

www.cartwright-consulting.com

pscartwright@msn.com

United States Office

8324 16th Avenue South Minneapolis, MN 55425-1742

Phone: (952) 854-4911 Fax: (952) 854-6964

European Office

President Kennedylaan 94 2343 GT Oegstgeest The Netherlands

Phone: 31-71-5154417

Wastewater Recovery & Reuse – Part II

Presented at:

Saudi Arabia Water Environment Association

by Peter S. Cartwright, PE

Table of Contents

Biological Wastewater Treatment

Aerobic

Anoxic

Anaerobic

Application of Biological Treatment Processes

Suspended Growth (Activated Sludge)

Attached Growth (Fixed Film)

Trickling Filters

Rotating Biological Contactors (RBCs)

Moving Bed Biofilm Reactors (MBBRs)

A Word of Caution

MBR

Introduction History

MBR Technology

Introduction Microfiltration Ultrafiltration

Table of Contents

MBR Process

Membrane Configuration
Plate & Frame
Hollow Fiber
Tubular
Membrane Materials

System Design

Introduction
System Components

Operating Considerations

Fouling Cleaning

Myths and Realities

Conclusions

Table of Contents

Disinfection

Introduction

Microorganism Categories

Bacteria

Protozoa

Viruses

Disinfection Technologies

Chemical Processes

Physical Removal

Legionnaires' Disease

Controlling Legionella Bacteria

Standards

Glossary

Acronyms

Biological Wastewater Treatment

Bioremediation Technologies

Primary Treatment – Screening
Primary Treatment – Clarification
Secondary Treatment – Bioremediation
Tertiary Treatment - MBR

AEROBIC – with oxygen

ANAEROBIC – without oxygen

ANOXIC – oxygen deficient

Anaerobic and Aerobic Bioremediation Compared

Parameters	Anaerobic	Aerobic
Power Requirements (kWhr)	1.5	65
Net Production of Biosolids (kg)	15-100	200-600
Useable Energy Produced	140	NiL

(based on 1,000 kg COD)

Application of Biological Treatment Processes

Suspended Growth – Activated Sludge

Fixed Film:

Trickling Filters
Rotating Biological Contactors (RBC)
Moving Bed Biofilm Reactors (MBBR)

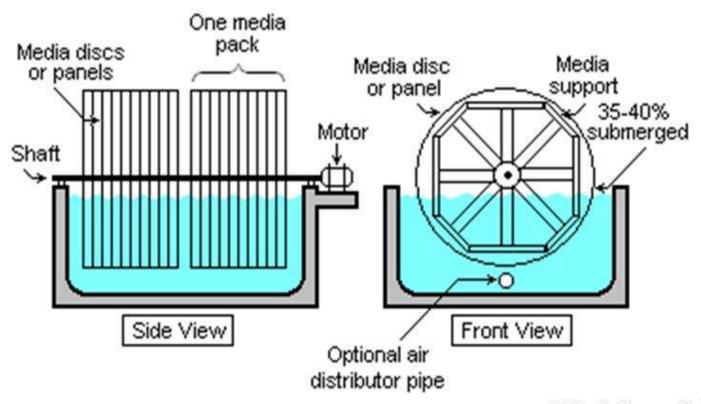
Secondary Treatment Comparison

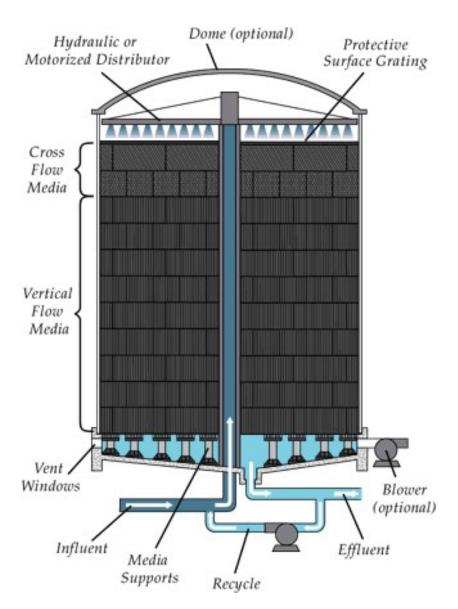
SUSPENDED GROWTH	FIXED-FILM			
ACTIVATED SLUDGE	RBC	MBBR		
Requires residual suspended solids (MLSS)	No residual suspended solids	No residual suspended solids		
Operator adjusts MLSS levels	Self regulating, no operator adjustments	Self regulating, no operator adjustments		
MLSS sludge recycled back through plant	Single pass flow through	Single pass flow through		
MLSS can be flushed out with high flows	Biology stripped of media with high flows	Not affected by high flows		
Moderate mechanical equipment	High mechanical equipment	Low mechanical equipment		
Unstable nutrient removal	Unstable nutrient removal	Stable nutrient removal		

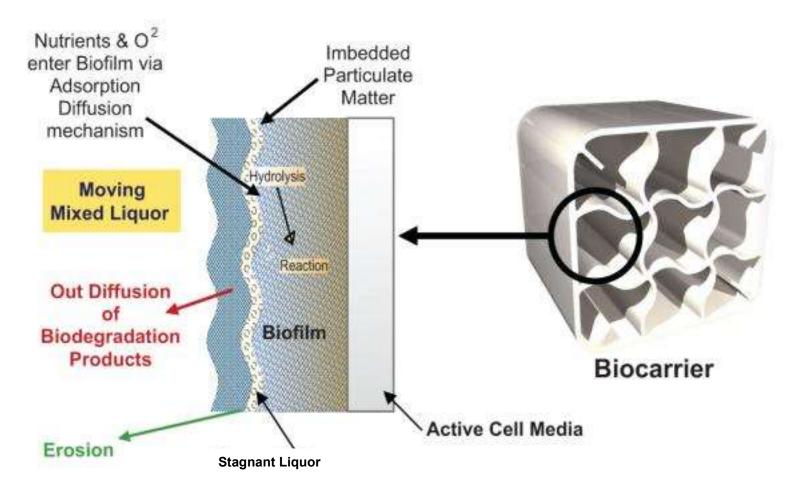
Types of Fixed Film Technologies

Trickling filters are a static, air phase fixed film treatment system.

RBCs are partially water and air phase.


MBBRs are dynamic, water phase fixed film treatment systems


Rotating Biological Contactor

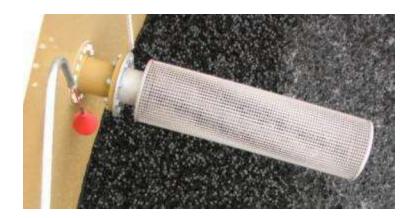


Modern Bio-Tower

Dynamic Water Phase Fixed Films

MBBR Moving Bed Biofilm Reactor

- Process is based on the biofilm principle using polyethylene carrier elements.
- The carrier elements, which are less dense than water, 0.93-0.95 SG, provide a large protected surface for bacteria culture.
- MBBR provides advantages of Activated Sludge and Trickling Filter systems without their disadvantages.
- MBBR is one of the most documented processes with many technical publications and presentations.



Key Components: MBBR

Aeration Grid

Retention Sieves

ActiveCell® Media

Carrier Material

MBR

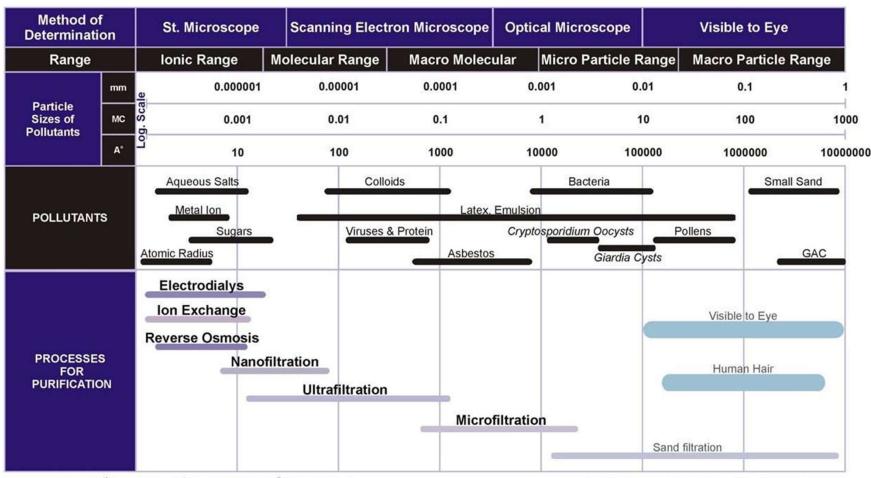
MBR

Biomediation (activated sludge) with MF/UF Membrane Filtration (tertiary treatment)

MBR Permeate

Very Low In:

- BOD
- COD
- TSS
- Coliform Bacteria


MBR Applications Include:

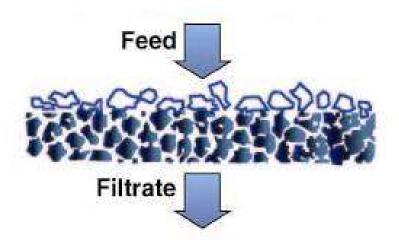
- Residential development projects
 - Single dwellings
 - Housing clusters
 - Apartment buildings/condominiums
- Commercial projects
- Mining camps and other remote installations
- Emergency response
- Military installations
- Sports facilities
- Recreation parks
- Schools
- Shopping centers
- Office parks

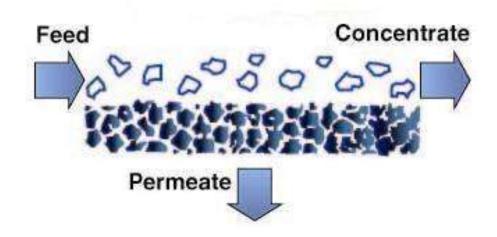
Water Contaminants, Sizes and Treatment Technologies

Biological Treatment Process

Evaluation Parameter	Trickling Filter	Rotating Biological Contractor (RBC)	Sequencing Batch Reactor (SBR)	Membrane Bioreactor (MBR)	Powdered Activated Carbon Treatment (PACT)
Effective BOD Removal			X	X	X
Effective COD Removal			X	X	X
Low O&M Costs		х			
Low Sludge Production	X	X		X	
Low Sludge Disposal Costs	X	X		X	X
Good Operability: Winter			X	X	
Good Operability: Summer	X	X	X	X	X
Good Performance: High Water Temperature	Х			X	Х
Good Performance: Low Water Temperature			х	X	Х
Minimal Operator Attention		х			
Quick Upset Recovery	Х	Х	Х		Х
Easy Expandability		Х			
Efficient Nitrification			Х	X	Х
Easy Installation		х			
Energy Efficient	х	х			
Minimal Space Requirements			x	X	X

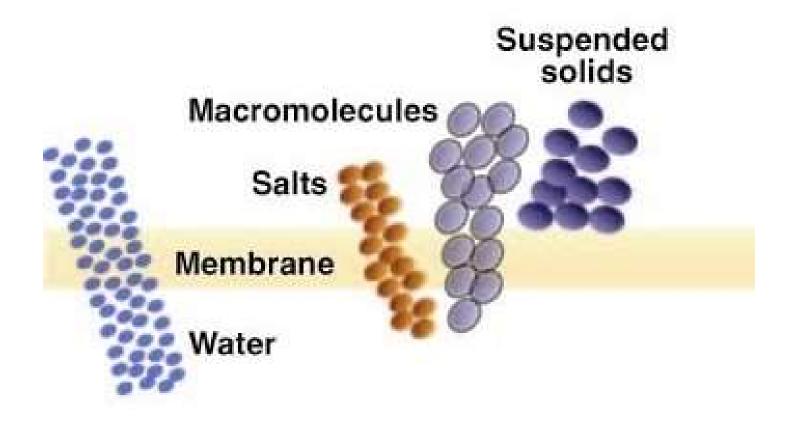
MBR Technology


MEMBRANE TECHNOLOGY



Conventional vs. Crossflow

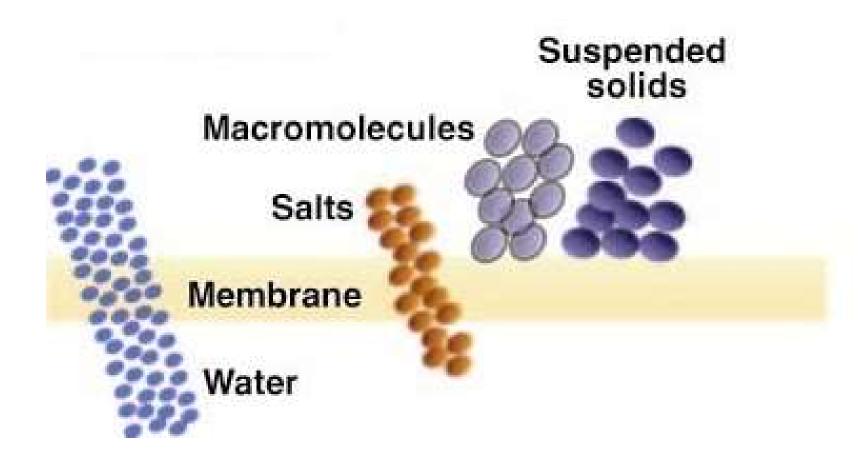
Conventional Filtration



Crossflow Filtration

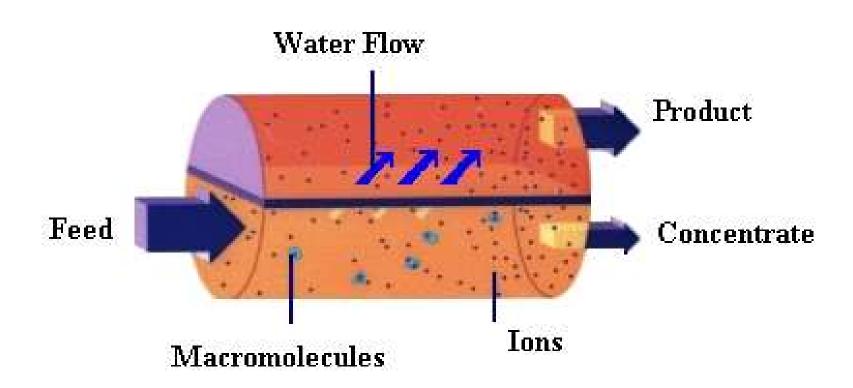
Microfiltration

Microfiltration



Microfiltration

Microfiltration is utilized to remove submicron suspended materials on a continuous basis. The size range is from approximately 0.01 to 1 micron (100 to 10,000 angstroms). By definition, microfiltration does not remove dissolved materials.

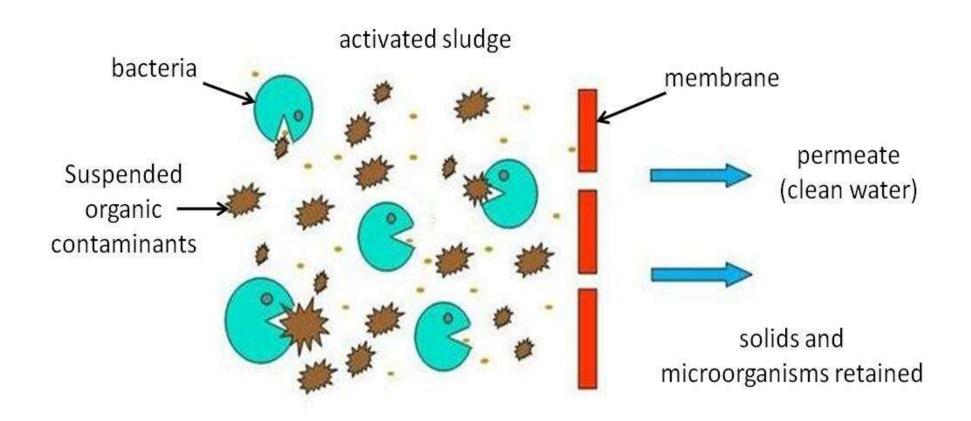


Ultrafiltration

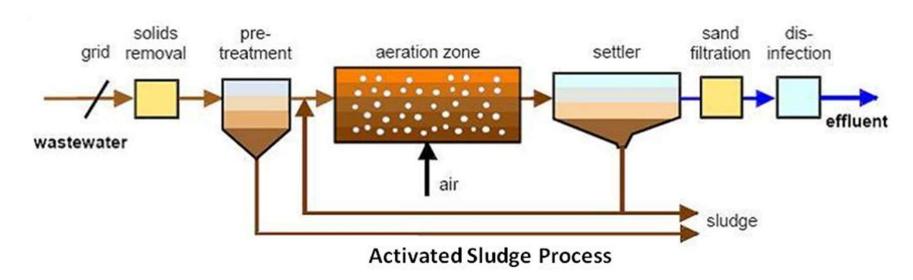
Ultrafiltration

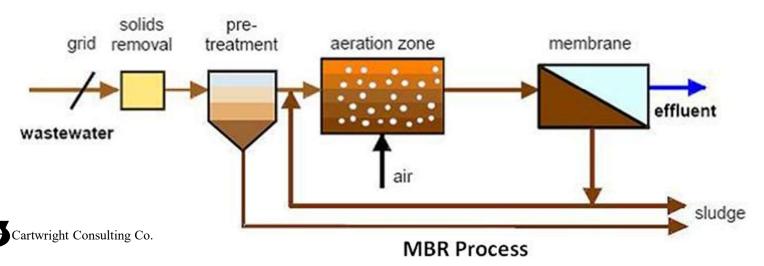
Ultrafiltration

<u>Ultrafiltration</u> is the membrane process which removes dissolved non-ionic solute, typically organic materials (macromolecules). Ultrafiltration membranes are usually rated by "molecular weight cutoff" (MWCO), the maximum molecular weight of the compound that will pass through the membrane pores into the permeate stream. Ultrafiltration pore sizes are usually smaller than 0.01 micron (100 angstroms) in size.



MBR Process




MBR Process

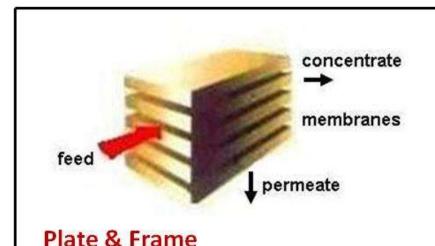
Activated Sludge Process vs. MBR Process

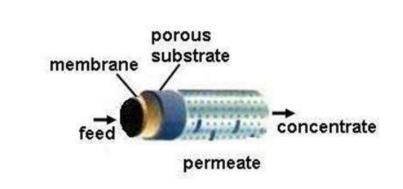
MBR Advantages

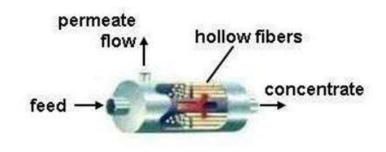
- High-quality effluent, almost free from suspended solids
- The ability to disinfect without the need for chemicals
- Complete independent control of HRT (Hydraulic Retention Time) and SRT (Sludge Retention Time), which allow more complete reduction of COD, and improved stability of such processes as nitrification
- Reduced sludge production
- Process intensification through high biomass concentrations with MLSS (Mixed Liquor Suspended Solids) over 25,000 mg/L
- Ability to treat high strength wastes
- More compact systems, resulting in a smaller footprint
- Process unaffected by solids settling
- Longer retention time for more complete nitrification
- Reduction in post treatment disinfection requirements

MBR Disadvantages

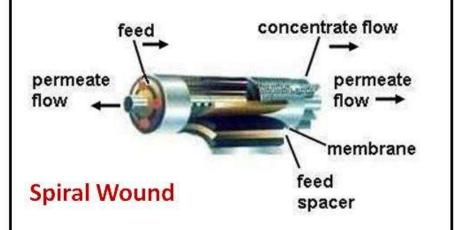
- Higher capital cost, primarily resulting from the membrane unit cost
- Higher operating costs associated with the energy requirements of the air blower and pumps
- Operation at high SRTs may increase levels of inorganic chemicals that are harmful to the microbial populations

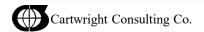

Membrane Configurations

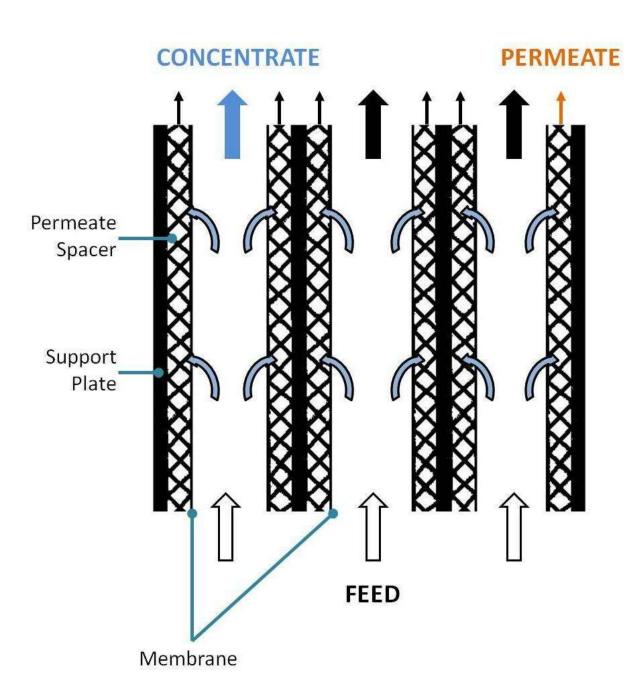

- Plate & Frame
- Tubular
- Hollow (Capillary) Fiber
- Spiral Wound



Membrane Devices






Tubular

Hollow (capillary) Fiber

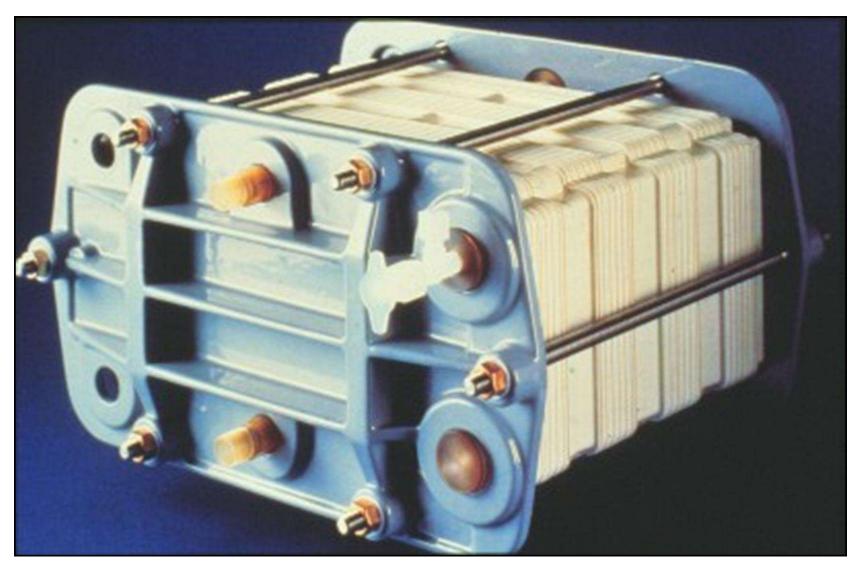


Plate & Frame

Plate & Frame

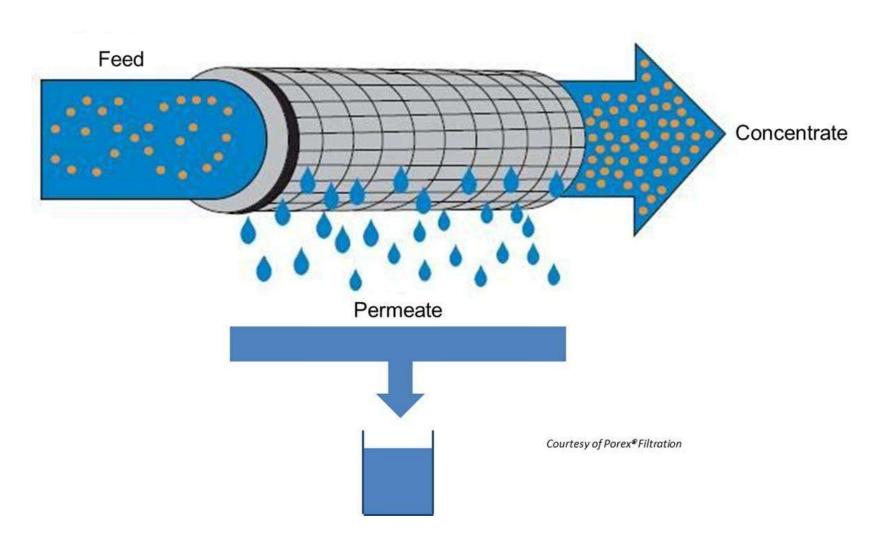
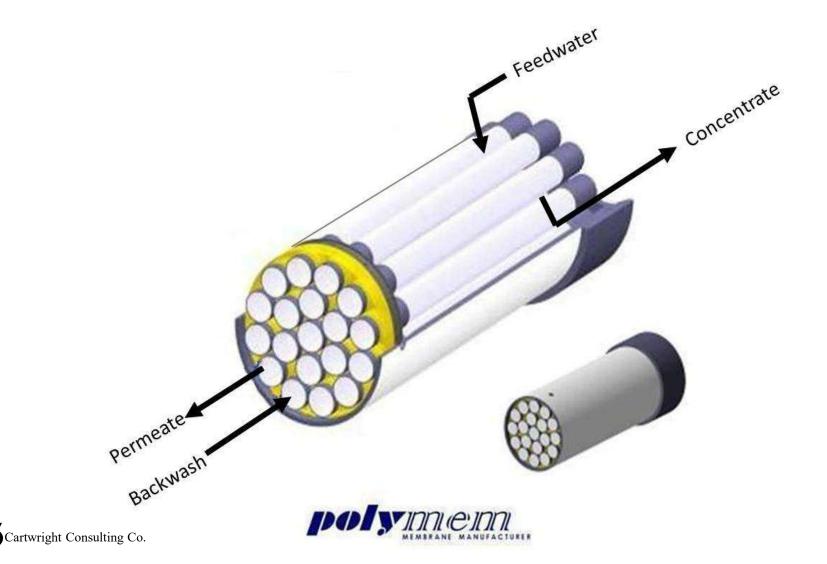


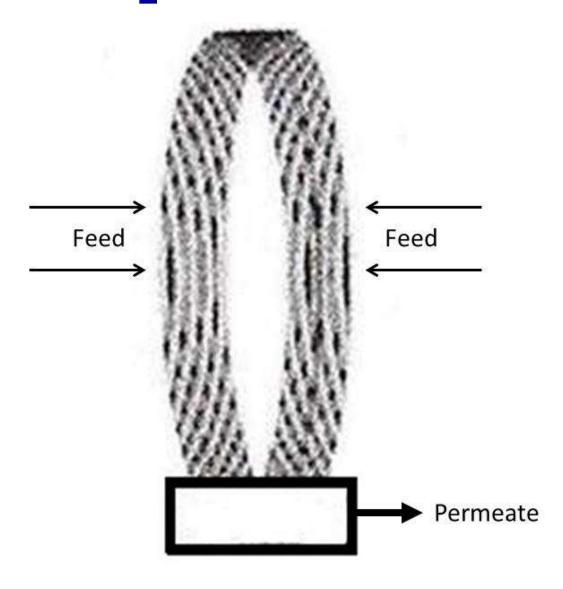
Plate & Frame Variables

- Panel size
- Panel material
- Membrane material
- Pore size
- Operating pressure
- Reliance on biohydraulics
- Membrane to panel attachment method

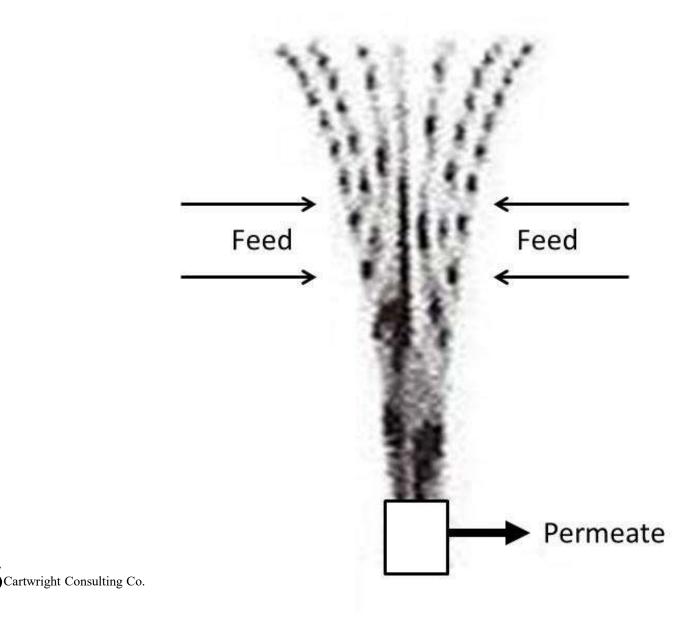
Tubular



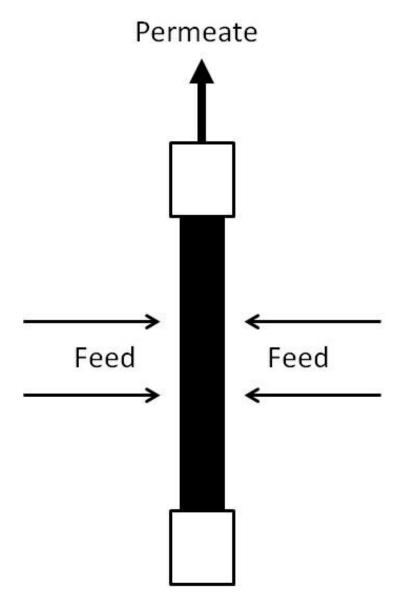
Tubular



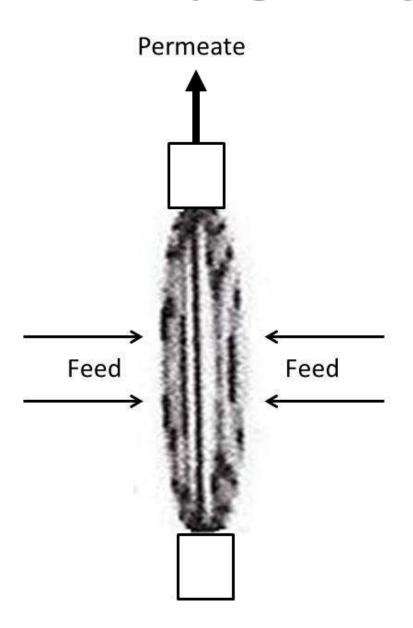
Hollow Fiber



U-Shaped Bundle



One-Sided Potted



Rigid Fiber Bundle

Cartwright Consulting Co.

Both Ends Potted

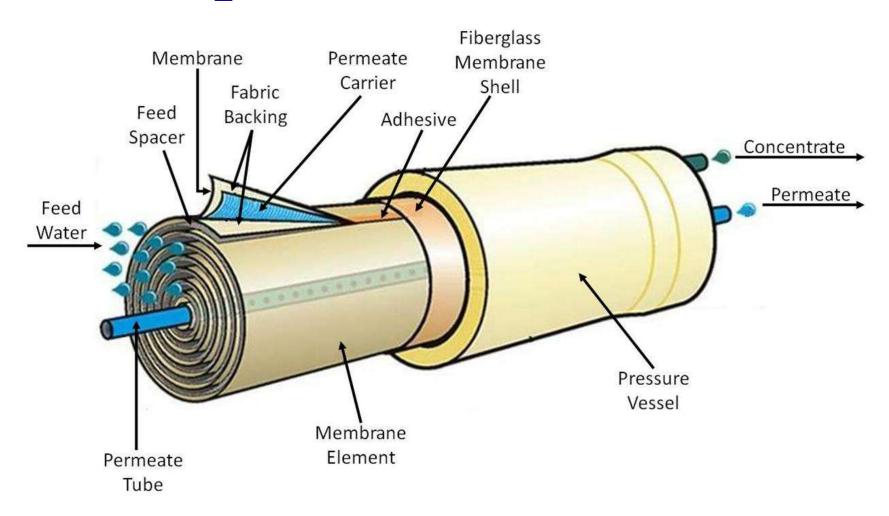
Hollow Fiber Variables

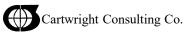
- Fiber diameter
- Method used to bundle the strands
- Number of strands per bundle
- Membrane material
- The method in which air is applied to the bundle
- Wall thickness

MBR Membrane Elements Compared

	Membrane Element Configuration			
Parameter	Plate and Frame	Hollow Fiber	Tubular	
Packing Density *	Moderate	High	Low	
Fouling Resistance	Moderate	Moderate	High	
Energy Requirement	Moderate	Low	High	
Backwashable	No	Yes	Yes	
Cleaning Ease	Moderate	Moderate	Easy	
Net Flux Range (L/m²/hr)	15-25	20-30	70-200	
MLSS (mg/L)	10,000-15,000	10,000-15,000	10,000-30,000	

^{*} Membrane area per total element volume




Spiral Wound

Spiral Wound

Membrane Materials

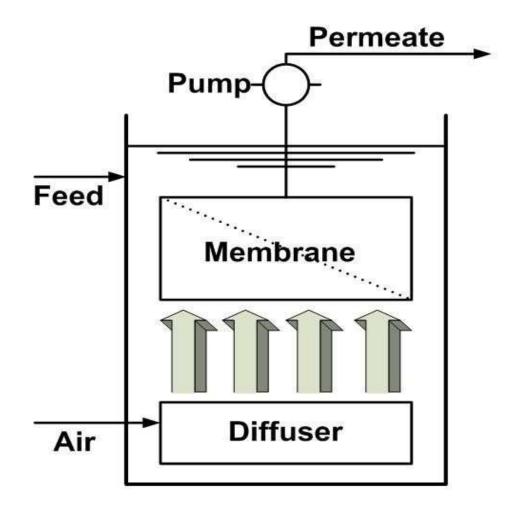
Microfiltration (MF) & Ultrafiltration (UF)

Materials of	Device Configuration			
Construction	Hollow Fiber	Tubular	Plate & Frame	Spiral Wound
<u>Polymeric</u>				
PS	X	Χ	X	X
PES	X	Χ	Х	X
PAN	X	Χ	Х	X
PE	_	Х	_	_
PP	Х	Х	Х	_
PVC	_	Χ	_	_
PVDF	Х	Х	_	_
PTFE	Х	_	Х	_
PVP	Х	Х	_	_
CA	Х	_	_	_
Non-Polymeric				
Coated 316LSS	_	Х	_	_
a − Alumina	_	Х	Х	_
Titanium Dioxide	_	Х	_	_
Silicon Dioxide	_	Х	_	_

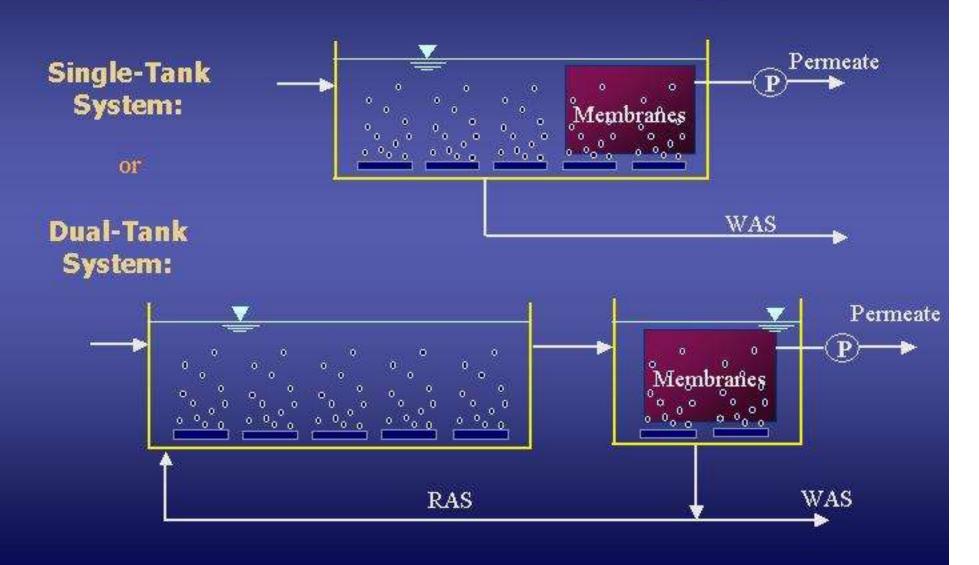
PS = Polysulfone PVDF = Polyvinylidene Fluoride
PES = Polyethersulfone PTFE = Polytetrafluoroethylene

PE = Polyethylene CA = Cellulose Acetate

PP = Polypropylene PVP = Polyvinylpyrrolidone


PAN = Polyacrylonitrile TF = Thin Film Composite

System Design


Immersed Application

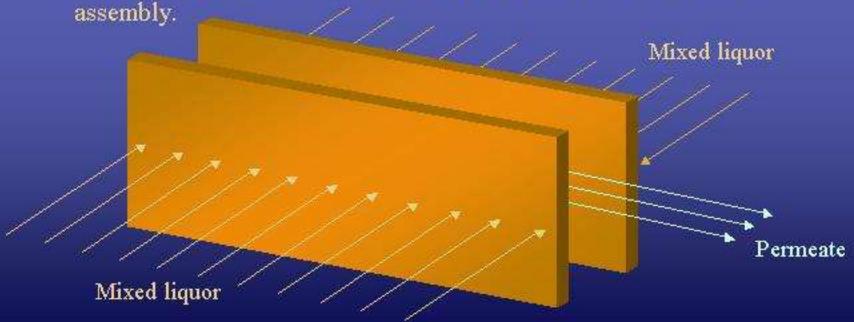
IMMERSED

Immersed MBR Configuration

Examples of Immersed Hollow-Fiber Membranes (Vertical Configuration)

Courtesy of ZENON Environmental Inc.

Example of Immersed Hollow-Fiber Membrane Cassette (Vertical)


Courtesy of ZENON Environmental Inc.

Types of Immersed Membranes (Cont'd)

* Flat sheets

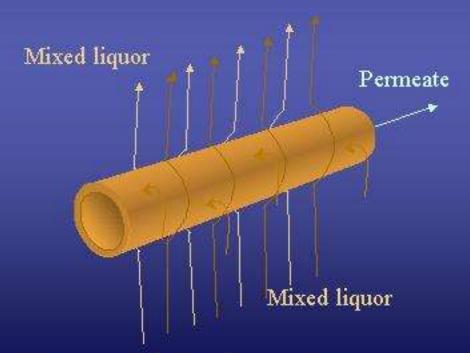
Flow is from outside of a pair of flat sheets to the inside between the flat sheets.

An intermediate media is typically included between the flat sheet membranes to allow the free passage of water from the membrane assembly

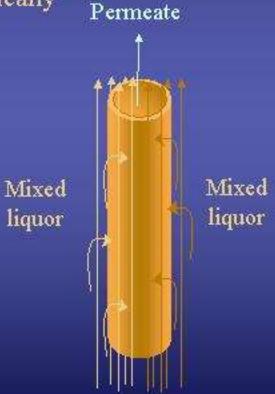
Example of Immersed Flat-Sheet Membrane Cassette (Vertical)

Courtesy of Kubota Corporation

Example of Immersed Flat Sheet Membrane Cassette Array (Vertical)

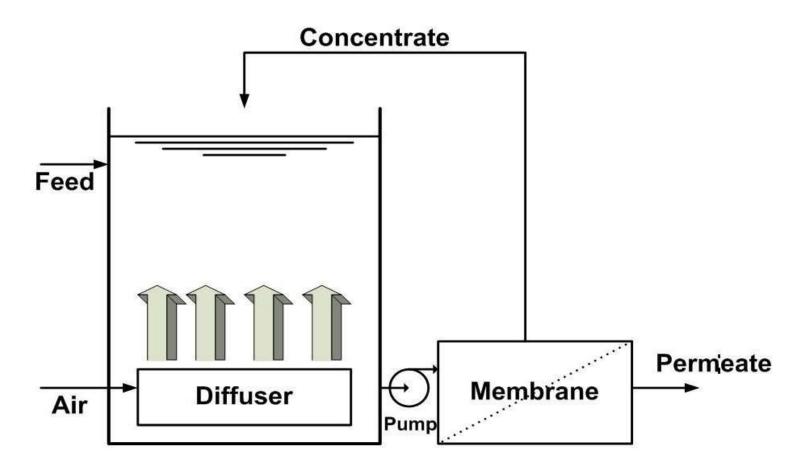


Types of Immersed Membranes


* Hollow fiber

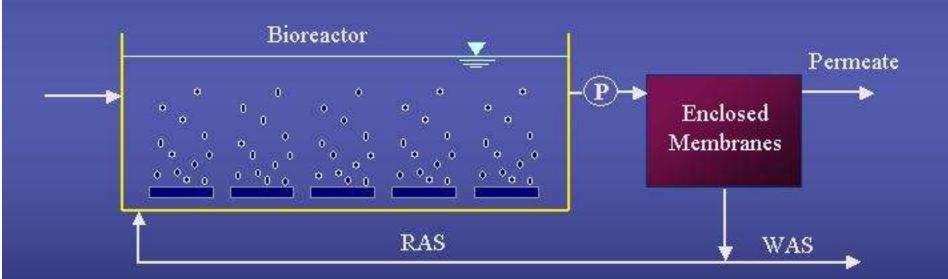
> fiber oriented either horizontally or vertically

> flow is from outside of fiber to inside

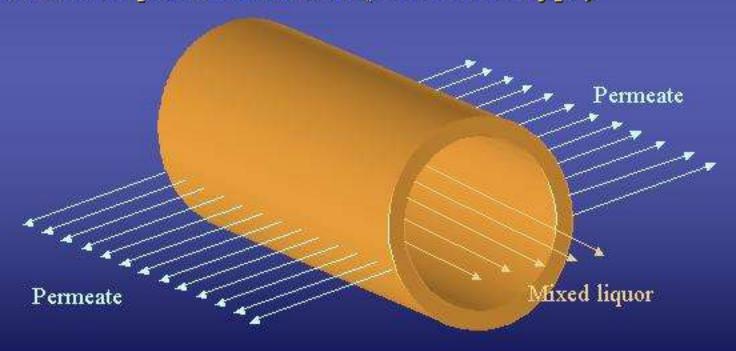


Horizontal Configuration

Vertical Configuration


External Application

External MBR Configuration



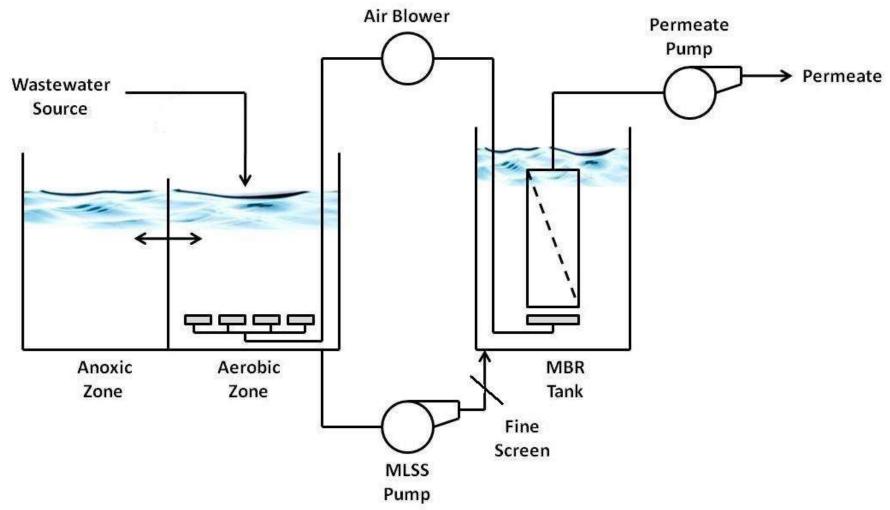
Example of Tubular External Membranes

Types of Enclosed Membranes

- * Tubular
- ❖ Modified plate and frame (ROCHEM type)

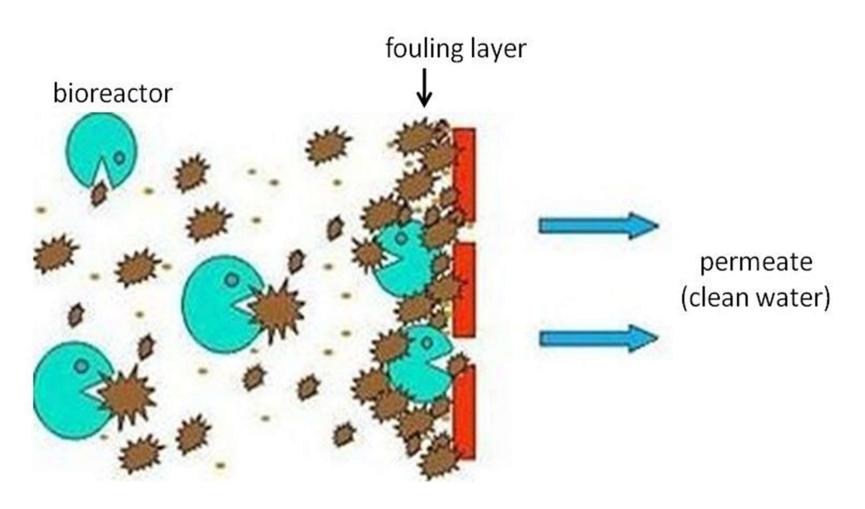
Immersed and External Designs Compared

Parameters	Immersed	External
Aeration Cost	High	Low
Pumping Cost	Low	High
Membrane Flux	Low	High
Cleaning Frequency	Low	High
Total Operating Cost	Low	High
Total Capital Cost	High	Low

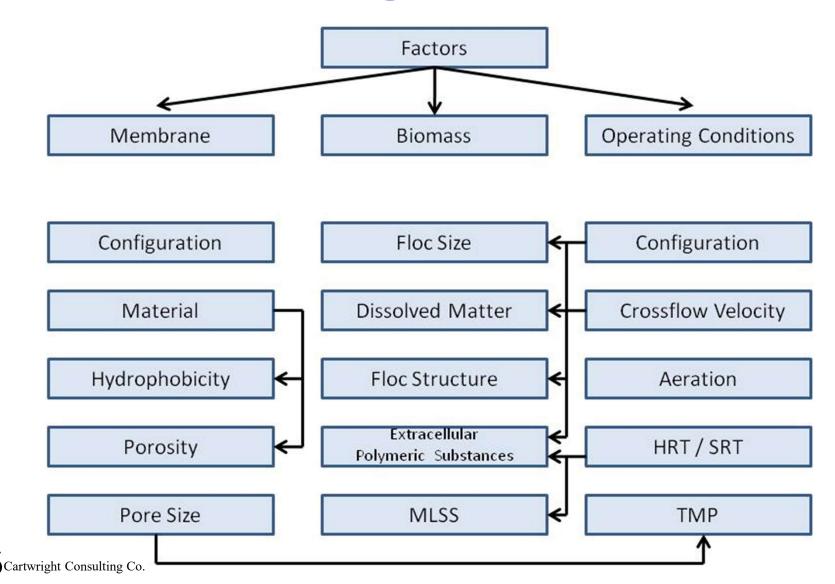

MBR System Components

- Fine screen
- Membrane cassettes containing elements
- Bioremediation tank(s)
- Permeate or feed pump
- Blowers with diffusers
- CIP (clean-in-place) system
- Backwashing/Backpulsing equipment

MBR Schematic



Operating Considerations



Membrane Fouling

Fouling Factors

Foulants

Municipal

Hair

Fibers

Plastics

Rags

Chemicals

Other

Industrial

F.O.G.

Chemicals

Other

Anti-Fouling Strategies

- Relaxing
- Backwashing
- Backpulsing Air/Permeate
- Chemicals

Chemical Cleanings

- Enhanced Backwash (daily)
- Maintenance Cleaning (weekly)
- Intensive Cleaning (1-2x/year)

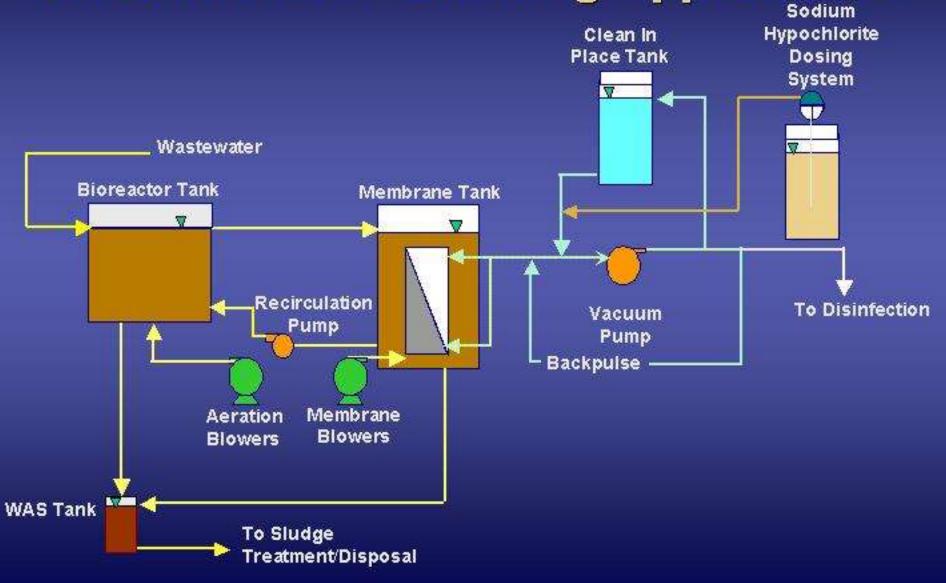
MBR Cleaning Chemicals

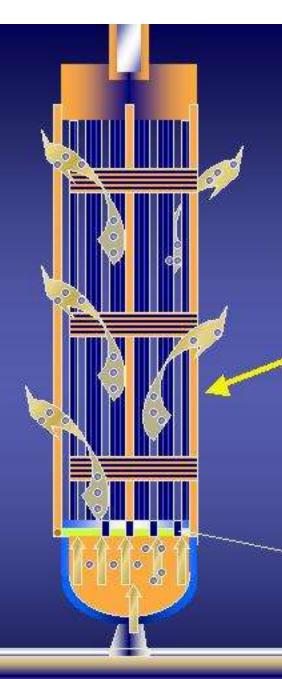
Agent	Chemical	Formula/Notation	Concentration
Detergent	Sodium hypochlorite	NaOC1	200 ppm Cl_2
Detergent	Hydrogen Peroxide (50%)	H_2O_2	0.5% (w/w)
Detergent	KOH, NaOH, NTA-Na-Salts	_	1% (w/w)
Enzymes	Ultrasil 67 + Ultrasil 69 (ECOLAB)	U67 + U69	0.5% (w/v) and 1% (w/v)
Acid	Hydrochloric acid	HC1	0.056% (w/w)
Acid	Citric Acid	$C_6H_8O_2$	1% (w/w)
Acid	HNO_3, H_3PO_4	_	1% (w/w)

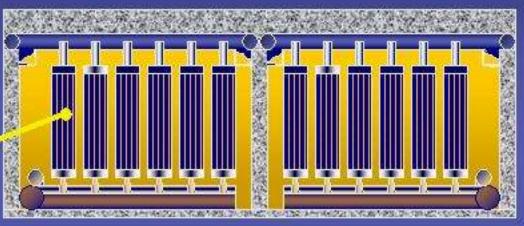
Conditions: pH: 2-11

Temperature: 20°C (Elevated temperatures may improve cleaning)

Time: 2 hour soak






- Frequent backpulsing of the membranes with clean permeate.
- "Maintenance cleaning" via prolonged backpulsing of the membranes with sodium hypochlorite-enhanced permeate.
- * "Recovery cleaning" via in-situ soaking of the membranes in a solution of sodium hypochlorite, citric acid or other cleaning solution depending on the type of foulant.
- Air scour via membrane aeration blowers to minimize the buildup of solids on the membrane surface.

Zenon's ZenoGem® System Uses the Four Cleaning Approaches

USFilter's Jet Aeration Uses Air Scour Cleaning

Operating Basin

Air/liquid scour of ports and fibers

Air

Mixed liquor jet system

MBR Applications

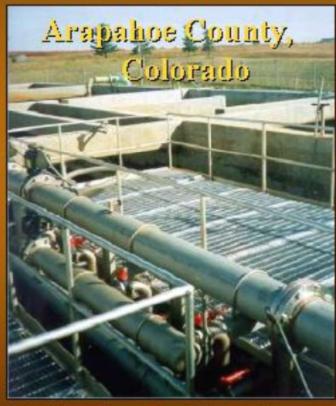
Treatment Objectives

Wastewater can be treated at municipal and industrial plants for either discharge or <u>reuse</u>:

A. Treatment for Discharge:

- Surface water
- B. Treatment for Reuse:
 - > Non-Potable Reuse:
 - Dual distribution system
 - Groundwater recharge
 - Irrigation
 - Industrial reuse

Indirect Potable Reuse


- Groundwater (aquifer) recharge
- Surface water augmentation

Treatment for Discharge: **Surface Water**

Nitrification and phosphorus removal, but not denitrification.

Nitrification, denitrification and phosphorus removal.

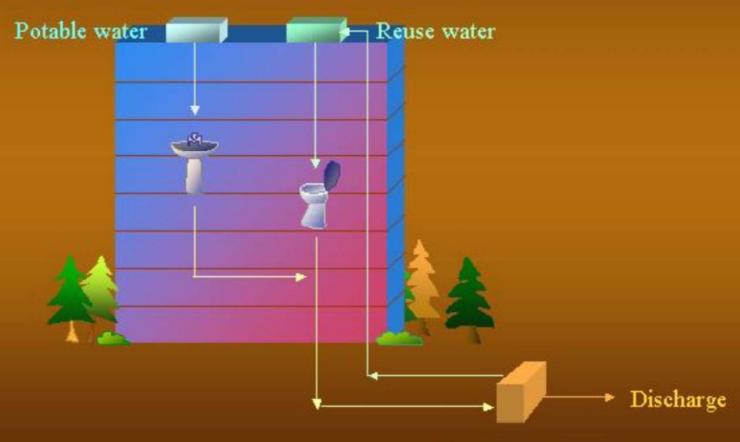
Treatment for Discharge: Surface Water (Cont'd)

* Application:

MBRs replace conventional clarifiers and filters in municipal wastewater treatment plants.

Competing technologies:

> Solids separation using clarifiers.


❖ Advantages of using MBRs:

- > Operational ease
- > Relatively simple upgrade to an existing treatment plant
- Improved effluent quality
- > Easier process control

* How widely is the application practiced:

Most plants in the US currently use conventional clarifier technology. However, interest in MBR technology has increased dramatically in the last few years.

Non-Potable Reuse: Dual Distribution System

MBR Installation

Non-Potable Reuse: Dual Distribution System (Cont'd)

· Application:

- Domestic wastewater treated and reused for non-potable applications.
- Competing technologies:
 - > Small scale conventional biological treatment processes
- Advantages of using MBRs:
 - > Operational ease
 - > Better quality effluent
 - Easier process control
- How widely is the application practiced:
 - A number of high rise buildings and holiday resorts are using MBRs for this purpose.

- Effluent is recharged to groundwater and extracted at later date for non-potable uses.
- Movement of recharged effluent is carefully controlled using monitoring wells to ensure it does not impact groundwater used for potable uses
- Using an infiltration basin is one technique used for groundwater recharge.
 Wastewater

Non-Potable Reuse: Groundwater Recharge (Cont'd)

* Application:

- Municipal/industrial wastewater is treated with MBR technology, producing an effluent which is discharged to storage ponds and allowed to percolate into groundwater aquifers.
- Vadose zone, direct injection alternatives.

Competing technologies:

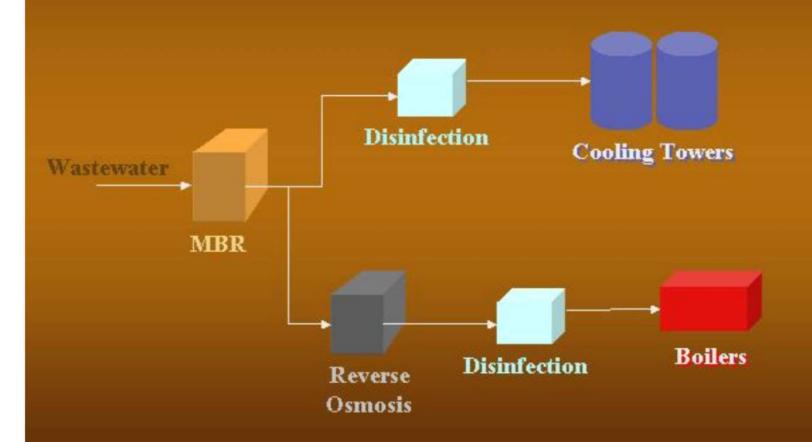
 Chemical flocculation and sedimentation followed by microfiltration/ultrafiltration (MF/UF) or by granular media filtration.

Advantages of using MBRs:

- > Operational ease.
- > High quality effluent which will allow recharge of groundwater aquifers and potential reuse when extracted through boreholes.

* How widely is the application practiced:

Not widely practiced yet, but a growing number of facilities are considering this approach, often in conjunction with reverse osmosis (RO) post-treatment of MBR effluent.


Non-Potable Reuse: Irrigation (Cont'd)

Application:

- Irrigation application of final MBR effluent
- Competing technologies:
 - Conventional biological treatment processes, with or without tertiary filtration
- Advantages of using MBRs:
 - > Higher quality effluent
 - Smaller footprint than required for conventional activated sludge processes
 - Easier process control
- How widely is the application practiced:
 - Irrigation use is currently restricted because of the higher cost of MBR compared to conventional treatment.

Non-Potable Reuse: **Industrial Reuse**

Non-Potable Reuse: Industrial Reuse (Cont'd)

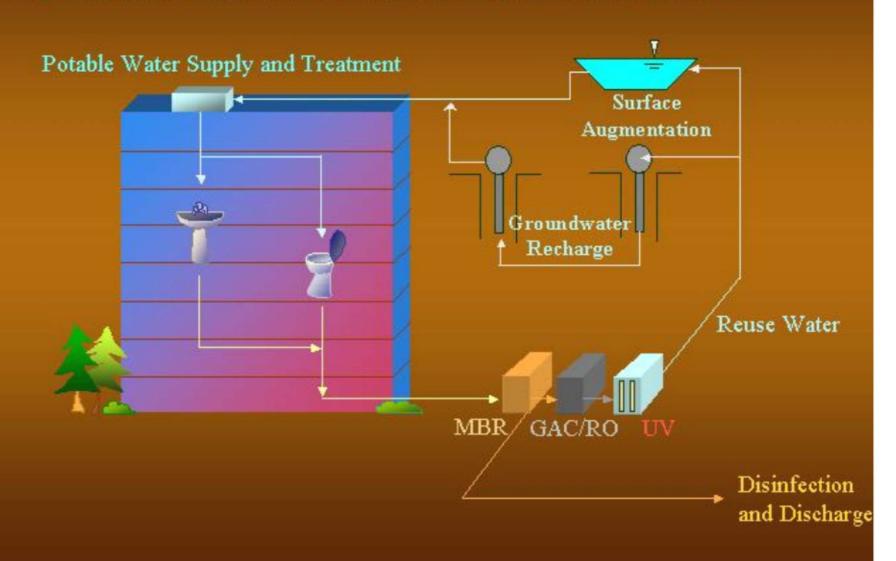
Application:

- Cooling tower make-up
- Boiler feedwater

Competing technologies:

- Conventional biological_treatment process, with or without nitrification (for cooling tower make-up)
- > Conventional biological treatment process followed by MF/UF and RO (for boiler feedwater)

Advantages of using MBRs:


- > Higher quality effluent; small facility footprint; easier process control
- > For boiler feedwater, MF/UF process is eliminated.

How widely is the application practiced:

Not widely practiced yet, but application will grow as advantages are recognized and MBR experience base builds.

Indirect Potable Reuse

Indirect Potable Reuse (Cont'd)

* Application:

- Municipal/industrial effluent treated with MBR technology, followed by tertiary treatment such as GAC or RO and a disinfection step.
- > Surface water augmentation
- Groundwater recharge

Competing technologies:

 Conventional biological treatment processes followed by MF/UF, either RO or granular activated carbon (GAC) filtration, and ultraviolet (UV) disinfection

Advantages of using MBRs:

- > Operational ease
- Smaller footprint than required for conventional activated sludge and stand-alone MF/UF processes
- Reduced waste stream volume
- Easier process control

How widely is the application practiced:

 Very limited current application, but is increasingly becoming a viable treatment option

Replacing a Clarifier with a Membrane Separator

Potential Benefits

- Benefit 1: Virtually all biomass is retained.
 - > Effluent SS concentrations <1 mg/L, compared to clarifier effluent SS concentrations typically 5 to 20 mg/L.
 - Excellent, consistent effluent quality is achieved. Solids loss. commonly observed in clarifiers due to such factors as flow surges and blanket rising, is prevented with a membrane separator.
 - Membranes provide a positive barrier to and removal of most pathogens.
 - Can be beneficial for water reuse or recycling applications.

Replacing a Clarifier with a Membrane Separator (Cont'd)

* Benefit 2: High SRTs can be achieved.

- A more stable high SRT (and therefore high MLSS) can be maintained with membranes since uncontrolled loss of solids over the weirs of gravity settlers is avoided.
- A high SRT should result in reduced sludge production.
- A high SRT is needed when slow-growing bacteria must be retained, such as nitrifiers for NOD oxidation.
- Higher MLSS concentrations allow smaller aeration basins to be utilized, which reduces cost and footprint.
- Odor control is simplified by decreasing surface area of biological treatment reactors.
- Benefit 3: Secondary clarifiers and effluent filters can be eliminated, thereby reducing complexity of overall treatment plant layout and footprint area.

Replacing a Clarifier with a Membrane Separator (Cont'd)

Potential Drawbacks

- * Drawback 1: Higher capital investment costs.
- Drawback 2: Higher operational costs (e.g. membrane replacement and air scour energy).
- ❖ Drawback 3: Complex cleaning systems.
- Drawback 4: High operation and maintenance effort required (for membrane cleaning of single-tank systems).

Myths and Realities

MBR Myths & Realities

Ten persistent myths and the realities of MBR technology for municipal applications

B. Lesjean, A. Tazi-Pain, D. Thaure, H. Moeslang and H. Buisson

MBR Myths & Realities

	Subject	Prevalent Perception	The Facts
1	MBR Market	The MBR market is an industrial duopoly.	The two pioneering companies Kubota and GE-Zenon are leaders but other commercial systems are available and increased competition is expected in coming years.
2	Filtration flux	The technology has become more competitive following increasing design and operation flux.	In the last decade, the design and operation filtration flux has increased only moderately.
3	Energy demand	Specific energy demand of an MBR system is <1 kWh/m ³ .	True only for larger plants operated under nominal design with optimized operation.
4	Competitiveness	The MBR technology will extensively replace conventional activated sludge plants.	Extensive switch unlikely unless further significant technological breakthroughs.
5	Decentralized systems	The MBR technology is a viable solution for decentralized sanitation.	With current commercial solutions, not cost-effective for most decentralized or semi-central applications.

MBR Myths & Realities

	Subject	Prevalent Perception	The Facts
6	Membrane impact on treatment	The membrane contributes to the treatment performance.	Direct contribution is insignificant except for the disinfection and turbidity removal.
7	Disinfection	UF membranes guarantee better disinfection performance than MF membranes.	Not true for bacteria: both MF and UF achieve 6 LRU (log removal unit). Minor superiority of UF membranes for virus removal (both achieve 4 LRU).
8	Trace organics	MBR plants are better for removing organic micropollutants.	Under similar operation conditions, MBR shows very similar performances to conventional activated sludge.
9	Sludge production	MBR produces less sludge than conventional activated sludge plants.	Wrong statement. MBR sludge yield is slightly higher due to complete retention by the membrane of particles and colloids.
10	Fouling indicator	Polysaccharides, proteins, Capillary Suction Time (CST), Time to Filter (TTF), etc., are relevant indicators of membrane fouling.	No recent studies could identify universal single indicators.

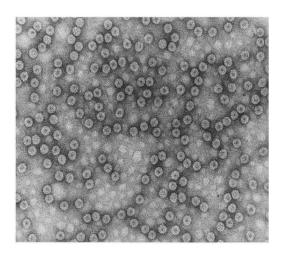
Conclusions

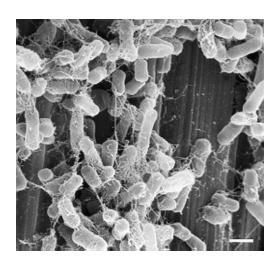
- ✓ MBR is a proven technology
- ✓ Capital costs going down
- ✓ Provides direct reuse
- ✓ Smaller footprint (land conservation)

Disinfection

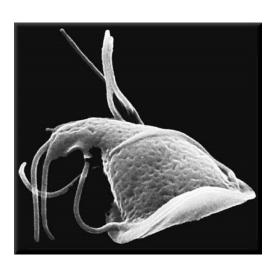
Waterborne Pathogens

A pathogen which grows in the water. Approximately 300 in the U.S. Examples found in tap water.


- Legionella
- Pseudomonas aeruginosa
- Mycobacterium avium
- Acanthamoeba



Waterborne Pathogens

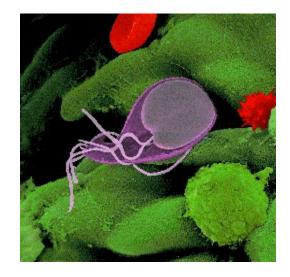

Viruses

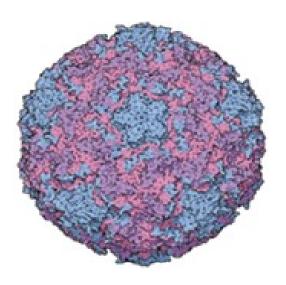
Bacteria

Parasites

Categories of Microorganisms

- Bacteria
- Protozoa
- Viruses




Illustrations

Bacteria

Parasites Viruses

Agents of Waterborne Disease

Category	Pathogen		
Bacteria	Vibrio cholerae		
	Salmonella spp.		
	Shigella spp.		
	Toxigenic Escherichia coli		
	Campylobacter spp.		
	Yersinia enterocolitica		
	Plesiomonas shigelloides		
	Legionella		
	Helicobacter pylori		
Protozoa	Giardia lamblia		
	Cryptosporidium parvum		
	Entamoeba histolitica		
	Cyclospora cayetanensis		
	Isospora belli		
	Microsporidia		
	Ballantidium coli		
	Toxoplasma gondii		
	Naegleria fowleri		

Category	Pathogen
Viruses	Norovirus
	Sapprovirus
	Poliovirus
	Coxsackievirus
	Echovirus
	Paraechovirus
	Enteroviruses 69-91
	Reovirus
	Adenovirus
	Hepatitis A
	Hepatitis E
	Rotavirus
	Astrovirus
	Picobirnavirus
	Coronavirus

Sensitive Population

- Elderly (>65 years)
- Very young (<5 years)
- Chronically ill (diabetes, dialysis patients, AIDS)
- Immunosuppressed (organ transplants, cancer treatment)
- Pregnant women

Sensitive Sub-Populations in the United States

35,000,000

19,000,000

10,000,000

8,200,000

3,800,000

350,000

50,000

persons >65 years old

children under 5

person with diabetes

cancer patients

pregnant persons

AIDS patients

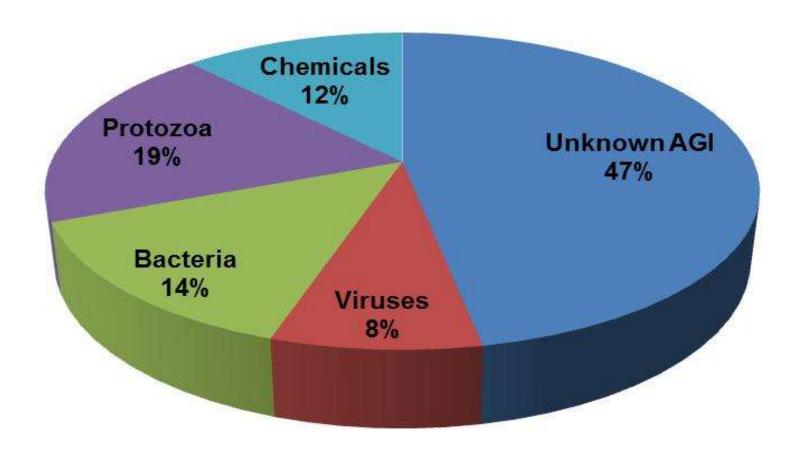
organ transplants

20-26% of the U.S. population

Estimated Number of Endemic Cases of Waterborne Illness in U.S.

- Groundwater (municipal) = 5,400,000
- Groundwater (non-community) = 1,100,000
- Surface water supplies = 13,000,000
- Intrusion into distribution System = 5,000,000

Total estimate = 24,500,000 cases/year



Impact of Diarrhea

Worldwide Morbidity and Mortality of Common Infections

Disease	Cases / Yr	Deaths / Yr
Diarrhea	3 to 5 billion	5 to 10 million
Respiratory Infections	3 to 5 billion	4 to 5 million
Malaria	150 million	1.2 million
Measles	80 million	0.9 million
Schistosomiasis	20 million	0.75 million
Wooping Cough	20 million	0.3 million

U.S. Drinking Water Outbreaks (1971 - 2002)

Water Contamination Concerns

Treatment

- Pathogen removal efficacy/ Treatment plant reliability
- Untreated private/groundwater supplies
- Disinfection by-products/ resistance
- Decentralized wastewater reuse/treatment
- Climatic events

Distribution system

- Intrusion events
- Uneven contaminant distribution
- Water-based pathogens

Monitoring

- Poor indicators of quality
- Lack of real-time technologies

Risk Assessment

- Population susceptibilities, perceptions, compliance

Bacteria

- Single-celled organisms
- Enclosed within a cell wall
- Size: 0.1 to 10µ
- Survive any environment
- Form biofilms

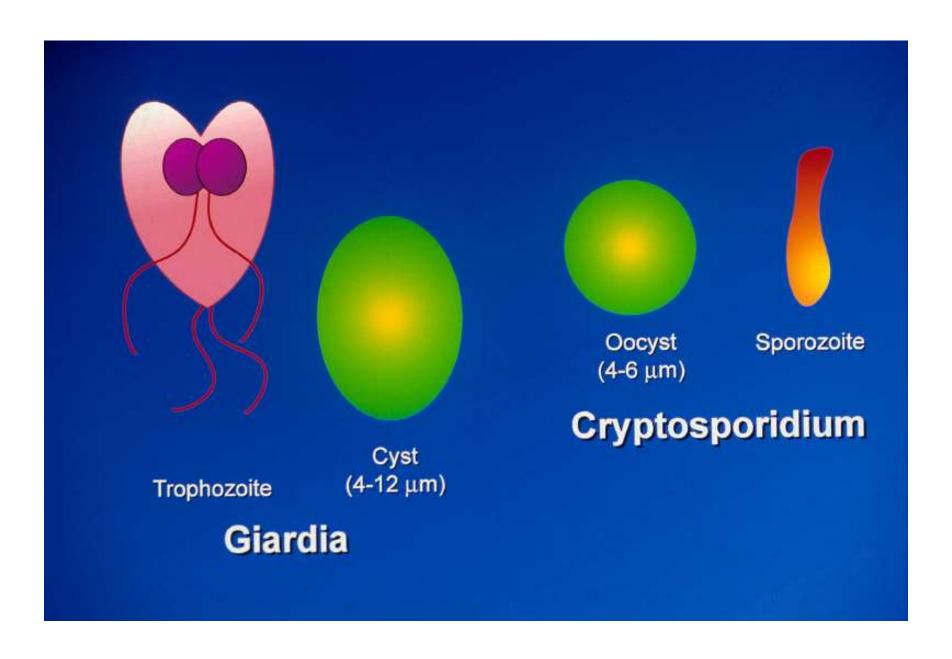
Bacteria

- Survive in any environment
- Form biofilms

Waterborne Bacteria

Aeromonas hydrophila	sepsis, gastrointestinal illness
Yersinia enterocolitica	gastroenteritis
Salmonella (non)/typhi	paratyphoid fever, gastroenteritis, typhoid fever
E. coli O157:H7	gastroenteritis, vomiting, hemolytic uremic syndrome, hemorrhagic colitis
Shigella spp.	dysentery
Campylobacter sp.	gastroenteritis, nervous system disorders
Helicobacter pylori	Ulcers, gastric cancer
Legionella pnemophila	Legionnaires Disease, Pontiac fever, pneumonia
Vibrio cholerae	diarrhea

Protozoa


- Single-celled animals
- Live and multiply in gastrointestinal tract
- Size: 1-100µ
- Produce cyst/oocyst protective shell

Waterborne Protozoa

Cryptosporidium parvum	cryptosporidiosis
Microspora	gastroenteritis
Giardia lamblia	giardiasis
Entamoeba histolytica	dysentery
Cyclospora cayetanensis	gastroenteritis
Acanthamoeba	eye infections
Toxoplasma gondii	similar to mononucleosis
Naegleria fowleri	amoebic meningoencephalitis

Naegleria Fowleri

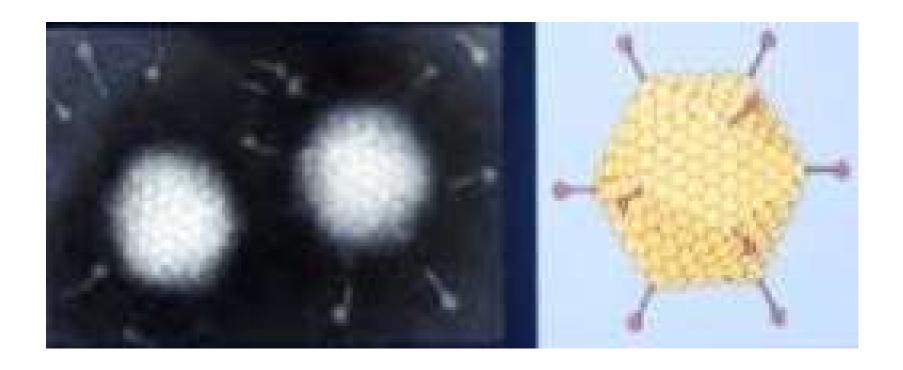
- Thermophilic 25 to 30°C optimal, but can grow at 44-45°C
- Cysts can tolerate 51 to 65°C
- Cysts survive poorly at 0°C
- Cysts and trophozites are sensitive to drying

Viruses

- Intracellular parasites require host to replicate.
- Can survive for weeks or months in water.
- Greatest infectivity of all pathogens.
- Require lowest number to cause infection.
- Size: 0.01 to 0.10µ.

Waterborne Viruses

adenovirus	conjunctivitis, diarrhea, encephalitis, respiratory & heart disease
astrovirus	diarrhea
calicivirus	diarrhea, "stomach flu"
coronavirus	diarrhea
hepatitis A virus	hepatitis
rotavirus	diarrhea
enterovirus	paralysis, meningitis, rash, fever, myocarditis, respiratory disease, diarrhea
reovirus	respiratory disease


Adenovirus

- Second most common cause of childhood gastroenteritis
- Cause of eye, throat, and respiratory infections
- Outbreaks associated with swimming and drinking water
- Most common enteric virus in sewage
- Longest surviving enteric virus in water?
- Enteric virus most resistant to UV light disinfection



Adenovirus

Norovirus

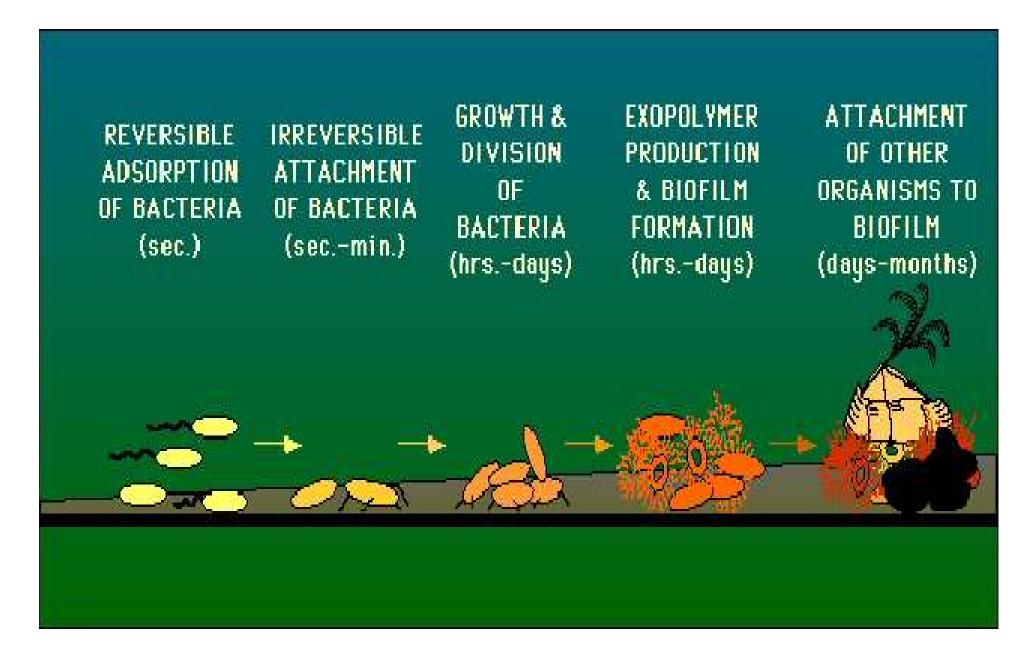
- No long lasting immunity
- Susceptibility related to types A, B and O blood groups
- Number of outbreaks in Japan have increased ten fold over last year
- Outbreaks in hospitals, cruise ships, schools, hotels, casinos

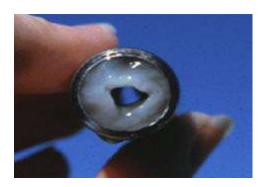
Number of Microorganisms Shed from an III Individual

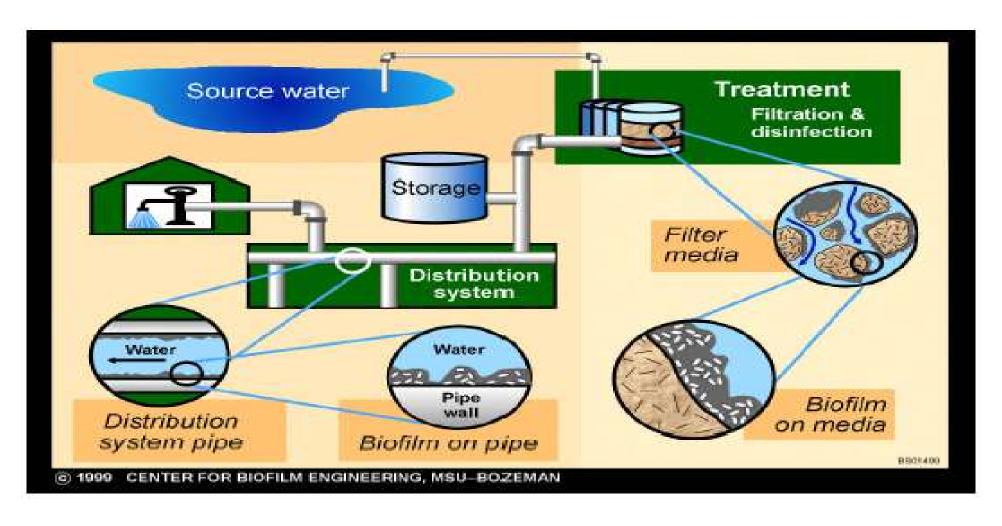
- Ingesting 1-10 norovirus can make you sick
- A single 500 mL diarrhea stool can contain over 1 billion noroviruses (7 million per mL)
 - 10-20 diarrheal stools per day
 - $-10 \times 10^9 = 10$ billion virions from one sick individual in one day

Populations at Greatest Risk

- Immunocompromised 10-100 times more likely to die from exposure to a microbial pathogen (Hierholzer, 1992; Meyers, 1989)
- 12% of clinical AIDS patients infected with adenovirus
- Cryptosporidium mortality rates in AIDS patients up to 50%
- BMT mortality rates from enteric virus infections, 59% (Yolken et al., 1982)
- Cryptosporidium prevalence in transplant patients, 20% (Udgiri et al., 2004)




BIOFILMS



Biofilm Formation

Biofilms

95% of Bacteria in Drinking Water Systems are in Biofilms

We know very little about biofilms

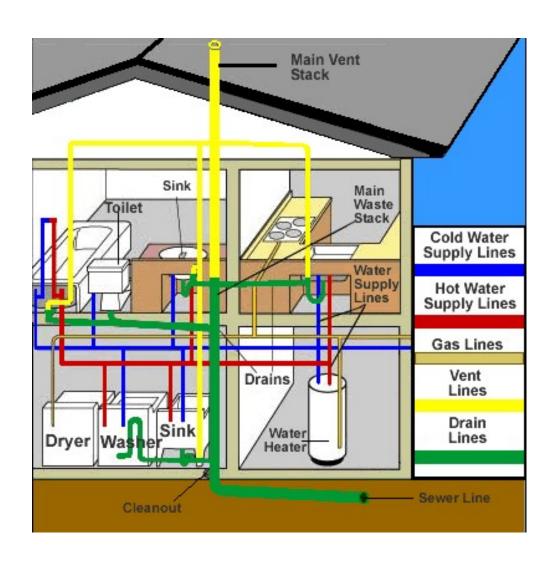
- Attachment/Detachment Mechanisms
- Bacteria Survival & Reproduction inside biofilms
- Effects of external factors on biofilms

Water Chemistry

pН

Temperature

Surface characteristics


Piping materials

Flow characteristics

10 to 1,000,000 greater bacteria concentration in household plumbing over supply lines

Mitigation

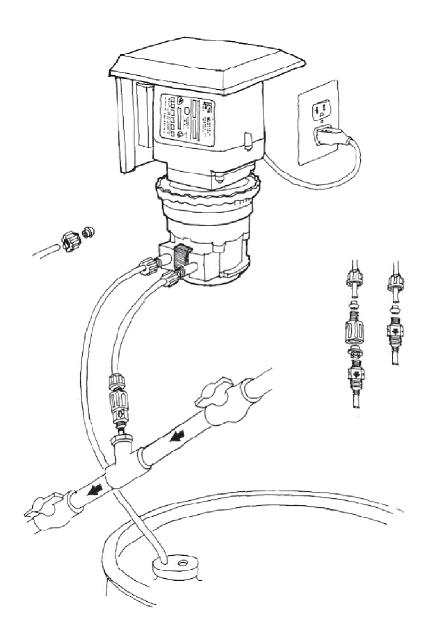
- Disinfection technologies
- Physical removal
- Plumbing system design, operation and maintenance

Ideal Disinfectant

- Kills (or inactivates) microorganisms.
- Has no deleterious effect on materials of construction or components of the water treatment system.
- Is stable and retains its effectiveness during the disinfection process.
- Is easily removed from the entire water treatment system.
- Is easily monitored with a simple test kit.

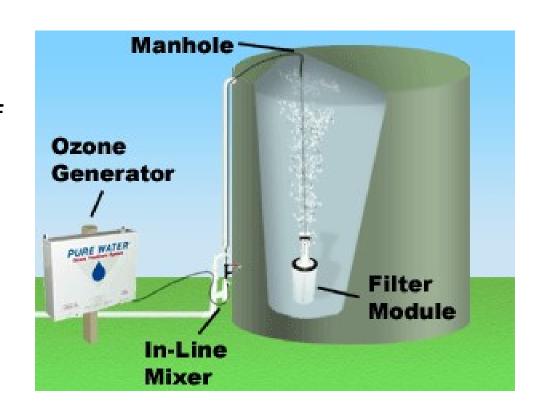
THE IDEAL DISINFECTANT DOES NOT **EXIST**

Chemical Disinfectants

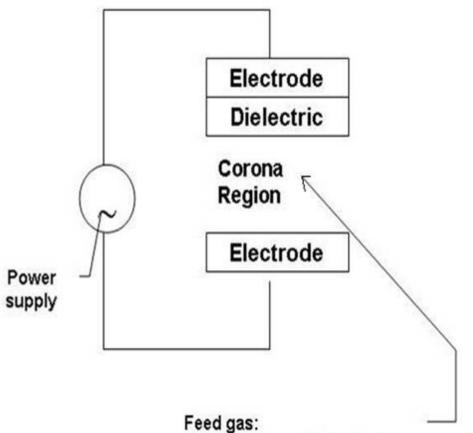

- Chlorine
- Chloramines
- Chlorine Dioxide
- lodine
- Ozone

Chemical Injection

Chemical Injection


C-t Values for Chlorine Inactivation of Microorganisms* in Water

Organism	Temp	рН	C·t
E. coli	5	6.0	0.04
E. coli	23	10.0	0.6
L. pneumophila	20	7.7	1.1
Poliovirus	5	6.0	1.7
G. lamblia	5	6.0	54-87
Cryptosporidium	25	7.0	>7200


^{*99%} Inactivation

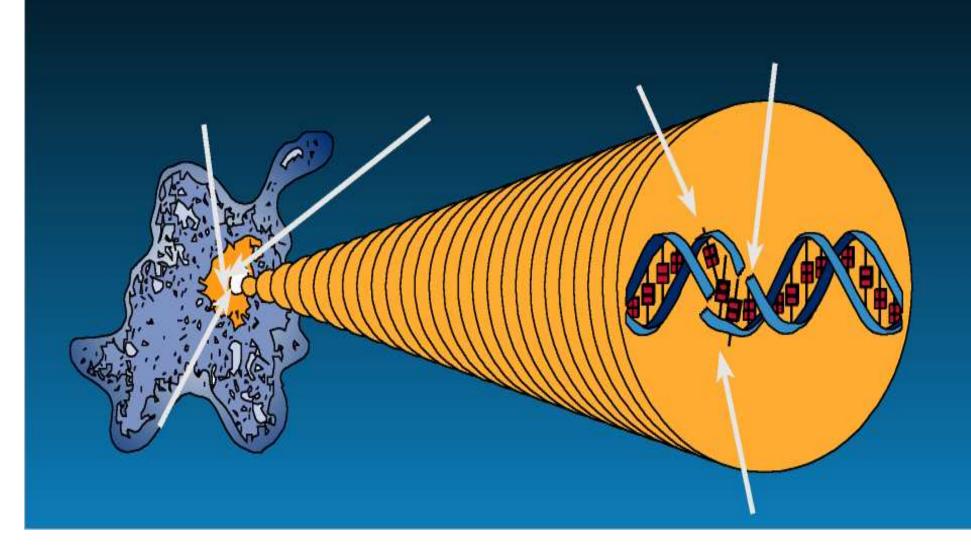
Ozone Disinfection

- Unstable colorless gas produced by discharging electricity in dry air
- Generated at the point of use (not shipped in gas cylinders)
- Produced by discharging electricity in dry air (corona discharge)
- Soluble in water up to about 5 mg/L

Corona Discharge Ozone Generation

Feed gas: Air – Oxygen – Misc. Gases (must be moisture-free)

Non- Chemical Disinfectants


- Ultraviolet Irradiation
- Heat

How UV Works

Ultraviolet light penetrates the membranes and breaks down the molecular structure of a microbes's DNA, rendering it harmless.

UV Dosage for 99% Inactivation

Pathogen	UV Dosage MWs/cm ²
Enteric bacteria	3-8
Mycobacterium intracellulare	25
Cryptosporidium parvum	3-5
Giardia lamblia	40
Encephalitozoon intestinalis	5
Acanthamoeba	60
Adenovirus	109

WATER CONTROL MODEL RW-UV-40

Heat

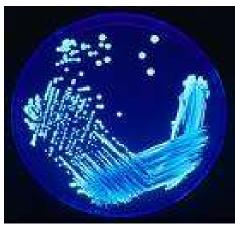
Water Temperature >140°F (60°C)

Problems:

- Handling difficulties
- Regulations
- Materials of construction
- Energy
- Temperature at outlets

LEGIONNAIRES' DISEASE

Legionella bacteria can cause Legionnaires' Disease



Legionella Spp.

Legionella Transmission is by Aerosol Inhalation

no person-to-person transmission

INHALATION ONLY UNDER REPORTED - >18,000 CASES/YR >10% ARE FATAL

Transmitted Via:

- Showers
- Faucets
- Ventilators
- Misters
- Cooling Towers
- Decorative Fountains
- Ice Machines
- Nasogastric Tube Feeder

ASHRAE STANDARD

Controlling Legionella Bacteria

- Copper-Silver Ionization
- Chlorine Dioxide
- Chloramines
- Hyperchlorination
- POU Filtration
- UV Irradiation

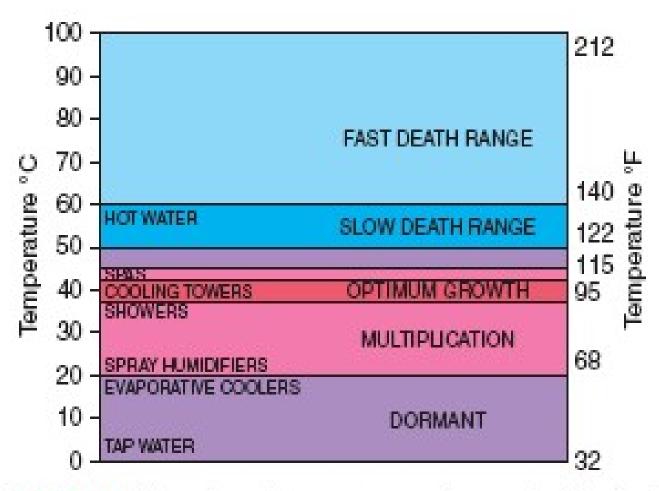


FIGURE 22.6 The effect of temperature on the growth of Legionella

Copper-Silver lonization

Chlorine Dioxide

Physical Removal

POU Filters

Impact of Point-of-use filtration on Pseudomonas Infections in an Intensive care unit (Trautmann et al, 2008)

- Pseudomonas infections were decreased by 85% (p<0.005)
- Invasive infections declined by 56%

POU Filtration

Plumbing Design & Operation

- Maintain turbulent flow conditions in piping (velocity 10-15 ft/sec)
- Maintain adequate pressure
- Minimize stagnant flow
- Eliminate deadlegs
- Hot water continuous recirculation
- Smooth interior joints
- Materials of construction

Copper-biostatic

Subject to corrosion

Physically strong

Plastic

Not subject to corrosion Not as strong

Backflow prevention

Flow

Reynolds Number

Re = diameter x mass velocity viscosity Re <2,000 = Laminar Flow Re >4,000 = Turbulent Flow

Water Treatment: A Multi-barrier Approach

Source water protection

- developmental boundaries
- wastewater treatment requirements
- pollutant discharge regulations
- controlling wild animal activity in the area

Municipal water treatment (160K+)

- Coagulation and Sedimentation
- Filtration
- Disinfection

Secure distribution

Disinfectant residual

Distribution

- Maintaining a residual disinfectant in the distribution pipes is critical
 - Cross connections between sewer and water lines
 - Back siphoning due to pressure changes
 - Reduction of biofilm growth on the interior of the pipes
 - Tucson has 4,000 miles of drinking water mains (2004)

Home Distribution Systems – The Big Unknown

- Bacteriological water quality of water significantly deteriorates in the home distribution system. (Pepper et al., 2004)
 - HPC bacteria in
 - Groundwater source 1-10 cfu/mL
 - Distribution system 10-100 cfu/mL
 - Household tap 1,000-1,000,000 cfu/mL
- The source of Legionella,
- M. avium, H. pylori, Naegleria, etc.

POU Health Benefits

- Milwaukee outbreak- prevent morbidity/mortality
- Payment et al. (1991) gastrointestinal illness reduced by 50% by drinking RO treated tap water vs tap water.
- Tapwater bottled at the treatment plant: 14% more illness than purified bottled water drinkers (Payment, 1997).
- Children gain the most by having a POU system in place.
 - 2-5 y: 40% more infections from tap water
 - 17% more disease in children drinking bottled tap water vs POU treated water (Payment, 1997).

Site Specific

Conclusions

Game is Changing

New pathogens More immunocomprised individuals

Contact Information

Peter S. Cartwright, PE

pscartwright@msn.com

www.cartwright-consulting.com

1/952-854-4911

