1C. Motor failure.
- 2A. Improper procedure for running chlorine residual test or expired chemical reagents.
- 2B. Pump not feeding an adequate quantity of chlorine.
- 2C. Change in raw water quality.
- 2D. Pump air bound.
- 2E. Chlorine supply tank empty.
- 2F. Reduced effectiveness of chlorine solution.
- 2G. Damaged suction or discharge lines. (cracks or crimps)
- 2H. Connection at point of injection clogged or leaking.
- 3A. Speed and stroke setting inadequate.
- 3B. Suction lift too high due to feed pump relocation.
- 3C. Discharge pressure too high.
- 3D. Suction fitting clogged.
- 3E. Trapped air in suction line.
- 3F. Suction line not submerged in solution.
- 4A. Solution tank empty.
- 4B. Air leaks in suction fittings.
- 4C. Foot valve not in vertical position.
- 4D. Air trapped in suction tubing.


Possible Solution

1A. Check to see if plug is securely in place.

Insure that there is power to the outlet and control systems.

- 1B. Check pump motor starter. Bypass flow sensor to determine if pump will operate manually.
- 1C. Check manufacturer's information.
- 2A Check expiration date on chemical reagents. Check test procedure as described in test kit manual. Speed or stroke setting too low.
- 2B. Damaged diaphragm or suction leak.
- 2C. Test raw water for constituents that may cause increased chlorine demand. (i.e. iron, manganese, etc.)
- 2D. Check foot valve.
- 2E. Fill supply tank.
- 2F. Check date that chlorine was received. Sodium hypochlorite solution may lose effectiveness after 30 days. If that is the case, the feed rate must be increased to obtain the desired residual.
- 2G. Clean or repair lines with problems.
- 2H. Flush line and connection with mild acid such as Acetic or Muriatic. Replace any damaged parts that may be leaking.
- 3A. Check manufacturers' recommendations for proper settings to prime pump.
- 3B. Check maximum suction lift for pump and relocate as necessary.

- 3C. Check well pump discharge pressure.
- Check pressure rating on chemical feed pump.
- 3D. Clean or replace screen.
- 3E. Insure all fittings are tight.
- 3F. Add chlorine solution to supply tank.
- 4A. Fill tank.
- 4B. Check for cracked fittings.
- 4C. Adjust foot valve to proper position.
- 4D. Check connections and fittings.

Disinfection Policy Procedure Example

- A. Disinfection may be accomplished with calcium or sodium hypochlorites or gas chlorine or other disinfecting agents approved by the Department. Proposals for the use of disinfecting agents other than those specifically listed above must be approved by the Department prior to preparation of final plans and specifications. The Department will grant approval when all available information establishes that the chemical to be used as a disinfecting agent meets the following conditions: the residual levels created by the use of the chemical will not jeopardize the health of the user of the water, testing procedures for residual elements are recognized in "Standard Methods for the Examination of Water and Wastewater" (1978 Edition-American Public Health Association) (see Section 930.15) and the chemical will destroy bacteria in the water supply.
- B. **Chlorination Equipment.** The Chlorinator shall be designed to provide a free chlorine residual of at least two milligrams per liter in the water after contact time of at least 30 minutes at flow rates as indicated in Exhibit A. The equipment shall be of such design that it will operate accurately over the desired feeding range. Where flow is uniform, actuation of a constant volume feeder by the pump circuit is required. Where flow is variable, automatic flow proportioning is required.
- C. Contact Time and Point of Application. A minimum free chlorine residual of at least 0.1 milligram per liter shall be maintained at distant points in the water distribution system. Chlorine shall be applied after the filter and prior to the filtered water storage tank.
- D. **Testing Equipment.** Chlorine residual test equipment capable of measuring free chlorine residual shall be provided and shall be capable of measuring residuals to the nearest 0.1 mg/1 in the range below 0.5 mg/1, to the nearest 0.3 mg/1 between 0.5 and 1.0 mg/1, and to the nearest 0.5 mg/1 between 1.0 mg/1 and 2.0 mg/1.
- E. **Hypochlorinator.** Positive displacement pumps shall be provided to inject hypochlorite solution. The pump shall be of variable flow type and shall be of sufficient capacity to feed the required amount of disinfectant. If calcium hypochlorite is used, the concentration of calcium hypochlorite in the solution shall not exceed 5 percent. The solution container shall have a minimum capacity equal to the volume of solution required per day. The hypochlorinator shall be electrically interconnected with the raw water feed pump so that both will start and stop together.

The Water Department should maintain an emergency hypochlorinator in reserve status at the operation center to be used during non-routine chlorination occurrences. Additionally, an adequate supply of Sodium Hypochlorite is maintained at all times. All reservoirs are routinely chlorinated to produce a free chlorine residual. Emergency chlorination of any of the Water Department's reservoirs can occur through access ports in each of the reservoir structures.

Alternate Disinfectants

Chloramine

Chloramine is a very weak disinfectant for Giardia and virus reduction. It is recommended that it be used in conjunction with a stronger disinfectant. It is best utilized as a stable distribution system disinfectant.

In the production of chloramines, the ammonia residuals in the finished water, when fed in excess of stoichiometric amount needed, should be limited to inhibit growth of nitrifying bacteria.

Chlorine Dioxide

Chlorine dioxide may be used for either taste or odor control or as a pre-disinfectant. Total residual oxidants (including chlorine dioxide and chlorite, but excluding chlorate) shall not exceed 0.30 mg/L during normal operation or 0.50 mg/L (including chlorine dioxide, chlorite and chlorate) during periods of extreme variations in the raw water supply.

Chlorine dioxide provides good Giardia and virus protection but its use is limited by the restriction on the maximum residual of 0.5~mg/L ClO₂/chlorite/chlorate allowed in finished water. This limits usable residuals of chlorine dioxide at the end of a process unit to less than 0.5~mg/L.

Where chlorine dioxide is approved for use as an oxidant, the preferred method of generation is to entrain chlorine gas into a packed reaction chamber with a 25% aqueous solution of sodium chlorite (NaClO₂).

Warning: Dry sodium chlorite is explosive and can cause fires in feed equipment if leaking solutions or spills are allowed to dry out.

Ozone

Ozone is a very effective disinfectant for both Giardia and viruses. Ozone CT (contact time) values must be determined for the ozone basin alone; an accurate T10 value must be obtained for the contact chamber, residual levels measured through the chamber and an average ozone residual calculated.

Ozone does not provide a system residual and should be used as a primary disinfectant only in conjunction with free and/or combined chlorine.

Ozone does not produce chlorinated byproducts (such as trihalomethanes) but it may cause an increase in such byproduct formation if it is fed ahead of free chlorine; ozone may also produce its own oxygenated byproducts such as aldehydes, ketones or carboxylic acids. Any installed ozonation system must include adequate ozone leak detection alarm systems, and an ozone off-gas destruction system.

Ozone may also be used as an oxidant for removal of taste and odor or may be applied as a pre-disinfectant.

Amperometric Titration

The chlorination of water supplies and polluted waters serves primarily to destroy or deactivate disease-producing microorganisms. A secondary benefit, particularly in treating drinking water, is the overall improvement in water quality resulting from the reaction of chlorine with ammonia, iron, manganese, sulfide, and some organic substances.

Chlorination may produce adverse effects. Taste and odor characteristics of phenols and other organic compounds present in a water supply may be intensified. Potentially carcinogenic chloroorganic compounds such as chloroform may be formed.

Combined chlorine formed on chlorination of ammonia- or amine-bearing waters adversely affects some aquatic life. To fulfill the primary purpose of chlorination and to minimize any adverse effects, it is essential that proper testing procedures be used with a foreknowledge of the limitations of the analytical determination.

Chlorine applied to water in its molecular or hypochlorite form initially undergoes hydrolysis to form free chlorine consisting of aqueous molecular chlorine, hypochlorous acid, and hypochlorite ion. The relative proportion of these free chlorine forms is pH- and temperature-dependent. At the pH of most waters, hypochlorous acid and hypochlorite ion will predominate. Free chlorine reacts readily with ammonia and certain nitrogenous compounds to form combined chlorine. With ammonia, chlorine reacts to form the chloramines: monochloramine, dichloramine, and nitrogen trichloride.

The presence and concentrations of these combined forms depend chiefly on pH, temperature, initial chlorine-to-nitrogen ratio, absolute chlorine demand, and reaction time. Both free and combined chlorine may be present simultaneously. Combined chlorine in water supplies may be formed in the treatment of raw waters containing ammonia or by the addition of ammonia or ammonium salts. Chlorinated wastewater effluents, as well as certain chlorinated industrial effluents, normally contain only combined chlorine. Historically the principal analytical problem has been to distinguish between free and combined forms of chlorine.

Hach's AutoCAT 9000™ Automatic Titrator is the newest solution to hit the disinfection industry – a comprehensive, bench top chlorine-measurement system that does it all: calibration, titration, calculation, real-time graphs, graphic print output, even electrode cleaning. More a laboratory assistant than an instrument, the AutoCAT 9000 gives you:

High throughput, performs the titration and calculates concentration, all automatically:

- Forward titration: USEPA-accepted methods for free and total chlorine and chlorine dioxide with chlorite
- Back titration: USEPA-accepted method for total chlorine in wastewater
- Accurate, yet convenient, the easiest way to complete ppb-level amperometric titration

If you're dechlorinating, modifying your current disinfectant delivery, changing over to another chlorine species, or adjusting disinfection processes to meet new regulations, this is the workhorse system that yields the fast, accurate residual readings you need.

Method	Method Focus	Title	Order Number	Source
4500-Cl ⁻ B	Chloride by Silver Nitrate Titration	Standard Methods for the Examination of Water and Wastewater, 18th & 19th Ed.	Included in Standard Methods	American Water Works Assn.
4500-Cl ⁻ D	Chloride by Potentiometric Method	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI D	Chlorine Residual by Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI E	Chlorine Residual by Low Level Amperometric Titration (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI F	Chlorine Residual by DPD Ferrous Titration (Stage 1 DBP use SM 19th Ed. only)	errous Titration Examination of Water and Wethods Wastewater, 18th, 19th & 20th		American Water Works Assn.
4500-CI G	Chlorine Residual by DPD Colorimetric Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI H	Chlorine Residual by Syringaldazine (FACTS) Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.
4500-CI I	Chlorine Residual by lodometric Electrode Technique (Stage 1 DBP use SM 19th Ed. only)	bodometric Electrode Examination of Water and Wastewater, 18th, 19th & 20th Stage 1 DBP use SM Editions		American Water Works Assn.
4500-CIO ₂ C	Chlorine Dioxide by the Amperometric Method I			American Water Works Assn.
4500-CIO ₂ D	Chlorine Dioxide by the DPD Method (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions Included in Standard Methods		American Water Works Assn.
4500-CIO ₂ E	Chlorine Dioxide by the Amperometric Method II (Stage 1 DBP use SM 19th Ed. only)	Standard Methods for the Examination of Water and Wastewater, 18th, 19th & 20th Editions	Included in Standard Methods	American Water Works Assn.

Chlorine Dioxide Methods

Most tests for chlorine dioxide rely upon its oxidizing properties. Consequently, numerous test kits are readily available that can be adapted to measure chlorine dioxide. In addition, new methods that are specific for chlorine dioxide are being developed. The following are the common analytical methods for chlorine dioxide:

	DPD glycine	Chlorophenol Red	Direct Absorbance	lodometric Titration	Amperometric Titration
Method Type:	Colorimetric	Colorimetric	Colorimetric	Titrimetric	Titrimetric
How It Works	Glycine removes Cl ₂ ; ClO ₂ forms a pink color, whose intensity is proportional to the ClO ₂ concentration.	CIO ₂ bleaches chlorophenol red indicator. The degree of bleaching is proportional to the concentration of CIO ₂ .	The direct measurement of CIO ₂ is determined between 350 and 450 nM.	Two aliquots are taken one is sparged with N_2 to remove ClO_2 . KI is added to the other sample at pH7 and titrated to a colorless endpoint. The pH is lower to 2, the color allowed to reform and the titration continued. These titrations are repeated on the sparged sample.	
Range	0.5 to 5.0 ppm.	0.1 to 1.0 ppm	100 to 1000 ppm	> 1 ppm	< 1ppm
Interferences	Oxidizers	None	Color, turbidity	Oxidizers	
Complexity	Simple	Moderate	Simple	Moderate	High
Equipment Required	Spectrophotometer or Colorimeter			Titration equipment	Amperometric Titrator
EPA Status	Approved	Not approved	Not approved	Not approved	Approved
Recommendation	Marginal	Yes	Marginal	Yes	Marginal

Chlorine Exposure Limits

This information is necessary to pass your certification exam.

* OSHA PEL 1 PPM - IDLH 10 PPM and Fatal Exposure Limit 1,000 PPM

The current Occupational Safety and Health Administration (**OSHA**) permissible exposure limit (**PEL**) for chlorine is 1 ppm (3 milligrams per cubic meter (mg/m⁽³⁾)) as a ceiling limit. A worker's exposure to chlorine shall at no time exceed this ceiling level. * **IDLH 10 PPM**

Physical and chemical properties of chlorine: A yellowish green, nonflammable and liquefied gas with an unpleasant and irritating smell. Can be readily compressed into a clear, ambercolored liquid, a noncombustible gas, and a strong oxidizer. Solid chlorine is about 1.5 times heavier than water and gaseous chlorine is about 2.5 times heavier than air. Atomic number of chlorine is 17. Cl is the elemental symbol and Cl₂ is the chemical formula.

Monochloramine, dichloramine, and trichloramine are also known as Combined Available Chlorine. $Cl_2 + NH_4$.

HOCl and OCl-: The OCL- is the hypochlorite ion and both of these species are known as free available chlorine, they are the two main chemical species formed by chlorine in water and they are known collectively as hypochlorous acid and the hypochlorite ion. When chlorine gas is added to water, it rapidly hydrolyzes. The chemical equations best describes this reaction is $Cl_2 + H_2O$ --> H+ + Cl- + HOCl. Hypochlorous acid is the most germicidal of the chlorine compounds with the possible exception of chlorine dioxide.

Yoke-type connectors should be used on a chlorine cylinder's valve assuming that the threads on the valve may be worn.

The connection from a chlorine cylinder to a chlorinator should be replaced by using a new, approved gasket on the connector. Always follow your manufacturer's instructions.

On a 1 ton Cl₂ gas container, the chlorine pressure reducing valve should be located downstream of the evaporator when using an evaporator. This is the liquid chlorine supply line and it is going to be made into chlorine gas.

Here are several safety precautions when using chlorine gas: In addition to protective clothing and goggles, chlorine gas should be used only in a well-ventilated area so that any leaking gas cannot concentrate. Emergency procedures in the case of a large uncontrolled chlorine leak are to: notify local emergency response team, warn and evacuate people in adjacent areas, and be sure that no one enters the leak area without adequate self-contained breathing equipment.

Here are several symptoms of chlorine exposure: burning of eyes, nose, and mouth; coughing, sneezing, choking; nausea and vomiting; headaches and dizziness; fatal pulmonary edema, pneumonia and skin blisters. A little Cl₂ will corrode the teeth and then progress to throat cancer. Bad news.

Approved method for storing a 150 - 200 pound chlorine cylinder: secure each cylinder in an upright position, attach the protective bonnet over the valve and firmly secure each cylinder. Never store near heat. Always store the empty in an upright, secure position with proper signage.

Corrosion Control

Corrosion is the deterioration of a substance by chemical action. Lead, cadmium, zinc, copper and iron might be found in water when metals in water distribution systems corrode. Drinking water contaminated with certain metals (such as lead and cadmium) can harm human health.

Corrosion also reduces the useful life of water distribution systems and can promote the growth of microorganisms, resulting in disagreeable tastes, odors, slimes and further corrosion. Because it is widespread and highly toxic, lead is the corrosion product of greatest concern. The EPA has banned the use of lead solders, fluxes and pipes in the installation or repair of any public water system. In the past, solder used in plumbing has been 50% tin and 50% lead. Using lead-free solders, such as silver-tin and antimony-tin is a key factor in lead corrosion control.

The highest level of lead in consumers' tap water will be found in water that has been standing in the pipes after periods of nonuse (overnight or longer). This is because standing water tends to leach lead or copper out of the metals in the distribution system more readily than does moving water. Therefore, the simplest short-term or immediate measure that can be taken to reduce exposure to lead in drinking water is to let the water run for two to three minutes before each use. Also, drinking water should not be taken from the hot water tap, as hot water tends to leach lead more readily than cold. Long-term measures for addressing lead and other corrosion by-products include pH and alkalinity adjustment; corrosion inhibitors; coatings and linings; and cathodic protection, all discussed below.

Cathodic Protection

Cathodic protection is an electrical system used for the prevention of rust, corrosion, and pitting of metal surfaces which are in contact with water or soil. Cathodic protection protects steel from corrosion which is the natural electrochemical process that results in the deterioration of a material because of its reaction with its environment. Metallic structures, components and equipment exposed to aqueous environments, soil or seawater can be subject to corrosive attack and accelerated deterioration. Therefore, it is often necessary to utilize either impressed current or sacrificial anode cathodic protection (CP) in combination with coatings as a means of suppressing the natural degradation phenomenon to provide a long and useful service life. However, if proper considerations are not given, problems can arise which can produce unexpected, premature failure. E.M.F. is a crazy term is used to express the electrical pressure available to cause a flow of current when an electric circuit is closed.

There are Two Types of Cathodic Protection:

Ø Sacrificial Anodes (Galvanic Systems) Ù Impressed (Induced) Current Systems

How Does Cathodic Protection Work?

Sacrificial anodes are pieces of metal more electrically active than the steel piping system. Because these anodes are more active, the corrosive current will exit from them rather than the piping system. Thus, the system is protected while the attached anode is "sacrificed."

Sacrificial anodes can be attached to existing piping system or coated steel for a preengineered Cathodic protection system. An asphalt coating is not considered a suitable dielectric coating. Depleted anodes must be replaced for continued Cathodic protection of the system.

Impressed or Induced Current Systems

An impressed current cathodic protection system consists of anodes, cathodes, a rectifier and the soil. The rectifier converts the alternating current to direct current. The direct current is then sent through an insulated copper wire to anodes that are buried in the soil near the piping system. Typical anode materials are ceramic, high silicon cast iron, or graphite. Ceramic anodes are not consumed, whereas high silicon cast iron and graphite anodes partially dissolve each year and must be replaced over time. The direct current then flows from the anode through the soil to the piping system, which acts as the cathode, and back to the rectifier through another insulated copper wire. As a result of the electrochemical properties of the impressed current cathodic protection system, corrosion takes place only at the anodes and not at the piping system. Depleted anodes must be replaced for continued Cathodic protection of the piping system.

Sacrificial Anode System

In this system, a metal or alloy reacting more vigorously than that corroding specimen, acts as an anode and the corroding structure as a whole is rendered Cathodic. These anodes are made of materials such as magnesium, aluminum or zinc, which are anodic with respect to the protected structure. The sacrificial anodes are connected directly to the structure.

Advantages

- 1. Needs no external power source.
- 2. Does not involve maintenance work
- 3. If carefully designed it can render protection for anticipated period.
- 4. Installation is simple
- 5. Does not involve expensive accessories like rectifier unit, etc.,
- 6. Economical for small structures

Disadvantages

- 1. The driving voltage is small and therefore the anodes have to be fitted close to the structure or on the structure, thereby increasing the weight or load on the structure.
- 2. The anodes have to be distributed all over the structure (as throwing power is lower) and therefore have design limitations in certain applications.
- 3. Once designed and installed, protection current cannot be altered or increased as may be needed in case of cathode area extension (unprotected) or foreign structure interference (physical contact).

Impressed Current System

The impressed current anode system, on the other hand, has several advantages over the sacrificial anode systems. In this system the protection current is "*Forced*" through the environment to the structure (cathode) by means of an external D.C. source. Obviously we need some material to function as anodes. It can be high silicon chromium cast iron anodes, graphite anodes, or lead-silver alloy anodes.

Advantages

- 1. Since the driving voltage is large, this system offers freedom of installation design and location.
- 2. Fewer anodes can protect large structure.
- 3. Variations in protection current requirements can be adjusted to some extent (to be incorporated at design stage).

Disadvantages

- 1. Shut down of D.C. supply for a long times allows structure to corrode again.
- 2. Reversal of anode cathode connection at D.C. source will be harmful, as structure will dissolve anodic
- 3. Needs trained staff for maintenance of units and for monitoring
- 4. Initial investments are higher and can pay off only in long run and economic only for large structures
- 5. Power cost must be incorporated in all economic considerations.
- 6. Possibility of over protection should be avoided as it will affect the life of the paint.
- 7. Any foreign structure coming within this field will cause an interference problem.

Alkalinity and pH Adjustment

Adjusting pH and alkalinity is the most common corrosion control method because it is simple and inexpensive. pH is a measure of the concentration of hydrogen ions present in water; alkalinity is a measure of water's ability to neutralize acids.

Generally, water pH less than 6.5 is associated with uniform corrosion, while pH between 6.5 and 8.0 can be associated with pitting corrosion. Some studies have suggested that systems using only pH to control corrosion should maintain a pH of at least 9.0 to reduce the availability of hydrogen ions as electron receptors. However, pH is not the only factor in the corrosion equation; carbonate and alkalinity levels affect corrosion as well.

Generally, an increase in pH and alkalinity can decrease corrosion rates and help form a protective layer of scale on corrodible pipe material. Chemicals commonly used for pH and alkalinity adjustment are hydrated lime (CaOH2 or calcium hydroxide), caustic soda (NaOH or sodium hydroxide), soda ash (Na2CO3 or sodium carbonate), and sodium bicarbonate (NaHCO3, essentially baking soda). Care must be taken, however, to maintain pH at a level that will control corrosion but not conflict with optimum pH levels for disinfection and control of disinfection by-products.

Corrosion Inhibitors

Inhibitors reduce corrosion by forming protective coatings on pipes. The most common corrosion inhibitors are inorganic phosphates, sodium silicates and mixtures of phosphates and silicates. These chemicals have proven successful in reducing corrosion in many water systems.

The phosphates used as corrosion inhibitors include polyphosphates, orthophosphates, glassy phosphates and bimetallic phosphates. In some cases, zinc is added in conjunction with orthophosphates or polyphosphates. Glassy phosphates, such as sodium hexametaphosphate, effectively reduce iron corrosion at dosages of 20 to 40 mg/l. Glassy phosphate has an appearance of broken glass and can cut the operator. Sodium silicates have been used for over 50 years to inhibit corrosion. The effectiveness depends on the water pH and carbonate concentration. Sodium silicates are particularly effective for systems with high water velocities, low hardness, low alkalinity and a pH of less than 8.4. Typical coating maintenance doses range from 2 to 12 mg/1. They offer advantages in hot water systems because of their chemical stability. For this reason, they are often used in boilers of steam heating systems.

Granular Activated Carbon / Powdered Activated Carbon

Along with aeration, granular activated carbon (GAC) and powdered activated carbon (PAC) are suitable treatments for removal of organic contaminants such as VOCs, solvents, PCBs, herbicides and pesticides.

Activated carbon is carbon that has been exposed to very high temperature, creating a vast network of pores with a very large internal surface area; one gram of activated carbon has a surface area equivalent to that of a football field. It removes contaminants through adsorption, a process in which dissolved contaminants adhere to the surface of the carbon particles.

GAC can be used as a replacement for existing media (such as sand) in a conventional filter or it can be used in a separate contactor such as a vertical steel pressure vessel used to hold the activated carbon bed.

After a period of a few months or years, depending on the concentration of the contaminants, the surface of the pores in the GAC can no longer adsorb contaminants and the carbon must be replaced. Several operational and maintenance factors affect the performance of granular activated carbon.

Contaminants in the water can occupy adsorption sites, whether or not they are targeted for removal. Also, adsorbed contaminants can be replaced by other contaminants with which GAC has a greater affinity, so their presence might interfere with removal of contaminants of concern.

A significant drop in the contaminant level in influent water can cause a GAC filter to desorb, or slough off, adsorbed contaminants, because GAC is essentially an equilibrium process. As a result, raw water with frequently changing contaminant levels can result in treated water of unpredictable quality.

Bacterial growth on the carbon is another potential problem. Excessive bacterial growth may cause clogging and higher bacterial counts in the treated water. The disinfection process must be carefully monitored in order to avoid this problem.

Powdered activated carbon consists of finely ground particles and exhibits the same adsorptive properties as the granular form. PAC is normally applied to the water in a slurry and then filtered out. The addition of PAC can improve the organic removal effectiveness of conventional treatment processes and also remove tastes and odors.

Advantages of PAC are that it can be used on a short-term or emergency basis with conventional treatment, creates no headloss, does not encourage microbial growth, and has relatively small capital costs.

The main disadvantage is that some contaminants require large doses of PAC for removal. It is also somewhat ineffective in removing natural organic matter due to the competition from other contaminants for surface adsorption and the limited contact time between the water and the carbon.

Disinfection Review Summary

Chlorine

Upon adding chlorine to water, two chemical species, known together as free chlorine, are formed. These species, hypochlorous acid (HOCI, electrically neutral) and hypochlorite ion (OCI-, electrically negative), behave very differently. Hypochlorous acid is not only more reactive than the hypochlorite ion, but is also a stronger disinfectant and oxidant.

The ratio of hypochlorous acid to hypochlorite ion in water is determined by the pH. At low pH (higher acidity), hypochlorous acid dominates while at high pH hypochlorite ion dominates. Thus, the speed and efficacy of chlorine disinfection against pathogens may be affected by the pH of the water being treated. Fortunately, bacteria and viruses are relatively easy targets of chlorination over a wide range of pH. However, treatment operators of surface water systems treating raw water contaminated by the parasitic protozoan Giardia may take advantage of the pH-hypochlorous acid relationship and adjust the pH to be effective against Giardia, which is much more resistant to chlorination than either viruses or bacteria.

Another reason for maintaining a predominance of hypochlorous acid during treatment has to do with the fact that pathogen surfaces carry a natural negative electrical charge. These surfaces are more readily penetrated by the uncharged, electrically neutral hypochlorous acid than the negatively charged hypochlorite ion. Moving through slime coatings, cell walls and resistant shells of waterborne microorganisms, hypochlorous acid effectively destroys these pathogens. Water is made microbiologically safe as pathogens either die or are rendered incapable of reproducing. A typical bacterium has a negatively charged slime coating on its exterior cell wall, which is effectively penetrated by electrically neutral hypochlorous acid, favored by lower pH's.

Factors in Chlorine Disinfection: Concentration and Contact Time

In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

Chloramines

Chloramines are chemical compounds formed by combining a specific ratio of chlorine and ammonia in water. Because chloramines are relatively weak as a disinfectant, they are almost never used as a primary disinfectant. Chloramines provide a durable residual, and are often used as a secondary disinfectant for long distribution lines and where free chlorine demand is high. Chloramines may also be used instead of chlorine in order to reduce chlorinated byproduct formation and to remove some taste and odor problems.

Advantages

- Reduced formation of THMs, HAAs
- Will not oxidize bromide to bromine forming brominated byproducts
- More stable residual than free chlorine
- > Excellent secondary disinfectant, has been found to be better than free chlorine at controlling coliform bacteria and biofilm growth
- Lower taste and odor than free chlorine

Limitations

- Weak disinfectant and oxidant
- Requires shipment and handling of ammonia or ammonia compounds as well as chlorinating chemicals
- Ammonia is toxic to fish, and may pose problems for aquarium owners
- ➤ Will cause problems for kidney dialysis if not removed from water

Chlorine Dioxide

Chlorine dioxide (CIO_2) is generated on-site at water treatment facilities. In most generators sodium chlorite and elemental chlorine are mixed in solution, which almost instantaneously forms chlorine dioxide. Chlorine dioxide characteristics are quite different from chlorine. In solution it is a dissolved gas, which makes it largely unaffected by pH but volatile and relatively easily stripped from solution. Chlorine dioxide is also a strong disinfectant and a selective oxidant. While chlorine dioxide does produce a residual it is only rarely used for this purpose.

Advantages

- ✓ Effective against Cryptosporidium
- ✓ Up to five times faster than chlorine at inactivating Giardia
- ✓ Disinfection is only moderately affected by pH
- ✓ Will not form chlorinated byproducts (THMs, HAAs)
- ✓ Does not oxidize bromide to bromine (can form bromate in sunlight)
- ✓ More effective than chlorine in treating some taste and odor problems
- ✓ Selective oxidant used for manganese oxidation and targeting some chlorine resistant organics

Limitations

- ✓ Inorganic byproduct formation (chlorite, chlorate)
- ✓ Highly volatile residuals
- ✓ Requires on-site generation equipment and handling of chemicals (chlorine and sodium chlorite)
- ✓ Requires a high level of technical competence to operate and monitoring equipment, product and residuals
- ✓ Occasionally poses unique odor and taste problems
- ✓ High operating cost (chlorite chemical cost is high)

Understanding Chlorine Basics

Chlorine is applied to water in one of three forms: elemental chlorine (chlorine gas), hypochlorite solution (bleach), or dry calcium hypochlorite. All three forms produce free chlorine in water.

Advantages

- ✓ Highly effective against most pathogens
- ✓ Provides a residual to protect against recontamination and to reduce bio-film growth in the distribution system
- ✓ Easily applied, controlled, and monitored
- ✓ Strong oxidant meeting most preoxidation objectives
- ✓ Operationally the most reliable
- ✓ The most cost-effective disinfectant

Limitations

- ✓ Byproduct formation (THMs, HAAs)
- ✓ Will oxidize bromide to bromine, forming brominated organic byproducts
- ✓ Not effective against Cryptosporidium
- ✓ Requires transport and storage of chemicals

Elemental Chlorine

Elemental chlorine is the most commonly used form of chlorine. It is transported and stored as a liquefied gas under pressure. Water treatment facilities typically use chlorine in 100 and 150-lb cylinders or one-ton containers. Some large systems use railroad tank cars or tanker trucks.

Advantages

- ✓ Lowest cost of chlorine forms
- ✓ Unlimited shelf-life

Limitations

- ✓ Hazardous gas requires special handling and operator training.
- ✓ Additional regulatory requirements, including EPA's Risk Management Program and the Occupational Safety and Health Administration's Process Safety Management program

Factors in Chlorine Disinfection: Concentration and Contact Time

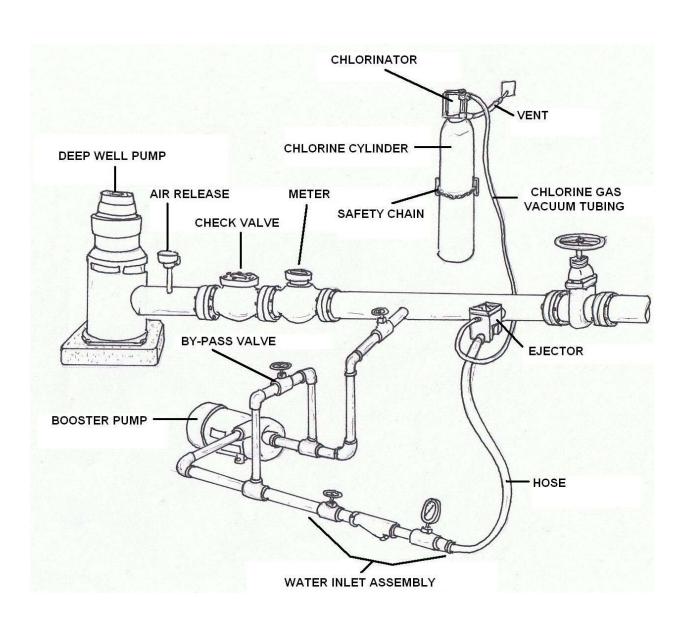
In an attempt to establish more structured operating criteria for water treatment disinfection, the CXT concept came into use in 1980. Based on the work of several researchers, CXT values [final free chlorine concentration (mg/L) multiplied by minimum contact time (minutes)], offer water operators guidance in computing an effective combination of chlorine concentration and chlorine contact time required to achieve disinfection of water at a given temperature. The CXT formula demonstrates that if an operator chooses to decrease the chlorine concentration, the required contact time must be lengthened. Similarly, as higher strength chlorine solutions are used, contact times may be reduced (Connell, 1996).

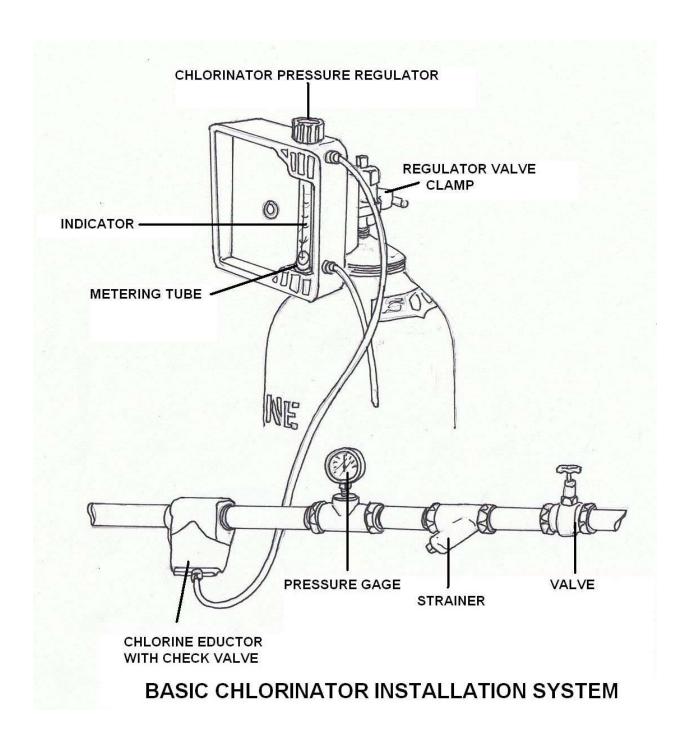
Disinfection and Bioterrorism

Disinfection is crucial to water system security, providing the 'front line' of defense against biological contamination. Normal filtration and disinfection processes would dampen or remove the threats posed by a number of potential bioterrorism agents. In addition, water systems should maintain an ability to increase disinfection doses in response to a particular threat. However, conventional treatment barriers in no way guarantee safety from biological attacks. For many potential bioterrorism agents, there is little scientific information about what levels of reduction can be achieved with chlorine or other disinfectants. In addition, contamination of water after it is treated could overwhelm the residual disinfectant levels in distribution systems. Furthermore, typical water quality monitoring does not provide real-time data to warn of potential problems (Rose 2002). Additional research and funding are needed to improve prevention, detection, and responses to potential threats.

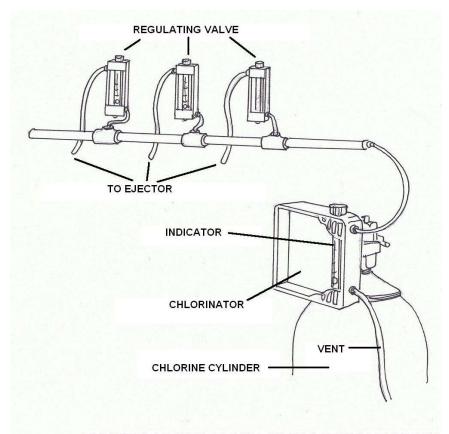
Protecting Chlorine and Other Treatment Chemicals

As part of its vulnerability assessment, each water system must consider its transportation, storage and use of treatment chemicals. These chemicals are both critical assets (necessary for delivering safe water) and potential vulnerabilities (may pose significant hazards, if released). For example, a release of chlorine gas would pose an immediate threat to system operators, and a large release may pose a danger to the surrounding community. As part of its vulnerability assessment, a water system using chlorine must determine if existing layers of protection are adequate. If not, a system should consider additional measures to reduce the likelihood of an attack or to mitigate the potential consequences.

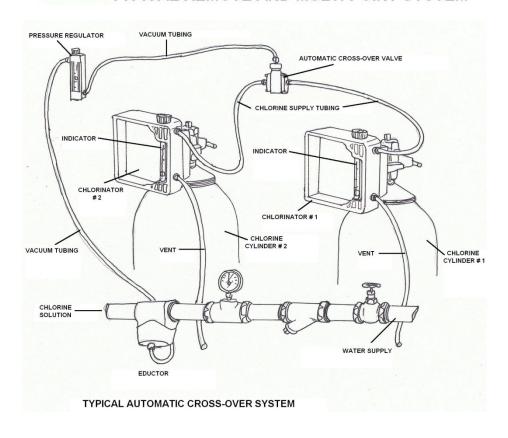

Possible measures to address chlorine security include: enhanced physical barriers (e.g., constructing secure chemical storage facilities), policy changes (e.g., tightening procedures for receiving chemical shipments), reducing quantities stored on site, or adopting alternative disinfection methods. These options must be weighed and prioritized, considering the unique characteristics and resources of each system. Water system officials must evaluate the risk-tradeoffs associated with each option. For example, reducing the chemical quantities on-site may reduce a system's ability to cope with an interruption of chemical supplies. Furthermore, changing disinfection technologies will not necessarily improve overall safety and security.


Understanding Calculation and Reporting of CT Data

Basically, log inactivation is a measurement of how effective a disinfection process is at killing microorganisms in a specific environment. Operationally, directly measuring log inactivation is not practical, but determining the microbial inactivation for an individual water treatment plant (WTP) can be achieved using the log inactivation calculations. The log inactivation calculation adjusts the WTP's CT value to account for the disinfection chemical reaction process variables that influence the disinfection process efficiency.


Log Inactivation

"Log inactivation" is a convenient way to express the number or percent of microorganisms inactivated (killed or unable to replicate) through the disinfection process. For example, a 3 log inactivation value means that 99.9% of microorganisms of interest have been inactivated. Log inactivation measures the effectiveness of the disinfection process, which is influenced by variables including disinfectant concentration, temperature, pH and disinfectant type (e.g., lower temperature results in less inactivation since the reactions slow down as temperature decreases).



Water Treatment Primer 3 © 1/1/2013 TLC

TYPICAL REMOTE AND MULTI-POINT SYSTEM

CT and Log Inactivation Calculation Overview

This reference takes you step by step through the CT and log inactivation calculation procedure, through an example calculation, and presents the disinfection segment concept.

"CT" (minutes•mg/L) in the context of water treatment is defined as the product of: C, for "residual disinfectant concentration" in mg/L (determined before or at the first customer) and T, for the corresponding "disinfectant contact time" in minutes. CT is a measure of the disinfection process reaction time, but CT is only one of several variables that control the effectiveness of the disinfection process.

CTCALC = Concentration Time, Calculated Value (minutes•mg/L)

C = Residual disinfectant concentration measured during peak flow (mg/L)

T = Actual Detention Time (minutes)

 $CTCALC = C \times T$

TDT = Theoretical Detention Time (minutes)

V = Volume, based on low water level (gallons)

Q = Peak hourly flow (qpm)

TDT = V/Q

Volume Equations:

Cylindrical: π x r2 x d Pipeline: π x r2 x l Rectangular: l x w x d d = minimum water depth π = 3.1416

Disinfection Segments

Total inactivation = Σ log inactivation from each disinfection segment Disinfection Profile

Almost all community and non-transient, non-community public water systems that use Surface Water or Ground Water Under the Direct Influence of Surface Water sources are required to develop a disinfection profile. Systems are required to retain the disinfection profile in graphic form and it must be available for review by the state as part of a sanitary survey.

Disinfection Profile and Benchmark

- A disinfection profile is a graphical representation of a system's level of *Giardia lamblia* or virus inactivation measured, at least weekly, during the course of a year.
- A benchmark is the lowest monthly average microbial inactivation during the disinfection profile time period.

The EPA has developed a disinfection profile spreadsheet calculator that calculates and graphs the disinfection profile for *Giardia* and viruses. The spreadsheet can be downloaded from: http://www.epa.gov/safewater/mdbp/lt1eswtr.html.

Understanding Chlorine Demand

The amount of chlorine used by reactions with substances that oxidize in the water before chlorine residual can be measured. It is the difference between the amount of chlorine added to wastewater and the amount of chlorine residual remaining after a given contact time. Chlorine demand may change with dosage, time, temperature, pH, and the type and amount of pollutants in the water.

The presence of chlorine residual in drinking water indicates that: 1) a sufficient amount of chlorine was added initially to the water to inactivate the bacteria and some viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during storage. The presence of free residual chlorine in drinking water is correlated with the absence of disease-causing organisms, and thus is a measure of the potability of water.

While chlorine's most important attributes are its broad-spectrum germicidal potency and persistence in water distribution systems, its ability to efficiently and economically address many other water treatment concerns has also supported its wide use. Chlorine-based compounds are the only major disinfectants exhibiting lasting residual properties. Residual protection guards against microbial regrowth and prevents contamination of the water as it moves from the treatment plant to household taps.

Definitions

When chlorine is added to water, some of the chlorine reacts first with organic materials and metals in the water and is not available for disinfection (this is called the chlorine demand of the water). The remaining chlorine concentration after the chlorine demand is accounted for is called total chlorine. Total chlorine is further divided into: 1) the amount of chlorine that has reacted with nitrates and is unavailable for disinfection which is called combined chlorine and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and thus a measure to determine the potability of water.

For example, if using completing clean water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be present. Thus, the free chlorine concentration will be equal to the concentration of chlorine initially added. In natural waters, especially surface water supplies such as rivers, organic material will exert a chlorine demand, and nitrates will form combined chlorine. Thus, the free chlorine concentration will be less than the concentration of chlorine initially added.

Chlorine Dose, Demand, and Residual

Most water treatment plants are required to disinfect the water, a process used to kill harmful bacteria. The most frequently used method of disinfection is the addition of chlorine. Here, we will briefly introduce three terms used during chlorination - chlorine dose, chlorine demand, and chlorine residual. These three characteristics are related to each other using the following equation:

(Chlorine demand) = (Chlorine dose) - (Chlorine residual)

The amount of chlorine added to the water is known as the chlorine dose. This is a measured quantity chosen by the operator and introduced into the water using a chlorinator or hypochlorinator.

As the chlorine reacts with bacteria and chemicals in the water, some of the chlorine is used up. The amount of chlorine used up by reacting with substances in the water is known as the chlorine demand. If nothing reacts with the chlorine (as would be the case in distilled water), then the chlorine demand is zero. However, in most cases the operator should count on some of the chlorine dose being used up when it reacts with substances in the water.

The amount of chlorine remaining in the water after some of the chlorine reacts with substances in the water is known as the chlorine residual. This lab introduces a test which can be used to calculate the chlorine residual. The chlorine residual is the most important of these three values - dose, demand, and residual - because it represents the actual amount of chlorine remaining in the water to act as a disinfectant.

The test for chlorine residual is performed frequently at most water treatment plants. Since regulations require a certain level of chlorine in water at the far ends of the distribution system, operators should be sure to test the chlorine residual in the distribution system as well as in the clear well.

Combined residual chlorination involves the addition of chlorine to water to produce, with natural ammonia present or with ammonia added, a combined available chlorine residual. Combined available chlorine forms have lower oxidation potentials than free available chlorine forms and are less effective as oxidants. They are also less effective as disinfectants. In fact, 25 times more combined available residual chlorine must be obtained to meet the same disinfectant level as a free available residual. The contact time has to be up to 100 times greater to obtain the same level of bacterial kill at the same pH and temperature conditions.

When a combined available chlorine residual is desired, the character of the water determines how it can be accomplished. These conditions may have to be considered:

- 1. If the water contains sufficient ammonia to produce the desired level of combined residual, the application of sufficient chlorine alone is all that is needed.
- 2. If the water contains too little or no ammonia, then addition of both chlorine and ammonia is required.
- 3. If the water has a free available chlorine, the addition of ammonia alone is all that is required. A combined chlorine residual should contain little or no free available chlorine.

The practice of combined residual chlorination is the most effective way of maintaining a stable residual throughout the distribution system to the point of consumer use. Combined residuals in the distribution system are generally longer-lasting and will carry farther into the system, but they are not as effective as free residuals are at disinfecting. The levels required by the regulatory agencies, when using combined residuals, is 1.0 ppm to 2.0 ppm.

Understanding Chlorine Residual

The amount of available chlorine present in wastewater after a given contact time (20 minutes at peak flow; 30 minutes at average flow), and under specific conditions including pH and temperature.

For effective water treatment, the water supply industry has recognized the need for adequate exposure to the disinfectant and sufficient disinfectant dosage for a certain amount of time. In the 1980s, the two functions were combined with the development of the CT values for various disinfectants.

CT represents the combination of the disinfectant dosage and the length of time water has been exposed to a minimum amount of the disinfectant residual.

Mathematically it is represented as CT = concentration x time concentration = final disinfectant concentration in mg/l time = minimum exposure time in minutes

In an assessment of disinfection effectiveness, two types of organisms have been chosen as disinfection surrogates – the protozoan Giardia and viruses. CT values established for disinfection of surface waters require treatment plants to achieve a three-log or 99.9% reduction

in Giardia and a four-log or 99.99% virus reduction. It is important to recognize that the use of chlorine as the disinfectant is only one part of the treatment process. Equally important is the need for improved filtration to remove organisms. A combination of proper disinfection and filtration is most effective in providing safe drinking water. Recent experiments in controlling Cryptosporidium also suggest the effectiveness of filtration in the water treatment process.

Free residual chlorination involves the application of chlorine to water to produce--either directly or by first destroying any naturally present ammonia--a free available chlorine residual and to maintain this residual through part or all of the water treatment plant and distribution system. Free available residual forms have higher oxidation potentials than combined available chlorine forms and are more effective as disinfectants.

When free available chlorine residuals are desired, the characteristics of the water will determine how this will be accomplished. This may have to be considered:

- 1. If the water contains no ammonia or other nitrogen compounds, any application of chlorine will yield a free residual once it has reacted with any bacteria, virus and other microorganisms present in the water.
- 2. If the water contains ammonia, it results in the formation of a combined residual, which must be destroyed by applying an excess of chlorine.

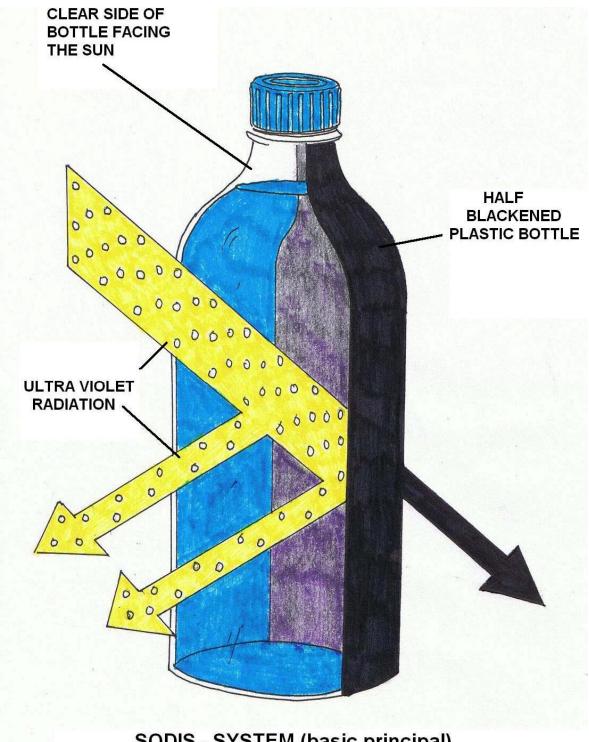
Breakpoint Chlorination

Breakpoint chlorination is the name of the process of adding chlorine to water until the chlorine demand has been satisfied. Chlorine demand equals the amount of chlorine used up before a free available chlorine residual is produced. Further additions of chlorine will result in a chlorine residual that is directly proportional to the amount of chlorine added beyond the breakpoint. Public water supplies normally chlorinate past the breakpoint.

When chlorine is initially added to water, the following may happen:

- 1. If the water contains some iron, manganese, organic matter, and ammonia, the chlorine reacts with these materials and no residual is formed, meaning that no disinfection has taken place.
- 2. If additional chlorine is added at this point, it will react with the organics and ammonia to form chloramines. The chloramines produce a combined chlorine residual. As the chlorine is combined with other substances, it loses some of the disinfection strength. Combined residuals have poor disinfection power and may be the cause of taste and odor problems.
- 3. With a little more chlorine added, the chloramines and some of the chlororganics are destroyed.
- 4. With still more chlorine added, a free chlorine residual is formed, free in the sense that it can react quickly.

Free available chlorine is the best residual for disinfection. It disinfects faster and without the swimming-pool odor of combined residual chlorine. The free available residual forms at the breakpoint; therefore, the process is called breakpoint chlorination. The common practice today is to go just beyond the breakpoint to a residual of about .2 to .5 ppm.

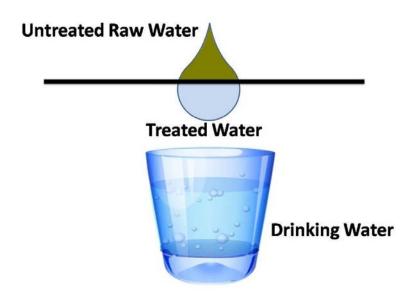

A variety of reactions take place during chlorination. When chlorine is added to a water containing ammonia (NH₃), the ammonia reacts with hypochlorous acid (HOCL) to form monochloramine, dichloramine, and trichloramine. The formation of these chloramines depends on the pH of the water and the initial chlorine-ammonia ratio.

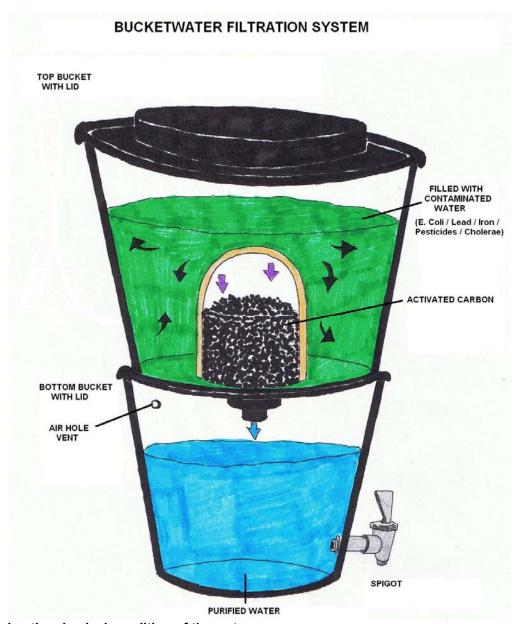
Ammonia + Hypochlorous acid> Chloramine + Water
NH3 + HOC1> NH2C1 + H20 Monochloramine
NH2C1 + HOC1> NHC12 + H20 Dichloramine
NHC12 + HOC1> NC13 + H20 Trichloramine

At the pH of most natural water (pH 6.5 to 7.5), monochloramine and dichloramine exist together. At pH levels below 5.5, dichloramine exists by itself. Below pH 4.0, trichloramine is the only compound found. The monochloramine and dichloramine forms have a definite disinfection power. Dichloramine is a more effective disinfecting agent than monochloramine. However, dichloramine is not recommended as a disinfectant due to the possibility of the formation of taste and odor compounds. Chlorine reacts with phenol and salicylic acid to form chlorophenol, which has an intense medicinal odor. This reaction is much slower in the presence of monochloramines.

Both the chlorine residual and the contact time are essential for effective disinfection. It is important to have complete mixing. The operator also needs to be aware that changes in the pH may affect the ability of the chlorine to disinfect the water. The operator must examine the application and select the best point of feed and the best contact time to achieve the results desired. The operator needs to consider:

- 1. Whether the injection point and the method of mixing is designed so that the disinfectant is able to get into contact with all of the water to be disinfected. This also depends on whether pre-and/or post-chlorination is being used.
- 2. Contact time. In situations of good initial mixing, the longer the contact time, the more effective the disinfection.
- 3. Effectiveness of upstream treatment processes. The lower the turbidity of the water, the more effective the disinfection.
- 4. Temperature. At higher temperatures the rate of disinfection is more rapid.
- 5. Dosage and type of chemical. Usually the higher the dose, the quicker the disinfection rate. The form of disinfectant (chloramine or free chlorine) and the type of chemical used influence the disinfection rate.
- 6. pH. The lower the pH, the better the disinfection.


SODIS - SYSTEM (basic principal)


Emergency Disinfection of Drinking Water

USE ONLY WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH

- 1. Use bottled water that has not been exposed to flood waters if it is available.
- 2. If you don't have bottled water, you should boil water to make it safe. Boiling water will kill most types of disease-causing organisms that may be present. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for boiling. Boil the water for one minute, let it cool, and store it in clean containers with covers.
- 3. If you can't boil water, you can disinfect it using household bleach. Bleach will kill some, but not all, types of disease-causing organisms that may be in the water. If the water is cloudy, filter it through clean cloths or allow it to settle, and draw off the clear water for disinfection. Add 1/8 teaspoon (or 8 drops) of regular, unscented, liquid household bleach for each gallon of water, stir it well and let it stand for 30 minutes before you use it. Store disinfected water in clean containers with covers.
- 4. If you have a well that has been flooded, the water should be tested and disinfected after flood waters recede. If you suspect that your well may be contaminated, contact your local or state health department or agriculture extension agent for specific advice.
- (U.S. federal agencies and the Red Cross recommend these same four steps to disinfect drinking water in an emergency. Please, read the text below for important details about disinfection.

 More information about disinfection
 - ✓ In times of crisis, follow advice from local officials. Local health departments or public water systems may urge consumers to use more caution or to follow additional measures than the information provided here.
 - ✓ Look for other sources of potable water in and around your home.
 - ✓ When your home water supply is interrupted by natural or other forms of disaster, you can obtain limited amounts of water by draining your hot water tank or melting ice cubes. In most cases, well water is the preferred source of drinking water. If it is not available and river or lake water must be used, avoid sources containing floating material and water with a dark color or an odor. Generally, flowing water is better quality than stagnant water.

Examine the physical condition of the water.

When emergency disinfection is necessary, disinfectants are less effective in cloudy, murky or colored water. Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter. After filtering until it is clear, or allowing all dirt and other particles to settle, draw off the clean and clear water for disinfection. Water prepared for disinfection should be stored only in clean, tightly covered, containers, not subject to corrosion.

- ✓ Choose a disinfection method.
- ✓ Boiling and chemical treatment are two general methods used to effectively disinfect small quantities of filtered and settled water.

Boiling

Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes. These disease-causing organisms are less likely to occur in well water (as long as it has not been affected by flood waters). If not treated properly and neutralized, Giardia may cause diarrhea, fatigue, and cramps after ingestion. Cryptosporidium is highly resistant to disinfection. It may cause diarrhea, nausea and/or stomach cramps. People with severely weakened immune systems are likely to have more severe and more persistent symptoms than healthy individuals.

Boil filtered and settled water vigorously for one minute (at altitudes above one mile, boil for three minutes). To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.

If boiling is not possible, chemical disinfection of filtered and settled water collected from a well, spring, river, or other surface water body will still provide some health benefits and is better than no treatment at all.

Chemical Treatment

When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. For chemical disinfection to be effective, the water must be filtered and settled first. Chlorine and iodine are the two chemicals commonly used to treat water. They are somewhat effective in protecting against exposure to Giardia, but may not be effective in controlling more resistant organisms like Cryptosporidium. Chlorine is generally more effective than iodine in controlling Giardia, and both disinfectants work much better in warm water. You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. Do not use non-chlorine bleach to disinfect water. Typically, household chlorine bleaches will be 5.25% available chlorine. Follow the procedure written on the label. When the necessary procedure is not given, find the percentage of available chlorine on the label and use the information in the following table as a guide. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)

Available Chlorine

Drops per Quart/Gallon of Clear Water Drops per Liter of Clear Water

```
1%
10 per Quart - 40 per Gallon
10 per Liter
4-6%
2 per Quart - 8 per Gallon (1/8 teaspoon)
2 per Liter
7-10%
1 per Quart - 4 per Gallon
1 per Liter
```

(If the strength of the bleach is unknown, add ten drops per quart or liter of filtered and settled water. Double the amount of chlorine for cloudy, murky or colored water or water that is extremely cold.)

Mix the treated water thoroughly and allow it to stand, preferably covered, for 30 minutes. The water should have a slight chlorine odor. If not, repeat the dosage and allow the water to stand for an additional 15 minutes. If the treated water has too strong a chlorine taste, allow the water to stand exposed to the air for a few hours or pour it from one clean container to another several times.

You can use granular calcium hypochlorite to disinfect water.

Add and dissolve one heaping teaspoon of high-test granular calcium hypochlorite (approximately $\frac{1}{4}$ ounce) for each two gallons of water, or 5 milliliters (approximately 7 grams) per 7.5 liters of water. The mixture will produce a stock chlorine solution of approximately 500 milligrams per liter, since the calcium hypochlorite has available chlorine equal to 70 percent of its weight. To disinfect water, add the chlorine solution in the ratio of one part of chlorine solution to each 100 parts of water to be treated. This is roughly equal to adding 1 pint (16 ounces) of stock chlorine to each 12.5 gallons of water or (approximately $\frac{1}{2}$ liter to 50 liters of water) to be disinfected. To remove any objectionable chlorine odor, aerate the disinfected water by pouring it back and forth from one clean container to another.

You can use chlorine tablets to disinfect filtered and settled water.

Chlorine tablets containing the necessary dosage for drinking water disinfection can be purchased in a commercially prepared form. These tablets are available from drug and sporting goods stores and should be used as stated in the instructions. When instructions are not available, use one tablet for each quart or liter of water to be purified.

You can use tincture of iodine to disinfect filtered and settled water.

Common household iodine from the medicine chest or first aid kit may be used to disinfect water. Add five drops of 2 percent U.S. or your country's approved Pharmacopeia tincture of iodine to each quart or liter of clear water. For cloudy water add ten drops and let the solution stand for at least 30 minutes.

You can use iodine tablets to disinfect filtered and settled water.

Purchase commercially prepared iodine tablets containing the necessary dosage for drinking water disinfection at drug and sporting goods stores. Use as stated in instructions. When instructions are not available, use one tablet for each quart or liter of filtered and settled water to be purified.

ONLY USE WATER THAT HAS BEEN PROPERLY DISINFECTED FOR DRINKING, COOKING, MAKING ANY PREPARED DRINK, OR FOR BRUSHING TEETH.

Summary and Illustration of Key Points

- ✓ Filter murky or colored water through clean cloths or allow it to settle. It is better to both settle and filter.
- ✓ Boiling is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia and Cryptosporidium, which are frequently found in rivers and lakes.
- ✓ To improve the flat taste of boiled water, aerate it by pouring it back and forth from one container to another and allow it to stand for a few hours, or add a pinch of salt for each quart or liter of water boiled.
- √ When boiling is not practical, certain chemicals will kill most harmful or disease-causing organisms. Chlorine (in the form of unscented bleach) and iodine are the two chemicals commonly used to treat water.
- ✓ You can use a non-scented, household chlorine bleach that contains a chlorine compound to disinfect water. (Remember, 1/8 teaspoon and 8 drops are about the same quantity.)
- ✓ You can use tincture of iodine to disinfect filtered and settled water. Common household iodine from the medicine chest or first aid kit may be used to disinfect water.
- ✓ Tincture of iodine. For cloudy water add ten drops and let the solution stand for at least 30 minutes.

Understanding Combined Chlorine Residual

The residual consisting of chlorine that is combined with ammonia, nitrogen, or nitrogenous compounds (chloramines).

Understanding Free Available Chlorine

The residual consisting of hypochlorite ions (OCI-), hypochlorous acid (HOCI) or a combination of the two. These are the most effective in killing bacteria.

Total Combined Chlorine Residual

The total amount of chlorine present in a sample. This is the sum of the free chlorine residual and the combined available chlorine residual.

Understanding Pre-Chlorination

Chlorination is the application of chlorine to water to accomplish some definite purpose. In this lesson, we will be concerned with the application of chlorine for the purpose of disinfection, but you should be aware that chlorination can also be used for taste and odor control, iron and manganese removal, and to remove some gases such as ammonia and hydrogen sulfide. Chlorination is currently the most frequently used form of disinfection in the water treatment field. However, other disinfection processes have been developed. These alternatives will be discussed at the end of this lesson.

Pre-Chlorination and Post-Chlorination

Like several other water treatment processes, chlorination can be used as a pretreatment process (prechlorination) or as part of the primary treatment of water (postchlorination). Treatment usually involves either postchlorination only or a combination of prechlorination and postchlorination.

Pre-chlorination is the act of adding chlorine to the raw water. The residual chlorine is useful in several stages of the treatment process - aiding in coagulation, controlling algae problems in basins, reducing odor problems, and controlling mudball formation. In addition, the chlorine has a much longer contact time when added at the beginning of the treatment process, so prechlorination increases safety in disinfecting heavily contaminated water.

Post-chlorination is the application of chlorine after water has been treated but before the water reaches the distribution system. At this stage, chlorination is meant to kill pathogens and to provide a chlorine residual in the distribution system. Post-chlorination is nearly always part of the treatment process, either used in combination with prechlorination or used as the sole disinfection process.

Until the middle of the 1970s, water treatment plants typically used both prechlorination and post-chlorination. However, the longer contact time provided by prechlorination allows the chlorine to react with the organics in the water and produce carcinogenic substances known as trihalomethanes. As a result of concerns over trihalomethanes, prechlorination has become much less common in the United States. Currently, prechlorination is only used in plants where trihalomethane formation is not a problem.

Understanding Breakpoint Chlorination

Addition of chlorine to water until the chlorine demand has been satisfied. Since ammonia is present in all domestic wastewaters, the reaction of ammonia with chlorine is a great significance. When chlorine is added to waters containing ammonia, the ammonia reacts with hypochlorous acid (HOCI) to form monochloramine, dichloramine and trichloramine. The formation of these chloramines depends on the pH of the solution and the initial chlorine-ammonia ratio.

Chlor-Alkali Membrane Process

The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride solution (brine). Depending on the method, several products besides hydrogen can be produced. If the products are separated, chlorine and sodium hydroxide (caustic soda) are the products; by mixing, sodium hypochlorite or sodium chlorate are produced, depending on the temperature. Higher temperatures are needed for the production of sodium chlorate instead of sodium hypochlorite. Industrial scale production began in 1892. When using calcium chloride or potassium chloride, the products contain calcium or potassium instead of sodium.

The process has a high energy consumption, for example over 4 billion kWh per year in West Germany in 1985, and produces equal (molar) amounts of chlorine and sodium hydroxide, which makes it necessary to find a use for the product for which there is less demand, usually the chlorine. There are three production methods in use. While the mercury cell method produces chlorine-free sodium hydroxide, the use of several tons of mercury leads to serious environmental problems. In a normal production cycle a few hundred pounds of mercury per year are emitted, which accumulate in the environment. Additionally, the chlorine and sodium hydroxide produced via the mercury-cell chloralkali process are themselves contaminated with trace amounts of mercury. The membrane and diaphragm method use no mercury, but the sodium hydroxide contains chlorine, which must be removed.

Understanding Chlorine's Effectiveness

In 1881, German bacteriologist Robert Koch demonstrated under controlled laboratory conditions that pure cultures of bacteria could be destroyed by hypochlorite (bleach). The bulk of chlorine disinfection research, which was conducted from the 1940s to the 1970s with a focus on bacteria, provided observations as to how chlorine kills the microorganism. The observations that (1) bacterial cells dosed with chlorine release nucleic acids, proteins and potassium and (2) membrane functions such as respiration and active transport are affected more by chlorine than are cytoplasmic processes, directed researchers' attention to the surface of the bacterial cell. The hypothesis was that the bacterial cell wall, under environmental stress, could interact with chlorine.

Chlorine exposure appears to cause physical, chemical, and biochemical alterations to the cell wall, thus destroying the cell's protective barrier, terminating vital functions, resulting in death of the microorganism. A possible sequence of events during chlorination would be: (1) disruption of the cell wall barrier by reactions of chlorine with target sites at the cell surface, (2) release of vital cellular constituents from the cell, (3) termination of membrane-associated functions, and (4) termination of cellular functions within the cell. During the course of this sequence of events, the microorganism dies, meaning it is no longer capable of growing or causing disease.

Understanding Chlorine Solubility Effects

Chlorine is only slightly soluble in water; its maximum solubility is approximately one percent at 49° C. At temperatures below this point it combines with water to form chlorine ice, a crystalline substance. When the water supply to a gas chlorinator is below normal room temperature, it may cool the chlorine gas to the point at which chlorine ice is formed and accumulates on the needle valve and gas outlet tube, resulting in erratic feed results. Because the vapor pressure of chlorine increases with rising temperatures, its solubility also decreases. At 212° F. chlorine is insoluble in water.

Chlorine dissolved in water forms a weak corrosive mixture of hydrochloric and hypochlorous acid. The corrosivity of chlorine solutions in water creates problems in handling chlorine spills and chlorine containers. Chlorine reacts with many compounds. Because of its great affinity for hydrogen, it removes hydrogen from some compounds, such as hydrogen sulfide. It also reacts with ammonia or other nitrogen-containing compounds to form various mixtures of chloramines. It reacts with organic materials, sometimes with explosive violence.

Chemicals like chlorine, bromine, and ozone are examples of oxidizers. It is their ability to oxidize or steal electrons from other substances that makes them good water sanitizers. As soon as the oxidizing agent is added to the water, it begins to combine with microorganisms like bacteria, algae, and whatever else the water may contain.

Now the free and available oxidizer is combining with contaminants and its effectiveness is reduced according to how much combining took place. Although the hydrogen ion does not play a direct reduction role on copper surfaces, pH can influence copper corrosion by altering the equilibrium potential of the oxygen reduction half-reaction and by changing the speciation of copper in solution (Reiber, 1989). Copper corrosion increases rapidly as the pH drops below 6; in addition, uniform corrosion rates can be high at low pH values (below about pH 7), causing metal thinning. At higher pH values (above about pH 8), copper corrosion problems are almost always associated with non-uniform or pitting corrosion processes (Edwards et al., 1994a; Ferguson et al., 1996). Edwards et al. (1994b) found that for new copper surfaces exposed to simple solutions that contained bicarbonate, chloride, nitrate, perchlorate or sulphate, increasing the pH from 5.5 to 7.0 roughly halved corrosion rates, but further increases in pH vielded only subtle changes.

The prediction of copper levels in drinking water relies on the solubility and physical properties of the cupric oxide, hydroxide and basic carbonate solids that comprise most scales in copper water systems (Schock et al., 1995). In the cupric hydroxide model of Schock et al. (1995), a decrease in copper solubility with higher pH is evident. Above a pH of approximately 9.5, an upturn in solubility is predicted, caused by carbonate and hydroxide complexes increasing the solubility of cupric hydroxide. Examination of experience from 361 utilities reporting copper levels under the U.S. EPA Lead and Copper Rule revealed that the average 90th-percentile copper levels were highest in waters with pH below 7.4 and that no utilities with pH above 7.8 exceeded the U.S. EPA's action level for copper of 1.3 mg/L (Dodrill and Edwards, 1995). However, problems associated with copper solubility were also found to persist up to about pH 7.9 in cold, high-alkalinity and high-sulphate groundwater (Edwards et al., 1994a).

In the pH range of 7-9, both the corrosion rate and the degree of tuberculation of iron distribution systems generally increase with increasing pH (Larson and Skold, 1958; Stumm, 1960; Hatch, 1969; Pisigan and Singley, 1987). Iron levels, however, were usually reported to decrease with increasing pH (Karalekas et al., 1983; Kashinkunti et al., 1999; Broo et al., 2001; Sarin et al., 2003). In a pipe loop system constructed from 90- to100-year-old unlined cast iron pipes taken from a Boston distribution system,

iron concentrations were found to steadily decrease when the pH was raised from 7.6 to 9.5 (Sarin et al., 2003). Similarly, when iron was measured in the distribution system following a pH increase from 6.7 to 8.5, a consistent downward trend in iron concentrations was found over 2 years (Karalekas et al., 1983). These observations are consistent with the fact that the solubility of iron-based corrosion by-products decreases with increasing pH.

Water with low pH, low alkalinity and low calcium is particularly aggressive towards cement materials. The water quality problems that may occur are linked to the chemistry of the cement. Lime from the cement releases calcium ions and hydroxyl ions into the drinking water. This, in turn, may result in a substantial pH increase, depending on the buffering capacity of the water (Leroy et al., 1996). Pilot-scale tests were conducted to simulate low-flow conditions of newly lined cement mortar pipes carrying low-alkalinity water (Douglas et al., 1996). In the water with an initial pH of 7.2, alkalinity of 14 mg/L as calcium carbonate and calcium at 13 mg/L as calcium carbonate, measures of pH as high as 12.5 were found.

Understanding Amperometric Titration

It appears that DPD colorimetric determination and amperometric titration as described in Standard Methods are the procedures most commonly used for routine measurement of total chlorine. Few studies have been conducted to evaluate these or other total residual chlorine measurement techniques. Bender5 studied approximately 10 test procedures and found that results using the DPD colorimetric procedure were consistently higher than those using amperometric titration. Brooks and Seegert6 described an amperometric titration procedure employing a recording polargraph and microburette, which was reported to be accurate and free from interference. The reliability of the DPD colorimetric method for free chlorine has been increasingly questioned in recent years.

The suitability of that procedure for accurate total chlorine determinations appears to the authors to be questionable, as well. Amperometric titration as described in Standard Methods cannot be used to measure total chlorine concentrations less than about 0.05 mg/L, which is at least an order of magnitude greater than levels of concern in natural waters for potential toxicity to aquatic organisms. A reliable, simple procedure for low-level total chlorine determinations is clearly needed.

Analytical Procedure

Section 409C of Standard Methods includes a General Discussion section on amperometric titration for the determination of chlorine in aqueous solutions. That discussion is applicable to the procedure used by the authors. Also included in Standard Methods is a section concerning the titration apparatus. Basically, the titration equipment consists of a buret capable of accurately delivering 0.01 mL of titrant, a sample cup, and a stirring device in which is housed a platinum electrode and a KCI reference electrode. Several companies manufacture amperometric titrators that fit this general description. The experience of the senior author is that some of the commercial titrators are less suitable than others, primarily because of the small surface area of some of the electrodes employed. A Wallace and Tiernan amperometric titrator was used by the authors in developing and applying the procedure described below.

Reagents

- a. Chlorine-free water. Only distilled or demineralized water that is free of chlorine should be used in preparing reagents. Chlorine-free water may be prepared by passing distilled or demineralized water through a suitable activated carbon filter adsorption column. The water may be tested for the presence of chlorine by titrating a sample as described in the Procedure section. Any deflection in the meter upon the addition of PAO titrant indicates the presence of chlorine or other oxidants that would interfere in the titration procedure.
- b. Standard phenylarsine oxide (PAO), 0.00564 N. See Standard Methods Section 409B, paragraph 3a.

Standardization – Dilute 50.00 mL of freshly prepared 0.0002256 N potassium biniodate to 200 mL in chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section. If the standard PAO is 0.00564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.

c. Phenylarsine oxide titrant, 0.000564 N. Dilute 10.00 mL of 0.00564 N PAO to 100.0 mL in chlorine-free water.

Standardization – Dilute 5.00 mL of 0.0002256 N potassium biniodate to 200 mL with chlorine-free water. Add approximately 1.5 g KI and stir to dissolve. Add 1 mL acetate buffer and allow to stand in the dark for 6 minutes. Titrate using the amperometric titrator and determine the equivalence point as detailed in the Procedure section below. If the PAO titrant is 0.000564 N, exactly 2.00 mL of PAO will be required to reach the equivalence point.

- d. Potassium biniodate, 0.0002256 N. Dissolve 0.7332 g reagent grade $KH(IO_3)2$ in 500 mL chlorine-free water and dilute to 1.00 L. Dilute 10.00 mL of that solution to 100.0 mL with chlorine-free water. That solution is used for the standardization of the PAO and should be freshly prepared.
- e. Acetate buffer solution, pH 4. See Standard Methods1 Section 409B, paragraph 3e.
- f. Potassium iodide, (KI), reagent grade crystals.

Procedure

a. Titrant selection. Normally a 200-mL sample is used in titration. Each 0.1 mL of 0.000564 N PAO corresponds to 0.01 mg/L in a 200-mL sample. The titrant normality should be selected such that no more than about 4 mL of titrant will be required to reach the equivalence point. Thus, if the chlorine concentration in the majority of the samples to be titrated is less than about 0.4 mg/L, use 0.000564 N PAO as the titrant. If only samples containing chlorine concentrations in excess of 0.4 mg/L are to be analyzed, use 0.00564 N PAO as the titrant. If samples containing concentrations of chlorine in excess of about 0.4 mg/L are to be titrated only occasionally and the volume of 0.000564 N PAO required for titration is found to be excessive, a suitable subsample may be used and diluted to 200 mL with chlorine-free water.

b. Titration procedure (total residual chlorine). Prior to beginning the titration, rinse the buret with PAO titrant by filling it completely and allowing the titrant to run into an empty sample cup. Repeating this operation three or four times will ensure that the correct titrant concentration reaches the sample cup. Remove the sample cup and rinse with distilled water and with the sample to be titrated. Add 200 mL of the sample to the sample cup. Add approximately 1.5 g (± 0.2 g) crystalline KI and allow to dissolve, using the agitator on the titrator for mixing.

The exact amount of KI added is not critical, but the analyst should weigh 1.5 g of this reagent periodically to become familiar with the approximate amount required. Add 1 mL of acetate buffer and allow the microammeter on the titrator to reach a stable reading; the titration should be started within about 30 seconds following the addition of the KI to the sample.

Full-scale deflection on the microammeter is 100 units. The meter should be initially adjusted to read between 90 and 100 units. Record the initial reading prior to the addition of titrant. Titrate by adding suitable volumes of titrant and recording the titrant volume added and the resultant current reading. At least three (and preferably five to ten) readings of current and titrant volume added should be obtained prior to passing the equivalence point; then add excess titrant to ensure that there is no further meter deflection. Record the final meter reading. If, during the titration, the meter reading falls to near or below 10 units, record the low reading, re-adjust the meter to read between 90 and 100 units, record the high reading, and continue the titration. This approach allows calculation of the total meter deflection, which is used in determining the equivalence point.

The equivalence point is determined by plotting the total meter deflection as a function of titrant volume added. It is important that the total meter deflection be used in preparing this plot. A straight line is drawn through the first few points in the plot and a second straight line is drawn parallel to the abscissa and corresponding to the final total deflection in the meter reading. The equivalence point is determined by the intersection of those two lines. When 0.000564 N PAO is used as the titrant, the chlorine concentration is 0.1-times the titrant volume at the equivalence point. This plotting procedure is also outlined in the ASTM Water Manual8 under procedures ASTM D1253 (Tests for Residual Chlorine in Water) and ASTM D1427 (Tests for Residual Chlorine in Waste Water).

c. Sample storage and handling. Chlorine measurements should be made as soon after sample collection as possible. Samples to be analyzed for chlorine should be stored in the dark and packed on ice if they must be held for more than a few minutes before analysis. Chlorine compounds are highly reactive and may be rapidly lost from samples due to the effects of volatilization, phototransformation, and chlorine demand. Storage of samples on ice and in the dark between sampling and analysis will help minimize the rate of dissipation.

It is important to estimate the changes that occur in chlorine content in the subject water between sample collection and analysis.

This can be accomplished by performing a "time-lag" test. To perform a time-lag test, a single large (approximately 2-L) sample of the water being analyzed is collected. The chlorine concentration in that sample is determined six to ten times over a period of one to three hours, depending on the normal sample holding time. The measured concentrations are then plotted as a function of time, normally on semilog paper. In most cases, the decrease in chlorine concentration over time can be described by first-order reaction kinetics.

The original chlorine content in any sample can be computed given the measured concentration and the holding time. A time-lag study should be performed on a regular basis for each type of water being analyzed because of variability in water compositions. The sample set used for the study should be handled in the same way as other samples (i.e., the samples should be kept cold and in the dark). Even when time-lag studies are made a part of the routine analytical procedure, it is important that the delay between sample collection and chlorine analysis be held to a minimum.

Sodium Hypochlorite

Sodium Hypochlorite, or bleach, is produced by adding elemental chlorine to sodium hydroxide. Typically, hypochlorite solutions contain from 5 to 15% chlorine, and are shipped by truck in one-to 5,000- gallon containers.

Advantages

- ✓ Solution is less hazardous and easier to handle than elemental chlorine
- ✓ Fewer training requirements and regulations than elemental chlorine

Limitations

- ✓ Limited shelf-life
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water
- ✓ Corrosive to some materials and more difficult to store than most solution chemicals
- ✓ Higher chemical costs than elemental chlorine

Calcium Hypochlorite

✓ Calcium hypochlorite is another chlorinating chemical used primarily in smaller applications. It is a white, dry solid containing approximately 65% chlorine, and is commercially available in granular and tablet forms.

Advantages

- ✓ More stable than sodium hypochlorite, allowing longer storage
- ✓ Fewer training requirements and regulations than elemental chlorine

Limitations

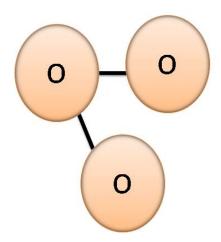
- ✓ Dry chemical requires more handling than sodium hypochlorite
- ✓ Precipitated solids formed in solution complicate chemical feeding
- ✓ Higher chemical costs than elemental chlorine

- ✓ Fire or explosive hazard if handled improperly
- ✓ Potential to add inorganic byproducts (chlorate, chlorite and bromate) to water

Onsite Hypochlorite Generation

In recent years some municipalities have installed on-site hypochlorite generators that produce weak hypochlorite solutions (~0.8%) using an electrolytic cell and a solution of salt water.

Advantages


✓ Minimal chemical storage and transport

Limitations

- ✓ More complex and requires a higher level of maintenance and technical expertise
- √ High capital cost
- ✓ Operating costs are often higher than for commercial hypochlorite
- ✓ Requires careful control of salt quality
- ✓ Weak solution requires high volume chemical feed and control
- ✓ Byproducts in generated hypochlorite may be difficult to monitor and control
- ✓ System backup may be more difficult and costly

More on Ozone

Ozone (O₃) Molecule

Ozone (O_3) is generated on-site at water treatment facilities by passing dry oxygen or air through a system of high voltage electrodes. Ozone is one of the strongest oxidants and disinfectants available. Its high reactivity and low solubility, however, make it difficult to apply and control. Contact chambers are fully contained and non-absorbed ozone must be destroyed prior to release to avoid corrosive and toxic conditions. Ozone is more often applied for oxidation rather than disinfection purposes.

Advantages

- ✓ Strongest oxidant/disinfectant available
- ✓ Produces no chlorinated THMs, HAAs
- ✓ Effective against Cryptosporidium at higher concentrations
- ✓ Used with Advanced Oxidation processes to oxidize refractory organic compounds

Limitations

- ✓ Process operation and maintenance requires a high level of technical competence
- ✓ Provides no protective residual
- ✓ Forms brominated byproducts (bromate, brominated organics)
- ✓ Forms nonhalogenated byproducts (ketenes, organic acids, aldehydes)

- ✓ Breaks down more complex organic matter; smaller compounds can enhance microbial re-growth in distribution systems and increase DBP formation during secondary disinfection processes.
- ✓ Higher operating and capital costs than chlorination
- ✓ Difficult to control and monitor particularly under variable load conditions

Ultraviolet Radiation

Ultraviolet (UV) radiation, generated by mercury arc lamps, is a non-chemical disinfectant. When UV radiation penetrates the cell wall of an organism, it damages genetic material, and prevents the cell from reproducing. Although it has a limited track record in drinking water applications, UV has been shown to effectively inactivate many pathogens while forming limited disinfection byproducts.

Advantages

- ✓ Effective at inactivating most viruses, spores and cysts
- ✓ No chemical generation, storage, or handling.
- ✓ Effective against Cryptosporidium
- √ No known byproducts at levels of concern

Limitations

- √ No residual protection
- ✓ Low inactivation of some viruses (reoviruses and rotaviruses)
- ✓ Difficult to monitor efficacy
- ✓ Irradiated organisms can sometimes repair and reverse the destructive effects of UV through a process known as photo-reactivation
- ✓ May require additional treatment steps to maintain high-clarity water
- ✓ Does not provide oxidation, or taste and odor control
- ✓ High cost of adding backup/emergency capacity
- ✓ Mercury lamps may pose a potable water and environmental toxicity risk

Alternative Disinfectants

Up until the late 1970s, chlorine was virtually the only disinfectant used to treat drinking water. Chlorine was considered an almost ideal disinfectant, based on its proven characteristics:

- ✓ Effective against most known pathogens
- ✓ Provides a residual to prevent microbial re-growth and protect treated water throughout the distribution system
- ✓ Suitable for a broad range of water quality conditions
- ✓ Easily monitored and controlled

Test Methods Available for Residual Chlorine

Residual Chlorine can be measured using different methods. Iodometric and DPD colorimetric methods are the most common methods. Each method has its own set of reagents and concentration range.

lodometric Method

Residual Chlorine by Iodometric has a minimum detectable concentration of 40ppb if 0.01N sodium thiosulfate is used. Prepare the sample for titration by adding 5mL of acetic acid and 1g of potassium iodide to the sample. Titrate the sample with 0.01N sodium thiosulfate. Concentrations below 1 mg/L should be measured by using either 0.00564N sodium thiosulfate or 0.00564N phenylarsine oxide.

DPD Colorimetric Method

Residual Chlorine can also be measured by the DPD Colorimetric method. This method has a minimum detectable concentration of 10ppb. In this method, the calibration is either made up from a chlorine solution or a potassium permanganate solution. The typical calibration range for this method is 0.05 to 4mg/L. The reagents used in this method are a phosphate buffer and N,N-diethyl-p-phenylenediamine indicator solution. The samples are mixed with the reagents and then read on a spectrophotometer at a wavelength of 515nm.

Chlorine in water solutions is not stable. As a result, its concentration in samples decreases rapidly. Exposure to sunlight or other strong light, air, or agitation will further reduce the quantity of chlorine present in solutions. Samples to be analyzed for chlorine cannot be stored or preserved. Tests must be started immediately after sampling. Therefore, samples taken for the chlorine residual test must be grab samples only and excessive agitation must be avoided.

It is not necessary to use special sampling devices or containers for the chlorine residual test. However, the sampling container should be capable of collecting samples from a representative sampling point following chlorine contact, and should be made of resistant materials that will not rust or corrode, and which can be easily cleaned.

NOTE: A long handled aluminum dipper attached to a wooden handle, or an equivalent device, is acceptable for collecting samples. Do not use coffee cans, bleach bottles, etc.

Preparation of Chemicals

At a minimum, hand and eye protection should be used when handling any of the chemicals mentioned in this section. Before working with any chemical, consult the appropriate Material Safety Data Sheet (MSDS) to determine if other safety precautions are necessary.

Chlorine Residual Reagents lodometric and Amperometric Methods:

- Standard Phenylarsine Oxide (PAO) Solution, 0.00564 N
 - A. Prepare 0.3 N sodium hydroxide solution (NaOH) by dissolving 12.0 g NaOH in 800 mL distilled water and diluting to 1 liter.
 - B. Prepare a 6.0 N hydrochloric acid solution (HCl) by adding 108 mL concentrated HCl to 800 mL distilled water and diluting to 1 liter. (Caution: Concentrated HCl fumes can burn eyes and lungs—do not breathe fumes!)
 - C. Prepare an approximately 0.00564 N solution of PAO using the following procedures:

- Dissolve approximately 0.8 g PAO powder in 150 mL of 0.3 N NaOH solutions, and allow to settle.
- 2. Decant 110 mL into 800 mL distilled water and mix thoroughly.
- 3. Bring to pH 6 to 7 with 6N HCl and dilute to 950 mL with distilled water. (Caution: PAO is poisonous. Wash thoroughly after use and do not ingest.)

D. Standardization

- 1. Accurately measure 5 to 10 mL freshly standardized 0.0282 N iodine solution into a flask and add 1 mL potassium iodide solution (50g KI dissolved and diluted to 1 L with freshly boiled and cooled distilled water.
- Titrate with PAO solution, using starch solution as an indicator, until blue disappears.
- 3. Normality (N) of PAO = $(mL iodine solution \times 0.0282)/mL PAO titrated$.
- 4. Adjust PAO to 0.00564 N and recheck.

II. Standard Sodium Thiosulfate Solution, 0.00564 N

A. Prepare a 0.1 N sodium thiosulfate solution by dissolving 25 g $Na_2S_2O_3$ $5H_2O$ in 1000 mL of freshly boiled distilled water. Store reagent for at least 2 weeks to allow oxidation of any bisulfite ion present. Add a few mL of chloroform (CHCl₃) to minimize bacterial decomposition.

Standardize by one of the following methods:

1. lodate Method

- a. Dissolve 3.249 g anhydrous primary standard quality potassium bi-iodate ($KH(IO_3)2$) or 3.567 g potassium iodate (KIO_3) dried at 103 +/-2°C for 1 hour in distilled water and dilute to 1000 mL to yield a 0.1000 N iodate solution. Store in a glass stoppered bottle.
- b. Add, with constant stirring, 1 mL concentrated sulfuric acid (H_2SO_4) , 10 mL 0.1000 N iodate solution, and 1 g potassium iodide (KI) to 80 mL distilled water. Titrate immediately with 0.1 N sodium thiosulfate $(Na_2S_2O_3)$ until the yellow color of the liberated iodine is almost discharged. Add 1 mL starch indicator solution and continue titration until the blue color disappears.
- c. The normality (N) of the sodium thiosulfate is calculated as follows: N of $Na_2S_2O_3 = 1/mL$ $Na_2S_2O_3$ for titration

2. Dichromate Method

- A. Dissolve 4.904 g anhydrous primary standard grade potassium dichromate ($K_2Cr_2O_7$) in distilled water and dilute to 1000 mL to yield a 0.1000 N dichromate solution. Store in a glass stoppered bottle.
- B. For maximum stability of the standard 0.00564~N sodium thiosulfate solution, prepare by diluting an aged $0.1N~Na_2S_2O_3$ standard solution with freshly boiled distilled water. Add 10 mg Mercuric iodide and 4 g of sodium borate per liter of solution. Standardize daily using 0.00564~N potassium dichromate or iodate solution.

III. Standard Iodine Solution (I₂), 0.1 N

- A. Dissolve 40 g potassium iodide (KI) in 25 mL chlorine-demand-free water.
- B. Add 13 g resublimed iodine (I₂) and stir until dissolved.
- C. Transfer to a 1 liter volumetric flask and dilute to the mark.

D. Standardization

- 1. Volumetrically measure 40 to 50 mL 0.1 N arsenite solution into a flask.
- 2. Titrate with 0.1 N iodine solution using starch solution as an indicator.
- 3. Just before end-point is reached, add a few drops of hydrochloric acid solution to liberate sufficient carbon dioxide (CO₂) to saturate the solution.
- 4. Titrate until blue color first appears and remains.
- Normality (N) of iodine = (mL of arsenite solution used x 0.1)/mL of iodine titrated

IV. Standard Iodine Titrant (I₂), 0.0282 N

- A. Dissolve 25 g KI in a bottle of distilled water in a 1L volumetric flask.
- B. Add the correct amount of the exactly standardized 0.1 N iodine solution to yield a 0.0282 N solution.
- C. Dilute to one liter with chlorine-demand-free water.
- D. Store iodine solutions in amber bottles or in the dark, and protect from exposure to direct sunlight. Do not use rubber stoppers; keep iodine from all contact with rubber.
- E. Check titrant normality daily against 0.00564 N PAO or sodium thiosulfate solution. A procedure for calculating a correction factor for this titrant is given in Appendix C.

V. Standard Potassium Iodate Titrant (KIO3), 0.00564 N

- A. Dissolve 201.2 mg primary standard grade potassium iodate (KIO_3), dried for 1 hour at 103°C, or 183.3 mg primary standard grade anhydrous potassium bi-iodate ($KH(IO_3)2V$) in distilled water.
- B. Dilute to 1 liter volumetrically.
- C. Store in glass bottles in the dark and protect from exposure to direct sunlight.

VI. Potassium Iodide Solution (KI), 5% W/V

- A. Dissolve 50 g KI in freshly boiled and cooled distilled water and dilute to 1 liter.
- B. Store in a brown glass-stoppered bottle in the dark, preferably at 4°C.

C. Discard when solution becomes yellow.

VII. Acetate Buffer Solution, pH 4.0

- A. Dissolve 146 g anhydrous sodium acetate (NaC₂H₃O₂ 3H₂O) in 400 mL distilled water.
- B. CAREFULLY add 458 mL concentrated (glacial) acetic acid.
- C. Dilute to 1 liter with chlorine-demand-free water.

VIII. Standard Arsenite Solution (As₂O₃), 0.1N

A. Accurately weigh a dried, cooled stoppered weighing bottle.

NOTE: Use forceps or tongs—do not handle weighing bottle with fingers.

- B. In weighing bottle, weigh out approximately 4.95 g arsenic trioxide (As₂O₃).
- C. Transfer without loss to a 1 liter volumetric flask

NOTE: Do not attempt to brush out remaining arsenic trioxide).

- D. Reweigh bottle and record weight of arsenic trioxide transferred.
- E. Add enough distilled water to moisten the arsenic trioxide.
- F. Add 15 g sodium hydroxide (NaOH) and 100 mL distilled water.
- G. Swirl flask gently until As₂O₃ is dissolved.
- H. Dilute to 250 mL and saturate the solution with carbon dioxide (CO₂) by bubbling CO₂ gas through the solution for a few minutes.

NOTE: This converts the sodium hydroxide (NaOH) to sodium bicarbonate (NaHCO₃).

- I. Dilute to the 1 liter mark, stopper, and mix thoroughly.
- J. This solution has an almost indefinite shelf life.

CAUTION: This solution is highly poisonous and is a suspected cancer causing agent: handle carefully!

IX. Starch Indicator

- A. Weigh out 5 g soluble or potato starch.
- B. Add enough distilled water to make a thin paste.
- C. Pour into 1 liter boiling distilled water, stir and let settle overnight.
- D. Transfer clear supernatant into a storage container and preserve by adding 1.25 g salicylic acid, 4 g zinc chloride, or a combination of 4 g sodium propionate and 2 g sodium azide per liter of starch solution.

E. Some commercial starch substitutes or powder indicators are acceptable.

X. Phosphoric Acid solution (H₃PO₄), 1 + 9

- A. Carefully add 100 mL of phosphoric acid (H₃PO₄), 85%, to 900 mL of freshly boiled distilled water.
- B. Caution should be used when handling this solution, as it can be corrosive.

XI. Phosphoric Acid—Sulfamic Acid Solution

A. Dissolve 20 g sulfamic acid (NH_2SO_3H) in 1 liter of 1 + 9 phosphoric acid (H_3PO_4).

DPD Titrimetric Method

- I. Phosphate Buffer Solution
 - A. Dissolve 24 g anhydrous disodium hydrogen phosphate (Na₂HPO₄) in 400 to 500 mL distilled water.
 - B. Add 46 g anhydrous potassium dihydrogen phosphate (KH₂PO₄).
 - C. Dissolve 800 mg disodium ethylenediaminetetraacetate dihydrate (EDTA) in a separate container.

NOTE: This chemical is also known as (ethylenediamine) tetraacetic acid sodium salt.

- D. Combine the 2 solutions and dilute to 1 liter.
- E. Add 20 mg mercuric chloride to prevent mold growth.
- F. Caution: Mercuric chloride is toxic. Take care to avoid ingestion.

II. DPD Indicator Solution

- A. Add 8 mL of a 1 + 3 sulfuric acid solution (H_2SO_4) into 500 mL distilled water. Prepare by mixing one part concentrated H_2SO_4 to 3 parts distilled water. (For example, 5 mL H_2SO_4 to 15 mL distilled water.)
- B. Add 200 mg EDTA (disodium ethylenediaminetetraacetate dihydrate).
- C. Add 1 g DPD Oxalate (N, N-Diethyl-p-phenylenediamine oxalate).
- D. Dilute to 1 liter and store in a brown glass-stoppered bottle and discard when discolored.

CAUTION: The DPD oxalate is poisonous, handle carefully!

III. Standard Ferrous Ammonium Sulfate (FAS) Titrant, 0.00282 N

A. Add 1 mL of 1 + 3 sulfuric acid solution (H2SO4) to 500 mL of freshly boiled and cooled distilled water. Prepare by adding one part concentrated H2SO4 to 3 parts distilled water.

- B. Dissolve 1.106 g ferrous ammonium sulfate (Fe(NH₄)2(SO₄)2 6H₂O)
- C. Dilute to 1 liter.
- D. This standard can be used for 1 month before replacement.
- E. Standardize weekly using the following procedure:
 - 1. Measure 100 mL of FAS standard solution into an Erlenmeyer flask.
 - 2. Add 10 mL of 1 + 5 sulfuric acid. Prepare by adding one part concentrated H₂SO₄ to 5 parts distilled water.
 - 3. Add 5 mL concentrated phosphoric acid.
 - 4. Add 2 mL 0.1% barium diphenylamine sulfonate indicator. Prepare by dissolving 0.1 g ($C_6H_5NHC_6H_4$ -4-SO₃) Ba in 100 mL distilled water.
 - 5. Titrate with 0.100N potassium dichromate (see iodometric and amperometric section for preparation directions) to a violet end-point that persists for 30 seconds.

DPD Colorimetric Method

I. Phosphate Buffer Solution

(see DPD Titrimetric Method chemicals)

II. DPD Indicator Solution

(see DPD Titrimetric Method chemicals)

III. Potassium Permanganate Stack Solution

A. Dissolve 891 mg potassium permanganate (KMnO₄) in distilled water and dilute to 1000 mL.

IV. Potassium Permanganate Standard Solution

- A. Dilute 10 mL of stock solution to 100 mL in a volumetric flask.
- B. 1 mL of the standard solution diluted to 100 mL with distilled water will be equivalent to 1.0 mg/L chlorine residual in a DPD reaction.
- C. Prepare standard solutions by diluting appropriate volumes to 100 mL with distilled water.

If a direct concentration readout colorimeter is used, the DPD and buffer reagents should be prepared or ordered in accordance with the instrument manufacturer's instructions. If the Hach DR100 colorimeter is used, the prepared DPD powder pillows used with the Hach direct reading colorimeters may be purchased from the Hach Company at the following address:

Hach Company P.O. Box 389 Loveland, Colorado 80539

New Challenges

- ✓ Treating resistant pathogens such as Giardia and Cryptosporidium
- ✓ Minimizing disinfection byproducts
- ✓ New environmental and safety regulations
- ✓ Strengthening security at treatment facilities

To meet these new challenges, water system managers must design unique disinfection approaches to match each system's characteristics and source water quality. While chlorination remains the most commonly used disinfection method by far, water systems may use alternative disinfectants, including chloramines, chlorine dioxide, ozone, and ultraviolet radiation. No single disinfection method is right for all circumstances, and in fact, water systems may use a variety of methods to meet overall disinfection goals at the treatment plant, and to provide residual protection throughout the distribution system.

In response to new regulations, emerging science on microbial contaminants, as well as safety and security concerns related to treatment chemicals, water system managers will continue to evaluate chlorine and other disinfection methods.

Despite these challenges, a number of factors indicate that drinking water chlorination will remain a corner-stone of waterborne disease prevention.

- ✓ Disinfection is unquestionably the most important step in drinking water treatment, and chlorine's wide range of benefits cannot be provided by any other single disinfectant.
- ✓ It is uncertain that alternative disinfectants reduce potential DBP risks significantly (IPCS 2000). All chemical disinfectants produce byproducts. Generally, the best approach to control disinfection byproducts is to remove natural organic precursors prior to disinfection (EPA 2001). To comply with the forthcoming Long Term 2 Enhanced Surface Water Treatment Rule, some systems with high levels of Cryptosporidium in their source water may choose to adopt alternative disinfection methods (e.g., chlorine dioxide, ozone, or UV). However, most water systems are expected to meet disinfection requirements without changing treatment technologies.
- ✓ The U.S. EPA's forthcoming Groundwater Rule, as well as efforts to strengthen Canadian drinking water standards following the E coli. outbreak in Walkerton, ON will likely increase the use of chlorination for ground water systems.
- Only chlorine-based disinfectants provide residual protection, an important part of the multi-barrier approach to preventing waterborne disease.
- ✓ World leaders increasingly recognize safe drinking water as a critical building block of sustainable development. Chlorination can provide cost-effective disinfection for remote rural villages and large cities alike, helping to bring safe water to those in need.

Microscopic Waterborne Agents

It is easy to take for granted the safety of modern municipal drinking water, but prior to widespread filtration and chlorination, contaminated drinking water presented a significant public health risk. The microscopic waterborne agents of cholera, typhoid fever, dysentery and hepatitis A killed thousands of U.S. residents annually before disinfection methods were employed routinely, starting about a century ago.

Although these pathogens are defeated regularly now by technologies such as chlorination, they should be thought of as ever-ready to stage a come-back given conditions of inadequate or no disinfection.

Understanding Bacteria

Bacteria are microorganisms often composed of single cells shaped like rods, spheres or spiral structures. Prior to widespread chlorination of drinking water, bacteria like Vibrio cholerae, Salmonella typhii and several species of Shigella routinely inflicted serious diseases such as cholera, typhoid fever and bacillary dysentery, respectively. As recently as 2000, a drinking water outbreak of E. coli in Walkerton, Ontario sickened 2,300 residents and killed seven when operators failed to properly disinfect the municipal water supply.

While developed nations have largely conquered water-borne bacterial pathogens through the use of chlorine and other disinfectants, the developing world still grapples with these public health enemies

Understanding Viruses

Viruses are infectious agents that can reproduce only within living host cells. Shaped like rods, spheres or filaments, viruses are so small that they pass through filters that retain bacteria. Enteric viruses, such as hepatitis A, Norwalk virus and rotavirus are excreted in the feces of infected individuals and may contaminate water intended for drinking. Enteric viruses infect the gastrointestinal or respiratory tracts, and are capable of causing a wide range of illness, including diarrhea, fever, hepatitis, paralysis, meningitis and heart disease (American Water Works Association, 1999).

Understanding Protozoan Parasites

Protozoan parasites are single-celled microorganisms that feed on bacteria found in multicellular organisms, such as animals and humans. Several species of protozoan parasites are transmitted through water in dormant, resistant forms, known as cysts and oocysts. According to the World Health Organization, Cryptosporidium parvum oocysts and Giardia lamblia cysts are introduced to waters all over the world by fecal pollution. The same durable form that permits them to persist in surface waters makes these microorganisms resistant to normal drinking water chlorination (WHO, 2002b). Water systems that filter raw water may successfully remove protozoan parasites.

Emerging Pathogens

An emerging pathogen is one that gains attention because it is one of the following:

- a newly recognized disease-causing organism
- a known organism that starts to cause disease
- an organism whose transmission has increased

Understanding Oxidizing Agents

Oxidizing agents act by oxidizing the cell membrane of microorganisms, which results in a loss of structure and leads to cell lysis and death. A large number of disinfectants operate in this way. Chlorine and oxygen are strong oxidizers, so their compounds figure heavily here.

- Sodium hypochlorite is very commonly used. Common household bleach is a sodium hypochlorite solution and is used in the home to disinfect drains, toilets, and other surfaces. In more dilute form, it is used in swimming pools, and in still more dilute form, it is used in drinking water. When pools and drinking water are said to be chlorinated, it is actually sodium hypochlorite or a related compound—not pure chlorine—that is being used. Chlorine partly reacts with proteinaceous liquids such as blood to form non-oxidizing N-chloro compounds, and thus higher concentrations must be used if disinfecting surfaces after blood spills. Commercial solutions with higher concentrations contain substantial amounts of sodium hydroxide for stabilization of the concentrated hypochlorite, which would otherwise decompose to chlorine, but the solutions are strongly basic as a result.
- ✓ Other hypochlorites such as calcium hypochlorite are also used, especially as a swimming pool additive. Hypochlorites yield an aqueous solution of hypochlorous acid that is the true disinfectant. Hypobromite solutions are also sometimes used.
- ✓ Electrolyzed water or "Anolyte" is an oxidizing, acidic hypochlorite solution made by electrolysis of sodium chloride into sodium hypochlorite and hypochlorous acid. Anolyte has an oxidation-reduction potential of +600 to +1200 mV and a typical pH range of 3.5—8.5, but the most potent solution is produced at a controlled pH 5.0–6.3 where the predominant oxychlorine species is hypochlorous acid.
- ✓ Chloramine is often used in drinking water treatment.
- ✓ Chloramine-T is antibacterial even after the chlorine has been spent, since the parent compound is a sulfonamide antibiotic.
- ✓ Chlorine dioxide is used as an advanced disinfectant for drinking water to reduce waterborne diseases. In certain parts of the world, it has largely replaced chlorine because it forms fewer byproducts. Sodium chlorite, sodium chlorate, and potassium chlorate are used as precursors for generating chlorine dioxide.
- ✓ Hydrogen peroxide is used in hospitals to disinfect surfaces and it is used in solution alone or in combination with other chemicals as a high level disinfectant. Hydrogen peroxide is sometimes mixed with colloidal silver. It is often preferred because it causes far fewer allergic reactions than alternative disinfectants. Also used in the food packaging industry to disinfect foil containers. A 3% solution is also used as an antiseptic.
- Hydrogen peroxide vapor is used as a medical sterilant and as room disinfectant. Hydrogen peroxide has the advantage that it decomposes to form oxygen and water thus leaving no long term residues, but hydrogen peroxide as with most other strong oxidants is hazardous, and solutions are a primary irritant. The vapor is hazardous to the respiratory system and eyes and consequently the OSHA permissible exposure limit is 1 ppm (29 CFR 1910.1000 Table Z-1) calculated as an eight hour time weighted average and the NIOSH immediately dangerous to life and health limit is 75 ppm. Therefore, engineering controls, personal protective equipment, gas monitoring etc. should be employed where high concentrations of hydrogen peroxide are used in the workplace. Vaporized hydrogen peroxide is one of the chemicals approved for decontamination of anthrax spores from contaminated buildings, such as occurred during the 2001 anthrax attacks in the U.S. It has also been shown to be effective in removing exotic animal viruses, such as avian influenza and Newcastle disease from equipment and surfaces.
- ✓ The antimicrobial action of hydrogen peroxide can be enhanced by surfactants and organic acids. The resulting chemistry is known as Accelerated Hydrogen Peroxide and is produced by Virox Technologies Inc. A 2% solution, stabilized for extended use, achieves high-level disinfection in 5 minutes, and is suitable for disinfecting medical equipment made from hard plastic, such as in endoscopes.[19] The evidence available

- suggests that products based on Accelerated Hydrogen Peroxide, apart from being good germicides, are safer for humans and benign to the environment.
- ✓ lodine is usually dissolved in an organic solvent or as Lugol's iodine solution. It is used in the poultry industry. It is added to the birds' drinking water. In human and veterinary medicine, iodine products are widely used to prepare incision sites prior to surgery. Although it increases both scar tissue formation and healing time, tincture of iodine is used as an antiseptic for skin cuts and scrapes, and remains among the most effective antiseptics known.
- ✓ Ozone is a gas used for disinfecting water, laundry, foods, air, and surfaces. It is chemically aggressive and destroys many organic compounds, resulting in rapid decolorization and deodorization in addition to disinfection. Ozone decomposes relatively quickly, however, so that tap water chlorination cannot be entirely replaced by ozonation, as the ozone would decompose already in the water piping. Instead, it is used to remove the bulk of oxidizable matter from the water, which would produce small amounts of organochlorides if treated with chlorine only.
- Peracetic acid is a disinfectant produced by reacting hydrogen peroxide with acetic acid. It is broadly effective against microorganisms and is not deactivated by catalase and peroxidase, the enzymes that break down hydrogen peroxide. It also breaks down to food safe and environmentally friendly residues (acetic acid and hydrogen peroxide), and therefore can be used in non-rinse applications. It can be used over a wide temperature range (0-40°C), wide pH range (3.0-7.5), in clean-in-place (CIP) processes, in hard water conditions, and is not affected by protein residues.
- ✓ Performic acid is the simplest and most powerful perorganic acid. Formed from the reaction of hydrogen peroxide and formic acid, it reacts more rapidly and powerfully than peracetic acid before breaking down to water and carbon dioxide.
- Potassium permanganate (KMnO₄) is a purplish-black crystalline powder that colors everything it touches, through a strong oxidizing action. This includes staining "stainless" steel, which somehow limits its use and makes it necessary to use plastic or glass containers. It is used to disinfect aquariums and is also widely used in community swimming pools to disinfect ones feet before entering the pool. Typically, a large shallow basin of KMnO₄/water solution is kept near the pool ladder. Participants are required to step in the basin and then go into the pool. Additionally, it is widely used to disinfect community water ponds and wells in tropical countries, as well as to disinfect the mouth before pulling out teeth. It can be applied to wounds in dilute solution.

Disinfection Byproduct Regulations

Drinking water chlorination has contributed to a dramatic decline in waterborne disease rates and increased life expectancy in the United States. Largely because of this success, many Americans take it for granted that their tap water will be free of disease-causing organisms. In recent years, regulators and the general public have focused greater attention on potential health risks from chemical contaminants in drinking water. One such concern relates to disinfection byproducts (DBPs), chemical compounds formed unintentionally when chlorine and other disinfectants react with certain organic matter in water.

In the early 1970s, EPA scientists first determined that drinking water chlorination could form a group of byproducts known as trihalomethanes (THMs), including chloroform. Concerned that these chemicals may be carcinogenic to humans, EPA set the first regulatory limits for THMs in 1979. Since that time, a wealth of research has improved our understanding of how DBPs are formed, their potential health risks, and how they can be controlled. It is now recognized that all chemical disinfectants form some potentially harmful byproducts. The byproducts of chlorine disinfection are by far the most thoroughly studied.

While the available evidence does not prove that DBPs in drinking water cause adverse health effects in humans, high levels of these chemicals are certainly undesirable. Cost-effective methods to reduce DBP formation are available and should be adopted where possible. However, the International Programme on Chemical Safety (IPCS), a joint venture of the United Nations Environment Programme, the International Labor Organization, and the World Health Organization (IPCS 2000, p. 13) strongly cautions:

The health risks from these byproducts at the levels at which they occur in drinking water are extremely small in comparison with the risks associated with inadequate disinfection. Thus, it is important that disinfection not be compromised in attempting to control such byproducts.

Recent EPA regulations have further limited THMs and other DBPs in drinking water. Most water systems are meeting these new standards by controlling the amount of natural organic matter prior to disinfection, while ensuring that microbial protection remains the top priority. DBPs and Human Cancer Risk Toxicology studies have reported that high doses of some DBPs, including THMs and haloacetic acids (HAAs), can cause cancer in laboratory animals. Based largely on these animal data, EPA considers individual THMs and HAAs to be either possible or probable human carcinogens, although any risk from the low levels found in drinking water would be slight. After reviewing the full body of toxicology studies, the IPCS concluded, "None of the chlorination byproducts studied to date is a potent carcinogen at concentrations normally found in drinking water" (IPCS 2000, p. 376).

Some epidemiology studies have reported an association between human exposure to DBPs and elevated cancer risks, while other studies have found no association. EPA evaluated the existing cancer epidemiology studies and found that only for bladder cancer were associations with chlorinated water somewhat consistent. Even in these studies, cancer risks were not strongly correlated to measured THM levels, indicating that other factors cannot be ruled out (Craun et al., 2001). EPA has concluded, "The present epidemiologic data do not support a causal relationship between exposure to chlorinated drinking water and development of cancer at this time" (EPA 1998). The IPCS reached a similar conclusion in 2000, noting that a causal relationship between DBPs and increased cancer remains an open question (IPCS 2000).

Balancing DBP and Microbial Risks

Continuing evidence of waterborne disease occurrence suggests that microbial risks should receive a much higher level of attention than disinfection byproducts. For this reason, The American Academy of Microbiology (Ford and Colwell, 1996) has recommended, the health risks posed by microbial pathogens should be placed as the highest priority in water treatment to

protect public health. A report published by the International Society of Regulatory Toxicology and Pharmacology (Coulston and Kolbye, 1994) stated "The reduction in mortality due to waterborne infectious diseases, attributed largely to chlorination of potable water supplies, appears to outweigh any theoretical cancer risks (which may be as low as zero) posed by the minute quantities of chlorinated organic chemicals reported in drinking waters disinfected with chlorine."

The IPCS (IPCS 2000, p. 375) reached similar conclusions:

Disinfection is unquestionably the most important step in the treatment of water for drinking water supplies. The microbial quality of drinking water should not be compromised because of concern over the potential long-term effects of disinfectants and DBPs. The risk of illness and death resulting from exposure to pathogens in drinking water is very much greater than the risks from disinfectants and DBPs.

Controlling Disinfection Byproducts

Treatment techniques are available that provide water suppliers the opportunity to maximize potable water safety and quality while minimizing the risk of DBP risks. Generally, the best approach to reduce DBP formation is to remove natural organic matter precursors prior to disinfection. EPA has published a guidance document for water system operators entitled, Controlling Disinfection byproducts and Microbial Contaminants in Drinking Water (EPA, 2001).

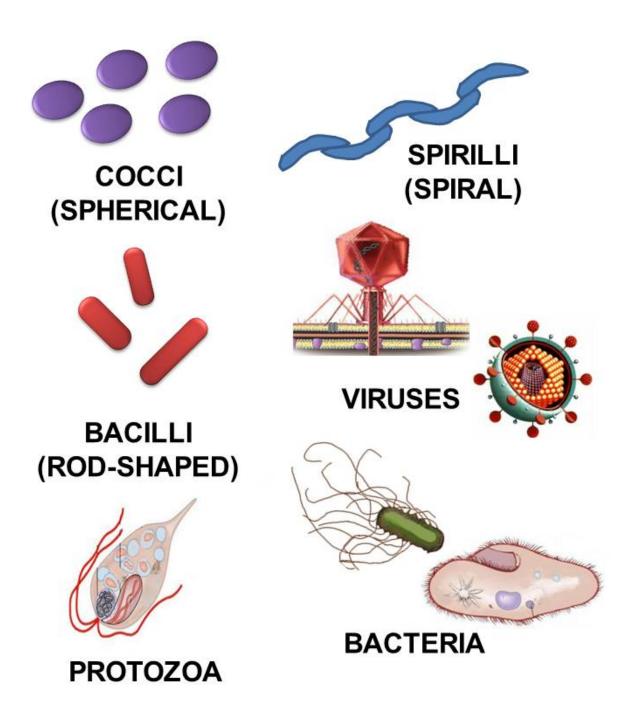
The EPA guidance discusses three processes to effectively remove natural organic matter prior to disinfection:

1. Coagulation and Clarification

Most treatment plants optimize their coagulation process for turbidity (particle) removal. However, coagulation processes can also be optimized for natural organic matter removal with higher doses of inorganic coagulants (such as alum or iron salts), and optimization of pH.

2. Absorption

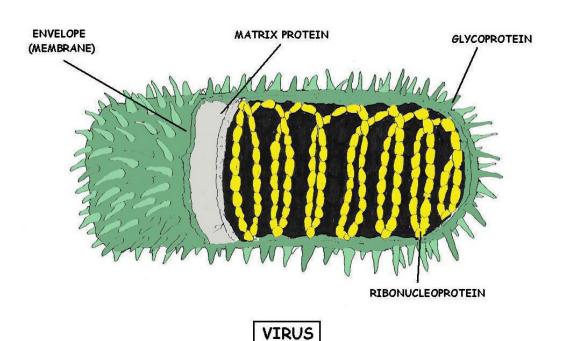
Activated carbon can be used to absorb soluble organics that react with disinfectants to form byproducts.

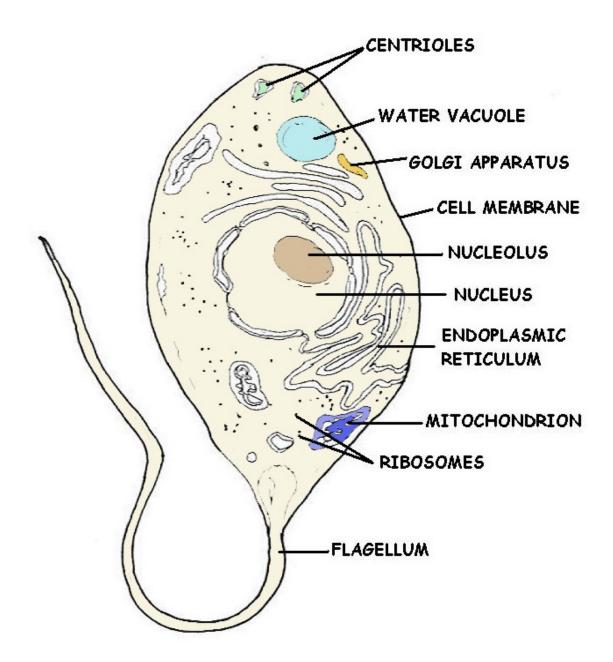

3. Membrane Technology

Membranes, used historically to desalinate brackish waters, have also demonstrated excellent removal of natural organic matter. Membrane processes use hydraulic pressure to force water through a semi-permeable membrane that rejects most contaminants. Variations of this technology include reverse osmosis (RO), nanofilitration (low pressure RO), and microfiltration (comparable to conventional sand filtration).

Other conventional methods of reducing DBP formation include changing the point of chlorination and using chloramines for residual disinfection. EPA predicts that most water systems will be able to achieve compliance with new DBP regulations through the use of one or more of these relatively low cost methods (EPA, 1998).

Water system managers may also consider switching from chlorine to alternative disinfectants to reduce formation of THMs and HAAs. However, all chemical disinfectants form some DBPs. Much less is known about the byproducts of these alternatives than is known about chlorination byproducts. Furthermore, each disinfection method has other distinct advantages and disadvantages.


Microorganism Section


BACTERIA TYPES

This section will give a close-up and short explanation of the major microorganisms found in water and in wastewater.

Protozoa

PROTOZOAN CELL

Protozoa are around 10–50 micrometer, but can grow up to 1 mm and can easily be seen under a microscope. Protozoa exist throughout aqueous environments and soil. Protozoa occupy a range of trophic levels. As predators, they prey upon unicellular or filamentous algae, bacteria, and microfungi.

Protozoa play a role both as herbivores and as consumers in the decomposer link of the food chain. Protozoa also play a vital role in controlling bacteria populations and biomass. As components of the micro- and meiofauna, protozoa are an important food source for microinvertebrates. Thus, the ecological role of protozoa in the transfer of bacterial and algal production to successive trophic levels is important. Protozoa such as the malaria parasites (Plasmodium spp.), trypanosomes and leishmania are also important as parasites and symbionts of multicellular animals.

Most protozoa exist in 5 stages of life which are in the form of trophozoites and cysts. As cysts, protozoa can survive harsh conditions, such as exposure to extreme temperatures and harmful chemicals, or long periods without access to nutrients, water, or oxygen for a period of time. Being a cyst enables parasitic species to survive outside of the host, and allows their transmission from one host to another. When protozoa are in the form of trophozoites (Greek, tropho=to nourish), they actively feed and grow. The process by which the protozoa takes its cyst form is called encystation, while the process of transforming back into trophozoite is called excystation.

Protozoa can reproduce by binary fission or multiple fission. Some protozoa reproduce sexually, some asexually, and some both (e.g. Coccidia). An individual protozoan is hermaphroditic.

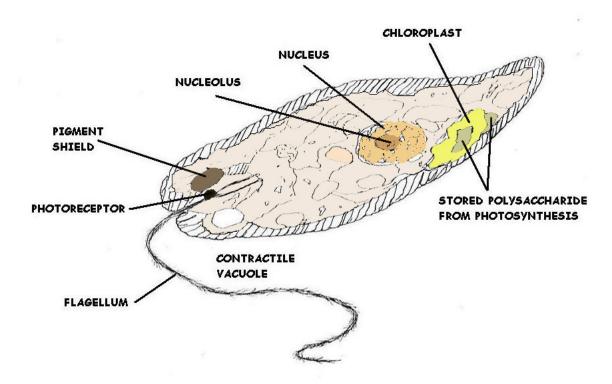
Classification

Protozoa were commonly grouped in the kingdom of Protista together with the plant-like algae and fungus-like water molds and slime molds. In the 21st-century systematics, protozoans, along with ciliates, mastigophorans, and apicomplexans, are arranged as animal-like protists. However, protozoans are neither Animalia nor Metazoa (with the possible exception of the enigmatic, moldy Myxozoa).

Sub-groups

Protozoa have traditionally been divided on the basis of their means of locomotion, although this is no longer believed to represent genuine relationships:

- * Flagellates (e.g. Giardia lambia)
- * Amoeboids (e.g. Entamoeba histolytica)
- * Sporozoans (e.g. Plasmodium knowlesi)
- * Apicomplexa
- * Myxozoa
- * Microsporidia
- * Ciliates (e.g. Balantidium coli)

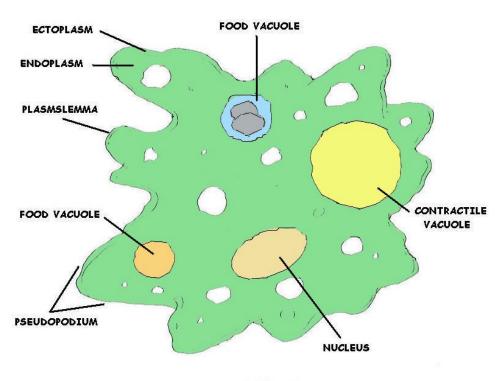

There are many ways that infectious diseases can spread. Pathogens usually have specific routes by which they are transmitted, and these routes may depend on the type of cells and tissue that a particular agent targets. For example, because cold viruses infect the respiratory tract, they are dispersed into the air via coughing and sneezing.

Once in the air, the viruses can infect another person who is unlucky enough to inhale air containing the virus particles.

Agents vary greatly in their stability in the environment. Some viruses may survive for only a few minutes outside of a host, while some spore-forming bacteria are extremely durable and may survive in a dormant state for a decade or more.

Protozoa Section

EUGLENA


The diverse assemblage of organisms that carry out all of their life functions within the confines of a single, complex eukaryotic cell are called protozoa.

Paramecium, Euglena, and Amoeba are well-known examples of these major groups of organisms. Some protozoa are more closely related to animals, others to plants, and still others are relatively unique. Although it is not appropriate to group them together into a single taxonomic category, the research tools used to study any unicellular organism are usually the same, and the field of protozoology has been created to carry out this research. The unicellular photosynthetic protozoa are sometimes also called algae and are addressed elsewhere. This report considers the status of our knowledge of heterotrophic protozoa (protozoa that cannot produce their own food).

Free-living Protozoa

Protozoans are found in all moist habitats within the United States, but we know little about their specific geographic distribution. Because of their small size, production of resistant cysts, and ease of distribution from one place to another, many species appear to be cosmopolitan and may be collected in similar microhabitats worldwide (Cairns and Ruthven 1972). Other species may have relatively narrow limits to their distribution.

Marine ciliates inhabit interstices of sediment and beach sands, surfaces, deep sea and cold Antarctic environments, planktonic habitats, and the algal mats and detritus of estuaries and wetlands.

AMOEBA

Amoeba proteus, pseudopods slowly engulf the small desmid Staurastrum.

Amoebas

Amoebas (Phylum Rhizopoda) are unicellular protists that are able to change their shape constantly. Each species has its own distinct repertoire of shapes.

How does an amoeba locomote?

Amoebas locomote by way of cytoplasmic movement. (cytoplasm is the cell content around the nucleus of the cell) The amoeba forms pseudopods (false feet) with which they 'flow' over a surface. The cytoplasma not only flows, it also changes from a fluid into a solid state.

These pseudopods are also used to capture prey, they simply engulf the food. They can detect the kind of prey and use different 'engulfing tactics'.

The image from the last page shows several cell organelles. Left from the center we can see aspherical water expelling vesicle and just right of it, the single nucleus of this species can be seen. Other species may have many nuclei. The cell is full of brown food vacuoles and also contains small crystals.

Protozoa Information

Our actual knowledge of salinity, temperature, and oxygen requirements of marine protozoa is poor (although some groups, such as the foraminifera, are better studied than others), and even the broadest outlines of their biogeographic ranges are usually a mystery. In general, freshwater protozoan communities are similar to marine communities except the specialized interstitial fauna of the sand is largely missing. In freshwater habitats, the foraminifera and radiolaria common in marine environments are absent or low in numbers while testate amoebae exist in greater numbers. Relative abundance of species in the marine versus freshwater habitat is unknown.

Soil-dwelling protozoa have been documented from almost every type of soil and in every kind of environment, from the peat-rich soil of bogs to the dry sands of deserts. In general, protozoa are found in greatest abundance near the soil surface, especially in the upper 15 cm (6 in), but occasional isolates can be obtained at depths of a meter (yard) or more.

Protozoa do not constitute a major part of soil biomass, but in some highly productive regions such as forest litter, the protozoa are a significant food source for the microinvertebrates, with a biomass that may reach 20 g/m2 of soil surface area there.

Environmental Quality Indicators

Polluted waters often have a rich and characteristic protozoan fauna. The relative abundance and diversity of protozoa are used as indicators of organic and toxic pollution (Cairns et al. 1972; Foissner 1987; Niederlehner et al. 1990; Curds 1992). Bick (1972), for example, provided a guide to ciliates that are useful as indicators of environmental quality of European freshwater systems, along with their ecological distribution with respect to parameters such as amount of organic material and oxygen levels.

Foissner (1988) clarified the taxonomy of European ciliates as part of a system for classifying the state of aquatic habitats according to their faunas.

Symbiotic Protozoa

Parasites

Protozoa are infamous for their role in causing disease, and parasitic species are among the best-known protozoa. Nevertheless, our knowledge has large gaps, especially of normally free-living protozoa that may become pathogenic in immunocompromised individuals. For example, microsporidia comprise a unique group of obligate, intracellular parasitic protozoa. Microsporidia are amazingly diverse organisms with more than 700 species and 80 genera that are capable of infecting a variety of plant, animal, and even other protist hosts.

They are found worldwide and have the ability to thrive in many ecological conditions. Until the past few years, their ubiquity did not cause a threat to human health, and few systematists worked to describe and classify the species. Since 1985, however, physicians have documented an unusual rise in worldwide infections in AIDS patients caused by four different genera of microsporidia (Encephalitozoon, Nosema, Pleistophora, and Enterocytozoon). According to the Centers for Disease Control in the United States, difficulties in identifying microsporidian species are impeding diagnosis and effective treatment of AIDS patients.

Protozoan Reservoirs of Disease

The presence of bacteria in the cytoplasm of protozoa is well known, whereas that of viruses is less frequently reported. Most of these reports simply record the presence of bacteria or viruses and assume some sort of symbiotic relationship between them and the protozoa. Recently, however, certain human pathogens were shown to not only survive but also to multiply in the cytoplasm of free-living, nonpathogenic protozoa. Indeed, it is now believed that protozoa are the natural habitat for certain pathogenic bacteria. To date, the main focus of attention has been on the bacterium Legionella pneumophila, the causative organism of Legionnaires' disease; these bacteria live and reproduce in the cytoplasm of some free-living amoebae (Curds 1992). More on this subject in the following chapters.

Symbionts

Some protozoa are harmless or even beneficial symbionts. A bewildering array of ciliates, for example, inhabit the rumen and reticulum of ruminates and the cecum and colon of equids. Little is known about the relationship of the ciliates to their host, but a few may aid the animal in digesting cellulose.

Data on Protozoa

While our knowledge of recent and fossil foraminifera in the U.S. coastal waterways is systematically growing, other free-living protozoa are poorly known. There are some regional guides and, while some are excellent, many are limited in scope, vague on specifics, or difficult to use. Largely because of these problems, most ecologists who include protozoa in their studies of aquatic habitats do not identify them, even if they do count and measure them for biomass estimates (Taylor and Sanders 1991).

Parasitic protozoa of humans, domestic animals, and wildlife are better known although no attempt has been made to compile this information into a single source. Large gaps in our knowledge exist, especially for haemogregarines, microsporidians, and myxosporidians (see Kreier and Baker 1987).

Museum Specimens

For many plant and animal taxa, museums represent a massive information resource. This is not true for protozoa. In the United States, only the National Natural History Museum (Smithsonian Institution) has a reference collection preserved on microscope slides, but it does not have a protozoologist curator and cannot provide species' identification or verification services. The American Type Culture Collection has some protozoa in culture, but its collection includes relatively few kinds of protozoa.

Ecological Role of Protozoa

Although protozoa are frequently overlooked, they play an important role in many communities where they occupy a range of trophic levels. As predators upon unicellular or filamentous algae, bacteria, and microfungi, protozoa play a role both as herbivores and as consumers in the decomposer link of the food chain. As components of the micro- and meiofauna, protozoa are an important food source for microinvertebrates. Thus, the ecological role of protozoa in the transfer of bacterial and algal production to successive trophic levels is important.

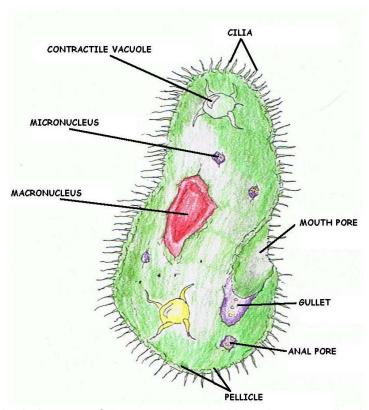
Factors Affecting Growth and Distribution

Most free-living protozoa reproduce by cell division (exchange of genetic material is a separate process and is not involved in reproduction in protozoa). The relative importance for population growth of biotic versus chemical-physical components of the environment is difficult to ascertain from the existing survey data. Protozoa are found living actively in nutrient-poor to organically rich waters and in fresh water varying between 0°C (32°F) and 50°C (122°F). Nonetheless, it appears that rates of population growth increase when food is not constrained and temperature is increased (Lee and Fenchel 1972; Fenchel 1974; Montagnes et al. 1988).

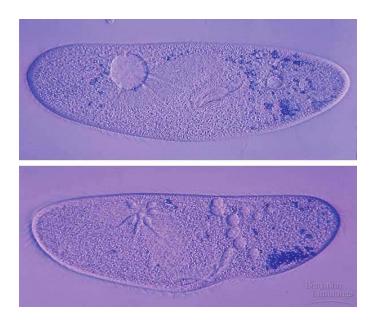
Comparisons of oxygen consumption in various taxonomic groups show wide variation (Laybourn and Finlay 1976), with some aerobic forms able to function at extremely low oxygen tensions and to thereby avoid competition and predation.

Many parasitic and a few free-living species are obligatory anaerobes (grow without atmospheric oxygen). Of the free-living forms, the best known are the plagiopylid ciliates that live in the anaerobic sulfide-rich sediments of marine wetlands (Fenchel et al. 1977). The importance of plagiopylids in recycling nutrients to aerobic zones of wetlands is potentially great.

Because of the small size of protozoa, their short generation time, and (for some species) ease of maintaining them in the laboratory, ecologists have used protozoan populations and communities to investigate competition and predation.


The result has been an extensive literature on a few species studied primarily under laboratory conditions. Few studies have been extended to natural habitats with the result that we know relatively little about most protozoa and their roles in natural communities. Intraspecific competition for common resources often results in cannibalism, sometimes with dramatic changes in morphology of the cannibals (Giese 1973). Field studies of interspecific competition are few and most evidence for such species interactions is indirect (Cairns and Yongue 1977).

Contractile Vacuoles


Many protozoa have contractile vacuoles, which collect and expel excess water, and extrusomes, which expel material used to deflect predators or capture prey. In multicellular organisms, hormones are often produced in vesicles. In higher plants, most of a cell's volume is taken up by a central vacuole or tonoplast, which maintains its osmotic pressure. Many eukaryotes have slender motile projections, usually called flagella when long and cilia when short. These are variously involved in movement, feeding, and sensation. These are entirely distinct from prokaryotic flagella. They are supported by a bundle of microtubules arising from a basal body, also called a kinetosome or centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella also may have hairs or mastigonemes, scales, connecting membranes, and internal rods. Their interior is continuous with the cell's cytoplasm.

Centrioles

Centrioles are often present even in cells and groups that do not have flagella. They generally occur in groups of one or two, called kinetids that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles may also be associated in the formation of a spindle during nuclear division. Some protists have various other microtubule-supported organelles. These include the radiolaria and heliozoa, which produce axopodia used in flotation or to capture prey, and the haptophytes, which have a peculiar flagellum-like organelle called the haptonema.

Figure 1. A diagram of *Paramecium* sp. with major organelles indicated.

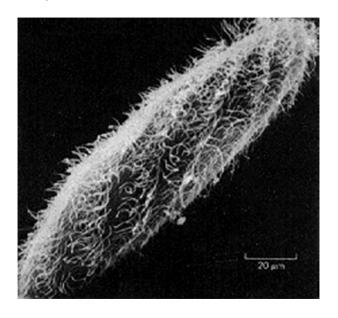

Contractile Vacuoles

Figure 2. The contractile vacuole when full (top) and after contraction (bottom).

Paramecium

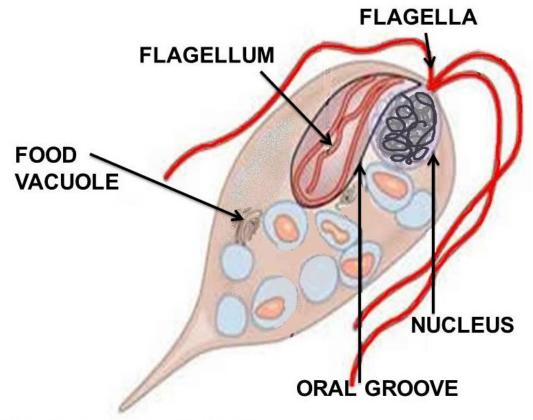
Members of the genus *Paramecium* are single-celled, freshwater organisms in the kingdom Protista. They exist in an environment in which the osmotic concentration in their external environment is much lower than that in their cytoplasm. More specifically, the habitat in which they live is **hypotonic** to their cytoplasm. As a result of this, *Paramecium* is subjected to a continuous influx of water, as water diffuses inward to a region of higher osmotic concentration.

If *Paramecium* is to maintain homeostasis, water must be continually pumped out of the cell (against the osmotic gradient) at the same rate at which it moves in. This process, known as **osmoregulation**, is carried out by two organelles in *Paramecium* known as **contractile vacuoles** (Figures 1 and 2).

Protozoan Diseases

Protozoan pathogens are larger than bacteria and viruses, but still microscopic. They invade and inhabit the gastrointestinal tract. Some parasites enter the environment in a dormant form, with a protective cell wall called a "*cyst*." The cyst can survive in the environment for long periods of time and be extremely resistant to conventional disinfectants such as chlorine. Effective filtration treatment is therefore critical to removing these organisms from water sources.

Giardiasis


Giardiasis is a commonly reported protozoan-caused disease. It has also been referred to as "backpacker's disease" and "beaver fever" because of the many cases reported among hikers and others who consume untreated surface water. Symptoms include chronic diarrhea, abdominal cramps, bloating, frequent loose and pale greasy stools, fatigue and weight loss. The incubation period is 5-25 days or longer, with an average of 7-10 days. Many infections are asymptomatic (no symptoms). Giardiasis occurs worldwide. Waterborne outbreaks in the United States occur most often in communities receiving their drinking water from streams or rivers without adequate disinfection or a filtration system. The organism, *Giardia lamblia*, has been responsible for more community-wide outbreaks of disease in the U.S. than any other pathogen. Drugs are available for treatment but are not 100% effective.

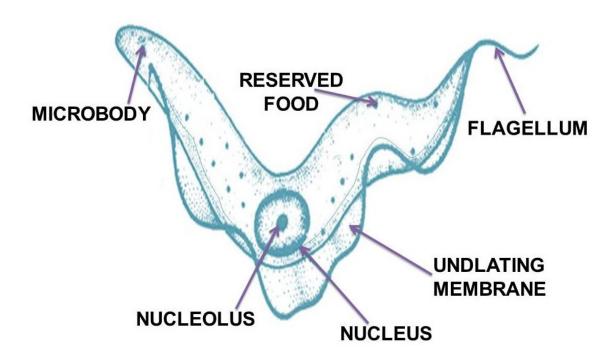
Cryptosporidiosis

Cryptosporidiosis is an example of a protozoan disease that is common worldwide, but was only recently recognized as causing human disease. The major symptom in humans is diarrhea, which may be profuse and watery. The diarrhea is associated with cramping abdominal pain. General malaise, fever, anorexia, nausea, and vomiting occur less often. Symptoms usually come and go, and end in fewer than 30 days in most cases. The incubation period is 1-12 days, with an average of about seven days. *Cryptosporidium* organisms have been identified in human fecal specimens from more than 50 countries on six continents. The mode of transmission is fecal-oral, either by person-to-person or animal-to-person. There is no specific treatment for *Cryptosporidium* infections.

All of these diseases, with the exception of hepatitis A, have one symptom in common: diarrhea. They also have the same mode of transmission, fecal-oral, whether through person-to-person or animal-to-person contact, and the same routes of transmission, being either foodborne or waterborne. Although most pathogens cause mild, self-limiting disease, on occasion, they can cause serious, even life threatening illness. Particularly vulnerable are persons with weak immune systems such as those with HIV infections or cancer. By understanding the nature of waterborne diseases, the importance of properly constructed, operated and maintained public water systems becomes obvious. While water treatment cannot achieve sterile water (no microorganisms), the goal of treatment must clearly be to produce drinking water that is as pathogen-free as possible at all times. For those who operate water systems with inadequate source protection or treatment facilities, the potential risk of a waterborne disease outbreak is real. For those operating systems that currently provide adequate source protection and treatment, operating and maintaining the system at a high level on a continuing basis is critical to prevent disease.

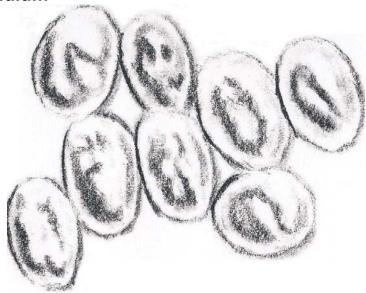
Giardia Lamblia

GIARDIA LAMBLIA


Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

Giardia infection can occur through ingestion of dormant cysts in contaminated water, or by the fecal-oral route (through poor hygiene practices). The Giardia cyst can survive for weeks to months in cold water and therefore can be present in contaminated wells and water systems, and even clean-looking mountain streams, as well as city reservoirs, as the Giardia cysts are resistant to conventional water treatment methods, such as chlorination and ozonolysis. Zoonotic transmission is also possible, and therefore Giardia infection is a concern for people camping in the wilderness or swimming in contaminated streams or lakes, especially the artificial lakes formed by beaver dams (hence the popular name for giardiasis, "Beaver Fever"). As well as water-borne sources, fecal-oral transmission can also occur, for example in day care centers, where children may have poorer hygiene practices.

Those who work with children are also at risk of being infected, as are family members of infected individuals. Not all Giardia infections are symptomatic, so some people can unknowingly serve as carriers of the parasite.


The life cycle begins with a non-infective cyst being excreted with feces of an infected individual. Once out in the environment, the cyst becomes infective. A distinguishing characteristic of the cyst is 4 nuclei and a retracted cytoplasm. Once ingested by a host, the trophozoite emerges to an active state of feeding and motility. After the feeding stage, the trophozoite undergoes asexual replication through longitudinal binary fission. The resulting trophozoites and cysts then pass through the digestive system in the feces. While the trophozoites may be found in the feces, only the cysts are capable of surviving outside of the host.

Distinguishing features of the trophozoites are large karyosomes and lack of peripheral chromatin, giving the two nuclei a halo appearance. Cysts are distinguished by a retracted cytoplasm. This protozoa lacks mitochondria, although the discovery of the presence of mitochodrial remnant organelles in one recent study "indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont"

PROTOZOAN PARASITE

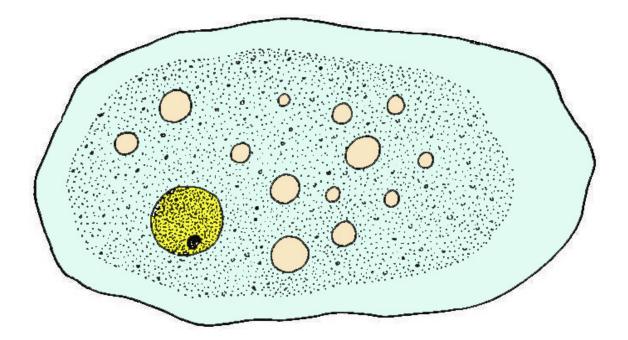
Cryptosporidium

Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis. Other apicomplexan pathogens include the malaria parasite Plasmodium, and Toxoplasma, the causative agent of toxoplasmosis. Unlike Plasmodium, which transmits via a mosquito vector, Cryptosporidium does not utilize an insect vector and is capable of completing its life cycle within a single host, resulting in cyst stages which are excreted in feces and are capable of transmission to a new host.

A number of species of Cryptosporidium infect mammals. In humans, the main causes of disease are C. parvum and C. hominis (previously C. parvum genotype 1). C. canis, C. felis, C. meleagridis, and C. muris can also cause disease in humans. In recent years, cryptosporidiosis has plagued many commercial Leopard gecko breeders. Several species of the Cryptosporidium family (C. serpentes and others) are involved, and outside of geckos it has been found in monitor lizards, iguanas, tortoises as well as several snake species.

Cryptosporidiosis is typically an acute short-term infection but can become severe and non-resolving in children and immunocompromised individuals. The parasite is transmitted by environmentally hardy cysts (oocysts) that, once ingested, excyst in the small intestine and result in an infection of intestinal epithelial tissue.

The genome of Cryptosporidium parvum was sequenced in 2004 and was found to be unusual amongst Eukaryotes in that the mitochondria seem not to contain DNA. A closely-related species, C. hominis, also has its genome sequence available. CryptoDB.org is a NIH-funded database that provides access to the Cryptosporidium genomics data sets.

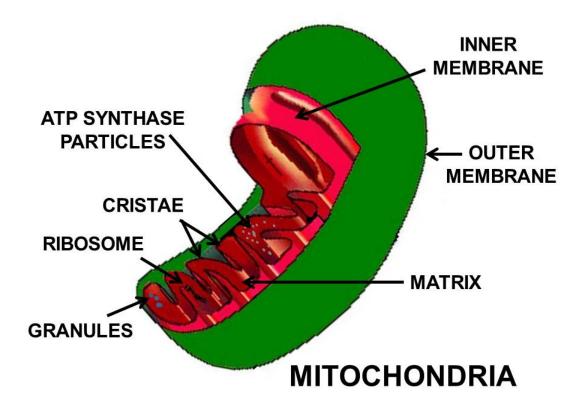

CRYPTO-PARVUM

When *C. parvum* was first identified as a human pathogen, diagnosis was made by a biopsy of intestinal tissue (Keusch, *et al.*, 1995). However, this method of testing can give false negatives due the "patchy" nature of the intestinal parasitic infection (Flanigan and Soave, 1993). Staining methods were then developed to detect and identify the oocysts directly from stool samples. The modified acid-fast stain is traditionally used to most reliably and specifically detect the presence of cryptosporidial oocysts.

There have been six major outbreaks of cryptosporidiosis in the United States as a result of contamination of drinking water (Juranek, 1995). One major outbreak in Milwaukee in 1993 affected over 400,000 persons. Outbreaks such as these usually result from drinking water taken from surface water sources such as lakes and rivers (Juranek, 1995). Swimming pools and water park wave pools have also been associated with outbreaks of cryptosporidiosis. Also, untreated groundwater or well water public drinking water supplies can be sources of contamination.

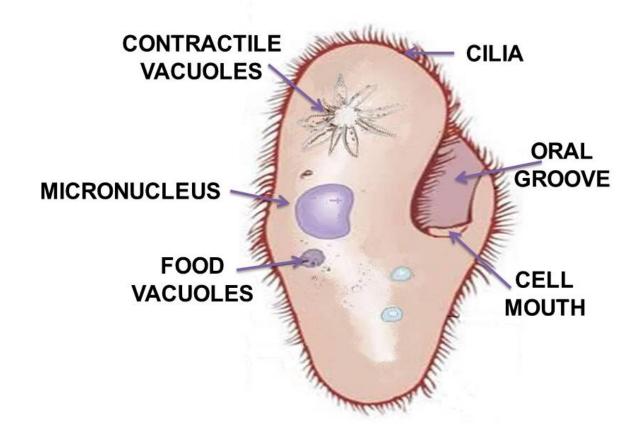
The highly environmentally resistant cyst of *C. parvum* allows the pathogen to survive various drinking water filtrations and chemical treatments such as chlorination. Although municipal drinking water utilities may meet federal standards for safety and quality of drinking water, complete protection from cryptosporidial infection is not guaranteed. In fact, *all* waterborne outbreaks of cryptosporidiosis have occurred in communities where the local utilities met all state and federal drinking water standards (Juranek, 1995).

Entamoeba histolytica



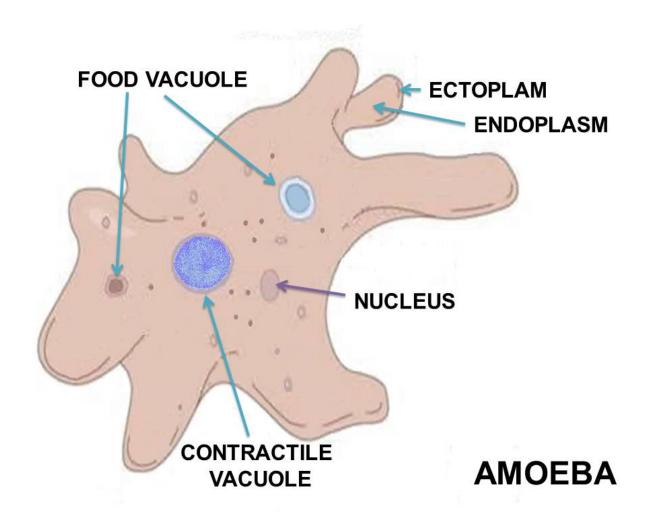
Entamoeba histolytica, another water-borne pathogen, can cause diarrhea or a more serious invasive liver abscess. When in contact with human cells, these amoebae are cytotoxic. There is a rapid influx of calcium into the contacted cell, it quickly stops all membrane movement save for some surface blebbing. Internal organization is disrupted, organelles lyse, and the cell dies. The ameba may eat the dead cell or just absorb nutrients released from the cell.

On average, about one in 10 people who are infected with *E. histolytica* becomes sick from the infection. The symptoms often are quite mild and can include loose stools, stomach pain, and stomach cramping. Amebic dysentery is a severe form of amebiasis associated with stomach pain, bloody stools, and fever. Rarely, *E. histolytica* invades the liver and forms an abscess. Even less commonly, it spreads to other parts of the body, such as the lungs or brain.

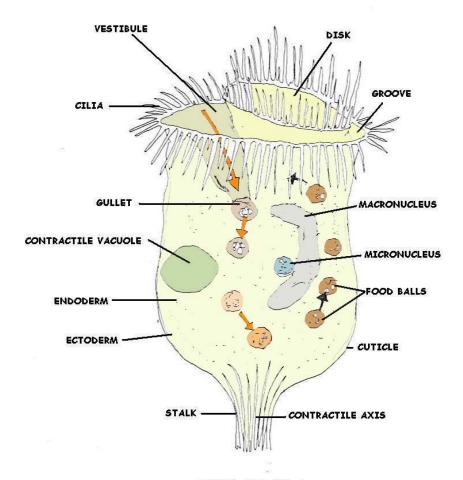

Scientific classification

Domain: Eukaryota Phylum: Amoebozoa Class: Archamoebae Genus: Entamoeba Species: E. histolytica

Mitochondria


The bacterial cell is surrounded by a lipid membrane, or cell membrane, which encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. As they are prokaryotes, bacteria do not tend to have membrane-bound organelles in their cytoplasm and thus contain few large intracellular structures. They consequently lack a nucleus, mitochondria, chloroplasts and the other organelles present in eukaryotic cells, such as the Golgi apparatus and endoplasmic reticulum.

PARAMECIUM

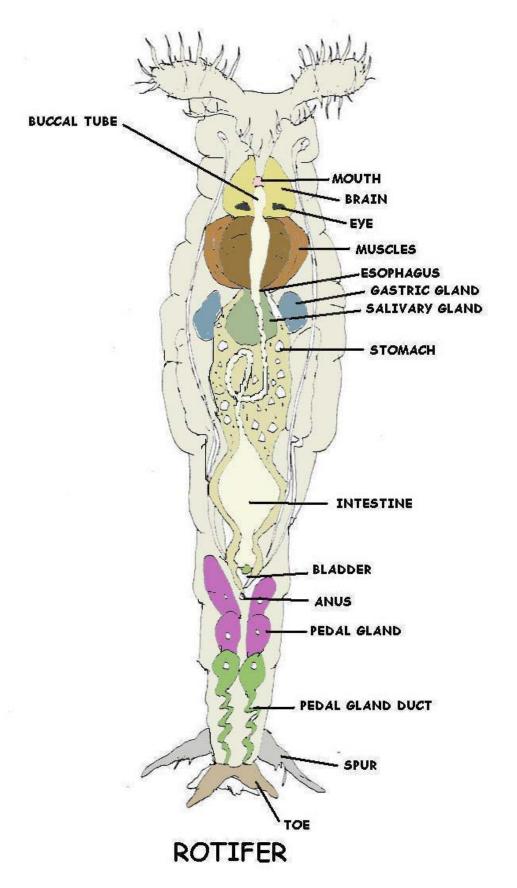

Paramecia

Paramecia are a group of unicellular ciliate protozoa formerly known as slipper animalcules from their slipper shape. They are commonly studied as a representative of the ciliate group. Simple cilia cover the body which allows the cell to move with a synchronous motion (like a caterpilla). There is also a deep oral groove containing inconspicuous compound oral cilia (as found in other peniculids) that is used to draw food inside. They generally feed upon bacteria and other small cells. Osmoregulation is carried out by a pair of contractile vacuoles, which actively expel water absorbed by osmosis from their surroundings. Paramecia are widespread in freshwater environments, and are especially common in scums. Paramecia are attracted by acidic conditions. Certain single-celled eukaryotes, such as Paramecium, are examples for exceptions to the universality of the genetic code (translation systems where a few codons differ from the standard ones).

Amoeba

Amoeba (sometimes amœba or ameba, plural amoebae) is a genus of protozoa that moves by means of pseudopods, and is well-known as a representative unicellular organism. The word amoeba or ameba is variously used to refer to it and its close relatives, now grouped as the Amoebozoa, or to all protozoa that move using pseudopods, otherwise termed amoeboids.

VORTICELLA
(TYPE OF PROTOZOAN FOUND IN STAGNANT WATER)


Vorticella

Vorticella is a genus of protozoa, with over 100 known species. They are stalked inverted bell-shaped ciliates, placed among the peritrichs. Each cell has a separate stalk anchored onto the substrate, which contains a contracile fibril called a myoneme. When stimulated this shortens, causing the stalk to coil like a spring. Reproduction is by budding, where the cell undergoes longitudinal fission and only one daughter keeps the stalk. Vorticella mainly lives in freshwater ponds and streams - generally anywhere protists are plentiful. Other genera such as Carchesium resemble Vorticella but are branched or colonial.

Domain: Eukaryota **Phylum**: Ciliophora

Class: Oligohymenophorea

Subclass: Peritrichia Order: Sessilida Family: Vorticellidae Genus: Vorticella

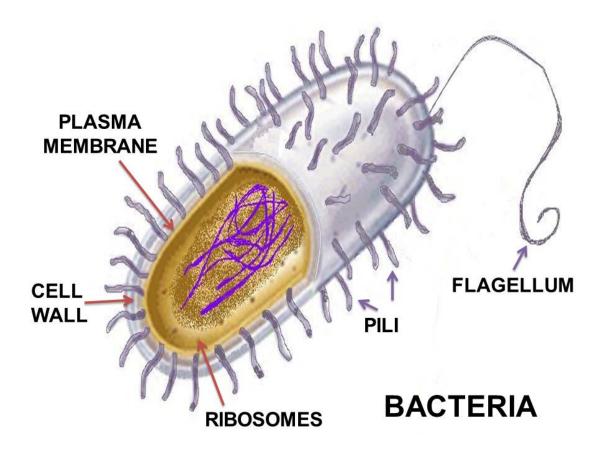
Rotifer

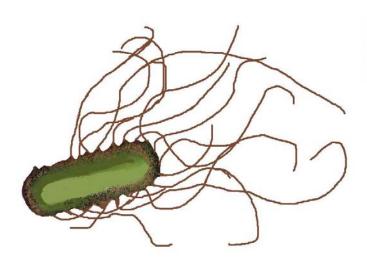
The rotifers make up a phylum of microscopic and near-microscopic pseudocoelomate animals. They were first described by John Harris in 1696 (Hudson and Gosse, 1886). Leeuwenhoek is mistakenly given credit for being the first to describe rotifers but Harris had produced sketches in 1703. Most rotifers are around 0.1-0.5 mm long, and are common in freshwater throughout the world with a few saltwater species. Rotifers may be free swimming and truly planktonic, others move by inch worming along the substrate, whilst some are sessile, living inside tubes or gelatinous holdfasts. About 25 species are colonial (e.g. Sinantherina semibullata), either sessile or planktonic.

Rotifers get their name (derived from Greek and meaning "wheel-bearer"; they have also been called wheel animalcules) from the corona, which is composed of several ciliated tufts around the mouth that in motion resemble a wheel. These create a current that sweeps food into the mouth, where it is chewed up by a characteristic pharynx (called the mastax) containing a tiny, calcified, jaw-like structure called the trophi. The cilia also pull the animal, when unattached, through the water. Most free-living forms have pairs of posterior toes to anchor themselves while feeding. Rotifers have bilateral symmetry and a variety of different shapes. There is a well-developed cuticle which may be thick and rigid, giving the animal a box-like shape, or flexible, giving the animal a worm-like shape; such rotifers are respectively called loricate and illoricate.

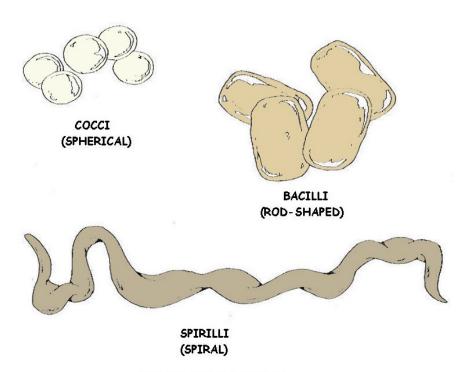
Like many other microscopic animals, adult rotifers frequently exhibit eutely - they have a fixed number of cells within a species, usually on the order of one thousand. Males in the class Monogononta may be either present or absent depending on the species and environmental conditions. In the absence of males, reproduction is by parthenogenesis and results in clonal offspring that are genetically identical to the parent. Individuals of some species form two distinct types of parthenogenetic eggs; one type develops into a normal parthenogenetic female, while the other occurs in response to a changed environment and develops into a degenerate male that lacks a digestive system, but does have a complete male reproductive system that is used to inseminate females thereby producing fertilized 'resting eggs'. Resting eggs develop into zygotes that are able to survive extreme environmental conditions such as may occur during winter or when the pond dries up. These eggs resume development and produce a new female generation when conditions improve again. The life span of monogonont females varies from a couple of days to about three weeks.

Bdelloid rotifers are unable to produce resting eggs, but many can survive prolonged periods of adverse conditions after desiccation. This facility is termed anhydrobiosis, and organisms with these capabilities are termed anhydrobionts. Under drought conditions, bdelloid rotifers contract into an inert form and lose almost all body water; when rehydrated, however, they resume activity within a few hours. Bdelloids can survive the dry state for prolonged periods, with the longest well-documented dormancy being nine years. While in other anhydrobionts, such as the brine shrimp, this desiccation tolerance is thought to be linked to the production of trehalose, a non-reducing disaccharide (sugar), bdelloids apparently lack the ability to synthesize trehalose. Bdelloid rotifer genomes contain two or more divergent copies of each gene. Four copies of hsp82 are, for example, found. Each is different and found on a different chromosome, excluding the possibility of homozygous sexual reproduction.

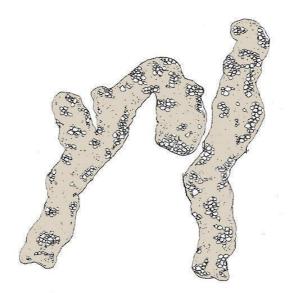

Waterborne Diseases


Name	Causative organism	Source of organism	Disease
Viral gastroenteritis	Rotavirus (mostly in young children)	Human feces	Diarrhea or vomiting
Norwalk Agent	Noroviruses (genus Norovirus, family Caliciviridae) *1	Human feces; also, shellfish; lives in polluted waters	Diarrhea and vomiting
Salmonellosis	Salmonella (bacterium)	Animal or human feces	Diarrhea or vomiting
Gastroenteritis Escherichia <i>coli</i>	E. coli O1 57:H7 (bacterium): Other E. coli organisms:	Human feces	Symptoms vary with type caused
Typhoid	Salmonella typhi (bacterium)	Human feces, urine	Inflamed intestine, enlarged spleen, high temperature- sometimes fatal
Shigellosis	Shigella (bacterium)	Human feces	Diarrhea
Cholera	Vibrio choleras (bacterium)	Human feces; also, shellfish; lives in many coastal waters	Vomiting, severe diarrhea, rapid dehydration, mineral loss-high mortality
Hepatitis A	Hepatitis A virus	Human feces; shellfish grown in polluted waters	Yellowed skin, enlarged liver, fever, vomiting, weight loss, abdominal pain- low mortality, lasts up to four months
Amebiasis	Entamoeba histolytica (protozoan)	Human feces	Mild diarrhea, dysentery, extra intestinal infection
Giardiasis	Giardia lamblia (protozoan)	Animal or human feces	Diarrhea, cramps, nausea, and general weakness — lasts one week to months
Cryptosporidiosis	Cryptosporidium parvum	Animal or human feces	Diarrhea, stomach pain — lasts (protozoan) days to weeks

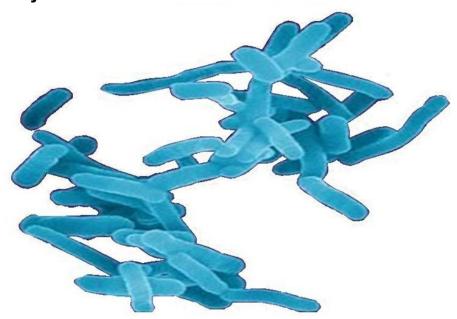
Notes:


^{*1} http://www.cdc.gov/ncidod/dvrd/revb/gastro/norovirus.htm http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5009a1.htm

Bacteria Section



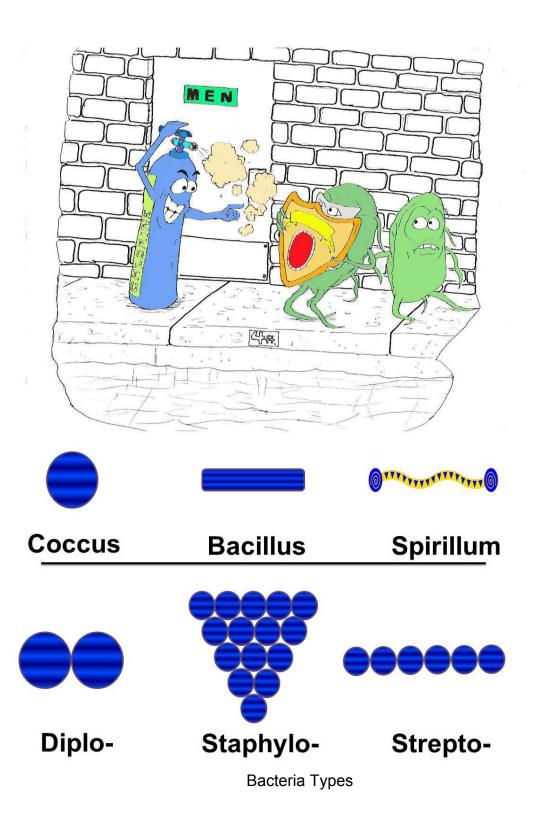
Peritrichous Bacteria


BACTERIA TYPES

Microbiologists broadly classify bacteria according to their shape: spherical, rod-shaped, and spiral-shaped. Pleomorphic bacteria can assume a variety of shapes. Bacteria may be further classified according to whether they require oxygen (aerobic or anaerobic) and how they react to a test with Gram's stain. Bacteria in which alcohol washes away Gram's stain are called gram-negative, while bacteria in which alcohol causes the bacteria's walls to absorb the stain are called gram-positive.

COLORLESS FILAMENTOUS
SULFUR BACTERIA

Shigella dysenteriae


SHIGELLA DYSENTERIAE

Shigella dysenteriae is a species of the rod-shaped bacterial genus Shigella. Shigella can cause shigellosis (bacillary dysentery). Shigellae are Gram-negative, non-spore-forming, facultatively anaerobic, non-motile bacteria.

S. dysenteriae, spread by contaminated water and food, causes the most severe dysentery because of its potent and deadly Shiga toxin, but other species may also be dysentery agents. Shigella infection is typically via ingestion (fecal–oral contamination); depending on age and condition of the host as few as ten bacterial cells can be enough to cause an infection. Shigella causes dysentery that result in the destruction of the epithelial cells of the intestinal mucosa in the cecum and rectum. Some strains produce enterotoxin and Shiga toxin, similar to the verotoxin of E. coli O157:H7. Both Shiga toxin and verotoxin are associated with causing hemolytic uremic syndrome.

Shigella invades the host through epithelial cells of the large intestine. Using a Type III secretion system acting as a biological syringe, the bacterium injects IpaD protein into cell, triggering bacterial invasion and the subsequent lysis of vacuolar membranes using IpaB and IpaC proteins. It utilizes a mechanism for its motility by which its IcsA protein triggers actin polymerization in the host cell (via N-WASP recruitment of Arp2/3 complexes) in a "rocket" propulsion fashion for cell-to-cell spread.

The most common symptoms are diarrhea, fever, nausea, vomiting, stomach cramps, and straining to have a bowel movement. The stool may contain blood, mucus, or pus (e.g. dysentery). In rare cases, young children may have seizures. Symptoms can take as long as a week to show up, but most often begin two to four days after ingestion. Symptoms usually last for several days, but can last for weeks. Shigella is implicated as one of the pathogenic causes of reactive arthritis worldwide.

Type Characteristics Rod-shaped, gram-negative, aerobic; highly tolerant of acidic Acetic acid conditions; generate organic acids Rod-shaped or filamentous, gram-positive, aerobic; common in soils; Actinomycete essential to growth of many plants; source of much of original antibiotic production in pharmaceutical industry Spherical, sometimes in clusters or strings, gram-positive, aerobic and anaerobic; resistant to drying and high-salt conditions; Staphylococcus Coccoid species common on human skin, certain strains associated with toxic shock syndrome Rod-shaped, form club or V shapes, gram-positive, aerobic; found in wide variety of habitats, particularly soils; highly resistant to drying; Coryneform include Arthrobacter, among most common forms of life on earth Usually rod-shaped, can be gram-positive or gram-negative; have highly adaptable, heat-resistant spores that can go dormant for long **Endospore**periods, possibly thousands of years; include Clostridium (anaerobic) forming and Bacillus (aerobic) Rod-shaped, gram-negative, aerobic but can live in certain anaerobic Enteric conditions; produce nitrite from nitrate, acids from glucose; include Escherichia coli, Salmonella (over 1000 types), and Shigella Rod-shaped, gram-negative, mostly aerobic; glide on secreted slimy Gliding substances; form colonies, frequently with complex fruiting structures Gram-positive, anaerobic; produce lactic acid through fermentation; Lactic acid include Lactobacillus, essential in dairy product formation, and Streptococcus, common in humans Pleomorphic, spherical or rod-shaped, frequently branching, no gram Mycobacterium stain, aerobic; commonly form yellow pigments; include Mycobacterium tuberculosis, cause of tuberculosis Spherical, commonly forming branching chains, no gram stain, aerobic but can live in certain anaerobic conditions: without cell walls vet Mycoplasma structurally resistant to lysis; among smallest of bacteria; named for superficial resemblance to fungal hyphae (*myco-* means 'fungus') Rod-shaped, gram-negative, aerobic; convert atmospheric nitrogen gas Nitrogen-fixing to ammonium in soil; include Azotobacter, a common genus Rod-shaped, pleomorphic, gram-positive, anaerobic; ferment lactic Propionic acid acid; fermentation produces holes in Swiss cheese from the production of carbon dioxide Rod-shaped (straight or curved) with polar flagella, gram-negative, **Pseudomonad** aerobic; can use up to 100 different compounds for carbon and energy Spherical or rod-shaped, gram-negative, aerobic; cause Rocky Mountain spotted fever and typhus; closely related to Agrobacterium, a Rickettsia common gall-causing plant bacterium Filamentous, gram-negative, aerobic; 'swarmer' (colonizing) cells form and break out of a sheath; sometimes coated with metals from Sheathed environment

Spirillum Spiral-shaped, gram-negative, aerobic; include *Bdellovibrio*, predatory

on other bacteria

Spiral-shaped, gram-negative, mostly anaerobic; common in moist environments, from mammalian gums to coastal mudflats; complex

internal structures convey rapid movement; include

Treponemapallidum, cause of syphilis

Sulfate- and

Sulfurreducing

Vibrio

Spirochete

Commonly rod-shaped, mostly gram-negative, anaerobic; include

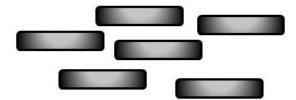
Desulfovibrio, ecologically important in marshes

Sulfur- and Commonly rod-shaped, frequently with polar flagella, gram-negative, iron-oxidizing mostly anaerobic; most live in neutral (nonacidic) environment

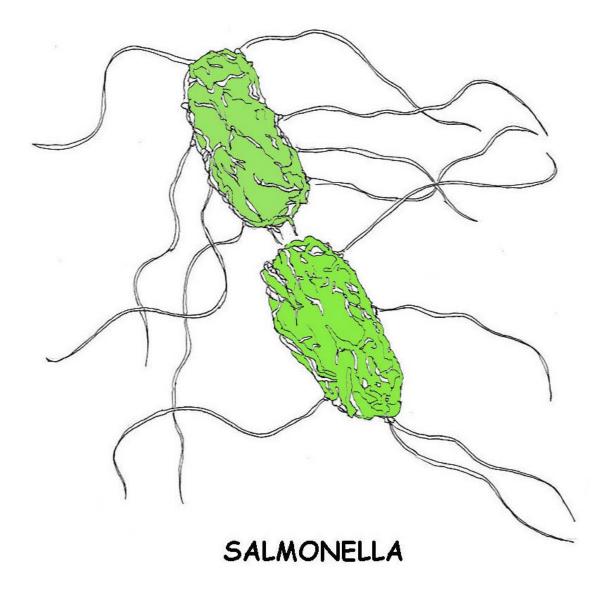
Rod- or comma-shaped, gram-negative, aerobic; commonly with a single flagellum; include *Vibrio cholerae*, cause of cholera, and

luminescent forms symbiotic with deep-water fishes and squids

Gram⁺



Lactobacillus acidophilus


Streptococcus thermophilus

Gram-

Escherichia coli

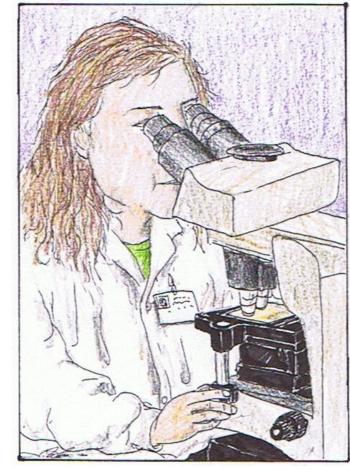
Salmonella

Salmonella is a Gram-negative bacterium. It is found in many turtles and other reptiles. In clinical laboratories, it is usually isolated on MacConkey agar, XLD agar, XLT agar, DCA agar, or Önöz agar. Because they cause intestinal infections and are greatly outnumbered by the bacteria normally found in the healthy bowel, primary isolation requires the use of a selective medium, so use of a relatively non-selective medium such as CLED agar is not often practiced. Numbers of salmonella may be so low in clinical samples that stools are routinely also subjected to "enrichment culture", where a small volume of stool is incubated in a selective broth medium, such as selenite broth or Rappaport Vassiliadis soya peptone broth, overnight. These media are inhibitory to the growth of the microbes normally found in the healthy human bowel, while allowing salmonellae to become enriched in numbers. Salmonellae may then be recovered by inoculating the enrichment broth on one or more of the primary selective media. On blood agar, they form moist colonies about 2 to 3 mm in diameter.

When the cells are grown for a prolonged time at a range of 25—28°C, some strains produce a biofilm, which is a matrix of complex carbohydrates, cellulose and proteins. The ability to produce biofilm (a.k.a. "rugose", "lacy", or "wrinkled") can be an indicator of dimorphism, which is the ability of a single genome to produce multiple phenotypes in response to environmental conditions. Salmonellae usually do not ferment lactose; most of them produce hydrogen sulfide which, in media containing ferric ammonium citrate, reacts to form a black spot in the centre of the creamy colonies.

Classification

Salmonella taxonomy is complicated. As of December 7, 2005, there are two species


within the genus: S. bongori (previously subspecies V) and S. enterica (formerly called S. choleraesuis), which is divided into six subspecies:

- * I—enterica
- * II—salamae
- * Illa—arizonae
- * IIIb—diarizonae
- * IV—houtenae
- * V—obsolete (now designated
- S. bongori)
- * VI—indica

There are also numerous (over 2500) serovars within both species, which are found in a disparate variety of environments and which are associated with many different diseases. The vast majority of human isolates (>99.5%) are subspecies S. enterica. For the sake of simplicity, the CDC recommends that Salmonella species be referred to only by their genus and serovar, e.g.

Salmonella Typhi instead of the more technically correct

designation, Salmonella enterica subspecies enterica serovar Typhi.

Escherichia Coli Section

Fecal Coliform Bacteria

Fecal coliform bacteria are microscopic organisms that live in the intestines of warm-blooded animals. They also live in the waste material, or feces, excreted from the intestinal tract. When fecal coliform bacteria are present in high numbers in a water sample, it means that the water has received fecal matter from one source or another. Although not necessarily agents of disease, fecal coliform bacteria may indicate the presence of disease-carrying organisms, which live in the same environment as the fecal coliform bacteria.

Reasons for Natural Variation

Unlike the other conventional water quality parameters, fecal coliform bacteria are living organisms. They do not simply mix with the water and float straight downstream. Instead they multiply quickly when conditions are favorable for growth, or die in large numbers when conditions are not. Because bacterial concentrations are dependent on specific conditions for growth, and these conditions change quickly, fecal coliform bacteria counts are not easy to predict. For example, although winter rains may wash more fecal matter from urban areas into a stream, cool water temperatures may cause a major die-off. Exposure to sunlight (with its ultraviolet disinfection properties) may have the same effect, even in the warmer water of summertime.

Expected Impact of Pollution

The primary sources of fecal coliform bacteria to fresh water are wastewater treatment plant discharges, failing septic systems, and animal waste. Bacteria levels do not necessarily decrease as a watershed develops from rural to urban. Instead, urbanization usually generates new sources of bacteria. Farm animal manure and septic systems are replaced by domestic pets and leaking sanitary sewers. In fact, stormwater runoff in urbanized areas has been found to be surprisingly high in fecal coliform bacteria concentrations.

The presence of old, disintegrating storm and sanitary sewers, misplaced sewer pipes, and good breeding conditions are common explanations for the high levels measured.

Coliform Standards (in colonies/100ml)

Drinking water	1FC
Total body contact (swimming)	
Partial body contact (boating)	
Threatened sewage effluent	

*Total coliform (TC) includes bacteria from cold-blooded animals and various soil organisms. According to recent literature, total coliform counts are normally about 10 times higher than fecal coliform (FC) counts.

Indicator Connection Varies

General coliforms, E. Coli, and Enterococcus bacteria are the "indicator" organisms generally measured to assess microbiological quality of water. However, these aren't generally what get people sick. Other bacteria, viruses, and parasites are what we are actually worried about.

Because it is so much more expensive and tedious to do so, actual pathogens are virtually never tested for. Over the course of a professional lifetime pouring over indicator tests, in a context where all standards are based on indicators, water workers tend to forget that the indicators are not the things we actually care about.

What are these indicators? More information in the Laboratory section.

- **General coliforms** indicate that the water has come in contact with plant or animal life. General coliforms are universally present, including in pristine spring water. They are of little concern at low levels, except to indicate the effectiveness of disinfection. Chlorinated water and water from perfectly sealed tube wells is the only water I've tested which had zero general coliforms. At very high levels they indicate there is what amounts to a lot of compost in the water, which could easily include pathogens (Ten thousand general coliform bacteria will get you a beach closure, compared to two or four hundred fecal coliforms, or fifty enterococcus).
- **Fecal coliforms**, particularly E. coli, indicate that there are mammal or bird feces in the water.
- Enterococcus bacteria also indicate that there are feces from warm blooded animals in the water. Enterococcus are a type of fecal streptococci. They are another valuable indicator for determining the amount of fecal contamination of water.

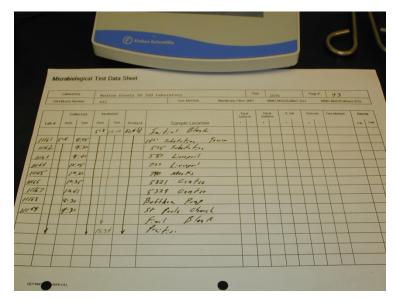
According to studies conducted by the EPA, enterococci have a greater correlation with swimming-associated gastrointestinal illness in both marine and fresh waters than other bacterial indicator organisms, and are less likely to "die off" in saltwater.

The more closely related the animal, the more likely pathogens excreted with their feces can infect us. Human feces are the biggest concern, because anything which infects one human could infect another. There isn't currently a quantitative method for measuring specifically human fecal bacteria (expensive genetic studies can give a presence/absence result). Ingesting a human stranger's feces via contaminated water supply is a classic means for infections to spread rapidly. The more pathogens an individual carries, the more hazardous their feces. Ingesting feces from someone who is not carrying any pathogens may gross you out, but it can't infect you. Infection rates are around 5% in the US, and approach 100% in areas with poor hygiene and contaminated water supplies. Keep in the back of your mind that **the ratio of indicators to actual pathogens is not fixed**. It will always be different, sometimes very different. Whenever you are trying to form a mental map of reality based on water tests, you should include in the application of your water intuition an adjustment factor for your best guess of the ratio between indicators and actual pathogens.

Membrane Filter Total Coliform Technique

The membrane filter total Coliform technique is used at Medina County for drinking water quality testing. The following is a summary of this test. A sampling procedure sheet is given to all sample takers by Medina County.

The samples are taken in sterile 100 mL containers. These containers, when used for chlorinated water samples, have a sodium thiosulfate pill or solution to dechlorinate the sample.


The sample is placed in cold storage after proper sample taking procedures are

followed. (See sample procedures below)

The samples are taken to the laboratory with a chain of custody to assure no tampering of samples can occur.

These samples are logged in at the laboratory.

No longer than 30 hours can lapse between the time of sampling and time of test incubation. (8 hours for heterotrophic, nonpotable 6 hours, others not longer than 24 hours)

All equipment is sterilized by oven and autoclave.

Glassware in oven at 170° C \pm 10° C with foil (or other suitable wrap) loosely fitting and secured immediately after sterilization.

Filtration units in autoclave at 121°C for 30 minutes.

Use sterile petri dishes, grid, and pads bought from a reliable company – certified, quality assured - test for satisfactory known positive amounts.

Incubators – $35^{\circ}C \pm .5^{\circ}C$ (60% relative humidity)

M-endo medium is prepared and heated to near boiling removed from heat cooled to 45° C pH adjusted to $7.2 \pm .2$ and immediately dispensed 8ml to plates. Keep refrigerated and discard after 2 weeks.

Plates can be stored in a dated box with expiration date and discarded if not used. No denatured alcohol should be used. Everclear or 95% proof alcohol or absolute methyl may be used for sterilizing forceps by flame.

Procedure:

Counters are alcohol wiped.

Bench sheets are filled out.

Samples are removed from refrigeration.

Sterile wrapped utensils are placed on counters.

Filtration units are placed onto sterile membrane filters by aseptic technique using sterile forceps.

Sterile petri dishes are labeled.

The samples closures are clipped.

The sample is shaken 25 times 1 foot in length within 7 seconds.

100 mL is filtered and rinsed with sterile distilled water 3 times.

The membrane filter is aseptically removed from filter holder.

A sterile padded petri dish is used and the membrane filter is rolled onto the pad making sure no air bubbles form.

The sterile labeled lid is placed on the petri dish.

2 blanks and a known is run with each series of samples.

The samples are placed in the 35° C \pm .5°C incubator stacked no higher than 3 for 22 – 24 hours (Humidity can be maintained by saturated paper towels placed under containers holding petri dishes.)

After 22- 24 hours view the petri dishes under a 10 –15 power magnification with cool white fluorescent light.

Count all colonies that appear pink to dark red with a <u>metallic surface sheen</u> – the sheen may vary in size from a pin head to complete coverage.

Report as Total Coliform per 100 mL.

If no colonies are present report as <1 coliform/100mL.

Anything greater than 1 is over the limit for drinking water for 2 samples taken 24 hours apart. Further investigation may be necessary – follow Standard Methods accordingly.

Photograph and Credits to Mary McPherson AranTM Aqua Analytical Laboratory Director.

Escherichia coli EPEC

Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium.

E. coli O157:H7

E. coli O157:H7 (bacterium) found in human feces. Symptoms vary with type caused gastroenteritis.

Escherichia coli O157:H7 is an emerging cause of foodborne illness. An estimated 73,000 cases of infection and 61 deaths occur in the United States each year. Infection often leads to bloody diarrhea, and occasionally to kidney failure. Most illnesses have been associated with eating undercooked, contaminated ground beef. Person-to-person contact in families and child care centers is also an important mode of transmission. Infection can also occur after drinking raw milk and after swimming in or drinking sewage-contaminated water.

Consumers can prevent *E. coli* O157:H7 infection by thoroughly cooking ground beef, avoiding unpasteurized milk, and washing hands carefully. Because the organism lives in the intestines of healthy cattle, preventive measures on cattle farms and during meat processing are being investigated.

What is Escherichia coli O157:H7?

E. coli O157:H7 is one of hundreds of strains of the bacterium Escherichia coli. Although most strains are harmless and live in the intestines of healthy humans and animals, this strain produces a powerful toxin and can cause severe illness.

E. coli O157:H7 was first recognized as a cause of illness in 1982 during an outbreak of severe bloody diarrhea; the outbreak was traced to contaminated hamburgers. Since then, most infections have come from eating undercooked ground beef.

The combination of letters and numbers in the name of the bacterium refers to the specific markers found on its surface and distinguishes it from other types of *E. coli*.

Currently, there are four recognized classes of enterovirulent *E. coli* (collectively referred to as the EEC group) that cause gastroenteritis in humans. Among these is the enterohemorrhagic (EHEC) strain designated *E. coli* O157:H7. *E. coli* is a normal inhabitant of the intestines of all animals, including humans. When aerobic culture methods are used, *E. coli* is the dominant species found in feces.

Normally *E. coli* serves a useful function in the body by suppressing the growth of harmful bacterial species and by synthesizing appreciable amounts of vitamins. A minority of *E. coli* strains are capable of causing human illness by several different mechanisms. *E. coli* serotype O157:H7 is a rare variety of *E. coli* that produces large quantities of one or more related, potent toxins that cause severe damage to the lining of the intestine. These toxins [verotoxin (VT), shiga-like toxin] are closely related or identical to the toxin produced by *Shigella dysenteriae*.

How does *E. coli* or other fecal coliforms get in the water?

E. coli comes from human and animal wastes. During rainfalls, snow melts, or other types of precipitation, *E. coli* may be washed into creeks, rivers, streams, lakes, or groundwater. When these waters are used as sources of drinking water and the water is not treated or inadequately treated, *E. coli* may end up in drinking water.

How is water treated to protect me from *E. coli*?

The water can be treated using chlorine, ultra-violet light, or ozone, all of which act to kill or inactivate *E. coli*. Systems using surface water sources are required to disinfect to ensure that all bacterial contamination such as *E. coli*. is inactivated. Systems using ground water sources are not required to disinfect, although many of them do.

How does the U.S. Environmental Protection Agency regulate E. coli?

According to EPA regulations, a system that operates at least 60 days per year, and serves 25 people or more or has 15 or more service connections, is regulated as a public water system under the Safe Drinking Water Act. If a system is not a public water system as defined by EPA regulations, it is not regulated under the Safe Drinking Water Act, although it may be regulated by state or local authorities.

Under the Safe Drinking Water Act, the EPA requires public water systems to monitor for coliform bacteria. Systems analyze first for total coliform, because this test is faster to produce results. Any time that a sample is positive for total coliform, the same sample must be analyzed for either fecal coliform or *E. coli*. Both are indicators of contamination with animal waste or human sewage.

The largest public water systems (serving millions of people) must take at least 480 samples per month. Smaller systems must take at least five samples a month unless the state has conducted a sanitary survey – a survey in which a state inspector examines system components and ensures they will protect public health – at the system within the last five years.

Systems serving 25 to 1,000 people typically take one sample per month. Some states reduce this frequency to quarterly for ground water systems if a recent sanitary survey shows that the system is free of sanitary defects. Some types of systems can qualify for annual monitoring. Systems using surface water, rather than ground water, are required to take extra steps to protect against bacterial contamination because surface water sources are more vulnerable to such contamination. At a minimum, all systems using surface waters must disinfect. Disinfection will kill *E. coli* O157:H7.

What can I do to protect myself from E. coli O157:H7 in drinking water?

Approximately 89 percent of Americans are receiving water from community water systems that meet all health-based standards. Your public water system is required to notify you if, for any reason, your drinking water is not safe. If you wish to take extra precautions, you can boil your water for one minute at a rolling boil, longer at higher altitudes. To find out more information about your water, see the Consumer Confidence Report from your local water supplier or contact your local water supplier directly. You can also obtain information about your local water system on the EPA's website at www.epa.gov/safewater/dwinfo.htm.

Positive Tests

If you draw water from a private well, you can contact your state health department to obtain information on how to have your well tested for total coliforms, and *E. coli* contamination. If your well tests positive for *E. coli*, there are several steps that you should take: (1) begin boiling all water intended for consumption, (2) disinfect the well according to procedures recommended by your local health department, and (3) monitor your water quality to make certain that the problem does not recur. If the contamination is a recurring problem, you should investigate the feasibility of drilling a new well or install a point-of-entry disinfection unit, which can use chlorine, ultraviolet light, or ozone.

How is E. coli O157:H7 spread?

The organism can be found on a small number of cattle farms and can live in the intestines of healthy cattle. Meat can become contaminated during slaughter, and organisms can be thoroughly mixed into beef when it is ground. Bacteria present on a cow's udders or on equipment may get into raw milk. Eating meat, especially ground beef that has not been cooked sufficiently to kill *E. coli* O157:H7 can cause infection. Contaminated meat looks and smells normal. Although the number of organisms required to cause disease is not known, it is suspected to be very small.

Among other known sources of infection are consumption of sprouts, lettuce, salami, unpasteurized milk and juice, and swimming in or drinking sewage-contaminated water. Bacteria in diarrheal stools of infected persons can be passed from one person to another if hygiene or hand washing habits are inadequate. This is particularly likely among toddlers who are not toilet trained. Family members and playmates of these children are at high risk of becoming infected. Young children typically shed the organism in their feces for a week or two after their illness resolves. Older children rarely carry the organism without symptoms.

What illness does E. coli O157:H7 cause?

E. coli O157:H7 infection often causes severe bloody diarrhea and abdominal cramps; sometimes the infection causes non-bloody diarrhea or no symptoms. Usually little or no fever is present, and the illness resolves in 5 to 10 days. Hemorrhagic colitis is the name of the acute disease caused by *E. coli* O157:H7.

In some persons, particularly children under 5 years of age and the elderly, the infection can also cause a complication called hemolytic uremic syndrome, in which the red blood cells are destroyed and the kidneys fail. About 2%-7% of infections lead to this complication. In the United States, hemolytic uremic syndrome is the principal cause of acute kidney failure in children, and most cases of hemolytic uremic syndrome are caused by *E. coli* O157:H7.

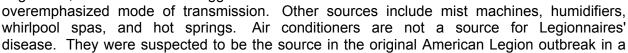
How is E. coli O157:H7 infection diagnosed?

Infection with *E. coli* O157:H7 is diagnosed by detecting the bacterium in the stool. Most laboratories that culture stool do not test for *E. coli* O157:H7, so it is important to request that the stool specimen be tested on sorbitol-MacConkey (SMAC) agar for this organism. All persons who suddenly have diarrhea with blood should get their stool tested for *E. coli* O157:H7.

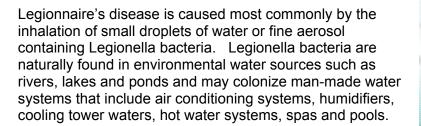
How is the illness treated?

Most persons recover without antibiotics or other specific treatment in 5-10 days. There is no evidence that antibiotics improve the course of disease, and it is thought that treatment with some antibiotics may precipitate kidney complications. Antidiarrheal agents, such as loperamide (Imodium), should also be avoided. Hemolytic uremic syndrome is a life-threatening condition usually treated in an intensive care unit. Blood transfusions and kidney dialysis are often required. With intensive care, the death rate for hemolytic uremic syndrome is 3%-5%.

Legionnaires' Disease Legionella Section


Introduction Genus: Legionella Species: pneumophila

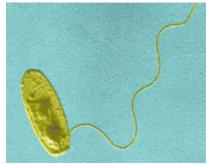
The first discovery of bacteria from genus Legionella came in 1976 when an outbreak of pneumonia at an American Legion convention led to 29 deaths. The causative agent, what would come to be known as Legionella pneumophila, was isolated and given its own genus. The organisms classified in this genus are Gram-negative bacteria that are considered intracellular parasites. The disease has two distinct forms:


- Legionnaires' disease, the more severe form of infection which includes pneumonia, and
- Pontiac fever, a milder illness.

What have been the water sources for Legionnaires' disease?

The major source is water distribution systems of large buildings, including hotels and hospitals. Cooling towers have long been thought to be a major source for *Legionella*, but new data suggest that this is an

Philadelphia hotel, but new data now suggests that the water in the hotel was the actual culprit.



How do people contract Legionella?

The most popular theory is that the organism is aerosolized in water and people inhale the droplets containing

Legionella. However, new evidence suggests that another way of contracting Legionella is more common. "Aspiration" is the most common way that bacteria enter into the lungs to cause pneumonia. Aspiration means choking such that secretions in the mouth get past the choking reflexes and instead of going into the esophagus and stomach, mistakenly, enter the lung. The protective mechanisms to prevent aspiration is defective in patients who smoke or have lung disease. Aspiration now appears to be the most common mode of transmission.

Legionella may multiply to high numbers in cooling towers, evaporative condensers, air washers, humidifiers, hot water heaters, spas, fountains, and plumbing fixtures. Within one month, Legionella can multiply, in warm water-containing systems, from less than 10 per milliliter to over 1,000 per milliliter of water. Once high numbers of Legionella have been found, a relatively simple procedure for disinfecting water systems with chlorine and detergent is available. This procedure is not part of a routine maintenance program because equipment may become corroded.

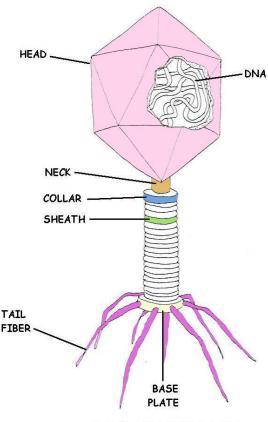
Property owners have been sued for the spread of Legionella, resulting in expensive settlements. Regular monitoring with a battery of DFA monoclonal antibodies for several serogroups and species of Legionella morphologically intact bacteria provides a means for exercising 'reasonable care' to deter potential litigation.

Currently, there are no United States government regulations concerning permissible numbers of legionella in water systems and there are no federal or state certification programs for laboratories that perform legionella testing of environmental samples.

Epifluorescence Microscopy DFA Method

The epifluorescence microscopy DFA method that most labs use was published in the British Journal, Water Research 19:839-848, 1985 "Disinfection of circulating water systems by ultraviolet light and halogenation", R. Gilpin, et al. so we can count viable-but-nonculturable (VBNC) legionella.

Most labs will provide a quantitative epifluorescence microscopic analysis of your cooling tower and potable water samples for 14 serogroups of Legionella pneumophila and 15 other Legionella species (listed below).


Legionella anisa	Legionella bozemanii sg 1 & 2	
Legionella dumoffi	Legionella feeleii sg 1 & 2	
Legionella gormanii	Legionella hackeliae sg 1 & 2	
Legionella jordanis	Legionella longbeachae sg 1& 2	
Legionella maceachernii	Legionella micdadei	
Legionella oakridgensis	Legionella parisiensis	
Legionella pneumophila sg 1-14	Legionella sainthelensi	
Legionella santicrucis	Legionella wadsworthii	

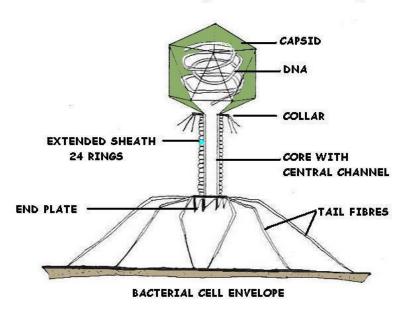
Heterotrophic bacterial CFU are often inversely proportional to numbers of Legionella in cooling tower samples, in our experience. Routine biocide treatments will not eradicate Legionella bacteria in the environment, only in laboratory studies.

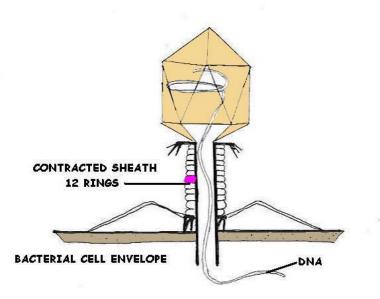
Culture methods are good during outbreaks for bio-typing; but culture methods lack sensitivity for routine, quantitative monitoring. Many factors will inhibit growth or identification of legionella on BCYE with or without antimicrobial agents, heat or acid treatment.

Culture methods will not identify non-culturable legionella that can still cause outbreaks (non-culturable, viable legionella have been reported in several peer-reviewed journals). Only DFA tests performed by trained laboratory personnel can identify these legionella. Direct fluorescent antibody (DFA) tests using a battery of monoclonal antibodies provide more useful routine monitoring information than culture methods. Legionella species of bacteria cause Legionnaire's disease. They are gram negative (but stain poorly), strictly aerobic rods.

The U.S. Environmental Protection Agency and the U.S. Occupational Safety and Health Administration recommend routine maintenance of water-containing equipment. Most State health departments recommend monthly testing for Legionella as part of a routine maintenance program.

BACTERIOPHAGE

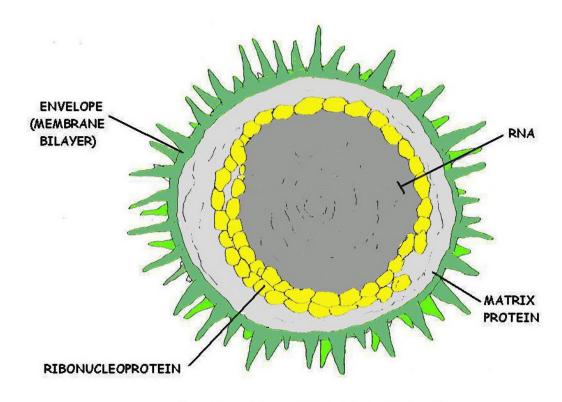

Bacteriophage


A bacteriophage (from 'bacteria' and Greek phagein, 'to eat') is any one of a number of viruses that infect bacteria. The term is commonly used in its shortened form, phage.

Typically, bacteriophages consist of an outer protein hull enclosing genetic material. The genetic material can be ssRNA (single stranded RNA), dsRNA, ssDNA, or dsDNA between 5 and 500 kilo base pairs long with either circular or linear arrangement. Bacteriophages are much smaller than the bacteria they destroy - usually between 20 and 200 nm in size.

Phages are estimated to be the most widely distributed and diverse entities in the biosphere. Phages are ubiquitous and can be found in all reservoirs populated by bacterial hosts, such as soil or the intestine of animals. One of the densest natural sources for phages and other viruses is sea water, where up to 9×108 virions per milliliter have been found in microbial mats at the surface, and up to 70% of marine bacteria may be infected by phages.

VIRUS CAPSID (BACTERIOPHAGES)



Release of Virions

Phages may be released via cell lysis or by host cell secretion. In the case of the T4 phage, in just over twenty minutes after injection upwards of three hundred phages will be released via lysis within a certain timescale. This is achieved by an enzyme called endolysin which attacks and breaks down the peptidoglycan. In contrast, "lysogenic" phages do not kill the host but rather become long-term parasites and make the host cell continually secrete more new virus particles. The new virions bud off the plasma membrane, taking a portion of it with them to become enveloped viruses possessing a viral envelope. All released virions are capable of infecting a new bacterium.

Viruses

Viruses are acellular microorganisms. They are made up of only genetic material and a protein coat. Viruses depend on the energy and metabolic machinery of the host cell to reproduce. A virus is an infectious agent found in virtually all life forms, including humans, animals, plants, fungi, and bacteria. Viruses consist of genetic material—either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)—surrounded by a protective coating of protein, called a capsid, with or without an outer lipid envelope. Viruses are between 20 and 100 times smaller than bacteria and hence are too small to be seen by light microscopy.

CROSS SECTIONAL VIEW

Viruses vary in size from the largest poxviruses of about 450 nanometers (about 0.000014 in) in length to the smallest polioviruses of about 30 nanometers (about 0.000001 in). Viruses are not considered free-living, since they cannot reproduce outside of a living cell; they have evolved to transmit their genetic information from one cell to another for the purpose of replication. Viruses often damage or kill the cells that they infect, causing disease in infected organisms. A few viruses stimulate cells to grow uncontrollably and produce cancers. Although many infectious diseases, such as the common cold, are caused by viruses, there are no cures for these illnesses. The difficulty in developing antiviral therapies stems from the large number of variant viruses that can cause the same disease, as well as the inability of drugs to disable a virus without disabling healthy cells. However, the development of antiviral agents is a major focus of current research, and the study of viruses has led to many discoveries important to human health.

Virions

Individual viruses, or virus particles, also called virions, contain genetic material, or genomes, in one of several forms. Unlike cellular organisms, in which the genes always are made up of DNA, viral genes may consist of either DNA or RNA. Like cell DNA, almost all viral DNA is double-stranded, and it can have either a circular or a linear arrangement. Almost all viral RNA is single-stranded; it is usually linear, and it may be either segmented (with different genes on different RNA molecules) or non-segmented (with all genes on a single piece of RNA).

Capsids

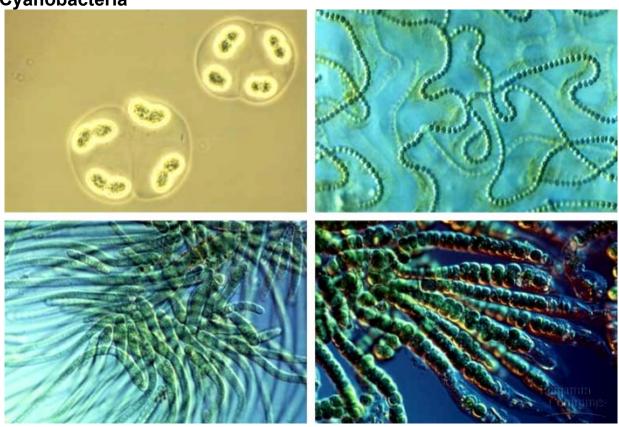
The viral protective shell, or capsid, can be either helical (spiral-shaped) or icosahedral (having 20 triangular sides). Capsids are composed of repeating units of one or a few different proteins. These units are called protomers or capsomers. The proteins that make up the virus particle are called structural proteins. Viruses also carry genes for making proteins that are never incorporated into the virus particle and are found only in infected cells. These viral proteins are called nonstructural proteins; they include factors required for the replication of the viral genome and the production of the virus particle.

Capsids and the genetic material (DNA or RNA) they contain are together referred to as nucleocapsids. Some virus particles consist only of nucleocapsids, while others contain additional structures.

Some icosahedral and helical animal viruses are enclosed in a lipid envelope acquired when the virus buds through host-cell membranes. Inserted into this envelope are glycoproteins that the viral genome directs the cell to make; these molecules bind virus particles to susceptible host cells.

Bacteriophages

The most elaborate viruses are the bacteriophages, which use bacteria as their hosts. Some bacteriophages resemble an insect with an icosahedral head attached to a tubular sheath. From the base of the sheath extend several long tail fibers that help the virus attach to the bacterium and inject its DNA to be replicated, direct capsid production, and virus particle assembly inside the cell.


Viroids and Prions

Viroids and prions are smaller than viruses, but they are similarly associated with disease. Viroids are plant pathogens that consist only of a circular, independently replicating RNA molecule. The single-stranded RNA circle collapses on itself to form a rod-like structure. The only known mammalian pathogen that resembles plant viroids is the deltavirus (hepatitis D), which requires hepatitis B virus proteins to package its RNA into virus particles. Co-infection with hepatitis B and D can produce more severe disease than can infection with hepatitis B alone. Prions are mutated forms of a normal protein found on the surface of certain animal cells.

Virus Classification

Viruses are classified according to their type of genetic material, their strategy of replication, and their structure. The International Committee on Nomenclature of Viruses (ICNV), established in 1966, devised a scheme to group viruses into families, subfamilies, genera, and species. The ICNV report published in 1995 assigned more than 4000 viruses into 71 virus families. Hundreds of other viruses remain unclassified because of the lack of sufficient information.

Cyanobacteria

Cyanobacteria

Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name "cyanobacteria" comes from the color of the bacteria (Greek: kyanós = blue). They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean, but are also found on land.

Cyanobacteria include unicellular and colonial species. Colonies may form filaments, sheets or even hollow balls. Some filamentous colonies show the ability to differentiate into several different cell types: vegetative cells, the normal, photosynthetic cells that are formed under favorable growing conditions; akinetes, the climate-resistant spores that may form when environmental conditions become harsh; and thick-walled heterocysts, which contain the enzyme nitrogenase, vital for nitrogen fixation. Heterocysts may also form under the appropriate environmental conditions (anoxic) wherever nitrogen is necessary. Heterocyst-forming species are specialized for nitrogen fixation and are able to fix nitrogen gas, which cannot be used by plants, into ammonia (NH₃), nitrites (NO₂) or nitrates (NO₃), which can be absorbed by plants and converted to protein and nucleic acids.

The rice paddies of Asia, which produce about 75% of the world's rice, could not do so were it not for healthy populations of nitrogen-fixing cyanobacteria in the rice paddy fertilizer too.

Many cyanobacteria also form motile filaments, called hormogonia, that travel away from the main biomass to bud and form new colonies elsewhere. The cells in a hormogonium are often thinner than in the vegetative state, and the cells on either end of the motile chain may be tapered. In order to break away from the parent colony, a hormogonium often must tear apart a weaker cell in a filament, called a necridium.

Each individual cell of a cyanobacterium typically has a thick, gelatinous cell wall. They differ from other gram-negative bacteria in that the quorum sensing molecules autoinducer-2[4] and acyl-homoserine lactones are absent. They lack flagella, but hormogonia and some unicellular species may move about by gliding along surfaces. In water columns some cyanobacteria float by forming gas vesicles, like in archaea.

TAKING A SAMPLE FROM A STREAM

Bacteriological Monitoring Review

26 waterborne-disease outbreaks have been documented each year in the United States over the past 25 years (Kramer and others, 1996). The persistence of outbreaks over time indicates that more progress is needed to meet the "drinkable and swimmable" goals of Federal water-quality legislation. Although significant improvements in drinking water and wastewater treatment have been achieved, waterborne disease outbreaks indicate that certain types and sources of waterborne pathogens (disease-causing organisms) are still a threat to human health in the United States (Craun, 1992). In particular, waterborne disease outbreaks caused by Escherichia coli O157.:H7 were reported more frequently in 1995-96 than in previous years, and during that same period, Cryptosporidium and Giardia caused large outbreaks associated with recreational water quality (Levy and others, 1998).

Microbiological examination of water is used to determine the sanitary quality of water and the public health risk from waterborne disease. Although microbiological monitoring of finished waters is well established, microbiological monitoring of source waters and recreational waters is considered by some to be fragmented, incomplete, or virtually nonexistent in many parts of the Nation (Rose and others, 1999). Data to characterize the microbiological quality of source waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. For example, monitoring programs vary widely at the local level for recreational waters, and the result is the inconsistent use of indicator organisms across the United States (U.S. Environmental Protection Agency, 1999a).

There is a need to identify human and animal factors associated with contamination of different source and recreational waters and to understand the processes that affect microbiological water quality. Concepts about the relation between the occurrence and distribution of microbiological contaminants and a range of environmental factors such as climate, hydrology, land use, and human and animal population densities need to be tested in areas that represent the national water-use patterns for public and domestic supply and for recreational uses.

Understanding Bacteriological Monitoring Understanding Bacteria Sampling

Waterborne bacterial pathogens in the United States include species in the genera Salmonella, Shigella, Vibrio, Campylobacter, Yersinia, and pathogenic strains of E. coli. Because bacterial pathogens generally appear intermittently in low concentrations in the environment and because methods of culturing are difficult, fecal-indicator bacteria are used to indicate the possible presence of pathogens. The most widely used bacterial indicators include total coliforms, fecal coliforms, E. coli, fecal streptococci, enterococci, and Clostridium perfringens (C. perfringens). A good indicator organism should be applicable in all types of water; unable to reproduce in ambient waters; be harmless to man and other animals; lend itself to easy, quantitative testing procedures; be of warm-blooded animal origin; correlate with fecal contamination; and be present in waters in greater numbers than and survive as long as or longer than pathogens.

The historical definition of the total-coliform group has been based on the method used for detection (lactose fermentation) rather than on systematic bacteriology (American Public Health Association and others, 1998). Total coliforms are defined as aerobic and facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation at 35°C within 48 hours (Britton and Greeson, 1989). Elevated temperature tests identify those genera of total coliform bacteria that belong in the more specific fecal-coliform group. Fecal coliforms are total coliforms capable of producing gas from lactose at 44.5°C.

Escherichia coli is a species of the fecal-coliform group. Total coliforms include several genera that are found in the human intestine; however, some genera are also found in soils, on vegetation, and in industrial wastes. This multiplicity of sources makes the sanitary significance of total coliforms difficult to establish (Palmer and others, 1984).

They are used as a rough measure of source-water quality and as a screen for fecal contamination. In addition, speciation of the total-coliform group may provide information on treatment effectiveness and the source of colonization of a distribution system or well (American Public Health Association, 1998, p. 9-1). The fecal-coliform indicator used to assess fecal contamination of water has been faulted because of nonfecal sources of at least one member of the fecal coliform group. For example, thermotolerant Klebsiella species have been observed in pulp- and papermill effluents, textile-processing-plant effluent, cotton-mill wastewaters, and sugar-beet wastes, in the absence of fecal contamination (U.S. Environmental Protection Agency, 1986a).

Alternatively, E. coli is a natural inhabitant of the gastrointestinal tract of warm-blooded animals and is direct evidence of fecal contamination from warm-blooded animals. The fecal streptococci are a group of fecal-indicator bacteria that include a variety of species and strains that are all gram positive cocci. Although the normal habitat of fecal streptococci is the gastrointestinal tract of warm-blooded animals, some species are not exclusive to animals (American Public Health Association, 1998, p. 9-74). In fact, studies on the distribution of fecal streptococci in water indicate that at least one strain commonly found in environmental samples is ubiquitous and can exist for extended periods in soil and water (Geldreich, 1976). Fecal streptococci, therefore, have limited value as an indicator of fecal contamination in environmental samples. The enterococci group is a subgroup of the fecal streptococci, and it is considered a more specific indicator of fecal contamination.

The enterococci are differentiated from other streptococci by their ability to grow in 6.5 percent chloride, at pH 9.6, and at elevated temperatures. The enterococci method is valuable for determining the extent of fecal contamination of recreational surface waters, especially marine waters (American Public Health Association, 1998, p. 9-75).

In addition, because enterococci cells are a different shape and have different survival rates than members of the coliform group, enterococci may be useful in assessing transport of fecal contamination in ground water. Clostridium perfringens is present in large numbers in human and animals wastes, and its spores are more resistant to disinfection and environmental stresses than is E. coli. Clostridium perfringens has been suggested as a conservative tracer of past fecal contamination and as an indicator for chlorinated water in distribution systems (Bisson and Cabelli, 1980).

Clostridium perfringens, however, is probably not an appropriate indicator for most recreational waters because spores in the sediment are resuspended into the water column from swimmer or wave disturbances (Bisson and Cabelli, 1980). One exception is that C. perfringens may be a reliable indicator of streamwater quality in tropical climates, where warm water temperatures support the growth and reproduction of E. coli and aerobic conditions preclude the growth and sporulation of C. perfringens (Fujioka and Shizumura, 1985).

Clostridium perfringens has also been found to be a sensitive indicator of microorganisms entering streams from point sources but not a reliable indicator of nonpoint sources (Sorenson and others, 1989). Detection of C. perfringens in water has been proposed as an indicator of the presence and density of pathogenic viruses and possibly other stress resistant microorganisms (U.S. Environmental Protection Agency, 1996c).

Protozoan Pathogens

The principal protozoan pathogens that affect the public health acceptability of waters in the United States are Giardia lamblia (Giardia) and Cryptosporidium parvum (Cryptosporidium). These organisms are widely distributed in the aquatic environment and have been implicated in several recent outbreaks of waterborne disease, including a well-publicized outbreak of cryptosporidiosis in Milwaukee, Wisconsin (Rose and others, 1997). Both Giardia and Cryptosporidium produce environmentally resistant forms (called cysts and oocysts), which allow for the extended survival of the parasites in water and treated water.

Because cysts and oocysts are more resistant to disinfection and survive longer in the environment than bacterial indicators, fecal-indicator bacteria are not adequate indicators for Giardia and Cryptosporidium in source waters. The presence of protozoan pathogens in water, therefore, must be verified by identification of the pathogens themselves. The USEPA-required method for detection of Giardia and Cryptosporidium in source and drinking water under the ICR involves nominal porosity filtration and indirect fluorescent antibody procedures (U.S. Environmental Protection Agency, 1996c). The ICR method has been criticized for being difficult to implement, being characterized by poor recovery of target organisms, and yielding highly variable results (U.S. Environmental Protection Agency, 1996b). As a result, the USEPA supported the development of Method 1622 for Cryptosporidium (U.S. Environmental Protection Agency, 1998b), and Method 1623 for Giardia and Cryptosporidium (U.S. Environmental Protection Agency, 1999c). Method 1622 was validated through an interlaboratory study and revised as a final, valid method in January 1999.

Understanding Routine Coliform Sampling Streamwater sample collection

When designing a sampling plan, consider that the spatial and temporal distribution of microorganisms in surface water can be as variable as the distribution of suspended sediment because microorganisms are commonly associated with solid particles. The standard samplers can be used to collect streamwater samples for bacterial and viral indicators, *Cryptosporidium*, and *Giardia* providing that the equipment coming in contact with the water is properly cleaned and sterilized. For streamwater samples, these include the US-D77TM, US-D95, US-DH81, and weighted- and open-bottle samplers with autoclavable Teflon, glass, or polypropylene components.

- Prepare a separate set of sterile equipment (bottles nozzles, and caps) for sampling at each site.
- Follow sampling techniques given in Shelton (1994) to ensure that a sample is representative of the flow in the cross section. Use equal-width increment (EWI) or equal-discharge-increment (EDI) methods described in Edwards and Glysson (1988), unless site characteristics dictate otherwise.
- Because churn and cone splitters cannot be autoclaved, use a sterile 3-L bottle to composite subsamples for bacterial and viral indicators when using EDI and EWI methods. If possible, composite by collecting subsamples at vertical locations in the cross section without overfilling the bottle.
- Alternatively, if the stream depth and (or) velocity is not sufficient to use depth-width integrating techniques, collect a sample by a hand-dip method (Myers and Sylvester, 1997).
- Collect approximately 1 L of streamwater for bacterial and viral indicators. Process the sample for *E. coli* and enterococci; send the remainder (at least 500 mL) on ice to the laboratory for *C. perfringens* and coliphage analysis.

Method 1623

For *Cryptosporidium* and *Giardia* analysis by Method 1623 (U.S. Environmental Protection Agency, 1999c), collect 10 L of streamwater for each protozoan pathogen using standard sampling techniques described in Myers and Sylvester (1997). Special sterilization procedures are needed for equipment used in the collection of samples for *Cryptosporidium* and *Giardia*. Autoclaving is not effective in neutralizing the epitopes on the surfaces of the oocysts and cysts that will react with the antibodies used for detection.

• Wash and scrub the equipment with soap and warm tap water to remove larger particulates and rinse with deionized water. Submerge the equipment in a vessel containing 12 percent hypochlorite solution for 30 minutes. Wash the equipment free of residual sodium hypochlorite solution with three rinses of filter-

sterilized water; do not de-chlorinate the equipment using sodium thiosulfate. This procedure is best done in the office with dedicated sampling equipment for each site; however, it may be done in the field as long as the hypochlorite solution is stored and disposed of properly.

• Composite the sample in a 10-L cubitainer that is pre-sterilized by the manufacturer. The cubitainer is sent in a cardboard box to laboratory for *Cryptosporidium* analysis. The sample does not have to be kept on ice during transport. At this time, two methods are recommended for analysis of water samples for enteric viruses: (1) the reverse-transcriptase, polymerase chain reaction (RTPCR) method (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997) and (2) the cell-culture method (U.S. Environmental Protection Agency, 1996c). Sampling and equipment cleaning procedures are more thoroughly described elsewhere (G. Shay Fout, U.S. Environmental Protection Agency, 1996c). Briefly, 100 L of streamwater is pumped by means of a specially designed sampling apparatus and passed through a Virosorb1 1MDS filter (Cuno, Meriden, Conn.). The sampling equipment is obtained from the analyzing laboratory; for example, the USGS Ohio District Laboratory has modified the sampling apparatus (G. Shay Fout, U.S. Environmental Protection Agency, 1997) into a self-contained box with easy-to-use control valves. The 1MDS filters, which remove viruses present in the water by charge interactions, are kept on ice and sent to a central laboratory for virus elution, concentration, and detection.

Groundwater Sample Collection

Collecting ground-water samples by use of sterile techniques requires knowledge of the type of well, its use, its construction, and its condition.

- Swab the electronic tape used for water-level measurements with isopropyl or ethyl alcohol.
- In sampling subunit survey wells, once purging criteria have been met as described in Koterba and others (1995), collect the sample directly from the tap into a sterile container.
- Remove screens, filters, other devices from the tap before collecting the sample, and do not sample from leaking taps. Because we are interested in the microbial population in the ground water and not in the distribution system, it is best to sample directly from the wellhead using a pump with sterile tubing, if possible. Because this is operationally prohibitive for private domestic wells, a tap that yields water directly from the well and before entering the holding tank is preferred. Water collected after treatment is unsuitable for microbiological analysis.
- Document the stage of the distribution system from which water was collected and details about the distribution system, including the type of tank and condition of the tank and pipes. In addition, if the well can easily be opened for inspection, document the condition of the well, including the sanitary seal (if any) and the amount of debris in the well. Any information on the location of the well, including proximity to septic systems or feedlots, should also be documented in the field at the time of sampling.

For wells without in-place pumps, samples should be obtained by use of the following methods (in descending order from most to least desirable):

(1) a peristaltic or vacuum pump with autoclavable silicon tubing, (2) a sterile bailer, (3) a chlorine-disinfected pump and tubing, or (4) a detergent-cleaned pump and tubing. Pre-sampling activities, such as purging, must be carried out in such a way as to avoid contaminating the well. All equipment must be properly cleaned and sterilized between sites, using a Liquinox wash and a thorough tap water or deionized-water rinse. If using this last method, collect additional field blanks to evaluate the effectiveness of the cleaning procedure. Refer to Myers and Sylvester (1997) for a detailed discussion of ground-water sampling for microbiological analysis.

Because ground water is less prone to microbiological contamination than surface water, larger volumes of ground water are needed than of surface water.

- For regular sampling, collect 3 L of ground water for bacterial and viral indicators.
- Process the sample for total coliforms, *E. coli*, and enterococci using 200-mL sample volumes for each analysis; send the remainder (at least 2.5 L) to the laboratory for coliphage analysis. In the laboratory, coliphage analysis is done using 1 L for somatic and 1 L for F-specific coliphage.
- For enteric virus analysis by RT-PCR and cell culture, use the same sampler for ground-water samples as for streamwater samples; pump 2,000 L of ground water through the sampling apparatus and 1MDS filter.

Sample Preservation and Storage

Holding times for samples before processing are 6 hours for total coliforms, *E. coli*, and enterococci and 24 hours for *C. perfringens*, coliphage, *Cryptosporidium*, *Giardia*, and the 1MDS filters for enteric viruses by RTPCR and cell culture.

- After collection, immediately store the sample on ice.
- Be sure to keep the sample out of direct sunlight, because ultraviolet rays kill microorganisms.
- Add sodium thiosulfate to sample bottles for bacterial and viral indicators if the water collected contains residual chlorine. (Samples may have residual chlorine if the sampling site is downstream from a wastewater-treatment plant that chlorinates its effluents). Add ethylene diaminetetracetic acid to sample bottles when water is suspected to contain trace elements such as copper, nickel, and zinc at concentrations greater than 1 mg/L (Britton and Greeson, 1989, p. 5-6; U.S. Environmental Protection Agency, 1978, p. 6; American Public Health Association and others, 1998, p. 9-19). (Sodium thiosulfate or ethylene diaminetetracetic acid are not added to containers for *Cryptosporidium* and *Giardia*).

Analytical Methods Field Analysis

Analysis of water samples for total coliforms, *E. coli*, and enterococci, are done by use of membrane filtration (MF) or most-probable number (MPN) methods. Because membrane filtration is easier to use and provides a more precise quantification of bacteria than MPN, MF is recommended for most analyses. Refer to Myers and Sylvester (1997) for complete MF procedures.

Different MF methods are used for quantification of bacteria in ground-water and streamwater samples.

- For examining streamwater samples for *E. coli*, use the USEPA-recommended mTEC agar method (Environmental Protection Agency, 1986b).
- For examining ground-water samples for total coliforms and *E. coli*, use the MI method (Brenner and others, 1993).
- For enterococci, use the mEI method (U.S. Environmental Protection Agency, 1997).
- For streamwater, plate sufficient sample volumes in order to obtain at least one plate in the ideal count range. For ground water, a 200-mL sample volume is usually sufficient.

Testing of new microbiological monitoring methods and comparing the recoveries of new methods to the USEPA-approved method can be done by use of the NAWQA network. For ground-water samples, for example, one may include a commercially available MPN kit, Colilert (Idexx Laboratories, Westbrook, Maine), for simultaneous detection of total coliforms and *Escherichia coli*. For streamwater sampling, one may include a single-step modified Mtec medium with 5-bromo-6-chloro-3-indolyl'β-d-glucuronide (Bennett Smith, USEPA, Cincinnati, Ohio, oral commun., 1997); this method was developed to replace the mTEC method. Other new methods can be added to the monitoring program for field testing as they are developed.

Understanding Coliforms

Coliforms are bacteria that are always present in the digestive tracts of animals, including humans, and are found in their wastes. They are also found in plant and soil material. A fecal coliform (sometimes faecal coliform) is a facultatively anaerobic, rod-shaped, gram-negative, non-sporulating bacterium. Fecal coliforms are capable of growth in the presence of bile salts or similar surface agents, are oxidase negative, and produce acid and gas from lactose within 48 hours at 44 ± 0.5 °C.

Coliform bacteria include genera that originate in feces (e.g. Escherichia) as well as genera not of fecal origin (e.g. Enterobacter, Klebsiella, Citrobacter). The assay is intended to be an indicator of fecal contamination; more specifically of E. coli which is an indicator microorganism for other pathogens that may be present in feces. Presence of fecal coliforms in water may not be directly harmful, and does not necessarily indicate the presence of feces.

"Indicator" Organisms

Water pollution caused by fecal contamination is a serious problem due to the potential for contracting diseases from pathogens (disease causing organisms). Frequently, concentrations of pathogens from fecal contamination are small, and the number of different possible pathogens is large. As a result, it is not practical to test for pathogens in every water sample collected. Instead, the presence of pathogens is determined with indirect evidence by testing for an "indicator" organism such as coliform bacteria. Coliforms come from the same sources as pathogenic organisms. Coliforms are relatively easy to identify, are usually present in larger numbers than more dangerous pathogens, and respond to the environment, wastewater treatment, and water treatment similarly to many pathogens. As a result, testing for coliform bacteria can be a reasonable indication of whether other pathogenic bacteria are present.

Total Coliforms, Fecal Coliforms, and E. Coli

The most basic test for bacterial contamination of a water supply is the test for total coliform bacteria. Total coliform counts give a general indication of the sanitary condition of a water supply.

- **A. Total coliforms** include bacteria that are found in the soil, in water that has been influenced by surface water, and in human or animal waste.
- **B. Fecal coliforms** are the group of the total coliforms that are considered to be present specifically in the gut and feces of warm-blooded animals. Because the origins of fecal coliforms are more specific than the origins of the more general total coliform group of bacteria, fecal coliforms are considered a more accurate indication of animal or human waste than the total coliforms.
- **C. Escherichia coli (E. coli)** is the major species in the fecal coliform group. Of the five general groups of bacteria that comprise the total coliforms, only E. coli is generally not found growing and reproducing in the environment. Consequently, E. coli is considered to be the species of coliform bacteria that is the best indicator of fecal pollution and the possible presence of pathogens.

Are Coliform Bacteria Harmful?

Most coliform bacteria do not cause disease. However, some rare strains of E. coli, particularly the strain 0157:H7, can cause serious illness. Recent outbreaks of disease caused by E. coli 0157:H7 have generated much public concern about this organism. E. coli 0157:H7 has been found in cattle, chickens, pigs, and sheep. Most of the reported human cases have been due to eating under cooked hamburger. Cases of E. coli 0157:H7 caused by contaminated drinking water supplies are rare.

Coliform Testing

Testing for bacteria is the only reliable way to know if your water is safe. You cannot tell by the look, taste, or smell of the water if disease-causing organisms are in it. The New York State Department of Health recommends that well owners test their water for coliform bacteria at least once a year. If you have experienced bacteria problems in the past, it is recommended that you test your well more frequently.

When Should I Test?

Late spring or early summer are the best times to test your well, since coliform contamination is most likely to show up during wet weather. Whether your test results are positive or negative, understand that the sample you collected is just a "snapshot" of your well's water quality. The more samples you have tested, the more confident you can be about the quality of the water you are drinking.

What do the Results Mean?

If coliform bacteria are present in your drinking water, your risk of contracting a water-borne illness is increased. Although total coliforms can come from sources other than fecal matter, a positive total coliform sample should be considered an indication of pollution in your well. Positive fecal coliform results, especially positive E. Coli results, should be considered indication of fecal pollution in your well.

What Should be done if Coliform Bacteria are Detected in a Well?

When coliforms have been detected, repairs or modifications of the water system may be required. Boiling the water is advised until disinfection and retesting can confirm that contamination has been eliminated. A defective well is often the cause when coliform bacteria are found in well water.

What Kinds of Defects can Allow Contamination?

- a missing or defective well cap seals around wires, pipes, and where the cap meets the casing may be cracked, letting in contaminants
- contaminant seepage through the well casing cracks or holes in the well casing allow water that has not been filtered through the soil to enter the well. This seepage is common in the wells made of concrete, clay tile, or brick
- > contaminant seeping along the outside of the well casing many older wells were not sealed with grout when they were constructed
- > well flooding a common problem for wellheads located below the ground in frost pits that frequently flood during wet weather.

Long-Term Options for Dealing with Bacterial Contamination of a Well

- Connecting to the regional public water system, if possible
- > Inspecting wells for defects and repairing them if possible
- Constructing a new well
- Installing continuous disinfection equipment
- Using bottled water for drinking and food preparation

Understanding Positive or Coliform Present Results

The Total Coliform Bacteria test is the standard microbiological test of the sanitary quality of drinking water. The EPA has stated that good drinking water should not contain any Coliform bacteria.

There are primarily 18 different bacteria which make up the group known as "Coliforms". In most cases, Coliform bacteria are not harmful. However, if these bacteria are found in your water supply, this indicates that other disease causing bacteria may enter through the same pathway and be present in your drinking water.

If Coliform bacteria are found, the water supply is considered a potential health hazard and is classified as "UNSAFE" for human consumption. This test DOES NOT indicate if the water is chemically safe to drink.

E. COLI - One of the Coliform Bacteria

E. Coli is one of the approximate 18 members of Coliform group. The standard Coliform Bacteria test tells the difference between coliforms of fecal origin, specifically E. coli (from the intestines of warm-blooded animals) and coliforms from other sources. Drinking water contaminated with E. coli is considered an "EXTREME HEALTH HAZARD".

The test results are reported as "PRESENT" or "ABSENT"

"ABSENT" – Good news, it means that Coliform bacteria were NOT in the test sample. In other words it "PASSED" the test.

"PRESENT" – Means that Coliform Bacteria were found in the sample and it "FAILED" the test. If Coliforms were found in the sample then E.coli (as a member of the Coliform Group) is also reported as "Present" or "Absent".

Coliforms "Present" and E. coli "Absent" - Very Unsafe - Potential Health Hazard.

Coliforms "Present" and E. coli "Present" – "EXTREME HEALTH HAZARD".

If your water system fails, the first step is usually to perform a "batch chlorination" on your drinking water supply. NRC will send written instructions for this procedure if your test results indicate a failure. After the chlorination procedure has been performed, use your water supply for a minimum of 5-7 days and retest. Until you have a test which shows that the bacteria are ABSENT, exercise caution with this system. It is recommended that you test for Coliform bacteria at least every six months.

Understanding Maximum Contaminant Levels (MCLs)

National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

Emerging Pathogens

Although many of the established waterborne pathogens have been controlled by sanitation measures and water treatment processes, new diseases continue to be identified, and new discoveries present a better understanding of existing chronic diseases. Many of these discoveries raise questions about possible waterborne transmission. The bacteria that now need to be considered in this developing area are Helicobacter pylori, Mycobacterium species, Burkholderia pseudomallei and Francisella tularensis.

Helicobacter Pylori

Although spiral-shaped organisms have been observed in the stomachs of humans for many years, it was not until 1982 that a Campylobacter-like organism was isolated from patients with gastritis and a causative relationship between a new species, Helicobacter pylori, and gastric disease realized (Warren and Marshall 1983). H. pylori is a pathogen of global proportions and is generally accepted as the cause of most gastric and peptic ulcers. These diseases may lead to gastric adenocarcinoma.

H. pylori occurs worldwide in developing and developed countries. Where low degrees of hygiene and socioeconomic problems exist, infection rates may approach 100%. In developed countries, infection rates are probably between 30 and 60%. Transmission from person to person is not fully understood, mainly because of the difficulty in culturing the organism and identifying it outside the body. Epidemiological studies show the cluster phenomenon of H. pylori infection in families. It is suggested that infected mothers may play a key role in transmission within families (Rothenbacher et al. 1999).

H. pylori has been identified in faeces, and it is assumed that transmission is therefore oral-oral or faecal-oral. The organism has not been isolated from the environment or from drinking water, and waterborne transmission remains a possibility that should be investigated. The epidemiology, however, points to person-to-person transmission in early life.

Mycobacterium

The mycobacteria are a group of slow-growing organisms. The most important is Mycobacterium tuberculosis, the causative organism of tuberculosis, which takes about 4–6 weeks to grow in the diagnostic laboratory. M. tuberculosis is not a waterborne pathogen; there are, however, a number of Mycobacterium species that occur in the environment and can cause disease in humans. Mycobacterium avium and its related species cause an infection of cervical lymph nodes; it occurs in the environment and is most probably accompanied by ingestion or inhalation. M. avium can grow in water to which no additional nutrients have been added; although water treatment processes of coagulation and filtration appear to reduce the numbers, it is not affected by chlorine levels of 1 mg/ml. It is therefore not surprising that these organisms can regrow and colonize domestic water systems. Once ingested, M. avium can colonize the pharynx without causing any disease. The number of cases reported was very low, but patients with HIV/AIDS are very susceptible.

Another species, Mycobacterium xenopi, has been reported as the waterborne cause of spinal infections following a look-back exercise on over 3000 patients who had undergone discectomy operations some years beforehand (Astagneau et al. 2001).

Mycobacterium paratuberculosis causes Johne's disease in cattle. It is a chronic wasting disease with considerable economic consequences. The organism is extremely difficult to culture; when it does grow, it is very slow and dependent on an exogenous source of mycobactin, which is an iron chelating agent produced by all other mycobacteria. Transmission is by either direct or indirect contact with infected animals and occurs mainly through the faecal—oral route. Organisms are ingested in large numbers by young animals when they feed in troughs that have been contaminated by faeces of shedding animals (Chiodini et al. 1984).

M. paratuberculosis has recently been suggested as a cause of Crohn's disease, a non-specific chronic transmural inflammatory disease of humans that affects the intestinal tract, commonly the ileum. The disease is chronic, debilitating and of a relapsing nature; the symptoms experienced include diarrhea with blood in the stools and abdominal pain. Complications include obstruction, fistulation and abscesses. There have been many bacteria implicated over the years, but no definite etiological agent has been found. It is thought that immunological mechanisms may play an important role.

Molecular techniques have been developed for the diagnosis of M. paratuberculosis infections and applied to human surgically resected tissues. M. paratuberculosis was detected in approximately 30% of samples, but the sets of results from different laboratories have been conflicting. Some studies were unable to detect the organism; in other studies, the organism was detected in a smaller percentage of healthy subjects. In addition, a few Crohn's disease patients have shown clinical remission when treated with anti-tuberculosis drugs. There is therefore much more work to be done to acquire a better understanding. M. paratuberculosis may be present in surface water contaminated by cattle faeces. Routine testing for indicator organisms would detect faecal pollution, and normal water treatment processes of coagulation and filtration are likely to remove mycobacteria. It is unlikely that drinking-water is a major source of M. paratuberculosis, and its association with Crohn's disease is still under investigation.

Burkholderia Pseudomallei

Burkholderia pseudomallei is the cause of melioidosis, an acute pneumonia often followed by systemic infection with later presentations of abscesses. The organism is widespread in the environment and was originally described in Rangoon in patients compromised by severe poverty who had presumably inhaled the organism in dust when sleeping on the ground. It occurs commonly in southeast Asia and has been detected in service personnel repatriated from those areas in the past. It was also investigated as a biological weapon by several nations, to be released as an aerosol and cause pneumonia infection in those exposed. A recent study in Bologna, Italy, detected B. pseudomallei in 7% of 85 samples of drinking-water collected from public and private buildings. The mean count was 578 cfu/100 ml. The occurrence of the organism was found to correlate with the HPC at 22 and 36 °C (Zanetti et al. 2000).

Francisella Tularensis

Tularaemia is a zoonosis caused by a highly infective and virulent organism Francisella tularensis, which occurs throughout the northern hemisphere but has never been isolated within the United Kingdom. It occurs in a wide range of animal reservoir posts and can be isolated from the environment in water and mud. It is transmitted to humans who come in close contact with the animal reservoir, arthropods that feed on them or debris and dust associated with them. It can also be transmitted through the ingestion of contaminated water. Human epidemics sometimes occur and are associated with epizootics in the animal

Bacteria of potential health concern 75 populations, evidenced by die-offs. There are several presentations of tularaemia in humans, depending on the route of exposure. Ingestion usually results in oropharyngeal tularaemia, with fever, pharyngitis and cervical lymphadenitis. Other forms include ulceroglandular, pleuropneumonic and typhoidal. Following the recent war in Kosovo, over 900 suspected cases of tularaemia were identified and 327 cases confirmed serologically. The epidemiological investigation pointed to rodent-contaminated wells, and rodent carcasses found in some wells tested positive for F. tularensis (Reintjes et al. 2002). In a waterborne outbreak reported from Spain, 19 cases who had contact with river-caught crayfish were identified (Anda et al. 2001). Attempts to isolate F. tularensis from water were unsuccessful. Drinking-water was not involved. F. tularensis is notoriously difficult to culture, requiring a source of cysteine. F. tularensis was investigated and developed as a biological weapon; the infectious dose was found to be extremely low — 10 organisms.

Examples of classical biological warfare agents

AgentDiseaseBacillus anthracisAnthrax

Brucella species Brucellosis

Burkholderia mallei Glanders

Burkholderia pseudomallei Melioidosis

Francisella tularensis Tularaemia

Yersinia pestis Plague

Rickettsia species Typhus

Coxiella burnetii Q fever

Clostridium botulinum toxin Botulism

Staphylococcus aureus enterotoxin B Staphylococcal food poisoning

Smallpox virus Smallpox

The remaining bacteria of concern are either heterotrophs that might have a role in disease or emerging pathogens that do have a role in disease and could possibly be waterborne. It is important that these organisms and diseases are kept under surveillance in order to confirm or refute the suggested associations. Many of the organisms are difficult to grow, and there is no validated trigger of when to look for them.

The HPC does not measure all organisms present, of which many will be non-culturable but viable, and indeed several of the organisms of concern described above would not grow on HPC media. The HPC, however, does give an indication of change in the flora of drinking-water, and the HPC should be evaluated as a trigger for further investigation.

Many new molecular techniques for the detection of pathogens and putative pathogens in water are being described (Waage et al. 1999a,b,c; Lightfoot et al. 2001). DNA chips that have the capacity to detect up to 44 pathogens on one single chip are being developed.

These tests are very expensive when compared with the routine monitoring tests carried out in the water industry and in public health monitoring. The HPC should be evaluated as the signal of changing events in a drinking-water supply to trigger the utilization of these new molecular tests to detect the new bacteria of concern and any associated virulence genes.

Understanding Heterotrophic Plate Count

The analytical methods promulgated under the authority of Section 304(h) of the Clean Water Act are sometimes referred to as the "304(h)" or "Part 136" methods. The methods measure chemical and biological pollutants in media, such as wastewater, ambient water, sediment, and biosolids (sewage sludge). These various CWA methods are tested in a variety of labs and matrices. In addition to Part 136 methods, some approved methods are published or incorporated by reference at 40 CFR Parts 401-503, approved industry-specific methods.

In addition to general purposes methods, EPA has approved special purpose analytical methods. These methods were developed to work in samples or for pollutants specific to certain industrial categories. For example, methods specific to the Pharmaceutical Manufacturing and Pesticide Chemicals industrial categories are listed in Tables IF and IG, respectively, at 40 CFR Part 136.

Methods specific to other industrial categories are listed or incorporated by reference into the regulations at 40 CFR Parts 401-503. These include methods specific to the Pulp, Paper, and Paperboard category (40 CFR Part 430), and specific to Use or Disposal of Sewage Sludge (biosolids) (at 40 CFR Part 503.) Industry-specific methods that are approved for compliance monitoring in the industry for which they are designated may be used for general use, if the same method is listed in Tables IA to IE, or IH at 40 CFR 136.3.

Understanding Total Coliforms

The Total Coliform Rule was published in 1989 and became effective in 1990. The rule set both health goals (MCLGs) and legal limits (MCLs) for the presence of total coliform in drinking water. The rule also detailed the type and frequency of testing that water systems must undertake. In 2003, EPA announced its intent to revise the Total Coliform Rule.

2010 Proposed Revisions to the Total Coliform Rule

The Environmental Protection Agency (EPA) is proposing revisions to the 1989 Total Coliform Rule (TCR), a national primary drinking water regulation (NPDWR). The purpose of the TCR is to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbial contamination. EPA anticipates greater public health protection under the proposed revised requirements, which are based on recommendations by a federal advisory committee.

The proposed revisions to the TCR will:

- require public water systems that are vulnerable to microbial contamination to identify and fix problems, and
- > establish criteria for systems to qualify for and stay on reduced monitoring, thereby providing incentives for improved water system operation.

The proposed RTCR maintains and strengthens the objectives of the current TCR and is consistent with the recommendations in the AIP. The objectives are: (1) To evaluate the effectiveness of treatment, (2) to determine the integrity of the distribution system, and (3) to signal the possible presence of fecal contamination. The proposed revision better addresses these objectives by requiring systems that may be vulnerable to fecal contamination (as indicated by their monitoring results) to do an assessment, to identify whether any sanitary defect(s) is (are) present, and to correct the defects.

Therefore, the Agency anticipates greater public health protection under the proposed RTCR compared to the current TCR because of its more preventive approach to identifying and fixing problems that affect or may affect public health.

The following is an overview of the key provisions of the proposed RTCR:

- MCLG and MCL for E. coli and coliform treatment technique for protection against potential fecal contamination. The proposed RTCR establishes a maximum contaminant level goal (MCLG) and maximum contaminant level (MCL) for E. coli. It takes a preventive approach to protecting public health by establishing a coliform treatment technique for protection against potential fecal contamination. The treatment technique uses both total coliforms and E. coli monitoring results to start an evaluation process that, where necessary, will require the PWS to conduct follow-up corrective action that could prevent future incidences of contamination and exposure to fecal contamination and/or waterborne pathogens.
- Monitoring. As with the current TCR, PWSs will continue to monitor for total coliforms and E. coli according to a sample siting plan and schedule specific to the system.

Sample siting plans under the proposed RTCR must continue to be representative of the water throughout the distribution system. Under the proposed RTCR, systems have the flexibility to propose repeat sample locations that best verify and determine the extent of potential contamination of the distribution system rather than having to sample within five connections upstream and downstream of the total coliform-positive sample location. In lieu of proposing new repeat sample locations, the systems may stay with the default used under the current TCR of five connections upstream and downstream of the total coliform-positive sample location.

As with the current TCR, the proposed RTCR allows reduced monitoring for some small ground water systems. The proposed RTCR is expected to improve public health protection compared to the current TCR by requiring small ground water systems that are on or wish to conduct reduced monitoring to meet certain eligibility criteria. Examples of the criteria include a sanitary survey showing that the system is free of sanitary defects, a clean TCR compliance history for 12 months, and a recurring annual site visit by the State and/or a voluntary Level 2 assessment for systems on annual monitoring.

For small ground water systems, the proposed RTCR requires increased monitoring for high-risk systems that meet certain criteria such as unacceptable compliance history under the RTCR. The proposed RTCR specifies conditions under which systems will no longer be eligible for reduced monitoring and be required to return to routine monitoring or to monitor at an increased frequency.

The proposed RTCR requires systems on a quarterly or annual monitoring frequency (applicable only to ground water systems serving 1,000 or fewer people) to conduct additional routine monitoring the month following one or more total coliform-positive samples. Under the proposed RTCR, systems must collect at least three routine samples during the next month, unless the State waives the additional routine monitoring. This is a reduction in the required number of additional routine samples from the current TCR, which requires at least five routine samples in the month following a total coliform-positive sample for all systems serving 4,100 or fewer people.

The current TCR requires all systems serving 1,000 or fewer people to collect at least four repeat samples while PWSs serving 1,000 people or greater to collect three repeat samples. The proposed rule requires three repeat samples after a routine total coliform-positive sample, regardless of the system type and size.

Seasonal Systems

The proposed RTCR establishes monitoring requirements for seasonal systems for the first time. Seasonal systems represent a special case in that the shutdown and start-up of these water systems present additional opportunities for contamination to enter or spread through the distribution system. Seasonal systems must demonstrate completion of a State-approved start-up procedure. In addition, they must designate the time period(s) for monitoring based on site-specific considerations (such as during periods of highest demand or highest vulnerability to contamination) in their State-approved sample siting plan. See section III.A.3 of this preamble for a detailed discussion of seasonal systems.

Assessment and Corrective Action

As part of a treatment technique, all PWSs are required to assess their systems when monitoring results show that the system may be vulnerable to contamination. Systems must conduct a simple self-assessment (Level 1) or a more detailed assessment (Level 2) depending on the severity and frequency of contamination. The system is responsible for correcting any sanitary defect(s) found through either a Level 1 or Level 2 assessment.

Violations and Public Notification

The proposed RTCR establishes an E. coli MCL violation, a treatment technique violation, a monitoring violation, and a reporting violation. Public notification is required for each type of violation, with the type of notification dependent on the degree of potential public health concern. This is consistent with EPA's current public notification requirements under 40 CFR part 141 subpart Q. The proposed RTCR also modifies the public notification and Consumer Confidence Report language to reflect the construct of the proposed rule. See sections III.A.6 and III.A.7 of this preamble for detailed discussions of violations and public notification under the proposed RTCR.

Transition to the RTCR

The proposed RTCR allows all systems to transition to the new rule at their current TCR monitoring frequency, including systems on reduced monitoring under the current TCR. States will then evaluate the monitoring frequency during each sanitary survey conducted after the compliance effective date of the RTCR. This process reduces State burden by not requiring the State to determine appropriate monitoring frequency at the same time as when the State is trying to adopt primacy, develop policies, and train their own staff and the PWSs in the State.

The provisions of the proposed RTCR are contained in the new 40 CFR part 141 subpart Y, superseding 40 CFR 141.21 beginning three years following the publication of the final revised rule.

A. Proposed Rule Provisions and Rationale

The PWS may propose repeat monitoring locations that are expected to be representative of a pathway for contamination into the distribution system (for example, near a storage tank). Instead of identifying set repeat sampling locations (i.e., within five service connections upstream and downstream of the original sampling location that tested total coliform-positive), systems may elect to specify criteria for selecting their repeat sampling locations on a situational basis in a standard operating procedure (SOP), which is part of the sample siting plan. Upon State review, the PWS must demonstrate to the State's satisfaction that the sample siting plan remains representative of the water quality in the distribution system. The State may modify the SOP as needed. To address access issues, small systems must specify in their sampling plans where the two additional samples will be taken. The State may determine that monitoring at the entry point to the distribution system (especially for undisinfected ground water systems) is effective to differentiate between potential source water and distribution problems.

Under the proposed RTCR, PWSs may take more than the minimum required number of routine samples and include the results in calculating whether the total coliform treatment technique trigger for conducting an assessment has been exceeded only if the samples are taken in accordance with the sample siting plan and are representative of water throughout the distribution system.

EPA is not proposing to make substantive changes to the current TCR requirements for (1) special purpose samples, and (2) invalidation of total coliform samples. EPA is proposing a minor modification to

the provision for special purpose samples by changing "total coliform MCL" to "coliform treatment technique trigger."

The following are the proposed monitoring requirements for different categories of systems.

- i. Ground water NCWSs serving ? 1,000 people. (a). Routine monitoring. The proposed RTCR requires ground water NCWS serving 1,000 or fewer people to routinely monitor each quarter for total coliforms and E. coli. Seasonal systems under this category must routinely monitor every month (seasonal systems are discussed later in this section).
- (b). Transition to the RTCR. The proposed RTCR requires all ground water NCWSs serving 1,000 or fewer people, including seasonal systems, to continue with their TCR monitoring schedules as of the compliance date of the RTCR, unless or until any of the conditions for increased monitoring discussed later on in this section are triggered on or after the compliance date or unless otherwise directed by the State, including through the special monitoring evaluation conducted under a sanitary survey. In addition, systems on annual monitoring, including seasonal systems, must have an initial annual site visit by the State within one year of the compliance date (or an annual voluntary Level 2 assessment by a party approved by the State) and an annual site visit each year thereafter to remain on annual monitoring.

This rule proposes that after the compliance date of the final RTCR, during each sanitary survey the State (which would be either EPA or a State that has received primacy for this rule) must perform a special monitoring evaluation to review the status of the water system, including the distribution system, to determine whether the system is on an appropriate monitoring schedule and modify the monitoring schedule as necessary. States must evaluate system factors such as the pertinent water quality and compliance history, the establishment and maintenance of contamination barriers, and other appropriate protections and validate the appropriateness of the water system's existing monitoring schedule and modify as necessary. For seasonal systems on quarterly or annual monitoring, this evaluation must also include review of the approved sample siting plan which designates the time period(s) for monitoring based on site-specific considerations (such as during periods of highest demand or highest vulnerability to contamination). The system must collect compliance samples during these time periods.

(c). Reduced monitoring. The State has the discretion to reduce the monitoring frequency for well-operated ground water NCWSs from the quarterly routine monitoring to no less than annual monitoring, if the water system can demonstrate that it meets the criteria for reduced monitoring provided in this section.

Understanding Waterborne Viruses

More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters (Havelaar and others, 1993). Treatment processes and watershed management strategies designed on the basis of bacteriological criteria do not necessarily protect against viral infection because viruses are generally more persistent in the environment and are not removed as completely by treatment. In addition, because of their smaller size, viruses (0.023 to 0.080 μ m) are transported further in ground water than bacteria (0.5 to 3 μ m) or protozoan pathogens (4 to 15 μ m) (Abbaszadegan and others, 1998). Because of the importance of viruses as a major public health concern, new methods for detection of enteric viruses and the search for indicators of viral contamination continue.

The current method for culturing enteric viruses under the ICR (U.S. Environmental Protection Agency, 1996c) is recognized as being difficult to implement; therefore, the ICR does not preclude the use of additional methods for research purposes. In addition, cell-culture methods are not available or suitable for all viruses of public health concern. One method, reverse-transcriptase-polymerase chain reaction (RT-PCR), a gene-probe method that amplifies and recognizes the nucleic acids of target viruses, has been adequately validated by the USEPA (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997) and is becoming widely used for environmental monitoring of enteric viruses. The RTPCR method, however, does not determine the infectivity of the virus, and it is technically demanding, time consuming, and costly for routine use.

Because monitoring of enteric viruses is recognized as being difficult and time consuming, some researchers advocate the use of coliphage as indicator viruses for fecal contamination (Sobsey and others, 1995). Coliphages are bacteriophages that infect and replicate in coliform bacteria. The two main groups of coliphages that are considered as candidates for viral indicators are somatic and F-specific coliphages.

Somatic coliphages infect coliform bacteria by attachment to the outer cell membrane or cell wall. They are widely distributed in both fecal-contaminated and uncontaminated waters; therefore, they may not be reliable indicators of fecal contamination (Sobsey and others, 1995). F-specific coliphages attach only to the F-pilus of coliforms that carry the F+ plasmid; F-pili are made only by bacteria grown at higher temperatures.

Hence, F-specific coliphages found in environmental samples presumably come from warm-blooded animals or sewage (Handzel and others 1993). Although somatic and F-specific coliphages are not consistently found in feces, they are found in high numbers in sewage and are thought to be reliable indicators of the sewage contamination of waters (International Association of Water Pollution Research and Control, 1991). Coliphage is also recognized to be representative of the survival and transport of viruses in the environment. To date, however, coliphage has not been found to correlate with the presence of pathogenic viruses.

Sampling Procedures Streamwater Sample Collection

When designing a sampling plan, consider that the spatial and temporal distribution of microorganisms in surface water can be as variable as the distribution of suspended sediment because microorganisms are commonly associated with solid particles. The standard samplers used in by the majority of samplers can be used to collect streamwater samples for bacterial and viral indicators, Cryptosporidium, and Giardia providing that the equipment coming in contact with the water is properly cleaned and sterilized. For streamwater samples, these include the US-D77TM, US-D95, US-DH81, and weighted- and open-bottle samplers with autoclavable Teflon, glass, or polypropylene components.

- Prepare a separate set of sterile equipment (bottles nozzles, and caps) for sampling at each site.
- Follow sampling techniques given in Shelton (1994) to ensure that a sample is representative of the flow in the cross section. Use equal-width increment (EWI) or equal-discharge-increment (EDI) methods described in Edwards and Glysson (1988), unless site characteristics dictate otherwise.

- Because churn and cone splitters cannot be autoclaved, use a sterile 3-L bottle to composite subsamples for bacterial and viral indicators when using EDI and EWI methods. If possible, composite by collecting subsamples at vertical locations in the cross section without overfilling the bottle.
- Alternatively, if the stream depth and (or) velocity is not sufficient to use depth-width integrating techniques, collect a sample by a hand-dip method (Myers and Sylvester, 1997).
- Collect approximately 1 L of streamwater for bacterial and viral indicators. Process the sample for E. coli and enterococci; send the remainder (at least 500 mL) on ice to the laboratory for C. perfringens and coliphage analysis.

Cryptosporidium and Giardia Analysis

For Cryptosporidium and Giardia analysis by Method 1623 (U.S. Environmental Protection Agency, 1999c), collect 10 L of streamwater for each protozoan pathogen using standard sampling techniques described in Myers and Sylvester (1997). Special sterilization procedures are needed for equipment used in the collection of samples for Cryptosporidium and Giardia. Autoclaving is not effective in neutralizing the epitopes on the surfaces of the oocysts and cysts that will react with the antibodies used for detection.

- Wash and scrub the equipment with soap and warm tap water to remove larger particulates and rinse with deionized water. Submerge the equipment in a vessel containing 12 percent hypochlorite solution for 30 minutes. Wash the equipment free of residual sodium hypochlorite solution with three rinses of filter-sterilized water; do not de-chlorinate the equipment using sodium thiosulfate. This procedure is best done in the office with dedicated sampling equipment for each site; however, it may be done in the field as long as the hypochlorite solution is stored and disposed of properly.
- Composite the sample in a 10-L cubitainer that is pre-sterilized by the manufacturer. The cubitainer is sent in a cardboard box to laboratory for Cryptosporidium analysis. The sample does not have to be kept on ice during transport. At this time, two methods are recommended for analysis of water samples for enteric viruses: (1) the reverse-transcriptase, polymerase chain reaction (RTPCR) method (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997) and (2) the cell-culture method (U.S. Environmental Protection Agency, 1996c). Sampling and equipment cleaning procedures are more thoroughly described elsewhere (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997; U.S. Environmental Protection Agency, 1996c). Briefly, 100 L of streamwater is pumped by means of a specially designed sampling apparatus and passed through a Virosorb1 1MDS filter (Cuno, Meriden, Conn.). The 1MDS filters, which remove viruses present in the water by charge interactions, are kept on ice and sent to a central laboratory for virus elution, concentration, and detection.

Ground-Water Sample Collection Collecting

Ground-water samples by use of sterile techniques requires knowledge of the type of well, its use, its construction, and its condition.

- Swab the electronic tape used for water-level measurements with isopropyl or ethyl alcohol.
- In sampling subunit survey wells, once purging criteria have been met as described in Koterba and others (1995), collect the sample directly from the tap into a sterile container.
- Remove screens, filters, other devices from the tap before collecting the sample, and do not sample from leaking taps.

Because we are interested in the microbial population in the ground water and not in the distribution system, it is best to sample directly from the wellhead using a pump with sterile tubing, if possible.

Disinfection of Water and Wastewater

The disinfection of potable water and wastewater provides a degree of protection from contact with pathogenic organisms including those causing cholera, polio, typhoid, hepatitis and a number of other bacterial, viral and parasitic diseases. Disinfection is a process where a significant percentage of pathogenic organisms are killed or controlled. As an individual pathogenic organism can be difficult to detect in a large volume of water or wastewater, disinfection efficacy is most often measured using "indicator organisms" that coexist in high quantities where pathogens are present. The most common indicator organism used in the evaluation of drinking water is Total Coliform (TC), unless there is a reason to focus on a specific pathogen.

The most common indicator organism for wastewater evaluation is fecal coliform but there has been discussion regarding the use of Escherichia coli (E. coli) or Total Coliform. As domestic wastewater contains approximately 1,000 times more indicator organisms than typical surface water, understanding wastewater disinfection will make it easier to understand water disinfection.

Chlorine gas is primarily a respiratory irritant and concentrations in air above one ppm can usually be detected by most persons. Chlorine causes varying degrees of irritation of the skin, mucus membranes, and the respiratory system, depending on the concentration and the duration of exposure. Severe exposure can cause death, but the severe irritating effect makes it unlikely that anyone would remain in the chlorine-containing atmosphere unless trapped or unconscious.

Liquid chlorine may cause skin and eye burns upon contact with these tissues. Chlorine produces no known cumulative or chronic effect, and complete recovery usually can be expected to occur shortly following mild, short term exposure. An eight-hour time-weighted exposure of one ppm and a one-hour weighted exposure are the current federal Occupational Safety and Health Administration (OSHA) standards.

Understanding Bacteriophage

Bacteriophages may have a lytic cycle or a lysogenic cycle, and a few viruses are capable of carrying out both. With lytic phages such as the T4 phage, bacterial cells are broken open (lysed) and destroyed after immediate replication of the virion. As soon as the cell is destroyed, the phage progeny can find new hosts to infect. Lytic phages are more suitable for phage therapy. Some lytic phages undergo a phenomenon known as lysis inhibition, where completed phage progeny will not immediately lyse out of the cell if extracellular phage concentrations are high. This mechanism is not identical to that of temperate phage going dormant and is usually temporary.

In contrast, the lysogenic cycle does not result in immediate lysing of the host cell. Those phages able to undergo lysogeny are known as temperate phages. Their viral genome will integrate with host DNA and replicate along with it fairly harmlessly, or may even become established as a plasmid. The virus remains dormant until host conditions deteriorate, perhaps due to depletion of nutrients; then, the endogenous phages (known as prophages) become active. At this point they initiate the reproductive cycle, resulting in lysis of the host cell. As the lysogenic cycle allows the host cell to continue to survive and reproduce, the virus is reproduced in all of the cell's offspring. An example of a bacteriophage known to follow the lysogenic cycle and the lytic cycle is the phage lambda of E. coli.

Sometimes prophages may provide benefits to the host bacterium while they are dormant by adding new functions to the bacterial genome in a phenomenon called lysogenic conversion. An eminent example is the conversion of a harmless strain of Vibrio cholerae by a phage into a highly virulent one, which causes cholera.

Attachment and Penetration

To enter a host cell, bacteriophages attach to specific receptors on the surface of bacteria, including lipopolysaccharides, teichoic acids, proteins, or even flagella. This specificity means a bacteriophage can infect only certain bacteria bearing receptors to which they can bind, which in turn determines the phage's host range. Host growth conditions also influence the ability of the phage to attach and invade them. As phage virions do not move independently, they must rely on random encounters with the right receptors when in solution (blood, lymphatic circulation, irrigation, soil water, etc.).

Myovirus bacteriophages use a hypodermic syringe-like motion to inject their genetic material into the cell. After making contact with the appropriate receptor, the tail fibers flex to bring the base plate closer to the surface of the cell; this is known as reversible binding. Once attached completely, irreversible binding is initiated and the tail contracts, possibly with the help of ATP present in the tail, injecting genetic material through the bacterial membrane. Podoviruses lack an elongated tail sheath similar to that of a myovirus, so they instead use their small, tooth-like tail fibers to enzymatically degrade a portion of the cell membrane before inserting their genetic material.

Laboratory Analysis

Samples need to be kept on ice and shipped to a central laboratory for analysis of coliphage, *C. perfringens*, *Cryptosporidium*, *Giardia*, and enteric viruses by the current analytical methods. The single-agar layer (SAL), direct plating method with induction of β -galactosidase (Ijzerman and Hagedorn, 1992) is recommended for detection of somatic and F-specific coliphage in streamwater samples. In this method, 100-mL sample volumes are mixed with an agar medium, *E. coli* host culture, chemicals that induce the β -galactosidase enzyme, and appropriate antibiotics. The mixtures are poured into four 150- x 15-mm plates and incubated at 35°C.

Upon infection by coliphage in the water sample, the *E. coli* host cells are lysed and stable indolyl product that is dark blue is visible within each plaque. Viral plaques are easily identified and enumerated by the distinct blue circle. Because of contamination by naturally occurring bacteria in streamwater samples, antibiotic- resistant host-culture strains, *E. coli* CN-13 (resistant to nalidixic acid) and *E. coli* F-amp (resistant to streptomycin and ampicillin) are used as hosts for somatic and F-specific coliphage, respectively. Large sample volumes, such as 1-L volumes or greater, are recommended for detection of coliphage in ground water. Because the SAL method is impractical for sample volumes above 100 mL, an alternative method should be used for ground-water sample analysis.

One example, currently being tested by USEPA, is a two-step enrichment presence-absence method (U.S. Environmental Protection Agency, 1999e). Samples for enumeration of *C. perfringens* are analyzed by use of the mCP agar method (U.S. Environmental Protection Agency, 1996c). Standard MF techniques are used, and the plates are incubated anaerobically for 24 hours at 44.5°C. After incubation, the plates are exposed to ammonium hydroxide, and all straw-colored colonies that turn dark pink to magenta are counted as *C. perfringens*. In the laboratory, *C. perfringens* analyses are done on 100-, 30-, and 10-mL volumes of streamwater. In the case of a high-flow or high-turbidity streamwater sample, lower sample volumes may be plated.

Method 1623 (U.S. Environmental Protection Agency, 1999c) is recommended for detection of *Cryptosporidium* oocysts and *Giardia* cysts in water. The oocysts are concentrated on a capsule filter from a 10-L water sample, eluted from the capsule filter with buffer, and concentrated by centrifugation. Immunomagnetic separation (IMS) is used to separate the oocysts from other particulates in the sample. In IMS, the oocysts are magnetized by attachment of magnetic beads conjugated to an antibody and then are separated from sediment and debris by means of a magnet.

Fluorescently labeled antibodies and vital dye are used to make the final microscopic identification of oocysts and cysts. The reverse-transcriptase, polymerase chain reaction (RT-PCR) and cell-culture methods are recommended for detection of enteric viruses in water samples (G. Shay Fout, U.S. Environmental Protection Agency, written commun., 1997; U.S. Environmental Protection Agency, 1996c). To prepare samples for RT-PCR and cell culture, attached viruses are eluted from a 1MDS filter with beef extract (pH 9.5), concentrated using celite (pH 4.0), and eluted with sodium phosphate (pH 9.5).

For RT-PCR analysis, viruses are isolated from the eluate by ultracentrifugation through a sucrose gradient, and trace contaminants are removed by extraction with a solvent mixture. During these steps, the 10-L streamwater sample (or 2,000-L ground-water sample) is concentrated down to 40 μ L. An aliquot of the concentrate is used for RT-PCR, wherein any target viral RNA is converted to DNA and amplified by use of an enzymatic process. The RT-PCR products are analyzed by agarose gel electrophoresis and confirmed by hybridization. The enteric viruses detected by use of this method include enterovirus, hepatitis-A, rotavirus, reovirus, and calicivirus.

For cell-culture analysis, the sample eluate is added to a monlayer of a continuous cell line derived from African green monkey kidney cells (U.S. Environmental Protection Agency, 1996c). Each cell culture is examined microscopically for the appearance of cytopathic effects (CPE) for a total of 14 days; if CPE is not observed in 14 days, a second passage is done. Results are reported as most probable number of infectious units per volume of water.

QA/QC Activities and Measures

QA/QC activities and measures to take to reduce contamination.

- Use a sterilization indicator, such as autoclave tape, in preparing sample bottles and other equipment for collection of microbiological samples to determine whether adequate temperatures and pressures have been attained during autoclaving.
- Prepare a separate set of sterile equipment for microbiological sampling at each site.
- Before processing samples in the field vehicle, wipe down the area with a disinfectant (such as isopropyl alcohol) to ensure a sterile working surface.
- Monitor the incubators daily to ensure temperatures are appropriate for the methods used.

For bacteria samples, membrane-filtration (MF) equipment and MF procedure blanks are used to estimate analytical bias.

Field personnel should do the following:

- Prepare an MF equipment blank, a 50- to 100-mL aliquot of sterile buffered water plated before the sample—for every sample by field personnel for total coliform, *E. coli*, and enterococci analyses to determine the sterility of equipment and supplies.
- Prepare a MF procedure blank, a 50- to 100-mL aliquot of sterile buffered water plated after the sample— for every fourth sample to measure the effectiveness of the analyst's rinsing technique or presence of incidental contamination of the buffered water.

If contamination from a MF equipment or procedure blank is found, results are suspect and are qualified or not reported. Proper and consistent procedures for counting and identifying target colonies will be followed, as described in Myers and Sylvester (1997).

• After counting, turn the plate 180° and ensure the second count is within 5 percent of the first count. Have a second analyst check calculations of bacterial concentrations in water for errors.

For coliphage, *Cryptosporidium*, *Giardia*, and enteric virus samples, equipment and field blanks are used to determine sampling and analytical bias. Equipment blanks for these analyses are different from the MF equipment blanks for bacterial analysis. An equipment blank is a blank solution (sterile buffered water) subjected to the same aspects of sample collection, processing, storage, transportation, and laboratory handling as an environmental sample, but it is processed in an office or laboratory. Field blanks are the same as equipment blanks except that they are generated under actual field conditions.

- For enteric virus analysis, collect one equipment blank after collection of the first sample to ensure that equipment cleaning and sterilization techniques are adequate.
- For coliphage, *Cryptosporidium, Giardia*, and enteric virus analyses, collect field blanks periodically. At a minimum, the number of field blanks should equal 5 percent of the total number of samples collected. Five percent of samples collected for bacterial and viral indicators (total coliforms, *E. coli*, enterococci, *C. perfringens*, and coliphage) should be nested replicate samples to estimate sampling and analytical variability. For streamwater samples, concurrent replicates to estimate sampling variability are collected by alternating subsamples in each vertical between two collection bottles. For ground-water samples, sequential replicates are collected one after another into separate sterile bottles. Concurrent and sequential replicates are then analyzed in duplicate (split replicates) to estimate analytical variability.
- Because of the expense associated with collection and analysis of samples for pathogens (*Cryptosporidium* and enteric viruses), collect only one replicate sample per year at a site wherein detection of pathogens was found in an earlier sample.

To assess analytical bias of the sampling and analytical method, 2 to 5 percent of the samples collected for enteric virus should be field matrix spikes.

• Run all but 10 L of ground water through the 1 MDS filter and collect the remaining 10 L in a carboy. In the laboratory, the poliovirus vaccine will be added to the 10 L and then passed through the same 1MDS filter.

Glossary

ABANDONED WELL: Wells that have been or need to be sealed by an approved method.

ABSENCE OF OXYGEN: The complete absence of oxygen in water described as Anaerobic.

ACCURACY: How closely an instrument measures the true or actual value.

ACID AND BASE ARE MIXED: When an acid and a base are mixed, an explosive reaction occurs and decomposition products are created under certain conditions.

ACID: Slowly add the acid to water while stirring. An operator should not mix acid and water or acid to a strong base.

ACID RAIN: A result of airborne pollutants.

ACTIVATED CHARCOAL (GAC or PAC): Granular Activated Charcoal or Powered Activated Charcoal. Used for taste and odor removal. A treatment technique that is not included in the grading of a water facility.

ACTIVATED CARBON FILTRATION: Can remove organic chemicals that produce off-taste and odor. These compounds are not dangerous to health but can make the water unpleasant to drink. Carbon filtration comes in several forms, from small filters that attach to sink faucets to large tanks that contain removable cartridges. Activated carbon filters require regular maintenance or they can become a health hazard.

ADSORPTION: Not to be confused with absorption. Adsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a film of molecules or atoms (the adsorbate). It is different from absorption, in which a substance diffuses into a liquid or solid to form a solution. The term sorption encompasses both processes, while desorption is the reverse process. Adsorption is present in many natural physical, biological, and chemical systems, and is widely used in industrial applications such as activated charcoal, synthetic resins, and water purification.

ADSORPTION CLARIFIERS: The concept of the adsorption clarifier package plant was developed in the early 1980s. This technology uses an up-flow clarifier with low-density plastic bead media, usually held in place by a screen. This adsorption media is designed to enhance the sedimentation/clarification process by combining flocculation and sedimentation into one step. In this step, turbidity is reduced by adsorption of the coagulated and flocculated solids onto the adsorption media and onto the solids already adsorbed onto the media. Air scouring cleans adsorption clarifiers followed by water flushing. Cleaning of this type of clarifier is initiated more often than filter backwashing because the clarifier removes more solids. As with the tube-settler type of package plant, the sedimentation/ clarification process is followed by mixed-media filtration and disinfection to complete the water treatment.

AIR GAP SEPARATION: A physical separation space that is present between the discharge vessel and the receiving vessel; for an example, a kitchen faucet.

AIR HAMMER: A pneumatic cylindrical hammering device containing a piston used on air rotary rigs. The air hammer's heavy piston moves up and down by the introduction of compressed air creating a hammering action on the bit.

AIR HOOD: The most suitable protection when working with a chemical that produces dangerous fumes.

AIR ENTRAINMENT: The dissolution or inclusion of air bubbles into water.

AIRLIFT: The lifting of water and/or cuttings to the surface by the injection of high pressure bursts of air. Airlift occurs continuously when drilling with air rotary and can be used for well development with a surging technique.

AIR PUMPING: Continuous airlifting to remove water from the well.

AIR ROTARY: A method of rotary well drilling that utilizes compressed air as the primary drilling fluid.

AGGLOMERATION: A jumbled cluster or mass of varied parts. The act or process of agglomerating.

ALKALINITY: Alkalinity or AT is a measure of the ability of a solution to neutralize acids to the equivalence point of carbonate or bicarbonate. Alkalinity is closely related to the acid neutralizing capacity (ANC) of a solution and ANC is often incorrectly used to refer to alkalinity. However, the acid neutralizing capacity refers to the combination of the solution and solids present (e.g., suspended matter, or aquifer solids), and the contribution of solids can dominate the ANC (see carbonate minerals below).

ALTERNATIVE DISINFECTANTS: Disinfectants - other than chlorination (halogens) - used to treat water, e.g. ozone, ultraviolet radiation, chlorine dioxide, and chloramine. There is limited experience and scientific knowledge about the by-products and risks associated with the use of alternatives.

ALGAE: Microscopic plants that are free-living and usually live in water. They occur as single cells floating in water, or as multicellular plants like seaweed or strands of algae that attach to rocks.

ALPHA AND BETA RADIOACTIVITY: Represent two common forms of radioactive decay. Radioactive elements have atomic nuclei so heavy that the nucleus will break apart, or disintegrate spontaneously. When decay occurs, high-energy particles are released. These high-energy particles are called radioactivity. Although radioactivity from refined radioactive elements can be dangerous, it is rare to find dangerous levels of radioactivity in natural waters. An alpha particle is a doubly-charged helium nucleus comprised of two protons, two neutrons, and no electrons. A beta particle is a high-speed electron. Alpha particles do not penetrate matter easily, and are stopped by a piece of paper. Beta particles are much more penetrating and can pass through a millimeter of lead.

ALUMINUM SULFATE: The chemical name for Alum. The molecular formula of Alum is $Al_2(SO_4)3\sim14H_2O$. It is a cationic polymer.

AMOEBA: Amoeba (sometimes amœba or ameba, plural amoebae) is a genus of protozoa that moves by means of pseudopods, and is well-known as a representative unicellular organism. The word amoeba or ameba is variously used to refer to it and its close relatives, now grouped as the Amoebozoa, or to all protozoa that move using pseudopods, otherwise termed amoeboids.

AMMONIA: NH₃ A chemical made with Nitrogen and Hydrogen and used with chlorine to disinfect water. Most ammonia in water is present as the ammonium ion rather than as ammonia.

AMMONIATOR: A control device which meters gaseous ammonia directly into water under positive pressure.

ANAEROBIC: An abnormal condition in which color and odor problems are most likely to occur.

ANAEROBIC CONDITIONS: When anaerobic conditions exist in either the metalimnion or hypolimnion of a stratified lake or reservoir, water quality problems may make the water unappealing for domestic use without costly water treatment procedures. Most of these problems are associated with Reduction in the stratified waters.

ANEROID: Using no fluid, as in aneroid barometer.

ASEPTIC: Free from the living germs of disease, fermentation, or putrefaction.

ANNULAR SPACE: The space between the borehole wall and either drill piping or casing within a well.

ANNULUS: See Annular Space.

AMMONIA: A chemical made with Nitrogen and Hydrogen and used with chlorine to disinfect water.

AQUICLUDE: A layer or layers of soils or formations which water cannot pass through (ex - solid bedrock or very stiff clay). The opposite of aquifer.

AQUIFER: A saturated layer or layers of soils or formations which water can pass through and be provided in usable quantities to supply wells or springs (ex – saturated semi consolidated sediment or saturated fractured bedrock.) An underground geologic formation capable of storing significant amounts of water.

AQUIFER PARAMETERS: Referring to such attributes as specific capacity, aquifer storage, transmissivity, hydraulic conductivity, gradient, and water levels. Refers to all of the components of Darcy's Law and related parameters.

ARTESIAN AQUIFER: A confined aquifer in which the pressure head results in a water elevation higher than the land surface.

ARTESIAN WELL: A well constructed within an artesian aquifer. When an artesian well is opened it will flow naturally.

As: The chemical symbol of Arsenic.

AS NITROGEN: An expression that tells how the concentration of a chemical is expressed mathematically. The chemical formula for the nitrate ion is NO_3 , with a mass of 62. The concentration of nitrate can be expressed either in terms of the nitrate ion or in terms of the principal element, nitrogen. The mass of the nitrogen atom is 14. The ratio of the nitrate ion mass to the nitrogen atom mass is 4.43. Thus a concentration of 10 mg/L nitrate expressed as nitrogen would be equivalent to a concentration of 44.3 mg/L nitrate expressed as nitrate ion. When dealing with nitrate numbers it is very important to know how numeric values are expressed.

ASYNCHRONOUS: Not occurring at the same time.

AUGER RIG: A drilling rig, which drives a rotating spiral flange to drill into the earth.

ATOM: The general definition of an ion is an atom with a positive or negative charge. Electron is the name of a negatively charged atomic particle.

BACKFLOW PREVENTION: To stop or prevent the occurrence of, the unnatural act of reversing the normal direction of the flow of liquid, gases, or solid substances back in to the public potable (drinking) water supply. See Cross-connection control.

BACKFLOW: To reverse the natural and normal directional flow of a liquid, gases, or solid substances back in to the public potable (drinking) water supply. This is normally an undesirable effect.

BACKSIPHONAGE: A liquid substance that is carried over a higher point. It is the method by which the liquid substance may be forced by excess pressure over or into a higher point.

BACTERIA: Small, one-celled animals too small to be seen by the naked eye. Bacteria are found everywhere, including on and in the human body. Humans would be unable to live without the bacteria that inhabit the intestines and assist in digesting food. Only a small percentage of bacteria cause disease in normal, healthy humans. Other bacteria can cause infections if they get into a cut or wound. Bacteria are the principal concern in evaluating the microbiological quality of drinking water, because some of the bacteria-caused diseases that can be transmitted by drinking water are potentially life-threatening.

BACTERIOPHAGE: Any of a group of viruses that infect specific bacteria, usually causing their disintegration or dissolution. A bacteriophage (from 'bacteria' and Greek phagein, 'to eat') is any one of a number of viruses that infect bacteria. The term is commonly used in its shortened form, phage. Typically, bacteriophages consist of an outer protein hull enclosing genetic material. The genetic material can be ssRNA (single stranded RNA), dsRNA, ssDNA, or dsDNA between 5 and 500 kilo base pairs long with either circular or linear arrangement. Bacteriophages are much smaller than the bacteria they destroy - usually between 20 and 200 nm in size.

BAILER: A device used to withdrawal water or sediment from a well utilizing a check valve type mechanism.

BARITE: Processed barium sulfate, often used to increase drilling fluid densities in mud rotary. **BATTERY:** A source of direct current (**DC**) may be used for standby lighting in a water treatment facility. The electrical current used in a DC system may come from a battery.

BENTONITE: High quality clay composed primarily of montmorillonite. Used to thicken drilling mud in mud rotary drilling and used to form seals in well construction or abandonment.

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE (BAT): A level of technology based on the best existing control and treatment measures that are economically achievable within the given industrial category or subcategory.

BEST MANAGEMENT PRACTICES (BMPs): Schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the U.S. BMPs also include treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE (BPT): A level of technology represented by the average of the best existing wastewater treatment performance levels within an industrial category or subcategory.

BEST PROFESSIONAL JUDGMENT (BPJ): The method used by a permit writer to develop technology-based limitations on a case-by-case basis using all reasonably available and relevant data.

BIT: The primary cutting edge of a drill string.

BLANK CASING: A section of well casing that is solid.

BLOWDOWN: The discharge of water with high concentrations of accumulated solids from boilers to prevent plugging of the boiler tubes and/or steam lines. In cooling towers, blowdown is discharged to reduce the concentration of dissolved salts in the recirculating cooling water.

BOREHOLE DEVIATION: A boreholes' orientation deviates from vertical while drilling.

BOREHOLE GEOPHYSICS: A surveying technique of utilizing specialized tools to measure various physical parameters of the aguifer, formation, and well.

BOREHOLE: The hole that is formed when drilling into the earth.

BOULDER: An individual rock or solid mass of rock larger than 10 inches in diameter.

BREAK POINT CHLORINATION: The process of chlorinating the water with significant quantities of chlorine to oxidize all contaminants and organic wastes and leave all remaining chlorine as free chlorine.

BRIDGING: The tendency of sediment, filter, or seal media to create an obstruction if installed in too small an annulus or to rapidly. Also can occur within filter packs requiring development.

BROMINE: Chemical disinfectant (HALOGEN) that kills bacteria and algae. This chemical disinfectant has been used only on a very limited scale for water treatment because of its handling difficulties. This chemical causes skin burns on contact, and a residual is difficult to obtain.

BUCKET AUGER: A single cylindrical type of auger flight consisting of offset cutting blades at the bottom. A bucket auger rig rotates the bucket and its blades cut into the earth and fill the bucket with cuttings, which are dumped on the surface as needed.

BUFFER: Chemical that resists pH change, e.g. sodium bicarbonate

BUTTON BIT: A bit that is constructed with raised (typically carbide) buttons that strengthen the bit and aid in crushing and grinding efficiency. A button bit may be of a roller, hammer, or percussion type.

CABLE TOOL: (Also called Percussion Drilling) A method of drilling which utilizes the consecutive lifting and dropping of a heavy drill string via a system of cables.

CALCIUM HARDNESS: A measure of the calcium salts dissolved in water.

Ca: The chemical symbol for calcium.

CADMIUM: A contaminant that is usually not found naturally in water or in very small amounts.

CALCIUM HARDNESS: A measure of the calcium salts dissolved in water.

CALCIUM ION: Is divalent because it has a valence of +2.

CALCIUM, MAGNESIUM AND IRON: The three elements that cause hardness in water.

CaOCl₂.4H₂O: The molecular formula of Calcium hypochlorite.

CAPILLARY ACTION: The occurrence of an upward movement of fluid into previously unsaturated soil due to adhesion and surface tension which develops between the fluid and soil particles.

CAPILLARY FRINGE: The uppermost portion of an aquifer where the vadose zone ends. The capillary action of soils permits moisture to extend upwards into the vadose zone within the capillary fringe.

CARBON DIOXIDE GAS: The pH will decrease and alkalinity will change as measured by the Langelier index after pumping carbon dioxide gas into water.

CARBONATE HARDNESS: Carbonate hardness is the measure of Calcium and Magnesium and other hard ions associated with carbonate (CO₃2') and bicarbonate (HCO₃-) ions contained in a solution, usually water. It is usually expressed either as parts per million (ppm or mg/L), or in degrees (KH - from the German "Karbonathärte"). One German degree of carbonate hardness is equivalent to about 17.8575 mg/L. Both measurements (mg/L or KH) are usually expressed "as CaCO₃" – meaning the amount of hardness expressed as if calcium carbonate was the sole source of hardness. Every bicarbonate ion only counts for half as much carbonate hardness as a carbonate ion does. If a solution contained 1 liter of water and 50 mg NaHCO₃ (baking soda), it would have a carbonate hardness of about 18 mg/L as CaCO₃. If you had a liter of water containing 50 mg of Na₂CO₃, it would have a carbonate hardness of about 29 mg/L as CaCO₃.

CARBONATE, **BICARBONATE AND HYDROXIDE**: Chemicals that are responsible for the alkalinity of water.

CARBONATE ROCK: Rock that is composed primarily of calcium carbonate.

CASING DRIVER: A percussion or hammering device used to force casing into the subsurface.

CASING: A column of specially designed pipe of metal or plastic material installed in wells in order to keep a borehole open to permit serviceability of and/or construction and completion of a well within it.

CATHEAD: A specially designed auxiliary reel that normally utilizes heavy rope rather than steel cable. Often used on cable tool or percussion drilling rigs for the operation of drive blocks.

CATHODIC PROTECTION: An operator should protect against corrosion of the anode and/or the cathode by painting the copper cathode. Cathodic protection interrupts corrosion by supplying an electrical current to overcome the corrosion-producing mechanism. Guards against stray current corrosion.

CAUSTIC: NaOH (also called Sodium Hydroxide) is a strong chemical used in the treatment process to neutralize acidity, increase alkalinity or raise the pH value.

CAUSTIC SODA: Also known as sodium hydroxide and is used to raise pH.

CAVERN: Large open spaces (>5ft.) encountered while drilling. More often associated with limestone formations in a karst environment.

CEILING AREA: The specific gravity of ammonia gas is 0.60. If released, this gas will accumulate first at the ceiling area. Cl₂ gas will settle on the floor.

CEMENT GROUT: Cement of fine consistency, capable of being pumped. Used to seal in and around wells.

CENTRALIZER: Stand offs attached to well casing and screen to maintain annular space. In drilling, it has the same meaning as stabilizer or drill collar.

CENTRIFUGAL FORCE: That force when a ball is whirled on a string that pulls the ball outward. On a centrifugal pump, it is that force which throws water from a spinning impeller.

CENTRIFUGAL PUMP: A pump consisting of an impeller fixed on a rotating shaft and enclosed in a casing, having an inlet and a discharge connection. The rotating impeller creates pressure in the liquid by the velocity derived from centrifugal force.

CESIUM (also Caesium): Symbol Cs- A soft, silvery-white ductile metal, liquid at room temperature, the most electropositive and alkaline of the elements, used in photoelectric cells and to catalyze hydrogenation of some organic compounds.

CHAIN OF CUSTODY (COC): A record of each person involved in the possession of a sample from the person who collects the sample to the person who analyzes the sample in the laboratory.

CHAIN OF CUSTODY (COC): A record of each person involved in the possession of a sample from the person who collects the sample to the person who analyzes the sample in the laboratory.

CHECK VALVE: Allows water to flow in only one direction.

CHELATION: A chemical process used to control scale formation in which a chelating agent "captures" scale-causing ions and holds them in solution.

CHEMICAL FEED RATE: Chemicals are added to the water in order to improve the subsequent treatment processes. These may include pH adjusters and coagulants. Coagulants are chemicals, such as alum, that neutralize positive or negative charges on small particles, allowing them to stick together and form larger particles that are more easily removed by sedimentation (settling) or filtration. A variety of devices, such as baffles, static mixers, impellers and in-line sprays, can be used to mix the water and distribute the chemicals evenly.

CHEMICAL OXIDIZER: KMnO4 or Potassium Permanganate is used for taste and odor control because it is a strong oxidizer which eliminates many organic compounds.

CHEMICAL REATION RATE: In general, when the temperature decreases, the chemical reaction rate also decreases. The opposite is true for when the temperature increases.

CHEMISORPTION: (or chemical adsorption) Is adsorption in which the forces involved are valence forces of the same kind as those operating in the formation of chemical compounds.

CHLORAMINATION: Treating drinking water by applying chlorine before or after ammonia. This creates a persistent disinfectant residual called chloramines.

CHLORAMINES: A group of chlorine ammonia compounds formed when chlorine combines with organic wastes in the water. Chloramines are not effective as disinfectants and are responsible for eye and skin irritation as well as strong chlorine odors.

CHLORINATION: The process in water treatment of adding chlorine (gas or solid hypochlorite) for purposes of disinfection.

CHLORINE: A chemical used to disinfect water. Chlorine is extremely reactive, and when it comes in contact with microorganisms in water it kills them. Chlorine is added to swimming pools to keep the water safe for swimming. Chlorine is available as solid tablets for swimming pools. Some public water system's drinking water treatment plants use chlorine in a gas form because of the large volumes required. Chlorine is very effective against algae, bacteria and viruses. Protozoa are resistant to chlorine because they have thick coats; protozoa are removed from drinking water by filtration.

CHLORINE DEMAND: Amount of chlorine required to react on various water impurities before a residual is obtained. Also, means the amount of chlorine required to produce a free chlorine residual of 0.1 mg/l after a contact time of fifteen minutes as measured by iodmetic method of a sample at a temperature of twenty degrees in conformance with Standard methods.

CHLORINE FEED: Chlorine may be delivered by vacuum-controlled solution feed chlorinators. The chlorine gas is controlled, metered, introduced into a stream of injector water and then conducted as a solution to the point of application.

CHLORINE, **FREE**: Chlorine available to kill bacteria or algae. The amount of chlorine available for sanitization after the chlorine demand has been met. Also known as chlorine residual.

CIRCULATION: The continual flow of drilling fluid from injection to recovery and recirculation at the surface.

CLEAR WELL: A large underground storage facility sometimes made of concrete. A clear well or a plant storage reservoir is usually filled when demand is low. The final step in the conventional filtration process, the clearwell provides temporary storage for the treated water. The two main purposes for this storage are to have filtered water available for backwashing the filter and to provide detention time (or contact time) for the chlorine (or other disinfectant) to kill any microorganisms that may remain in the water.

CIO₂: The molecular formula of Chlorine dioxide.

COAGULATION: The best pH range for coagulation is between 5 and 7. Mixing is an important part of the coagulation process you want to complete the coagulation process as quickly as possible.

COBBLES: A rock smaller than a boulder but larger than a pebble. A cobble is greater than 2.5 inches in diameter and smaller than 10 inches in diameter.

COLIFORM: Bacteria normally found in the intestines of warm-blooded animals. Coliform bacteria are present in high numbers in animal feces. They are an indicator of potential contamination of water. Adequate and appropriate disinfection effectively destroys coliform bacteria. Public water systems are required to deliver safe and reliable drinking water to their customers 24 hours a day, 365 days a year. If the water supply becomes contaminated, consumers can become seriously ill. Fortunately, public water systems take many steps to ensure that the public has safe, reliable drinking water. One of the most important steps is to regularly test the water for coliform bacteria. Coliform bacteria are organisms that are present in the environment and in the feces of all warm-blooded animals and humans. Coliform bacteria will not likely cause illness. However, their presence in drinking water indicates that disease-causing organisms (pathogens) could be in the water system. Most pathogens that can contaminate water supplies come from the feces of humans or animals. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. It is relatively easy and inexpensive to test for coliform bacteria. If coliform bacteria are found in a water sample, water system operators work to find the source of contamination and restore safe drinking water. There are three different groups of coliform bacteria; each has a different level of risk.

COLIFORM TESTING: The effectiveness of disinfection is usually determined by Coliform bacteria testing. A positive sample is a bad thing and indicates that you have bacteria contamination.

COLLOIDAL SUSPENSIONS: Because both iron and manganese react with dissolved oxygen to form insoluble compounds, they are not found in high concentrations in waters containing dissolved oxygen except as colloidal suspensions of the oxide.

COLORIMETRIC MEASUREMENT: A means of measuring an unknown chemical concentration in water by measuring a sample's color intensity.

COMMUTATOR: A device for reversing the direction of a current. (in a DC motor or generator) a cylindrical ring or disk assembly of conducting members, individually insulated in a supporting structure with an exposed surface for contact with current-collecting brushes and mounted on the armature shaft, for changing the frequency or direction of the current in the armature windings.

CHRONIC: A stimulus that lingers or continues for a relatively long period of time, often one-tenth of the life span or more. Chronic should be considered a relative term depending on the life span of an organism. The measurement of chronic effect can be reduced growth, reduced reproduction, etc., in addition to lethality.

COMBINED CHLORINE: The reaction product of chlorine with ammonia or other pollutants, also known as chloramines.

COMMUNITY WATER SYSTEM: A water system which supplies drinking water to 25 or more of the same people year-round in their residences.

COMPLIANCE CYCLE: A 9-calendar year time-frame during which a public water system is required to monitor. Each compliance cycle consists of 3 compliance periods.

COMPLAINCE PERIOD: A 3-calendar year time-frame within a compliance cycle.

COMPLETION (WELL COMPLETION): Refers to the final construction of the well including the installation of pumping equipment.

COMPOSITE SAMPLE: A water sample that is a combination of a group of samples collected at various intervals during the day.

CONDENSATION: The process that changes water vapor to tiny droplets or ice crystals.

CONE OF DEPRESSION: That portion of the water table or potentiometric surface that experiences drawdown from a pumped well.

CONFINED AQUIFER: An aquifer that is isolated by confining layers on both its top and bottom. Pressures within a confined aquifer are normally greater than atmospheric pressure resulting in a potentiometric head.

CONFINING LAYER: An extensive layer of soil or formation that resists the movement of water from an aquifer below or above it. Confining layers isolate aquifers thereby confining them. May or may not be an aquiclude. (ex – Clay or silt rich layer)

CONSOLIDATED: Soil, sediment, or formation that is solidified or cemented together as a unit.

CONTACT TIME, pH and LOW TURBIDITY: Factors which are important in providing good disinfection using chlorine.

CONTACT TIME: If the water temperature decreases from 70°F (21°C) to 40°F (4°C). The operator needs to increase the detention time to maintain good disinfection of the water.

CONTAINS THE ELEMENT CARBON: A simple definition of an organic compound.

CONTAMINANT: Any natural or man-made physical, chemical, biological, or radiological substance or matter in water, which is at a level that may have an adverse effect on public health, and which is known or anticipated to occur in public water systems.

CONTAMINATE: tr.v. con·tam·i·nated, con·tam·i·nat·ing, con·tam·i·nates

- 1. To make impure or unclean by contact or mixture.
- 2. To expose to or permeate with radioactivity.

CONTAMINATION: A degradation in the quality of groundwater in result of the it's becoming polluted with unnatural or previously non-existent constituents.

CONTINUOUS SLOT SCREEN: A wire wrapped or plastic slotted screen in which the slot openings completely encircle the inner ribs of the screen.

CONTROL TASTE AND ODOR PROBLEMS: KMnO₄ Potassium permanganate is a strong oxidizer commonly used to control taste and odor problems.

CONVENTIONAL: A standard or common procedure to a group of more complex methods. (ex – Direct Rotary *conventional* vs. Reverse *non-conventional*)

COPPER: The chemical name for the symbol Cu.

CORROSION: The removal of metal from copper, other metal surfaces and concrete surfaces in a destructive manner. Corrosion is caused by improperly balanced water or excessive water velocity through piping or heat exchangers.

CORROSIVITY: The Langelier Index measures corrosivity.

COUPON: A coupon placed to measure corrosion damage in the water mains.

CROSS-CONNECTION: A physical connection between a public water system and any source of water or other substance that may lead to contamination of the water provided by the public water system through backflow. Might be the source of an organic substance causing taste and odor problems in a water distribution system.

CROSS-CONTAMINATION: The mixing of two unlike qualities of water. For example, the mixing of good water with a polluting substance like a chemical.

CUTTING HEAD (CUTTER HEAD): The bit portion of auger flighting that serves as the primary cutting edge of the auger.

CUTTING SHOE: A hardened steel sleeve with a wedged or armored cutting edge that is installed on well casing that is to be driven into the earth.

CUTTINGS: Crushed rock, soil, or formation material generated by the drilling action of a bit.

CRYPTOSPORIDIUM: A disease-causing parasite, resistant to chlorine disinfection. It may be found in fecal matter or contaminated drinking water. Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis. Other apicomplexan pathogens include the malaria parasite Plasmodium, and Toxoplasma, the causative agent of toxoplasmosis. Unlike Plasmodium, which transmits via a mosquito vector, Cryptosporidium does not utilize an insect vector and is capable of completing its life cycle within a single host, resulting in cyst stages which are excreted in feces and are capable of transmission to a new host.

CYANURIC ACID: White, crystalline, water-soluble solid, C₃H₃O₃N₃·2H₂O, used chiefly in organic synthesis. Chemical used to prevent the decomposition of chlorine by ultraviolet (UV) light.

CYANOBACTERIA: Cyanobacteria, also known as blue-green algae, blue-green bacteria or Cyanophyta, is a phylum of bacteria that obtain their energy through photosynthesis. The name "cyanobacteria" comes from the color of the bacteria (Greek: kyanós = blue). They are a significant component of the marine nitrogen cycle and an important primary producer in many areas of the ocean, but are also found on land.

DAILY MAXIMUM LIMITATIONS: The maximum allowable discharge of pollutants during a 24 hour period. Where daily maximum limitations are expressed in units of mass, the daily discharge is the total mass discharged over the course of the day. Where daily maximum limitations are expressed in terms of a concentration, the daily discharge is the arithmetic average measurement of the pollutant concentration derived from all measurements taken that day.

DANGEROUS CHEMICALS: The most suitable protection when working with a chemical that produces dangerous fumes is to work under an air hood or fume hood.

DARCY'S LAW: (Q=KIA) A fundamental equation used in the groundwater sciences to determine aquifer characteristics, where Q=Flux, K=Hydraulic Conductivity (Permeability), I = Hydraulic Gradient (change in head), and A = Cross Sectional Area of flow.

DECIBELS: The unit of measurement for sound.

DECOMPOSE: To decay or rot.

DECOMPOSTION OF ORGANIC MATERIAL: The decomposition of organic material in water produces taste and odors.

DEMINERALIZATION PROCESS: Mineral concentration of the feed water is the most important consideration in the selection of a demineralization process. Acid feed is the most common method of scale control in a membrane demineralization treatment system.

DENTAL CARIES PREVENTION IN CHILDREN: The main reason that fluoride is added to a water supply.

DEPOLARIZATION: The removal of hydrogen from a cathode.

DESICCANT: When shutting down equipment which may be damaged by moisture, the unit may be protected by sealing it in a tight container. This container should contain a desiccant.

DESORPTION: Desorption is a phenomenon whereby a substance is released from or through a surface. The process is the opposite of sorption (that is, adsorption and absorption). This occurs in a system being in the state of sorption equilibrium between bulk phase (fluid, i.e. gas or liquid solution) and an adsorbing surface (solid or boundary separating two fluids). When the concentration (or pressure) of substance in the bulk phase is lowered, some of the sorbed substance changes to the bulk state. In chemistry, especially chromatography, desorption is the ability for a chemical to move with the mobile phase. The more a chemical desorbs, the less likely it will adsorb, thus instead of sticking to the stationary phase, the chemical moves up with the solvent front. In chemical

separation processes, stripping is also referred to as desorption as one component of a liquid stream moves by mass transfer into a vapor phase through the liquid-vapor interface.

DEVELOPMENT: The cleaning of the well and bore once construction is complete.

DETENTION LAG: Is the period of time between the moment of change in a chlorinator control system and the moment when the change is sensed by the chlorine residual indicator.

DETENTION LAG TIME: The minimum detention time range recommended for flocculation is 5-20 minutes for direct filtration and up to 30 minutes for conventional filtration.

DIATOMACEOUS EARTH: A fine silica material containing the skeletal remains of algae.

DIRECT CURRENT: A source of direct current (**DC**) may be used for standby lighting in a water treatment facility. The electrical current used in a DC system may come from a battery.

DIRECT ROTARY: The conventional method of rotary drilling involving the rotation of a drill string and standard use of drilling fluid to penetrate the earth.

DISCHARGE HEAD: See Total Dynamic Head.

DISINFECT: The application of a chemical to kill most, but not all, microorganisms that may be present. Chlorine is added to public water drinking systems drinking water for disinfection. Depending on your state rule, drinking water must contain a minimum of 0.2 mg/L free chlorine. Disinfection makes drinking water safe to consume from the standpoint of killing pathogenic microorganisms including bacteria and viruses. Disinfection does not remove all bacteria from drinking water, but the bacteria that can survive disinfection with chlorine are not pathogenic bacteria that can cause disease in normal healthy humans.

DISINFECTION: The treatment of water to inactivate, destroy, and/or remove pathogenic bacteria, viruses, protozoa, and other parasites.

DISINFECTION BY-PRODUCTS (DBPs): The products created due to the reaction of chlorine with organic materials (e.g. leaves, soil) present in raw water during the water treatment process. The EPA has determined that these DBPs can cause cancer. Chlorine is added to drinking water to kill or inactivate harmful organisms that cause various diseases. This process is called disinfection. However, chlorine is a very active substance and it reacts with naturally occurring substances to form compounds known as disinfection byproducts (DBPs). The most common DBPs formed when chlorine is used are trihalomethanes (THMs), and haloacetic acids (HAAs).

DISSOLVED OXYGEN: Can be added to zones within a lake or reservoir that would normally become anaerobic during periods of thermal stratification.

DISSOLUTION: The chemical and physical process of dissolving rock. Typically, limestone or carbonate rocks can be dissolved via the percolation or movement of groundwater that, in its infancy, is slightly acidic. As time goes on, the rock may also be physically worn away by the rapid movement of groundwater through the interconnected open spaces created by the initial chemical dissolving process.

DISTILLATION, REVERSE OSMOSIS AND FREEZING: Processes that can be used to remove minerals from the water.

DRAG BIT: A style of drill bit used in rotary drilling when soil or formation conditions are loosely consolidated and are comprised of fine-grained sediments.

DRAWDOWN: The change in water level from static to pumping level.

DRILL COLLAR: A section of the drill string that provides sufficient mass and diameter to maintain vertical borehole alignment and consistent borehole diameter.

DRILL FOAM: Surfactant used in air rotary drilling and well development.

DRILL PIPE: Sections of the drill string that are connected one to another in order to achieve a desired length while also providing a pathway for the circulation of drilling fluid.

DRILL STEM: The complete drill string or, in cable drilling, the equivalent of a drill collar.

DRILL STRING: The complete drilling assembly in rotary drilling including drill pipe, subs, collars, and bit.

DRILLER: A specially trained individual that operates the drilling rig.

DRILLING FLUID: Fluid circulated through the borehole in rotary drilling methods used to lift cuttings to the surface, provide borehole stability, and cool the bit. Drilling Fluid may consist of mud, water, air, foam, or other additives.

DRILLING PERMIT: A certificate of approval to drill and construct a well often required by the state or local regulating authority.

DRILLING PRESSURE: The pressure exerted within the borehole during drilling. The pressure required to circulate drilling fluid to the surface.

DRIVE BLOCK: A heavy collar that attaches over the drill pipe and is dropped successively to advance casing into the earth. Used primarily in cable tool or percussion drilling methods.

DRIVE CLAMP: A fitting that is attached to the top of a drill string or stem serving as a striking surface for driving casing into the earth.

DRIVE UNIT: The portion of a rotary rig that provides the rotation to the drill string. (ex – top drive or table drive unit). Also may be called the drive head.

DRIVING: The installation of a well or casing via forcing of it into the earth by repeated striking.

DRY ACID: A granular chemical used to lower pH and or total alkalinity.

E. COLI, Escherichia coli: A bacterium commonly found in the human intestine. For water quality analyses purposes, it is considered an indicator organism. These are considered evidence of water contamination. Indicator organisms may be accompanied by pathogens, but do not necessarily cause disease themselves.

EFFECTIVENESS OF CHLORINE: The factors which influence the effectiveness of chlorination the most are pH, turbidity and temperature. Effectiveness of Chlorine decreases occurs during disinfection in source water with excessive turbidity.

ELECTRON: The name of a negatively charged atomic particle.

ELEMENTARY BUSINESS PLAN: Technical Capacity, Managerial Capacity, and Financial Capacity make up the elementary business plan. To become a new public water system, an owner shall file an elementary business plan for review and approval by state environmental agency.

EMERGENCY RESPONSE TEAM: A local team that is thoroughly trained and equipped to deal with emergencies, e.g. chlorine gas leak. In case of a chlorine gas leak, get out of the area and notify your local emergency response team in case of a large uncontrolled chlorine leak.

ENHANCED COAGULATION: The process of joining together particles in water to help remove organic matter.

ENTAMOEBA HISTOLYTICA: Entamoeba histolytica, another water-borne pathogen, can cause diarrhea or a more serious invasive liver abscess. When in contact with human cells, these amoebae are cytotoxic. There is a rapid influx of calcium into the contacted cell, it quickly stops all membrane movement save for some surface blebbing. Internal organization is disrupted, organelles lyse, and the cell dies. The ameba may eat the dead cell or just absorb nutrients released from the cell.

ENTEROVIRUS: A virus whose presence may indicate contaminated water; a virus that may infect the gastrointestinal tract of humans.

EVOLUTION: Any process of formation or growth; development: the evolution of a language; the evolution of the airplane. A product of such development; something evolved: The exploration of space is the evolution of decades of research.

Biology. Change in the gene pool of a population from generation to generation by such processes as mutation, natural selection, and genetic drift. A process of gradual, peaceful, progressive change or development, as in social or economic structure or institutions, a motion incomplete in itself, but combining with coordinated motions to produce a single action, as in a machine. A pattern formed by or as if by a series of movements: the evolutions of a figure skater.

An evolving or giving off of gas, heat, etc. **evolutional**, adjective ev·o·lu·tion·al·ly, adverb Synonyms 1. unfolding, change, progression, metamorphosis. Antonyms 1. stasis, inactivity, changelessness.

F: The chemical symbol of Fluorine.

FAUCET WITH AN AERATOR: When collecting a water sample from a distribution system, a faucet with an aerator should not be used as a sample location.

FAULT: A break in the earth's crust where movement has occurred.

FAULTING: A geological process involving the breaking and displacement of rock or formation through movements within the earth's crust along a fault.

FECAL COLIFORM: A group of bacteria that may indicate the presence of human or animal fecal matter in water. Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

FILTRATION: The process of passing water through materials with very small holes to strain out particles. Most conventional water treatment plants used filters composed of gravel, sand, and anthracite. These materials settle into a compact mass that forms very small holes. Particles are filtered out as treated water passes through these holes. These holes are small enough to remove microorganisms including algae, bacteria, and protozoans, but not viruses. Viruses are eliminated from drinking water through the process of disinfection using chlorine. A series of processes that physically removes particles from water. A water treatment step used to remove turbidity, dissolved organics, odor, taste and color.

FILTER CLOGGING: An inability to meet demand may occur when filters are clogging.

FILTRATION METHODS: The conventional type of water treatment filtration method includes coagulation, flocculation, sedimentation, and filtration. Direct filtration method is similar to conventional except that the sedimentation step is omitted. Slow sand filtration process does not require pretreatment, has a flow of 0.1 gallons per minute per square foot of filter surface area, and is simple to operate and maintain. The Diatomaceous earth method uses a thin layer of fine siliceous material on a porous plate. This type of filtration medium is only used for water with low turbidity. Sedimentation, adsorption, and biological action treatment methods are filtration processes that involve a number of interrelated removal mechanisms. Demineralization is primarily used to remove total dissolved solids from industrial wastewater, municipal water, and seawater.

FINISHED WATER: Treated drinking water that meets minimum state and federal drinking water regulations.

FLIGHTING: The spiral flanged drill pipe used in auger drilling.

FLOATING SUB: A collapsible section of drill pipe shorter than primary drill pipe. Used to provide a cushion between the drive unit and the drill string.

FLOCCULATION: The process of bringing together destabilized or coagulated particles to form larger masses that can be settled and/or filtered out of the water being treated. Conventional coagulation–flocculation-sedimentation practices are essential pretreatments for many water purification systems—especially filtration treatments. These processes agglomerate suspended solids together into larger bodies so that physical filtration processes can more easily remove them. Particulate removal by these methods makes later filtering processes far more effective. The process is often followed by gravity separation (sedimentation or flotation) and is always

followed by filtration. A chemical coagulant, such as iron salts, aluminum salts, or polymers, is added to source water to facilitate bonding among particulates. Coagulants work by creating a chemical reaction and eliminating the negative charges that cause particles to repel each other. The coagulant-source water mixture is then slowly stirred in a process known as flocculation. This water churning induces particles to collide and clump together into larger and more easily removable clots, or "flocs." The process requires chemical knowledge of source water characteristics to ensure that an effective coagulant mix is employed. Improper coagulants make these treatment methods ineffective. The ultimate effectiveness of coagulation/flocculation is also determined by the efficiency of the filtering process with which it is paired.

FLOCCULANTS: Flocculants, or flocculating agents, are chemicals that promote flocculation by causing colloids and other suspended particles in liquids to aggregate, forming a floc. Flocculants are used in water treatment processes to improve the sedimentation or filterability of small particles. For example, a flocculant may be used in swimming pool or drinking water filtration to aid removal of microscopic particles which would otherwise cause the water to be cloudy and which would be difficult or impossible to remove by filtration alone. Many flocculants are multivalent cations such as aluminum, iron, calcium or magnesium. These positively charged molecules interact with negatively charged particles and molecules to reduce the barriers to aggregation. In addition, many of these chemicals, under appropriate pH and other conditions such as temperature and salinity, react with water to form insoluble hydroxides which, upon precipitating, link together to form long chains or meshes, physically trapping small particles into the larger floc.

Long-chain polymer flocculants, such as modified polyacrylamides, are manufactured and sold by the flocculant producing business. These can be supplied in dry or liquid form for use in the flocculation process. The most common liquid polyacrylamide is supplied as an emulsion with 10-40 % actives and the rest is a carrier fluid, surfactants and latex. Emulsion polymers require activation to invert the emulsion and allow the electrolyte groups to be exposed.

FLOC SHEARING: Likely to happen to large floc particles when they reach the flocculation process.

FLOCCULATION BASIN: A compartmentalized basin with a reduction of speed in each compartment. This setup or basin will give the best overall results.

FLOOD RIM: The point of an object where the water would run over the edge of something and begin to cause a flood.

FLOW MUST BE MEASURED: A recorder that measures flow is most likely to be located in a central location.

FLUORIDE: High levels of fluoride may stain the teeth of humans. This is called Mottling. This chemical must not be overfed due to a possible exposure to a high concentration of the chemical. The most important safety considerations to know about fluoride chemicals are that all fluoride chemicals are extremely corrosive. These are the substances most commonly used to furnish fluoride ions to water: Sodium fluoride, Sodium silicofluoride and Hydrofluosilicic acid.

FLUORIDE FEEDING: Always review fluoride feeding system designs and specifications to determine whether locations for monitoring readouts and dosage controls are convenient to the operation center and easy to read and correct.

FLUX: The term flux describes the rate of water flow through a semipermeable membrane. When the water flux decreases through a semipermeable membrane, it means that the mineral concentration of the water is increasing.

FORMATION: A series of layers, deposits, or bodies of rock, which are geologically similar and related in depositional environment or origin. A formation can be clearly distinguished relative to bounding deposits or formations due to its particular characteristics and composition.

FORMATION OF TUBERCLES: This condition is of the most concern regarding corrosive water effects on a water system. It is the creation of mounds of rust inside the water lines.

FRACTURE: A discrete break in a rock or formation.

FRACTURED AQUIFER: An aquifer within and otherwise massive block that has been made permeable due to the concentrated presence of fractures typically resultant of faulting or concentrated joints.

FREE CHLORINE: In disinfection, chlorine is used in the form of free chlorine or as hypochlorite ion.

FREE CHLORINE RESIDUAL: Regardless of whether pre-chloration is practiced or not, a free chlorine residual of at least 10 mg/L should be maintained in the clear well or distribution reservoir immediately downstream from the point of post-chlorination. The reason for chlorinating past the breakpoint is to provide protection in case of backflow.

GATE VALVE: The most common type of valve used in isolating a small or medium sized section of a distribution system and is the only linear valve used in water distribution. All the other valves are in the rotary classification.

GIARDIA LAMLIA: Giardia lamblia (synonymous with Lamblia intestinalis and Giardia duodenalis) is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes.

GIARDIASAS, HEPATITIS OR TYHOID: Diseases that may be transmitted through the contamination of a water supply but not AIDS.

GIS – GRAPHIC INFORMATION SYSTEM: Detailed information about the physical locations of structures such as pipes, valves, and manholes within geographic areas with the use of satellites.

GEOTECHNICAL: Characteristics of soil, rock, or formation such as grain size, shear strength, porosity, and compressibility, etc. Of particular concern to a geologist or engineer relative to soil or aquifer characteristics.

GLOBE VAVLVE: The main difference between a globe valve and a gate valve is that a globe valve is designed as a controlling device.

GOOD CONTACT TIME, pH and LOW TURBIDITY: These are factors that are important in providing good disinfection when using chlorine.

GPM: Gallons per minute.

GRAB SAMPLE: A sample which is taken from a water or wastestream on a one-time basis with no regard to the flow of the water or wastestream and without consideration of time. A single grab sample should be taken over a period of time not to exceed 15 minutes.

GRAINSIZE: The dimension of particle classifications such as gravel, sand, silt, and clay. Often based on the unified soil classification system.

GROUNDWATER: Water that percolates through and exists within saturated portions of the earth's crust and is replenished by the hydrologic cycle.

GROUT: A type of cement that is normally fine grained and used to effectively construct well seals and used in well abandonment. Grout may also be used to stabilize otherwise unstable boreholes, permitting continued drilling.

GT: Represents (Detention time) x (mixing intensity) in flocculation.

H₂SO₄: The molecular formula of Sulfuric acid.

HALIDES: A halide is a binary compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative than the halogen, to make a fluoride, chloride, bromide, iodide, or astatide compound. Many salts are halides. All Group 1 metals form halides with the halogens and they are white solids. A halide ion is a halogen atom bearing a negative charge. The halide anions are fluoride (F), chloride (Cl), bromide (Br), iodide (I) and astatide (At). Such ions are present in all ionic halide salts.

HALL EFFECT: Refers to the potential difference (Hall voltage) on the opposite sides of an electrical conductor through which an electric current is flowing, created by a magnetic field applied perpendicular to the current. Edwin Hall discovered this effect in 1879.

HALOACETIC ACIDS: Haloacetic acids are carboxylic acids in which a halogen atom takes the place of a hydrogen atom in acetic acid. Thus, in a monohaloacetic acid, a single halogen would replace a hydrogen atom. For example, chloroacetic acid would have the structural formula CH₂CICO₂H. In the same manner, in dichloroacetic acid two chlorine atoms would take the place of two hydrogen atoms (CHCl₂CO₂H).

HAMMER BIT: The bit driven by the hammer to cut into rock or formation.

HAMMER: See Air Hammer

HARD ROCK: Consolidated formation or solid rock.

HARD WATER: Hard water causes a buildup of scale in household hot water heaters. Hard water is a type of water that has high mineral content (in contrast with soft water). Hard water primarily consists of calcium (Ca2+), and magnesium (Mg2+) metal cations, and sometimes other dissolved compounds such as bicarbonates and sulfates. Calcium usually enters the water as either calcium carbonate (CaCO₃), in the form of limestone and chalk, or calcium sulfate (CaSO₄), in the form of other mineral deposits. The predominant source of magnesium is dolomite (CaMg(CO₃)2). Hard water is generally not harmful. The simplest way to determine the hardness of water is the lather/froth test: soap or toothpaste, when agitated, lathers easily in soft water but not in hard water. More exact measurements of hardness can be obtained through a wet titration. The total water 'hardness' (including both Ca2+ and Mg2+ ions) is read as parts per million or weight/volume (mg/L) of calcium carbonate (CaCO₃) in the water. Although water hardness usually only measures the total concentrations of calcium and magnesium (the two most prevalent, divalent metal ions), iron, aluminum, and manganese may also be present at elevated levels in some geographical locations.

HARDNESS: A measure of the amount of calcium and magnesium salts in water. More calcium and magnesium lead to greater hardness. The term "hardness" comes from the fact that it is hard to get soap suds from soap or detergents in hard water. This happens because calcium and magnesium react strongly with negatively-charged chemicals like soap to form insoluble compounds.

HARTSHORN: The antler of a hart, formerly used as a source of ammonia. Ammonium carbonate.

HAZARDS OF POLYMERS: Slippery and difficult to clean-up are the most common hazards associated with the use of polymers in a water treatment plant.

HEAD: The measure of the pressure of water expressed in feet of height of water. 1 PSI = 2.31 feet of water or 1 foot of head equals about a half a pound of pressure or .433 PSI. There are various types of heads of water depending upon what is being measured. Static (water at rest) and Residual (water at flow conditions).

HEADWORKS: The facility at the "head" of the water source where water is first treated and routed into the distribution system.

HEALTH ADVISORY: An EPA document that provides guidance and information on contaminants that can affect human health and that may occur in drinking water, but which the EPA does not currently regulate in drinking water.

HERTZ: The term used to describe the frequency of cycles in an alternating current (AC) circuit.

HETEROTROPHIC PLATE COUNT: A test performed on drinking water to determine the total number of all types of bacteria in the water.

HF: The molecular formula of Hydrofluoric acid.

HIGH TURBIDITY CAUSING INCREASED CHLORINE DEMAND: May occur or be caused by the inadequate disinfection of water.

HOLLOW STEM (AUGER): An auger form of drilling in which the flighting is hollow.

HOLLOW STEM FLIGHT: The hollow spiral flanged drill pipe used on hollow stem auger rigs.

HOMOPOLAR: Of uniform polarity; not separated or changed into ions; not polar in activity. Electricity. unipolar.

HYDRAULIC CONDUCTIVITY: A primary factor in Darcy's Law, the measure of a soil or formations ability to transmit water, measured in gallons per day (gpd) See also Permeability and Darcy's Law.

HYDRIDES: Hydride is the name given to the negative ion of hydrogen, H. Although this ion does not exist except in extraordinary conditions, the term hydride is widely applied to describe compounds of hydrogen with other elements, particularly those of groups 1–16. The variety of compounds formed by hydrogen is vast, arguably greater than that of any other element. Various metal hydrides are currently being studied for use as a means of hydrogen storage in fuel cell-powered electric cars and batteries. They also have important uses in organic chemistry as powerful reducing agents, and many promising uses in hydrogen economy.

HYDROCHLORIC AND HYPOCHLOROUS ACIDS: HCL and HOCL The compounds that are formed in water when chlorine gas is introduced.

HYDROFLUOSILIC ACID: (H_2SiF_6) a clear, fuming corrosive liquid with a pH ranging from 1 to 1.5. Used in water treatment to fluoridate drinking water.

HYDROGEN SULFIDE OR CHLORINE GAS: These chemicals can cause olfactory fatigue.

HYDROLOGIC CYCLE: (Water Cycle) The continual process of precipitation (rain and snowfall), evaporation (primarily from the oceans), peculation (recharge to groundwater), runoff (surface water), and transpiration (plants) constituting the renew ability and recycling of each component.

HYDROPHOBIC: Does not mix readily with water.

HYGROSCOPIC: Absorbing or attracting moisture from the air.

HYPOCHLORITE (OCL-) AND ORGANIC MATERIALS: Heat and possibly fire may occur when hypochlorite is brought into contact with an organic material.

HYPOLIMNION: The layer of water in a thermally stratified lake that lies below the thermocline, is noncirculating, and remains perpetually cold.

IMPELLERS: The semi-open or closed props or blades of a turbine pump that when rotated generate the pumping force.

IMPERVIOUS: Not allowing, or allowing only with great difficulty, the movement of water.

IN SERIES: Several components being connected one to the other without a bypass, requiring each component to work dependent on the one before it.

INFILTRATION: The percolation of fluid into soil or formation. See also percolation.

INFECTIOUS PATHOGENS/MICROBES/GERMS: Are considered disease-producing bacteria, viruses and other microorganisms.

INFLATABLE PACKER: A rubber or fiber bladder device that is inflated to seal against either casing or borehole walls.

INFORMATION COLLECTION RULE: ICR EPA collected data required by the Information Collection Rule (May 14, 1996) to support future regulation of microbial contaminants, disinfectants, and disinfection byproducts. The rule was intended to provide EPA with information on chemical byproducts that form when disinfectants used for microbial control react with chemicals already present in source water (disinfection byproducts (DBPs)); disease-causing microorganisms (pathogens), including Cryptosporidium; and engineering data to control these contaminants.

INITIAL MONITORING YEAR: An initial monitoring year is the calendar year designated by the Department within a compliance period in which a public water system conducts initial monitoring at a point of entry.

INORGANIC CONTAMINANTS: Mineral-based compounds such as metals, nitrates, and asbestos. These contaminants are naturally-occurring in some water, but can also get into water through farming, chemical manufacturing, and other human activities. EPA has set legal limits on 15 inorganic contaminants.

INORGANIC IONS: Present in all waters. Inorganic ions are essential for human health in small quantities, but in larger quantities they can cause unpleasant taste and odor or even illness. Most community water systems will commonly test for the concentrations of seven inorganic ions: nitrate, nitrite, fluoride, phosphate, sulfate, chloride, and bromide. Nitrate and nitrite can cause an illness in infants called methemoglobinemia. Fluoride is actually added to the drinking water in some public water systems to promote dental health. Phosphate, sulfate, chloride, and bromide have little direct effect on health, but high concentrations of inorganic ions can give water a salty or briny taste.

INSOLUBLE COMPOUNDS: Are types of compounds cannot be dissolved. When iron or manganese reacts with dissolved oxygen (DO) insoluble compound are formed.

INTAKE FACILITIES: One of the more important considerations in the construction of intake facilities is the ease of operation and maintenance over the expected lifetime of the facility. Every intake structure must be constructed with consideration for operator safety and for cathodic protection.

ION EXCHANGE: An effective treatment process used to remove iron and manganese in a water supply. The hardness of the source water affects the amount of water an ion exchange softener may treat before the bed requires regeneration.

IRON: Fe The elements iron and manganese are undesirable in water because they cause stains and promote the growth of iron bacteria.

IRON AND MANGANESE: Fe and Mn In water they can usually be detected by observing the color of the inside walls of filters and the filter media. If the raw water is pre-chlorinated, there will be black stains on the walls below the water level and a black coating over the top portion of the sand filter bed. When significant levels of dissolved oxygen are present, iron and manganese exist in an oxidized state and normally precipitate into the reservoir bottom sediments. The presence of iron and manganese in water promote the growth of Iron bacteria. Only when a water sample has been acidified then you can perform the analysis beyond the 48 hour holding time. Iron and Manganese in water may be detected by observing the color of the of the filter media. Maintaining a free chlorine residual and regular flushing of water mains may control the growth of iron bacteria in a water distribution system.

IRON BACTERIA: Perhaps the most troublesome consequence of iron and manganese in the water is they promote the growth of a group of microorganism known as Iron Bacteria.

IRON FOULING: You should look for an orange color on the resin and backwash water when checking an ion exchange unit for iron fouling

JARS (DRILLING JARS): Metal sections of a drill string that when released provide a jarring force or action to aid in removing drill string. Used primarily in cable tool or percussion drilling methods.

JETTING: The process of injecting high velocity streams of water and/or air through a system of nozzles or jets into the well screen and filter pack for well development.

KARST TOPOGRAPHY: The visual presence of karst on the surface.

KARST: The presence of caverns, voids, sink holes as characteristic features of a weathered limestone or other carbonate formation on or beneath the surface.

KELLY: A multi-faceted section of drill pipe driven by a kelly drive (table or top drive).

KILL = C X T: Where other factors are constant, the disinfecting action may be represented by: Kill=C x T. C= Chlorine T= Contact time.

KINETIC ENERGY: The ability of an object to do work by virtue of its motion. The energy terms that are used to describe the operation of a pump are pressure and head.

LACRIMATION: The secretion of tears, esp. in abnormal abundance Also, lachrymation, lachrimation.

LANGELIER INDEX: A measurement of Corrosivity. The water is becoming corrosive in the distribution system causing rusty water if the Langelier index indicates that the pH has decreased from the equilibrium point. Mathematically derived factor obtained from the values of calcium hardness, total alkalinity, and pH at a given temperature. A Langelier index of zero indicates perfect water balance (i.e., neither corroding nor scaling). The Langelier Saturation Index (sometimes Langelier Stability Index) is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. Langelier developed a method for predicting the pH at which water is saturated in calcium carbonate (called pHs). The LSI is expressed as the difference between the actual system pH and the saturation pH.

LSI = pH - pHs

LEACHING: A chemical reaction between water and metals that allows for removal of soluble materials.

LEAD AND COPPER: Initial tap water monitoring for lead and copper must be conducted during 2 consecutive 6-month periods.

LIME: Is a chemical that may be added to water to reduce the corrosivity. When an operator adds lime to water, Calcium and magnesium become less soluble.

LIME SODA SOFTENING: In a lime soda softening process, to the pH of the water is raised to 11.0. In a lime softening process, excess lime is frequently added to remove Calcium and Magnesium Bicarbonate. The minimum hardness which can be achieved by the lime-soda ash process is 30 to 40 mg/L as calcium carbonate. The hardness due to noncarbonate hardness is most likely to determine the choice between lime softening and ion exchange to remove hardness.

LIME SOFTENING: Lime softening is primarily used to "soften" water—that is to remove calcium and magnesium mineral salts. But it also removes harmful toxins like radon and arsenic. Though there is no consensus, some studies have even suggested that lime softening is effective at removal of Giardia. Hard water is a common condition responsible for numerous problems. Users often recognize hard water because it prevents their soap from lathering properly. However, it can also cause buildup ("scale") in hot water heaters, boilers, and hot water pipes. Because of these inconveniences, many treatment facilities use lime softening to soften hard water for consumer use. Before lime softening can be used, managers must determine the softening chemistry required. This is a relatively easy task for groundwater sources, which remain more constant in their composition. Surface waters, however, fluctuate widely in quality and may require frequent changes to the softening chemical mix. In lime softening, lime and sometimes sodium carbonate are added to the water as it enters a combination solids contact clarifier. This raises the pH (i.e., increases alkalinity) and leads to the precipitation of calcium carbonate. Later, the pH of the effluent from the clarifier is reduced again, and the water is then filtered through a granular media filter. The water chemistry requirements of these systems require knowledgeable operators, which may make lime softening an economic challenge for some very small systems.

LINE SHAFT TURBINE: See vertical turbine.

LOGGED (LOGGING): The assessment and documentation of geological and water production data obtained while drilling progresses or following drilling through the use of borehole geophysical logging tools.

L.O.T.O.: Lock Out, Tag Out. If a piece of equipment is locked out, the key to the lock-out device the key should be held by the person who is working on the equipment. The tag is an identification device and the lock is a physical restraint.

M-ENDO BROTH: The coliform group is used as indicators of fecal pollution in water, for assessing the effectiveness of water treatment and disinfection, and for monitoring water quality. m-Endo Broth is used for selectively isolating coliform bacteria from water and other specimens using the membrane filtration technique. m-Endo Broth is prepared according to the formula of Fifield and Schaufus.1 It is recommended by the American Public Health Association in standard total coliform membrane filtration procedure for testing water, wastewater, and foods.2,3 The US EPA specifies using m-Endo Broth in the total coliform methods for testing water using single-step, two-step, and delayed incubation membrane filtration methods.

MAGNESIUM HARDNESS: Measure of the magnesium salts dissolved in water – it is not a factor in water balance.

MAGNETIC STARTER: Is a type of motor starter should be used in an integrated circuit to control flow automatically.

MARBLE AND LANGELIER TESTS: Are used to measure or determine the corrosiveness of a water source.

MAXIMUM CONTAMINANT LEVEL (MCLs): The maximum allowable level of a contaminant that federal or state regulations allow in a public water system. If the MCL is exceeded, the water system must treat the water so that it meets the MCL.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The level of a contaminant at which there would be no risk to human health. This goal is not always economically or technologically feasible, and the goal is not legally enforceable.

MCL for **TURBIDITY**: Turbidity is undesirable because it causes health hazards. An MCL for turbidity was established by the EPA because turbidity does not allow for proper disinfection.

MEASURE CORROSION DAMAGE: A coupon such as a strip of metal and is placed to measure corrosion damage in the distribution system in a water main.

MECHANICAL SEAL: A mechanical device used to control leakage from the stuffing box of a pump. Usually made of two flat surfaces, one of which rotates on the shaft. The two flat surfaces are of such tolerances as to prevent the passage of water between them. Held in place with spring pressure.

MEDIUM WATER SYSTEM: More than 3,300 persons and 50,000 or fewer persons.

MEGGER: Is a portable instrument used to measure insulation resistance. The megger consists of a hand-driven DC generator and a direct reading ohm meter. Used to test the insulation resistance on a motor.

M-ENDO BROTH: The media shall be brought to the boiling point when preparing M-Endo broth to be used in the membrane filter test for total coliform.

METALIMNION: Thermocline, middle layer of a thermally stratified lake which is characterized by a rapid decrease in temperature in proportion to depth.

METALLOID: Metalloid is a term used in chemistry when classifying the chemical elements. On the basis of their general physical and chemical properties, nearly every element in the periodic table can be termed either a metal or a nonmetal. A few elements with intermediate properties are, however, referred to as metalloids. (In Greek metallon = metal and eidos = sort)

METHANE: Methane is a chemical compound with the molecular formula CH₄. It is the simplest alkane, and the principal component of natural gas. Methane's bond angles are 109.5 degrees. Burning methane in the presence of oxygen produces carbon dioxide and water. The relative abundance of methane and its clean burning process makes it a very attractive fuel. However, because it is a gas at normal temperature and pressure, methane is difficult to transport from its source. In its natural gas form, it is generally transported in bulk by pipeline or LNG carriers; few countries still transport it by truck.

MILLILITER: One one-thousandth of a liter; A liter is a little more than a quart. A milliliter is about two drops from an eye dropper.

Mg/L: Stands for "milligrams per liter." A common unit of chemical concentration. It expresses the mass of a chemical that is present in a given volume of water. A milligram (one one-thousandth of a gram) is equivalent to about 18 grains of table salt. A liter is equivalent to about one quart.

 $\label{eq:microbiological:} \textbf{MICROBIOLOGICAL:} \ \ \text{Is a type of analysis in which a composite sample unacceptable.}$

MICROBE OR MICROBIAL: Any minute, simple, single-celled form of life, especially one that causes disease.

MICROBIAL CONTAMINANTS: Microscopic organisms present in untreated water that can cause waterborne diseases.

MICROORGANISMS: Very small animals and plants that are too small to be seen by the naked eye and must be observed using a microscope. Microorganisms in water include algae, bacteria, viruses, and protozoa. Algae growing in surface waters can cause off-taste and odor by producing the chemicals MIB and geosmin. Certain types of bacteria, viruses, and protozoa can cause disease in humans. Bacteria are the most common microorganisms found in treated drinking water. The great majority of bacteria are not harmful. In fact, humans would not be able to live without the bacteria that inhabit the intestines. However, certain types of bacteria called coliform bacteria can signal the presence of possible drinking water contamination.

MILLILITER: One one-thousandth of a liter. A liter is a little more than a quart. A milliliter is about two drops from an eye dropper.

MOISTURE: If a material is hygroscopic, it must it be protected from water.

MOISTURE AND POTASSIUM PERMANGANATE: The combination of moisture and potassium permanganate produces heat.

MOLECULAR WEIGHT: The molecular mass (abbreviated Mr) of a substance, formerly also called molecular weight and abbreviated as MW, is the mass of one molecule of that substance, relative to the unified atomic mass unit u (equal to 1/12 the mass of one atom of carbon-12). This is distinct from the relative molecular mass of a molecule, which is the ratio of the mass of that molecule to 1/12 of the mass of carbon 12 and is a dimensionless number. Relative molecular mass is abbreviated to Mr.

MOTTLING: High levels of fluoride may stain the teeth of humans.

M.S.D.S.: Material Safety Data Sheet. A safety document must an employer provide to an operator upon request.

MUD BALLS IN FILTER MEDIA: Is a possible result of an ineffective or inadequate filter backwash.

MUD CAKE: A film of mud drilling fluid that builds up on borehole walls adding to borehole stability and limits the groundwater's ability to enter the borehole while drilling.

MUD CAKING: The process of building up the mud cake.

MUD ENGINEER: A specially trained individual who's responsible for maintaining proper drilling fluid densities and viscosity.

MUD PIT: Single or multiple subsurface or surface containment system used for settling cuttings out of drilling fluid and for recirculation of drilling fluid.

MUD PUMP: A specially designed pump that can pass particles of mud and cuttings (drilling fluid) at variable pressures, serving as the primary component in a mud rotary drilling system (similar to a grout or cement pump).

MUD ROTARY: The method of rotary drilling with mud circulation as the drilling fluid.

MURIATIC ACID: An acid used to reduce pH and alkalinity. Also used to remove stain and scale.

MYCOTOXIN: A toxin produced by a fungus.

NaOCI: Is the molecular formula of Sodium hypochlorite.

NaOH: Is the molecular formula of Sodium hydroxide.

NASCENT: Coming into existence; emerging.

NATURAL GRAVEL PACK (NATURALLY PACKED): Refers to a well that has no gravel pack installed but is simply allowed to develop a filter pack composed of the aquifer particles itself. Usually coarse grained and hard rock aquifers are naturally packed.

NH₃: The molecular formula of Ammonia.

NH₄+: The molecular formula of the Ammonium ion.

NITRATES: A dissolved form of nitrogen found in fertilizers and sewage by-products that may leach into groundwater and other water sources. Nitrates may also occur naturally in some waters. Over time, nitrates can accumulate in aquifers and contaminate groundwater.

NITROGEN: Nitrogen is a nonmetal, with an electronegativity of 3.0. It has five electrons in its outer shell and is therefore trivalent in most compounds. The triple bond in molecular nitrogen (N_2) is one of the strongest in nature. The resulting difficulty of converting (N_2) into other compounds, and the ease (and associated high energy release) of converting nitrogen compounds into elemental N_2 , have dominated the role of nitrogen in both nature and human economic activities.

NITROGEN AND PHOSPHORUS: Pairs of elements and major plant nutrients that cause algae to grow.

NO₃: The molecular formula of the Nitrate ion.

NON-CARBONATE HARDNESS: The portion of the total hardness in excess of the alkalinity.

NON-CARBONATE IONS: Water contains non-carbonate ions if it cannot be softened to a desired level through the use of lime only.

NON-POINT SOURCE POLLUTION: Air pollution may leave contaminants on highway surfaces. This non-point source pollution adversely impacts reservoir water and groundwater quality.

NON-TRANSIENT, NON-COMMUNITY WATER SYSTEM: A water system which supplies water to 25 or more of the same people at least six months per year in places other than their residences. Some examples are schools, factories, office buildings, and hospitals which have their own water systems.

NORMALITY: It is the number of equivalent weights of solute per liter of solution. Normality highlights the chemical nature of salts: in solution, salts dissociate into distinct reactive species (ions such as H^{+} , Fe_{3}^{+} , or $C\Gamma$). Normality accounts for any discrepancy between the concentrations of the various ionic species in a solution. For example, in a salt such as $MgCl_2$, there are two moles of $C\Gamma$ for every mole of Mg_2^{+} , so the concentration of Cl-as well as of Mg_2^{+} is said to be 2 N (read: "two normal"). Further examples are given below. A normal is one gram equivalent of a solute per liter of solution. The definition of a gram equivalent varies depending on the type of chemical reaction that is discussed - it can refer to acids, bases, redox species, and ions that will precipitate. It is critical to note that normality measures a single ion which takes part in an overall solute. For example, one could determine the normality of hydroxide or sodium in an aqueous solution of sodium hydroxide, but the normality of sodium hydroxide itself has no meaning. Nevertheless it is often used to describe solutions of acids or bases, in those cases it is implied that the normality refers to the H+ or OH- ion. For example, 2 Normal sulfuric acid (H_2SO_4), means that the normality of H+ ions is 2, or that the molarity of the sulfuric acid is 1. Similarly for 1 Molar H_3PO_4 the normality is 3 as it contains three H+ ions.

NTNCWS: Non-transient non-community water system.

NTU (Nephelometric turbidity unit): A measure of the clarity or cloudiness of water.

O₃: The molecular formula of ozone.

OIL TUBE: A tubular enclosure that houses the line shaft and bearings of a vertical turbine pump. Oil is allowed to pass through the oil tube in order to lubricate the pumps drive shaft and bearings.

OLIGOTROPHIC: A reservoir that is nutrient-poor and contains little plant or animal life. An oligotrophic ecosystem or environment is one that offers little to sustain life. The term is commonly utilized to describe bodies of water or soils with very low nutrient levels. It derives etymologically from the Greek oligo (small, little, few) and trophe (nutrients, food). Oligotrophic environments are of special interest for the alternative energy sources and survival strategies upon which life could rely.

ORGANIC PRESURSORS: Natural or man-made compounds with chemical structures based upon carbon that, upon combination with chlorine, leading to trihalomethane formation.

OSMOSIS: Osmosis is the process by which water moves across a semi permeable membrane from a low concentration solute to a high concentration solute to satisfy the pressure differences caused by the solute.

OVERBURDEN: Normally a thin loosely consolidated or unconsolidated sediment overlying competent formation.

OVER-RANGE PROTECTION DEVICES: Mechanical dampers, snubbers and an air cushion chamber are examples of surging and overrange protection devices.

OXIDE: An oxide is a chemical compound containing at least one oxygen atom as well as at least one other element. Most of the Earth's crust consists of oxides. Oxides result when elements are oxidized by oxygen in air. Combustion of hydrocarbons affords the two principal oxides of carbon, carbon monoxide and carbon dioxide. Even materials that are considered to be pure elements often contain a coating of oxides. For example, aluminum foil has a thin skin of Al_2O_3 that protects the foil from further corrosion.

OXIDIZED:

- 1. to convert (an element) into an oxide; combine with oxygen.
- 2. to cover with a coating of oxide or rust.
- 3. to take away hydrogen, as by the action of oxygen; add oxygen or any nonmetal.
- 4. to remove electrons from (an atom or molecule), thereby increasing the valence. Compare REDUCE (def. 12). –verb (used without object)
- 5. to become oxidized.

OXIDIZING: The process of breaking down organic wastes into simpler elemental forms or by products. Also used to separate combined chlorine and convert it into free chlorine.

OXYGEN DEFICIENT ENVIRONMENT: One of the most dangerous threats to an operator upon entering a manhole.

OZONE: Ozone or trioxygen (O_3) is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic O_2 . Ground-level ozone is an air pollutant with harmful effects on the respiratory systems of animals. Ozone in the upper atmosphere filters potentially damaging ultraviolet light from reaching the Earth's surface. It is present in low concentrations throughout the Earth's atmosphere. It has many industrial and consumer applications. Ozone, the first allotrope of a chemical element to be recognized by science, was proposed as a distinct chemical compound by Christian Friedrich Schönbein in 1840, who named it after the Greek word for smell (ozein), from the peculiar odor in lightning storms. The formula for ozone, O_3 , was not determined until 1865 by Jacques-Louis Soret and confirmed by Schönbein in 1867. Ozone is a powerful oxidizing agent, far better than dioxygen. It is also unstable at high concentrations, decaying to ordinary diatomic oxygen (in about half an hour in atmospheric conditions): $O_3 = O_3 = O_3$

This reaction proceeds more rapidly with increasing temperature and decreasing pressure. Deflagration of ozone can be triggered by a spark, and can occur in ozone concentrations of 10 wt% or higher.

OZONE DOES NOT PROVIDE A RESIDUAL: One of the major drawbacks to using ozone as a disinfectant.

OZONE, CHLORINE DIOXIDE, UV, CHLORAMINES: These chemicals may be used as alternative disinfectants.

PAC: A disadvantage of using PAC is it is very abrasive and requires careful maintenance of equipment. One precaution that should be taken in storing PAC is that bags of carbon should not be stored near bags of HTH. Removes tastes and odors by adsorption only. Powered activated carbon frequently used for taste and odor control because PAC is non-specific and removes a broad range of compounds. Jar tests and threshold odor number testing determines the application rate for powdered activated carbon. Powdered activated carbon, or PAC, commonly used for in a water treatment plant for taste and odor control. Powdered activated carbon may be used with some success in removing the precursors of THMs

PACKING: Material, usually of woven fiber, placed in rings around the shaft of a pump and used to control the leakage from the stuffing box.

PARAMECIUM: Paramecia are a group of unicellular ciliate protozoa formerly known as slipper animalcules from their slipper shape. They are commonly studied as a representative of the ciliate group. Simple cilia cover the body which allows the cell to move with a synchronous motion (like a caterpilla). There is also a deep oral groove containing inconspicuous compound oral cilia (as found in other peniculids) that is used to draw food inside. They generally feed upon bacteria and other small cells. Osmoregulation is carried out by a pair of contractile vacuoles, which actively expel water absorbed by osmosis from their surroundings. Paramecia are widespread in freshwater environments, and are especially common in scums. Paramecia are attracted by acidic conditions. Certain single-celled eukaryotes, such as Paramecium, are examples for exceptions to the universality of the genetic code (translation systems where a few codons differ from the standard ones).

PATHOGENS: Disease-causing pathogens; waterborne pathogens A pathogen may contaminate water and cause waterborne disease.

Pb: The chemical symbol of Lead.

PCE: Perchloroethylene. Known also as perc or tetrachloroethylene, perchloroethylene is a clear, colorless liquid with a distinctive, somewhat ether-like odor. It is non-flammable, having no measurable flashpoint or flammable limits in air. Effective over a wide range of applications, perchloroethylene is supported by closed loop transfer systems, stabilizers and employee exposure monitoring.

PEAK DEMAND: The maximum momentary load placed on a water treatment plant, pumping station or distribution system.

PERCOLATION: The process of fluid penetrating or slowly flowing through soil, rock, or formation. See also infiltration.

PERCUSSION RIG: See Cable Tool.

PERFORATED SCREEN: Well screen that has openings mechanically cut into it.

PERFORMANCE CURVE: A graphical representation of a pumps efficiency relative to gpm and feet of head.

PEPTIDOGLYCAN: A polymer found in the cell walls of prokaryotes that consists of polysaccharide and peptide chains in a strong molecular network. Also called *mucopeptide*, *murein*.

PERMEATE: The term for water which has passed through the membrane of a reverse osmosis unit.

PERMEABILITY: A measure of a soil or formation's capacity to transmit water, typically in volume per time units. Equivalent to Darcy's hydraulic conductivity.

PERMEABLE: Soil or formation of which water can pass through.

pH: A unit of measure which describes the degree of acidity or alkalinity of a solution. The pH scale runs from 0 to 14 with 7 being the mid-point or neutral. A pH of less than 7 is on the acid side of the scale with 0 as the point of greatest acid activity. A pH of more than 7 is on the basic (alkaline) side of the scale with 14 as the point of greatest basic activity. The term pH is derived from "p", the mathematical symbol of the negative logarithm, and "H", the chemical symbol of Hydrogen. The definition of pH is the negative logarithm of the Hydrogen ion activity. $pH=-log[H^{+}]$.

pH OF SATURATION: The ideal pH for perfect water balance in relation to a particular total alkalinity level and a particular calcium hardness level, at a particular temperature. The pH where the Langelier Index equals zero.

PHENOLPHTHALEIN/TOTAL ALKALINITY: The relationship between the alkalinity constituent's bicarbonate, carbonate, and hydroxide can be based on the P and T alkalinity measurement.

PHENOL RED: Chemical reagent used for testing pH in the range of 6.8 - 8.4.

PHOSPHATE, NITRATE AND ORGANIC NITROGEN: Nutrients in a domestic water supply reservoir may cause water quality problems if they occur in moderate or large quantities.

PHYSISORPTION: (Or physical adsorption) Is adsorption in which the forces involved are intermolecular forces (van der Waals forces) of the same kind as those responsible for the imperfection of real gases and the condensation of vapors, and which do not involve a significant change in the electronic orbital patterns of the species involved. The term van der Waals adsorption is synonymous with physical adsorption, but its use is not recommended.

PICOCURIE: A unit of radioactivity. "Pico" is a metric prefix that means one one-millionth of one one-millionth. A picocurie is one one-millionth of one one-millionth of a Curie. A Curie is that quantity of any radioactive substance that undergoes 37 billion nuclear disintegrations per second. Thus a picocurie is that quantity of any radioactive substance that undergoes 0.037 nuclear disintegrations per second.

pCi/L: Picocuries per liter A curie is the amount of radiation released by a set amount of a certain compound. A picocurie is one quadrillionth of a curie.

PICOCURIE: A unit of radioactivity. "Pico" is a metric prefix that means one one-millionth of one one-millionth. A picocurie is one one-millionth of one one-millionth of a Curie. A Curie is that quantity of any radioactive substance that undergoes 37 billion nuclear disintegrations per second. Thus a picocurie is that quantity of any radioactive substance that undergoes 0.037 nuclear disintegrations per second.

PIEZOMETRIC SURFACE: See potentiometric surface.

PILOT BIT: A bit used on auger rigs to cut a pilot hole ahead of the cutter head when drilling into more resistant formations.

PIPELINE APPURTENANCE: Pressure reducers, bends, valves, regulators (which are a type of valve), etc.

PITLESS ADAPTER: A fitting installed on a section of column pipe and well casing permitting piping from the well to be installed below grade. (Often requires a special permit for construction)

PLANKTON: The aggregate of passively floating, drifting, or somewhat motile organisms occurring in a body of water, primarily comprising microscopic algae and protozoa.

PLATFORM: The portion of the drilling rig where a driller and crew operate the drill rig.

PLUG: A removable cap installed behind the pilot and cutter bits on hollow stem auger flighting.

PLUNGER: See Surge-block.

POINT OF ENTRY: POE.

POLLUTION: To make something unclean or impure. See Contaminated.

POLYPHOSPHATES: Chemicals that may be added to remove low levels of iron and manganese.

POLYMER: A type of chemical when combined with other types of coagulants aid in binding small suspended particles to larger particles to help in the settling and filtering processes.

PORE SPACE: The interstitial space between sediments and fractures that is capable of storing and transmitting water.

POROSITY: A factor representing a rock, soil, or formations percentage of open space available for the percolation and storage of groundwater.

POST-CHLORINE: Where the water is chlorinated to make sure it holds a residual in the distribution system.

POTABLE: Good water which is safe for drinking or cooking purposes. Non-Potable: A liquid or water that is not approved for drinking.

POTENTIAL ENERGY: The energy that a body has by virtue of its position or state enabling it to do work.

POTENTIOMETRIC SURFACE: An imaginary surface representing the height a column of water will reach at any location within a confined aquifer. The measured surface of a confined aquifer related to the aquifer's pressure head.

PPM: Abbreviation for parts per million.

PRE-CHLORINE: Where the raw water is dosed with a large concentration of chlorine.

PRE-CHLORINATION: The addition of chlorine before the filtration process will help:

- > Control algae and slime growth
- > Control mud ball formation
- > Improve coagulation
- > Precipate iron

The addition of chlorine to the water prior to any other plant treatment processes.

PERKINESIS: The aggregation resulting from random thermal motion of fluid molecules.

PRESSURE: Pressure is defined as force per unit area. It is usually more convenient to use pressure rather than force to describe the influences upon fluid behavior. The standard unit for pressure is the Pascal, which is a Newton per square meter. For an object sitting on a surface, the force pressing on the surface is the weight of the object, but in different orientations it might have a different area in contact with the surface and therefore exert a different pressure.

PRESSURE HEAD: The height of a column of water capable of being maintained by pressure. See also Total Head, Total Dynamic Head.

PRESSURE MEASUREMENT: Bourdon tube, Bellows gauge and Diaphragm are commonly used to measure pressure in waterworks systems. A Bellows-type sensor reacts to a change in pressure.

PREVENTION: To take action; stop something before it happens.

PROTON, NEUTRON AND ELECTRON: Are the 3 fundamental particles of an atom.

PRODUCING ZONE: A specific productive interval.

PRODUCTIVE INTERVAL: The portion or portions of an aquifer in which significant water production is obtained within the well.

PROTIST: Any of a group of eukaryotic organisms belonging to the kingdom Protista according to some widely used modern taxonomic systems. The protists include a variety of unicellular, coenocytic, colonial, and multicellular organisms, such as the protozoans, slime molds, brown algae, and red algae. A unicellular protoctist in taxonomic systems in which the protoctists are considered to form a kingdom.

PROTOCTIST: Any of various unicellular eukaryotic organisms and their multicellular, coenocytic, or colonial descendants that belong to the kingdom Protoctista according to some taxonomic systems. The protoctists include the protozoans, slime molds, various algae, and other groups. In many new classification systems, all protoctists are considered to be protists.

PROTOZOA: Microscopic animals that occur as single cells. Some protozoa can cause disease in humans. Protozoa form cysts, which are specialized cells like eggs that are very resistant to chlorine. Cysts can survive the disinfection process, then "hatch" into normal cells that can cause disease. Protozoa must be removed from drinking water by filtration, because they cannot be effectively killed by chlorine.

PUBLIC NOTIFICATION: An advisory that EPA requires a water system to distribute to affected consumers when the system has violated MCLs or other regulations. The notice advises consumers what precautions, if any, they should take to protect their health.

PUBLIC WATER SYSTEM (PWS): Any water system which provides water to at least 25 people for at least 60 days annually. There are more than 170,000 PWSs providing water from wells, rivers and other sources to about 250 million Americans. The others drink water from private wells. There are differing standards for PWSs of different sizes and types.

PUMP SURGING: A process of well development whereby water is pumped nearly to the surface and then is allowed to fall back into the well. The process creates a backwashing action that cleans the well and nearby formation.

PUMPING LIFT: The height to which water must be pumped or lifted to, feet of head.

PWS: 3 types of public water systems. Community water system, non-transient non-community water system, transient non-community water system.

RADIOCHEMICALS: (Or radioactive chemicals) Occur in natural waters. Naturally radioactive ores are particularly common in the Southwestern United States, and some streams and wells can have dangerously high levels of radioactivity. Total alpha and beta radioactivity and isotopes of radium and strontium are the major tests performed for radiochemicals. The federal drinking water standard for gross alpha radioactivity is set at 5 picocuries per liter.

RADIUS OF INFLUENCE: The distance away from a pumping well that water levels are affected by a wells cone of depression.

RAWHIDING: See Pump Surging.

RAW TURBIDITY: The turbidity of the water coming to the treatment plant from the raw water source.

RAW WATER: Water that has not been treated in any way; it is generally considered to be unsafe to drink.

REAGENT: A substance used in a chemical reaction to measure, detect, examine, or produce other substances.

REAM: The process of enlarging a borehole.

REAMER BIT: A special bit designed to ream existing boreholes.

RECHARGE: The infiltration component of the hydrologic cycle. Often used in the context of referring to: The infiltration of water back into an aquifer, resulting in the restoration of lost storage and water levels which had been decreased due to pumping and/or natural discharges from the aquifer.

RECIRCULATING SYSTEM: A system of constructed or surface mud pits that settle out cuttings from drilling fluid to be circulated back down the borehole.

RECORDER, FLOW: A flow recorder that measures flow is most likely to be located anywhere in the plant where a flow must be measured and in a central location.

RED WATER AND SLIME: Iron bacteria are undesirable in a water distribution system because of red water and slime complaints.

REDOX POTENTIAL: Reduction potential (also known as redox potential, oxidation / reduction potential or ORP) is the tendency of a chemical species to acquire electrons and thereby be reduced. Each species has its own intrinsic reduction potential; the more positive the potential, the greater the species' affinity for electrons and tendency to be reduced. In aqueous solutions, the reduction potential is the tendency of the solution to either gain or lose electrons when it is subject to change by introduction of a new species. A solution with a higher (more positive) reduction potential than the new species will have a tendency to gain electrons from the new species (i.e. to be reduced by oxidizing the new species) and a solution with a lower (more negative) reduction potential will have a tendency to lose electrons to the new species (i.e. to be oxidized by reducing the new species).

RELAY LOGIC: The name of a popular method of automatically controlling a pump, valve, chemical feeder, and other devices.

RESERVOIR: An impoundment used to store water.

RESIDUAL DISINFECTION PROTECTION: A required level of disinfectant that remains in treated water to ensure disinfection protection and prevent recontamination throughout the distribution system (i.e., pipes).

REVERSE MUD ROTARY: A non-conventional drilling method in which drilling fluid is injected through the borehole annulus downward through the bit and circulated back to the surface through the drill string.

REVERSE OSMOSIS: Forces water through membranes that contain holes so small that even salts cannot pass through. Reverse osmosis removes microorganisms, organic chemicals, and inorganic chemicals, producing very pure water. For some people, drinking highly purified water exclusively can upset the natural balance of salts in the body. Reverse osmosis units require regular maintenance or they can become a health hazard.

RIBBED STABILIZER: A stabilizer or drill collar that has cutting ribs attached to its side. Ribs are normally installed in vertical or spiral arrangements.

ROLLER BIT: A rotary drill bit having rotating cutting heads.

ROTAMETER: The name of transparent tube with a tapered bore containing a ball is often used to measure the rate of flow of a gas or liquid.

ROTARY RIG: A conventional rotary drill rig. Can be either an air or mud rotary rig.

ROTIFER: Rotifers get their name (derived from Greek and meaning "wheel-bearer"; they have also been called wheel animalcules) from the corona, which is composed of several ciliated tufts around the mouth that in motion resemble a wheel. These create a current that sweeps food into the mouth, where it is chewed up by a characteristic pharynx (called the mastax) containing a tiny, calcified, jaw-like structure called the trophi. The cilia also pull the animal, when unattached, through the water. Most free-living forms have pairs of posterior toes to anchor themselves while feeding. Rotifers have bilateral symmetry and a variety of different shapes. There is a well-developed cuticle which may be thick and rigid, giving the animal a box-like shape, or flexible, giving the animal a worm-like shape; such rotifers are respectively called loricate and illoricate.

RUNOFF: Surface water sources such as a river or lake are primarily the result of natural processes of runoff.

SAFE YIELD: A possible consequence when the "safe yield" of a well is exceeded and water continues to be pumped from a well, is land subsidence around the well will occur. Safe yield refers to a long-term balance between the water that is naturally and artificially recharged to an aquifer and the groundwater that is pumped out. When more water is removed than is recharged, the aquifer is described as being out of safe yield. When the water level in the aquifer then drops, we are said to be mining groundwater.

SALTS ARE ABSENT: Is a strange characteristic that is unique to water vapor in the atmosphere.

SAMPLE: The water that is analyzed for the presence of EPA-regulated drinking water contaminants. Depending on the regulation, EPA requires water systems and states to take samples from source water, from water leaving the treatment facility, or from the taps of selected consumers.

SAMPLING LOCATION: A location where soil or cuttings samples may be readily and accurately collected.

SAND, ANTHRACITE AND GARNET: Mixed media filters are composed of these three materials.

SANITARY SURVEY: Persons trained in public health engineering and the epidemiology of waterborne diseases should conduct the sanitary survey. The importance of a detailed sanitary survey of a new water source cannot be overemphasized. An on-site review of the water sources, facilities, equipment, operation, and maintenance of a public water systems for the purpose of evaluating the adequacy of the facilities for producing and distributing safe drinking water. The purpose of a non-regulatory sanitary survey is to identify possible biological and chemical pollutants which might affect a water supply.

SANITIZER: A disinfectant or chemical which disinfects (kills bacteria), kills algae and oxidizes organic matter.

SATURATION INDEX: See Langelier's Index.

SATURATOR: A device which produces a fluoride solution for the fluoride process. Crystal-grade types of sodium fluoride should be fed with a saturator. Overfeeding must be prevented to protect public health when using a fluoridation system.

SATURATED ZONE: Where an unconfined aquifer becomes saturated beneath the capillary fringe.

SCADA: A remote method of monitoring pumps and equipment. 130 degrees F is the maximum temperature that transmitting equipment is able to with stand. If the level controller may be set with too close a tolerance 45 could be the cause of a control system that is frequently turning a pump on and off.

SCALE: Crust of calcium carbonate, the result of unbalanced water. Hard insoluble minerals deposited (usually calcium bicarbonate) which forms on pool and spa surfaces and clog filters, heaters and pumps. Scale is caused by high calcium hardness and/or high pH. The regular use of stain prevention chemicals can prevent scale.

SCHMUTZDECKE: German, "grime or filth cover", sometimes spelt schmutzedecke) is a complex biological layer formed on the surface of a slow sand filter. The schmutzdecke is the layer that provides the effective purification in potable water treatment, the underlying sand providing the support medium for this biological treatment layer. The composition of any particular schmutzdecke varies, but will typically consist of a gelatinous biofilm matrix of bacteria, fungi, protozoa, rotifera and a range of aquatic insect larvae. As a schmutzdecke ages, more algae tend to develop, and larger aquatic organisms may be present including some bryozoa, snails and annelid worms.

SCROLL AND BASKET: The two basic types of centrifuges used in water treatment.

SEAL: For wells: to abandon a well by filling up the well with approved seal material including cementing with grout from a required depth to the land surface.

SECONDARY DRINKING WATER STANDARDS: Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water.

SECTIONAL MAP: The name of a map that provides detailed drawings of the distribution system's zones. Sometimes we call these quarter-sections.

SEDIMENTATION BASIN: Where the thickest and greatest concentration of sludge will be found. Twice a year sedimentation tanks should be drained and cleaned if the sludge buildup interferes with the treatment process.

SEDIMENTATION: The process of suspended solid particles settling out (going to the bottom of the vessel) in water

SEDIMENT: Grains of soil, sand, gravel, or rock deposited by and generated by water movement.

SENSOR: A float and cable system are commonly found instruments that may be used as a sensor to control the level of liquid in a tank or basin.

SESSILE: Botany. attached by the base, or without any distinct projecting support, as a leaf issuing directly from the stem. Zoology. permanently attached; not freely moving.

SETTLED SOLIDS: Solids that have been removed from the raw water by the coagulation and settling processes.

SHAKER: A device used in mud containment systems that vibrates various sized screens as drilling fluid passes through it, thereby separating cuttings from drilling fluid and providing a good sampling location.

SHOCK: Also known as superchlorination or break point chlorination. Ridding a water of organic waste through oxidization by the addition of significant quantities of a halogen.

SHORT-CIRCUITING: Short Circuiting is a condition that occurs in tanks or basins when some of the water travels faster than the rest of the flowing water. This is usually undesirable since it may result in shorter contact, reaction or settling times in comparison with the presumed detention times.

SHROUD: A baffle or piece of pipe installed over a pump to force water to pass the pumps motor.

SIEVE ANALYSIS: The process of sifting soil or formation samples through a series of screens to determine percentages of particle sizes.

SINGLE PHASE POWER: The type of power used for lighting systems, small motors, appliances, portable power tools and in homes.

SINUSOID: A curve described by the equation $y = a \sin x$, the ordinate being proportional to the sine of the abscissa.

SINUSOIDAL: Mathematics. Of or pertaining to a sinusoid. Having a magnitude that varies as the sine of an independent variable: a sinusoidal current.

SLUDGE BASINS: After cleaning sludge basins and before returning the tanks into service the tanks should be inspected, repaired if necessary, and disinfected.

SLUDGE REDUCTION: Organic polymers are used to reduce the quantity of sludge. If a plant produces a large volume of sludge, the sludge could be dewatered, thickened, or conditioned to decrease the volume of sludge. Turbidity of source water, dosage, and type of coagulant used are the most important factors which determine the amount of sludge produced in a treatment of water.

SLURRY: A mixture of crushed rock and water.

SMALL WATER SYSTEM: 3,300 or fewer persons.

SOC: Synthetic organic chemical. A common way for a synthetic organic chemical such as dioxin to be introduced to a surface water supply is from an industrial discharge, agricultural drainage, or a spill.

SODA ASH: Chemical used to raise pH and total alkalinity (sodium carbonate)

SODIUM BICARBONATE: Commonly used to increase alkalinity of water and stabilize pH.

SODIUM BISULFATE: Chemical used to lower pH and total alkalinity (dry acid).

SODIUM HYDROXIDE: Also known as caustic soda, a by-product chlorine generation and often used to raise nH

SOIL MOISTURE: A relative consideration of the degree to which a soil is saturated.

SOFTENING WATER: When the water has a low alkalinity it is advantageous to use soda ash instead of caustic soda for softening water.

SOFTENING: The process that removes the ions which cause hardness in water.

SOLAR DRYING BEDS OR LAGOONS: Are shallow, small-volume storage pond where sludge is concentrated and stored for an extended periods.

SOLAR DRYING BEDS, CENTRIFUGES AND FILTER PRESSES: Are procedures used in the dewatering of sludge.

SOLID. LIQUID AND VAPOR: 3 forms of matter.

SOLDER: A fusible alloy used to join metallic parts.

SOLID STEM (AUGER): An auger that is constructed of solid stem drill flights.

SPADNS: The lab reagent called SPADNS solution is used in performing the Fluoride test.

SPECIFIC CAPACITY (Sc): A measure of a well's pumping performance in gallons per minute per foot of drawdown.

SPIDER: A bearing or flange used in vertical turbine pumps to stabilize the drive shaft or shaft tube and seal column joints.

SPIRAL FLANGE: A continuous blade that wraps spirally around auger flighting.

SPIRIT OF HARTSHORN: A colorless, pungent, suffocating, aqueous solution of about 28.5 percent ammonia gas: used chiefly as a detergent, for removing stains and extracting certain vegetable coloring agents, and in the manufacture of ammonium salts.

SPLIT SPOON: A sampling device that is driven into the earth and operated by a wire line for the retrieval of soil or formation samples.

SPLIT FLOW CONTROL SYSTEM: This type of control system is to control the flow to each filter influent which is divided by a weir.

SPRAY BOTTLE OF AMMONIA: An operator should use ammonia to test for a chlorine leak around a valve or pipe. You will see white smoke if there is a leak.

SPRING PRESSURE: Is what maintains contact between the two surfaces of a mechanical seal.

STABILE: Reference to formation, soil, or sediments of sufficient strength to remain in place under its own weight and existing pressures.

STABILIZE: Actions taken to enhance borehole stability or vertical rotational when drilling.

STABILIZER: The portion of a drill string used to stabilize rotation.

STANDPIPE: A water tank that is taller than it is wide. Should not be found in low point.

STERILIZED GLASSWARE: The only type of glassware that should be used in testing for coliform bacteria.

STORAGE TANKS: Three types of water usage that determine the volume of a storage tank are fire suppression storage, equalization storage, and emergency storage. Equalization storage is the volume of water needed to supply the system for periods when demand exceeds supply. Generally, a water storage tank's interior coating (paint) protects the interior about 3-5 years.

S.T.P.: Standard temperature and pressure standard temperature and pressure the temperature of 0°C and pressure of 1 atmosphere, usually taken as the conditions when stating properties of gases.

STRATIFIED: Layered.

STUFFING BOX: That portion of the pump that houses the packing or mechanical seal.

SUB: A small section of drill pipe used to connect larger sections.

SUBMERSIBLE PUMP: A turbine pump that has the motor attached directly to it and therefore is operated while submerged.

SULFATE: Will readily dissolve in water to form an anion. Sulfate is a substance that occurs naturally in drinking water. Health concerns regarding sulfate in drinking water have been raised because of reports that diarrhea may be associated with the ingestion of water containing high levels of sulfate. Of particular concern are groups within the general population that may be at greater risk from the laxative effects of sulfate when they experience an abrupt change from drinking water with low sulfate concentrations to drinking water with high sulfate concentrations.

Sulfate in drinking water currently has a secondary maximum contaminant level (SMCL) of 250 milligrams per liter (mg/L), based on aesthetic effects (i.e., taste and odor). This regulation is not a federally enforceable standard, but is provided as a guideline for States and public water systems. EPA estimates that about 3% of the public drinking water systems in the country may have sulfate levels of 250 mg/L or greater. The Safe Drinking Water Act (SDWA), as amended in 1996, directs the U.S. Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) to jointly conduct a study to establish a reliable dose-response relationship for the adverse human health effects from exposure to sulfate in drinking water, including the health effects that may be experienced by sensitive subpopulations (infants and travelers). SDWA specifies that the study be based on the best available peer-reviewed science and supporting studies, conducted in consultation with interested States, and completed in February 1999.

SULFIDE: The term sulfide refers to several types of chemical compounds containing sulfur in its lowest oxidation number of -2. Formally, "sulfide" is the dianion, S_2 , which exists in strongly alkaline aqueous solutions formed from H_2S or alkali metal salts such as Li_2S , Na_2S , and K_2S . Sulfide is exceptionally basic and, with a pKa > 14, it does not exist in appreciable concentrations even in highly alkaline water, being undetectable at pH < ~15 (8 M NaOH). Instead, sulfide combines with electrons in hydrogen to form HS, which is variously called hydrogen sulfide ion, hydrosulfide ion, sulfhydryl ion, or bisulfide ion. At still lower pH's (<7), HS- converts to H_2S , hydrogen sulfide.

SUPERNATANT: The liquid layer which forms above the sludge in a settling basin.

SURFACE SEAL: The upper portion of a wells construction where surface contaminants are adequately prevented from entering the well, normally consisting of surface casing and neat cement grout.

SURFACE WATER SOURCES: Surface water sources such as a river or lake are primarily the result of Runoff.

SURFACE WATER: Water that is open to the atmosphere and subject to surface runoff; generally, lakes, streams, rivers.

SURFACTANT: Surfactants reduce the surface tension of water by adsorbing at the liquid-gas interface. They also reduce the interfacial tension between oil and water by adsorbing at the liquid-liquid interface. Many surfactants can also assemble in the bulk solution into aggregates. Examples of such aggregates are vesicles and micelles. The concentration at which surfactants begin to form micelles is known as the critical micelle concentration or CMC. When micelles form in water, their tails form a core that can encapsulate an oil droplet, and their (ionic/polar) heads form an outer shell that maintains favorable contact with water. When surfactants assemble in oil, the aggregate is referred to as a reverse micelle. In a reverse micelle, the heads are in the core and the tails maintain favorable contact with oil. Surfactants are also often classified into four primary groups; anionic, cationic, non-ionic, and zwitterionic (dual charge).

SUSCEPTIBILITY WAIVER: A waiver that is granted based upon the results of a vulnerability assessment.

SURGE-BLOCK: A disc shaped device that fits tightly into a well and is moved up and down to agitate the water column in order to develop a well.

SURGING: The process of purging a well rapidly for well development.

SWAB: See Surge-block.

SWING ARM: A large moveable arm on a bucket auger rig that pulls the bucket auger out away from the drilling rig for dumping.

SYNCHRONY: Simultaneous occurrence; synchronism.

TABLE DRIVE: A drilling rig that uses a rotating table within the platform to turn a kelly driven drill string.

TABLE: The back portion of a drill rig where the drill pipe is inserted (or driven if a table drive), adjacent to or within the driller's platform.

TAPPING VALVE: The name of the valve that is specifically designed for connecting a new water main to an existing main that is under pressure.

TARGET DEPTH: The proposed construction depth of a well prior to drilling.

TASTE AND ODORS: The primary purpose to use potassium permanganate in water treatment is to control taste and odors. Anaerobic water undesirable for drinking water purposes because of color and odor problems are more likely to occur under these conditions. Taste and odor problems in the water may happen if sludge and other debris are allowed to accumulate in a water treatment plant.

TCE, *trichloroethylene*: A solvent and degreaser used for many purposes; for example dry cleaning, it is a common groundwater contaminant. Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

TDS-TOTAL DISSOLVED SOLIDS: An expression for the combined content of all inorganic and organic substances contained in a liquid which are present in a molecular, ionized or micro-granular (colloidal sol) suspended form. Generally, the operational definition is that the solids (often abbreviated TDS) must be small enough to survive filtration through a sieve size of two micrometers. Total dissolved solids are normally only discussed for freshwater systems, since salinity comprises some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers and lakes, although TDS is generally considered not as a primary pollutant (e.g. it is not deemed to be associated with health effects), but it is rather used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of

presence of a broad array of chemical contaminants. Ion exchange is an effective treatment process used to remove iron and manganese in a water supply. This process is ideal as long as the water does not contain a large amount of TDS. When determining the total dissolved solids, a sample should be filtered before being poured into an evaporating dish and dried. Demineralization may be necessary in a treatment process if the water has a very high value Total Dissolved Solids.

TELEMETERING: The use of a transmission line with remote signaling to monitor a pumping station or motors. Can be used to accomplish accurate and reliable remote monitoring and control over a long distribution system.

TEMPERATURE SAMPLE: This test should be performed immediately in the field, this is a grab sample.

TELESCOPING KELLY: A kelly with successively smaller sized pipe within itself that drops out as a borehole is drilled. This permits that drilling may proceed without adding drill pipe. Normally found on bucket auger rigs.

TELESCOPING: The successive decrease in borehole size with depth.

THE RATE DECREASES: In general, when the temperature decreases, the chemical reaction rate decreases also.

THICKENING, CONDITIONING AND DEWATERING: Common processes that are utilized to reduce the volume of sludge.

TIME FOR TURBIDITY BREAKTHROUGH AND MAXIMUM HEADLOSS: Are the two factors which determine whether or not a change in filter media size should be made.

TITRATION: A method of testing by adding a reagent of known strength to a water sample until a specific color change indicates the completion of the reaction.

TITRIMETRIC: Chemistry. Using or obtained by titration. Titrimetrically, adverb.

TOP DRIVE: A rotary type drill head that moves freely up and down the rigs mast while driving the drill string.

TOROID: A surface generated by the revolution of any closed plane curve or contour about an axis lying in its plane. The solid enclosed by such a surface.

TOTAL ALKALINITY: A measure of the acid-neutralizing capacity of water which indicates its buffering ability, i.e. measure of its resistance to a change in pH. Generally, the higher the total alkalinity, the greater the resistance to pH change.

TOTAL COLIFORM: Total coliform, fecal coliform, and E. coli are all indicators of drinking water quality. The total coliform group is a large collection of different kinds of bacteria. Fecal coliforms are types of total coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. When a water sample is sent to a lab, it is tested for total coliform. If total coliform is present, the sample will also be tested for either fecal coliform or E. coli, depending on the lab testing method.

TOTAL DISSOLVED SOLIDS (TDS): The accumulated total of all solids that might be dissolved in water.

TOTAL DYNAMIC HEAD: The pressure (psi) or equivalent feet of water, required for a pump to lift water to its point of storage overcoming elevation head, friction loss, line pressure, drawdown and pumping lift.

TRANSIENT, NON-COMMUNITY WATER SYSTEM: TNCWS A water system which provides water in a place such as a gas station or campground where people do not remain for long periods of time. These systems do not have to test or treat their water for contaminants which pose long-term health risks because fewer than 25 people drink the water over a long period. They still must test their water for microbes and several chemicals. A Transient Non-community Water System: Is not required to sample for VOC's.

TREATED WATER: Disinfected and/or filtered water served to water system customers. It must meet or surpass all drinking water standards to be considered safe to drink.

TRIHALOMETHANES (THM): Four separate compounds including chloroform, dichlorobromomethane, dibromochloromethane, and bromoform. The most common class of disinfection by-products created when chemical disinfectants react with organic matter in water during the disinfection process. See Disinfectant Byproducts.

TRICONE BIT: A roller bit with three independent rolling bits with teeth or buttons that intermesh for efficient rock crushing and cutting.

TUBE SETTLERS: This modification of the conventional process contains many metal tubes that are placed in the sedimentation basin, or clarifier. These tubes are approximately 1 inch deep and 36 inches long, splithexagonal shape and installed at an angle of 60 degrees or less. These tubes provide for a very large surface area upon which particles may settle as the water flows upward. The slope of the tubes facilitates gravity settling of the solids to the bottom of the basin, where they can be collected and removed. The large surface settling area also means that adequate clarification can be obtained with detention times of 15 minutes or less. As with conventional treatment, this sedimentation step is followed by filtration through mixed media.

TUBERCLES: The creation of this condition is of the most concern regarding corrosive water effects on a water system. Tubercles are formed due to joining dissimilar metals, causing electro-chemical reactions. Like iron to copper pipe. We have all seen these little rust mounds inside cast iron pipe.

TURBIDIMETER: Monitoring the filter effluent turbidity on a continuous basis with an in-line instrument is a recommended practice. Turbidimeter is best suited to perform this measurement.

TURBIDITY: A measure of the cloudiness of water caused by suspended particles.

TURBINE PUMP: A pump that utilizes rotating impellers on a shaft that generate centrifugal force for pumping water.

UNCONFINED AQUIFER: An aquifer that exists under atmospheric pressure and is not confined.

UNCONSOLIDATED: Sediment that is not cemented or is loosely arranged.

UNDER-REAM: The process of reaming, from within the borehole, a section of an existing smaller borehole area.

UNSATURATED ZONE: That portion of the subsurface, including the capillary fringe that is not saturated but may contain water in both vapor and liquid form. See also Vadose Zone.

UNSTABLE: Sediment or other material that cannot exit without rapidly decomposing or collapsing in on itself. (ex. unconsolidated sediment)

U.S. ENVIRONMENTAL PROTECTION AGENCY: In the United States, this agency responsible for setting drinking water standards and for ensuring their enforcement. This agency sets federal regulations which all state and local agencies must enforce.

UNDER PRESSURE IN STEEL CONTAINERS: After chlorine gas is manufactured, it is primarily transported in steel containers.

UNIT FILTER RUN VOLUME (UFRV): One of the most popular ways to compare filter runs. This technique is the best way to compare water treatment filter runs.

VADOSE ZONE: A portion of the subsurface above the water table that is not saturated but contains water in both vapor and liquid form. The portion of the subsurface where water percolates through to the saturated zone. See also Unsaturated Zone.

VANE: That portion of an impeller that throws the water toward the volute.

VARIABLE DISPLACEMENT PUMP: A pump that will produce different volumes of water dependent on the pressure head against it.

VELOCITY HEAD: The vertical distance a liquid must fall to acquire the velocity with which it flows through the piping system. For a given quantity of flow, the velocity head will vary indirectly as the pipe diameter varies.

VENTURI: If water flows through a pipeline at a high velocity, the pressure in the pipeline is reduced. Velocities can be increased to a point that a partial vacuum is created.

VERTICAL TURBINE: A type of variable displacement pump in which the motor or drive head is mounted on the wellhead and rotates a drive shaft connected to the pump impellers.

VIRION: A complete viral particle, consisting of RNA or DNA surrounded by a protein shell and constituting the infective form of a virus.

VIRUSES: Very small disease-causing microorganisms that are too small to be seen even with microscopes. Viruses cannot multiply or produce disease outside of a living cell.

VITRIFICATION: Vitrification is a process of converting a material into a glass-like amorphous solid that is free from any crystalline structure, either by the quick removal or addition of heat, or by mixing with an additive. Solidification of a vitreous solid occurs at the glass transition temperature (which is lower than melting temperature, Tm, due to supercooling). When the starting material is solid, vitrification usually involves heating the substances to very high temperatures. Many ceramics are produced in such a manner. Vitrification may also occur naturally when lightning strikes sand, where the extreme and immediate heat can create hollow, branching rootlike structures of glass, called fulgurite. When applied to whiteware ceramics, vitreous means the material has an extremely low permeability to liquids, often but not always water, when determined by a specified test regime. The microstructure of whiteware ceramics frequently contain both amorphous and crystalline phases.

VOC WAIVER: The longest term VOC waiver that a public water system using groundwater could receive is 9 years.

VOLATILE ORGANIC COMPOUNDS: (VOCs) Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents. Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapor pressures under normal conditions to significantly vaporize and enter the atmosphere. A wide range of carbon-based molecules, such as aldehydes, ketones, and other light hydrocarbons are VOCs. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. The United States Environmental Protection Agency defines a VOC as any organic compound that participates in a photoreaction; others believe this definition is very broad and vague as organics that are not volatile in the sense that they vaporize under normal conditions can be considered volatile by this EPA definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition.

VOID: An opening, gap, or space within rock or sedimentary formations formed at the time of origin or deposition.

VOLTAGE: Voltage (sometimes also called electric or electrical tension) is the difference of electrical potential between two points of an electrical or electronic circuit, expressed in volts. It measures the potential energy of an electric field to cause an electric current in an electrical conductor. Depending on the difference of electrical potential it is called extra low voltage, low voltage, high voltage or extra high voltage. Specifically Voltage is equal to energy per unit charge.

VOLUTE: The spiral-shaped casing surrounding a pump impeller that collects the liquid discharge by the impeller.

VORTEX: The helical swirling of water moving towards a pump.

VIRUSES: Are very small disease-causing microorganisms that are too small to be seen even with microscopes. Viruses cannot multiply or produce disease outside of a living cell.

VOLATILE ORGANIC COMPOUNDS: (VOCs) Solvents used as degreasers or cleaning agents. Improper disposal of VOCs can lead to contamination of natural waters. VOCs tend to evaporate very easily. This characteristic gives VOCs very distinct chemical odors like gasoline, kerosene, lighter fluid, or dry cleaning fluid. Some VOCs are suspected cancer-causing agents.

VULNERABILITY ASSESSMENT: An evaluation of drinking water source quality and its vulnerability to contamination by pathogens and toxic chemicals.

WAIVERS: Monitoring waivers for nitrate and nitrite are prohibited.

WASHOUT: The rapid erosion of aquifer material from the borehole walls while a well is being drilled, which often results in a loss of circulation.

WATER COURSE: An opening within a cable tool drill string that allows fluid to flow in and out of the drill string thereby minimizing friction loss to the slurry.

WATER HAMMER: A surge in a pipeline resulting from the rapid increase or decrease in water flow. Water hammer exerts tremendous force on a system and can be highly destructive.

WATER PURVEYOR: The individuals or organization responsible to help provide, supply, and furnish quality water to a community.

WATER QUALITY: The 4 broad categories of water quality are: Physical, chemical, biological, radiological. Pathogens are disease causing organisms such as bacteria and viruses. A positive bacteriological sample indicates the presence of bacteriological contamination. Source water monitoring for lead and copper be performed when a public water system exceeds an action level for lead of copper.

WATER QUALITY CRITERIA: Comprised of both numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or States for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal.

WATER QUALITY STANDARD: A statute or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.

WATER TABLE: The measured water level surface of an unconfined aquifer.

WATER VAPOR: A characteristic that is unique to water vapor in the atmosphere is that water does not contain any salts.

WATERBORNE DISEASE: A disease, caused by a virus, bacterium, protozoan, or other microorganism, capable of being transmitted by water (e.g., typhoid fever, cholera, amoebic dysentery, gastroenteritis).

WATERSHED: An area that drains all of its water to a particular water course or body of water. The land area from which water drains into a stream, river, or reservoir.

WEATHERED: The existence of rock or formation in a chemically or physically broken down or decomposed state. Weathered material is in an unstable state.

WELL ABANDONMENT: The process of sealing a well by approved means. The filling of a well to the surface with cement grout.

WELL HEAD: The upper portion of the well that is constructed on the land surface, including the well manifold. Also a term used to refer to the area near the well that is subject to wellhead protection.

WELL HEAD PROTECTION: Programs designed to maintain the quality of groundwater used as public drinking water sources, by managing the land uses around the well field. A government program that encourages the limitation and elimination of activities, near and within a wells recharge area, which present a potential risk to the wells water supply.

WELL MANIFOLD: The piping, valves, and metering equipment used to connect the well to the distribution system, installed on the wellhead.

WELL SCREEN: A section of well casing that contains openings which permit water to enter the well but limit or prevent sediment from entering the well while pumping.

WELL SEAL: The watertight cap or seal installed within and between the well casing and pumping equipment. The metal or plastic plug or seal, which the pumping column rests on the top of casing.

WHOLE EFFLUENT TOXICITY: The total toxic effect of an effluent measured directly with a toxicity test.

YIELD: The volume of water measured in flow rates that are produced from the well.

ZONE OF AERATION: See Saturated Zone or Vadose Zone.

ZONE OF SATURATION: See Saturated Zone.

A cross completely blown out. A major job. Good thing it wasn't under the blacktop.

Common Water Treatment and Distribution Chemicals

Common Water Ir	eatment and Distri	bution Chemicals
Chemical Name	Common Name	Chemical Formula
Aluminum hydroxide		Al(OH) ₃
Aluminum sulfate	Alum, liquid	$AL_2(SO_4)3 . 14(H_2O)$
Ammonia		NH ₃
Ammonium		NH ₄
Bentonitic clay	Bentonite	
Calcium bicarbonate		Ca(HCO ₃)2
Calcium carbonate	Limestone	CaCO ₃
Calcium chloride		CaCl ₂
Calcium Hypochlorite	HTH	Ca(OCI) ₂ . 4H ₂ O
Calcium hydroxide	Slaked Lime	Ca(OH) ₂
Calcium oxide Calcium sulfate	Unslaked (Quicklime) Gypsum	CaO CaSO ₄
Carbon Carbon dioxide	Activated Carbon	C CO ₂
Carbonic acid		H2CO ₃
Chlorine gas		Cl_2
Chlorine Dioxide		CIO ₂
Copper sulfate	Blue vitriol	CuSO ₄ . 5H ₂ O
Dichloramine		NHCl ₂
Ferric chloride	Iron chloride	FeCl ₃
Ferric hydroxide		Fe(OH) ₃
Ferric sulfate	Iron sulfate	$Fe_2(SO_4)_3$
Ferrous bicarbonate		Fe(HCO ₃) ₂
Ferrous hydroxide		Fe(OH) ₃
Ferrous sulfate	Copperas	FeSO ₄ .7H ₂ 0
Hydrofluorsilicic acid		H ₂ SiF ₆
Hydrochloric acid Hydrogen sulfide	Muriatic acid	HCI H₂S
Hypochlorus acid Magnesium bicarbonate		HOCL Mg(HCO ₃)2
Magnesium carbonate		MgCO ₃
Magnesium chloride		MgCl ₂
Magnesium hydroxide		Mg(OH) ₂
Magnesium dioxide		MgO_2
Manganous bicarbonate		Mn(HCO ₃)2
Manganous sulfate		MnSO₄
Monochloramine		NH ₂ CI
Potassium bicarbonate		KHCO ₃
Potassium permanganate		KMnO ₄

Chemical Name	Common Name	Chemical Formula
Sodium carbonate	Soda ash	Na ₂ CO ₃
Sodium chloride Sodium chlorite	Salt	NaCl NaClO ₂
Sodium fluoride Sodium fluorsilicate		NaF Na₂SiF ₆
Sodium hydroxide Sodium hypochlorite Sodium Metaphosphate	Lye Hexametaphosphate	NaOH NaOCI NaPO₃
Sodium phosphate	Disodium phosphate	Na ₃ PO ₄
Sodium sulfate		Na ₂ SO ₄
Sulfuric acid		H ₂ SO ₄

Fluoride. Many communities add fluoride to their drinking water to promote dental health. Each community makes its own decision about whether or not to add fluoride. The EPA has set an enforceable drinking water standard for fluoride of 4 mg/L (some people who drink water containing fluoride in excess of this level over many years could develop bone disease, including pain and tenderness of the bones). The EPA has also set a secondary fluoride standard of 2 mg/L to protect against dental fluorosis.

REFERENCES

Benenson, Abram S., editor. 1990. *Control of Communicable Diseases in Man.* 15th ed. Baltimore: Victor Graphics, Inc.

Bick, H. 1972. Ciliated protozoa. An illustrated guide to the species used as biological indicators in freshwater biology. World Health Organization, Geneva. 198 pp.

Born, Stephen M., Douglas A. Yanggen, and Alexander Zaporozec. *A Guide to Groundwater Quality Planning and Management for Local Governments*. Wisconsin Geological and Natural History Survey, Madison, WI, 1987.

Cairns, J., and J.A. Ruthven. 1972. A test of the cosmopolitan distribution of fresh-water protozoans. Hydrobiologia 39:405-427.

Cairns, J., and W.H. Yongue. 1977. Factors affecting the number of species of freshwater protozoan communities. Pages 257-303 in J. Cairns, ed. Aquatic microbial communities. Garland, New York.

Cairns, J., G.R. Lanza, and B.C. Parker. 1972. Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proceedings of the National Academy of Sciences 124:79-127.

Concern, Inc. Groundwater: A Community Action Guide. Washington, D.C., 1989.

Cross, Brad L and Jack Schulze. *City of Hurst (A Public Water Supply Protection Strategy)*. Texas Water Commission, Austin, TX, 1989.

Curds, C.R. 1992. Protozoa and the water industry. Cambridge University Press, MA. 122 pp.

Curtis, Christopher and Teri Anderson. *A Guidebook for Organizing a Community Collection Event: Household Hazardous Waste*. Pioneer Valley Planning Commission and Western Massachusetts Coalition for Safe Waste Management, West Springfield, MA, 1984.

Curtis, Christopher, Christopher Walsh, and Michael Przybyla. *The Road Salt Management Handbook: Introducing a Reliable Strategy to Safeguard People & Water Resources*. Pioneer Valley Planning Commission, West Springfield, MA, 1986.

Fenchel, T. 1974. Intrinsic rate increase: the relationship with body size. Oecologia 14:317-326. Fenchel, T., T. Perry, and A. Thane. 1977. Anaerobiosis and symbiosis with bacteria in free-living ciliates. Journal of Protozoology 24:154-163.

Foissner, W. 1987. Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protistology 2:69-212.

Foissner, W. 1988. Taxonomic and nomenclatural revision of Stádecek's list of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiologia 166:1-64.

Foster, Laurence, M.D. 1985. "Waterborne Disease - It's Our Job to Prevent It". PIPELINE newsletter, Oregon Health Division, Drinking Water Program, Portland, Oregon 1(4): 1-3. Foster, Laurence, M.D. 1990. "Waterborne Disease," Methods for the Investigation and Prevention of Waterborne Disease Outbreaks. Ed. Gunther F. Craun. Cincinnati: U.S. Environmental Protection Agency.

Giese, A.C. 1973. Blepharisma. Stanford University Press, CA. 366 pp.

Gordon, Wendy. *A Citizen's Handbook on Groundwater Protection*. Natural Resources Defense Council, New York, NY 1984.

Harrison, Ellen Z. and Mary Ann Dickinson. *Protecting Connecticut's Groundwater: A Guide to Groundwater Protection for Local Officials*. Connecticut Department of Environmental Protection, Hartford, CT, 1984.

Hrezo, Margaret and Pat Nickinson. *Protecting Virginia's Groundwater A Handbook for Local Government Officials*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1986. Jaffe, Martin and Frank Dinovo. *Local Groundwater Protection*. American Planning Association, Chicago, IL, 1987.

Kreier, J.P., and J.R. Baker. 1987. Parasitic protozoa. Allen and Unwin, Boston, MA. 241 pp. Laybourn, J., and B.J. Finlay. 1976. Respiratory energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 44:165-174.

Lee, C.C., and T. Fenchel. 1972. Studies on ciliates associated with sea ice from Antarctica. II. Temperature responses and tolerances in ciliates from Antarctica, temperate and tropical habitats. Archive für Protistenkunde 114:237-244.

Loomis, George and Yael Calhoon. "Natural Resource Facts: Maintaining Your Septic System." University of Rhode Island, Providence, RI, 1988.

Macozzi, Maureen. *Groundwater- Protecting Wisconsin's Buried Treasure*. Wisconsin Department of Natural Resources, Madison, WI, 1989.

Maine Association of Conservation Commissions. *Ground Water... Maine's Hidden Resource*. Hallowell, ME, 1985.

Massachusetts Audubon Society "Local Authority for Groundwater Protection." Groundwater Information Flyer #4. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Groundwater and Contamination: From the Watershed into the Well." Groundwater Information Flyer # 2. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Mapping Aquifers and Recharge Areas." Groundwater Information Flyer # 3. Lincoln, MA, 1984.

Massachusetts Audubon Society. "Road Salt and Groundwater Protection." Groundwater Information Flyer # 9. Lincoln, MA, 1987.

McCann, Alyson and Thomas P Husband. "Natural Resources Facts: Household Hazardous Waste." University of Rhode Island, Providence, RI; 1988.

Miller, David W. *Groundwater Contamination: A Special Report*. Geraghty & Miller, Inc., Syosset, NY 1982.

Montagnes, D.J.S., D.H. Lynn, J.C. Roff, and W.D. Taylor. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology 99:21-30.

Mullikin, Elizabeth B. *An Ounce of Prevention: A Ground Water Protection Handbook for Local Officials*. Vermont Departments of Water Resources and Environmental Engineering, Health, and Agriculture, Montpelier, VT, 1984.

Murphy, Jim. "Groundwater and Your Town: What Your Town Can Do Right Now." Connecticut Department of Environmental Protection, Hartford, CT.

National Research Council. *Ground Water Quality Protection: State and Local Strategies.* National Academy Press, Washington, D.C., 1986.

New England Interstate Water Pollution Control Commission. "Groundwater: Out of Sight Not Out of Danger." Boston, MA, 1989.

Niederlehner, B.R., K.W. Pontasch, J.R. Pratt, and J. Cairns. 1990. Field evaluation of predictions of environmental effects from multispecies microcosm toxicity test. Archives of Environmental Contamination and Toxicology 19:62-71.

Noake, Kimberly D. Guide to *Contamination Sources for Wellhead Protection*. Draft. Massachusetts Department of Environmental Quality Engineering, Boston, MA, 1988. Office of Drinking Water. *A Local Planning Process for Groundwater Protection*. U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Guidelines for Delineation of Wellhead Protection Areas*. U.S. EPA, Washington, D.C., 1987.

Office of Ground-Water Protection. Survey of State Ground Water Quality Protection Legislation Enacted From 1985 Through 1987. U.S. EPA, Washington, D.C., 1988.

Office of Ground-Water Protection. *Wellhead Protection Programs. - Tools for Local Governments.* U.S. EPA, Washington, D.C., 1989.

Office of Ground-Water Protection. *Wellhead Protection: A Decision-Makers' Guide.* U.S. EPA, Washington, D.C., 1987

Office of Pesticides and Toxic Substances. *Citizen's Guide to Pesticides.* U.S. EPA, Washington, D.C., 1989.

Office of Underground Storage Tanks. *Musts for USGS. - A Summary of the New Regulations for Underground Storage Tank Systems.* U.S. EPA, Washington, D.C., 1988.

Ohio Environmental Protection Agency. Ground Water. Columbus, OH.

Redlich, Susan. Summary of Municipal Actions for Groundwater Protection in the New England/New York Region. New England Interstate Water Pollution Control Commission, Boston, MA, 1988.

Southern Arizona Water Resources Association. "Water Warnings: Our Drinking Water.... It Takes Everyone to Keep It Clean." Tucson, AZ.

Sponenberg, Torsten D. and Jacob H. Kahn. *A Groundwater Primer for Virginians*. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1984.

Taylor, W., and R. Sanders. 1991. Protozoa. Pages 37-93 in J.H. Thorp and A.P. Covich, eds. Ecology and classification of North American freshwater invertebrates. Academic Press, New York.

Texas Water Commission. "On Dangerous Ground: The Problem of Abandoned Wells in Texas." Austin, TX, 1989.

Texas Water Commission. *The Underground Subject: An Introduction to Ground Water Issues in Texas*. Austin, TX, 1989.

U.S. Environmental Protection Agency. *Seminar Publication: Protection of Public Water Supplies from Ground-Water Contaminants.* Center for Environmental Research Information, Cincinnati, OH, 1985.

Waller, Roger M. *Ground Water and the Rural Homeowner.* U.S. Geological Survey, Reston, VA, 1988.

We welcome you to complete the assignment in Microsoft Word. You can find the assignment at www.abctlc.com. Once complete, just simply fax or e-mail the answer key along with the registration page to us and allow two weeks for grading. Once we grade it, we will mail a certificate of completion to you. Call us if you need any help. If you need your certificate back within 48 hours, you may be asked to pay a rush service fee of \$50.00.

You can download the assignment in Microsoft Word from TLC's website under the Assignment Page. www.abctlc.com You will have 90 days to successfully complete this assignment with a score of 70% or better. If you need any assistance, please contact TLC's Student Services.