

Treatment of Oil-Produced Water By Advanced Electrochemical Oxidation Process

B. S. Tawabini

King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261, Saudi Arabia

Outline

Introduction: Fresh Water Scarcity

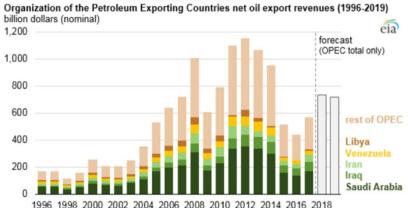
The Produced Water: Challenges & Management

Study Objectives

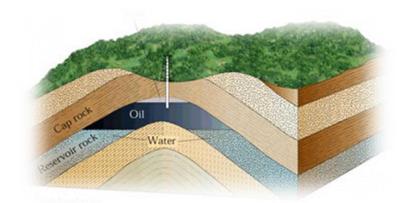
Methodology

Results and Conclusion

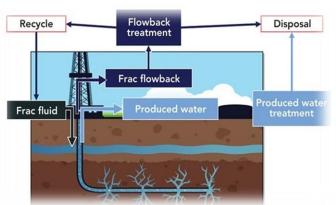
Introduction


- The global fresh water scarcity
- ❖ Saudi Arabia is one of the largest oil producers in the world but also suffers form the scarcity of fresh water resources.
- The Saudi national water strategy considers treated wastewater an integral part of water resource planning.
- ❖ The strict discharge limits forced industrial facilities to search for best available technologies to treat polluted water.

Oil & Gas Industry – An Economic Drive



- Energy is essential to life and all living organisms
- Economic drive of many countries
- Oil, coal & gas fuels the world
- The petrochemical products are heavily used
- Crude oil is most traded commodity in international market

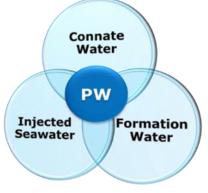


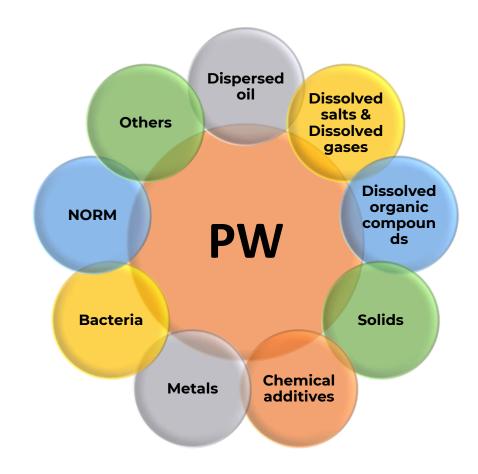
What is Produced Water (PW)?

- A term used in the oil industry to describe water that is produced as a byproduct during the extraction of oil and natural gas.
- It may include: natural water, formation water and injected water.
- May also generate from EOR activities designed to increase oil production such as hydraulic fracking and flooding operations.

The Produced Water Dilemma

- The issues of concern related to PW management include:
 - The huge quantity of water used (1 bbl. of oil, 4 10 bbl. of water)
 - More than 70 billion bbl of PW is generated per year in the petroleum industry worldwide
 - ❖ The contamination of freshwater resources
 - The consequences of its management strategies
- PW contains high levels of chemicals that cause harm to the environment if improbably disposed of.
- ❖ Phenols, BTEX, solvents and metals are common water **pollutants** that are health hazards.
- Treating PW to the degree of recycle & reuse for beneficial use is quite challenging.





Produced Water Characteristics

- The chemical and physical characteristics of PW vary considerably depending on the source
- Characteristics also vary from well to well.

❖ PW is a highly saline, chemically complex and contains the characteristics of the formation.

Characteristics of PW

Parameter	Abdalla et al., 2011 ^b	Rosenblum et al., 2017 ^c	
Total alkalinity (mg/L)	138	475	
Hardness (as CaCO ₃) (mg/L)	17,700	-	
Total Suspended Solids (TSS) (mg/L)	99	172	
Total Dissolved Solids (TDS) (mg/L)	67,300	18,756	
Turbidity (NTU)	80	223	
Chloride (mg/L)	41,850	11,650	
Bromide (mg/L)	445	168.5	
Conductivity (mS/cm)	16,750	+	
Total Kjeldahl nitrogen (mg/L)	86.1	-	
Ammonia nitrogen (mg/L)	71.2	-	
Biochemical Oxygen Demand (BOD ₅) (mg/L)	144	-	
Chemical Oxygen Demand (COD) (mg/L)	4,870	2,543	
Total Organic Carbon (TOC) (mg/L)	62.8	-	
Dissolved Organic Carbon (DOC) (mg/L)	114	-	
рН	-	6.80	

Parameter	Value	
рН	8.0	
Conductivity (mS/cm)	13,288	
TDS (mg/L)	8,637	
Total Alkalinity (mg/l as CaCo3)	122	
Turbidity (NTU)	157	
Total Hardness (mg/L as CaCO3)	1,450	
Sodium (mg/L)	1315.8	
Potassium (mg/L)	37.1	
Magnesium (mg/L)	103.7	
Calcium (mg/L)	410.5	
Chloride (mg/L)	3728	
Bromide (mg/L)	26.8	
TOC (mg/L)	148.4	
Benzene(mg/L)	762.1	
Toluene (mg/L)	394.3	
Ethylbenzene (mg/L)	20.4	
m&p-Xylene (mg/L)	98.6	
o-Xylene (mg/L)	973.9	

Management of Produced Water

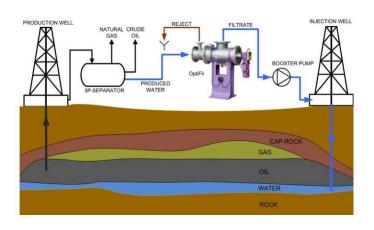
- PW management is one of the **largest challenges** facing the oil & gas industry all over the world.
- Needs economical and environmental friendly methods of treatment for the sake of recycling/reuse
- The strategies applied to management options can be of a 3-tiered water hierarchy: Minimization >>>>Disposal>>>>Treatment for Reuse/recycle

• The methodology of handling produced water depends on: composition and quantity of PW,

location and resources (

our **options?**

- Minimization by mechanical methods
- **Re-injection** for EOR processes
- Evaporation (ponds)
- **Disposal**: On-shore or off-shore
- Treatment for beneficial reuse in oil & gas



Disposal of Produced Water

Evaporation Ponds

- Hydrocarbons lighter than water will float to the surface.
- ✓ VOCs evaporate and contribute to air pollution.
- ✓ Other hydrocarbons get **oxidized** and **hydrated** and sink to the bottom.
- ✓ Becomes food for anaerobic bacteria such as SRB's that produce H2S and CO2.

Re-Injection

- ✓ Does not always meet the quality required.
- ✓ May generate seismic disturbances.
- ✓ May contaminate the subsurface aquifers.

Onsite Produced Water Treatment...

Constructed Wetland

nutterstock com · 1361130014

- Interactions between water, plants, microorganisms, filter media and oxygen.
- o The Bauer-Nimr Water Treatment Plant (NWTP) is the world's largest engineered constructed wetland, located in Oman for PDO Co.
- o It can treat more than 115,000m³/day of produced water.

Treatment of Produced

Water

TSS, oil and grease

- Screening
- · Settling/Sedimentation ponds
- Coagulation/ Flocculation
- Filtration
- · Biological Aerated Filters (BAF)
- Hydrocyclones
- Dissolved Gas Flotation (DGF)
- Dissolved Air Flotation (DAF)
- Microfiltration (MF)
- · Ultrafiltration (UF)

Scaling ions

- Aeration
- Settling Filtration
- Lime Softening
- Ion exchange (IEX)
- · Nanofiltration (NF)

Dissolved algae organics

- · Adsorption (activated carbon, resins, zeolite,
- · Biological Aerated Filters (BAF)
- Ozonation
- · Fenton oxidation
- Electrochemical treatment (electrocoagulation, electro-Fenton)
- · Photocatalytic oxidation
- · Biodegradation
- · Nanofiltration (NF)
- Reverse Osmosis (RO)

Performance parameters DOC. TOC. COD. VOC. Specific organics (BTEX, xylene), Chemical additives (Table A2)

Bacteria, fungi,

- Ozonation
- Ultraviolet irradiation (UV)
- Chlorine dioxide
- Chloramines

TDS

Non-thermal

- Reverse Osmosis
- lon exchange (IEX)
- Electrodialysis (ED)*
- · Forward Osmosis (FO)*
- · Capacitive deionization
- · Advanced adsorption*

Thermal

- Multi-effect distillation (MED)
- Vapor compression distillation (VCD)
- · Multistage flash distillation (MSF)
- · Crystallization
- · Evaporation

Performance Performance parameters parameters

Bacteria, viruses, fungi

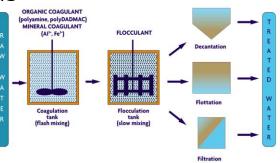
microorganisms, algae

Conductivity, specific ions (CI:, Na+, Br, K+, I:, NH,+)

Performance parameters Performance parameters

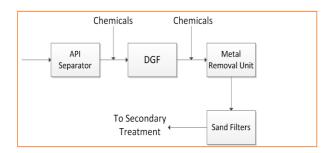
Hardness, Specific ions TSS, Turbidity, Oil and (nitrates, sulphates), grease, TOC, COD, BOD Specific metals (Ba, Fe, Sr) phenol, benzene, toluene,

End uses	Water quality required			
Reuse for hydraulic fracturing	Moderate TDS Low SS Low Ca, Mg, Fe, sulfate (scale formers)			
Deep well disposal	Low Ca, Mg, Fe, sulfate (scale formers) Low SS			
Discharge to surface water (e.g. in, US)	< 500mg/L TDS < 250 mg/L chloride < 250 mg/L sulfates < 10mg/L total barium < 10mg/L total strontium			
Crop irrigation	Low salinity (TDS) Low sodium adsorption ratio (SAR <6) Low toxicity			
Wildlife and livestock consumption	Moderate TDS (<5,000 mg/L) pH 6.5–8 SAR 5–8			
Aquaculture and hydroponic vegetable culture	Moderate TDS Low metals			
Dust control on roads and in mining	Low SS Low in specific constituents like metals			
Vehicle and equipment washing	Low SS Moderate TDS			
Power-generation cooling	Low SS Moderate TDS Low Ca, Mg, Fe, sulfate (scale formers)			
Indirect potable reuse through aquifer recharge	Low DBP potential; Adequate mineral content Legislative drinking water criteria (e.g. SDWA)			



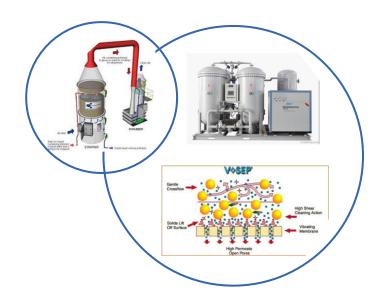
Produced Water Treatment

Typical PW treatment technologies are classified as


primary, secondary and tertiary processes.

Primary Treatments

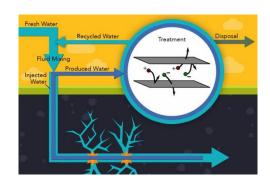
- To remove **suspended hydrocarbons** components and **solids**.
- Includes: API separator, Dissolved Gas/Air Flotation (DGF) for Deoiling
- **Metal removal** unit (Coagulation/Flocculation Process)



Produced Water Treatment...

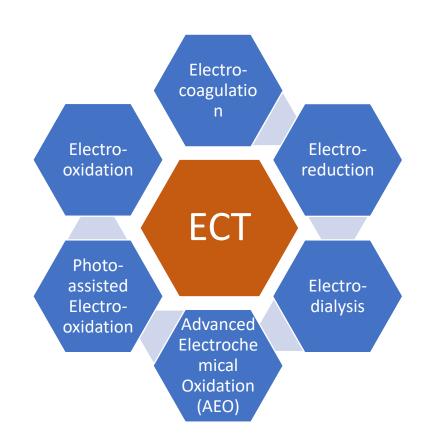
Secondary Treatments

- These techniques include:
 - Adsorption (i.e. GAC)
 - Bio-treatment
 - Gas/Air stripping and
 - Membrane separation.
- Used for the removal of organic compounds and organic acids, suspended solids and oil and dissolved aromatic hydrocarbons.


Produced Water Treatment...

Tertiary Treatments: Focused on the salts removal

- ❖ Tertiary treatment may provide the necessary attributes required by the law for the reuse of water for industrial and agricultural purposes. It may include:
- RO membranes to reduce the levels of salts, hardness and nutrients (N and P)
- * Advanced Oxidation: A technology that includes a combination of ozone nano-bubbles coupled with hydrogen peroxide to generate super oxidants (hydroxyl radicals) that degrade dissolved organic pollutants.
- ❖ Electro-dialysis: Researchers at MIT and KFUPM have found that Electrodialysis is an economical solution for removing the salt from PW



Electrochemical Technologies

- Electrochemical technologies have the ability simultaneously treat contaminants via in situ production of chemicals (i.e. H_2O_2) at the electrode surfaces with low power / energy demands.
- of electrochemical water treatment Several types technologies
- Electrochemical advanced oxidation processes (EAOPs): Based on the generation of **hydroxyl radicals** (OH*).

Electrochemical Advanced Oxidation Processes (EAOPs)

Direct

Indirect

Anodic Oxidation (AO)

Electrochemically generation of Fenton's reagent.

Applications in a variety of media (gas, liquid, solid) and volumes:

drinking water

groundwater remediation

industrial process wastewater

high purity water

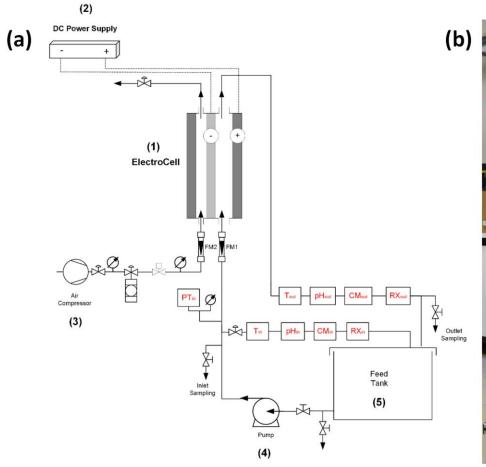
ballast water

odor control

Study Objectives

Index >

- 1 To investigate the performance of a pilot-scale electrochemical oxidation unit using BTEX and Phenols as model compounds.
- 2 To identify the optimum treatment parameters such as:
 - a) Current density (mA/cm²)
 - b) Air flow rate (NL/min),
 - c) Fe(II) dosage (mM),
 - d) Water salinity (mS/cm),
 - e) Residence time (min), etc.
- 3 To test the optimum treatment conditions on a real PW sample

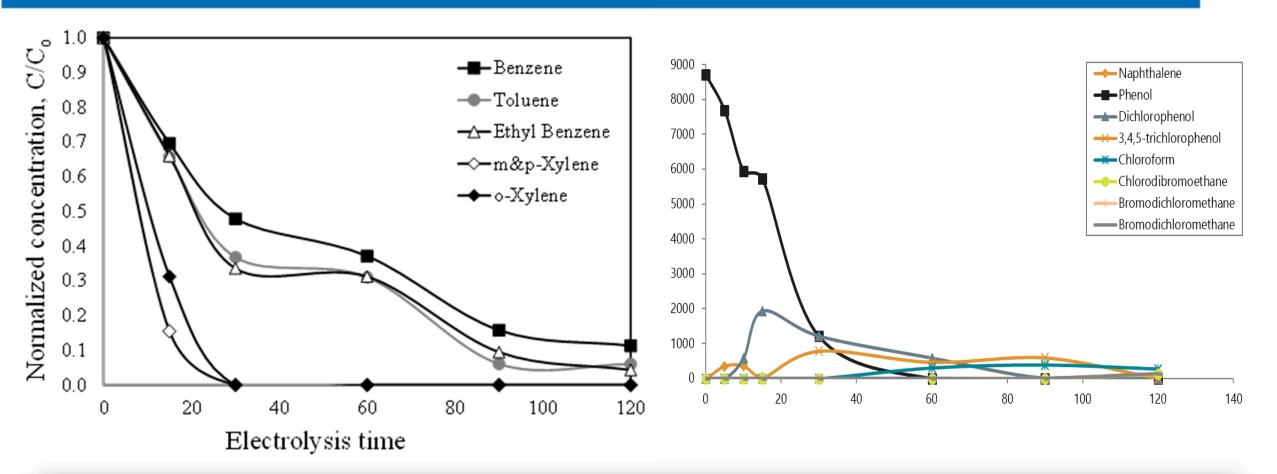


Experimental | The EC Unit

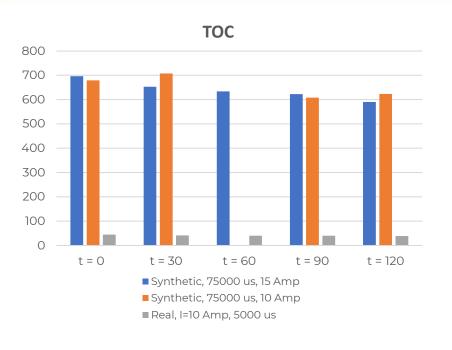
Index >

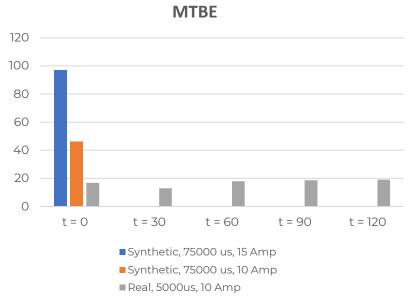
- A pilot scale unit in batch recirculation mode, with an undivided plate-and-frame cell equipped with a boron doped diamond (BDD) anode and a carbon-PTFE (gas diffusion electrode, GDE) cathode
- Parameters such as pH, conductivity, temperature and redox potential were monitored and recorded.
- Untreated and treated brine samples were tested for BTEX, by-products and TOC levels using GC/MS and TOC analyzer.
- Spiked Seawater samples with BTEX and Phenols and treated by EC Unit.

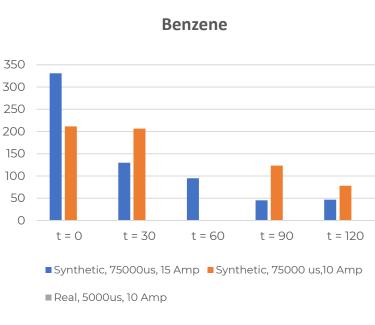
Main Results | Seawater Characteristics

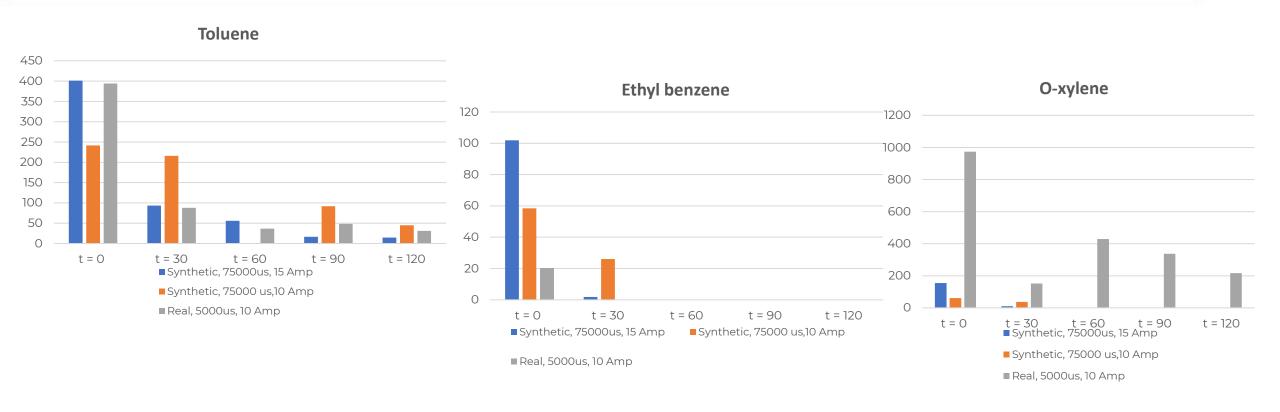

Index

Water quality parameters of seawater used in the experiments


Parameter	Unit	Value	Parameter	Unit	Value
Conductivity	mS/cm	44.8 ± 3.2	TOC	mg/L	0.3 ± 0.05
рН	-	9.4 ± 0.6	Inog. Carbon	mg/L	0.0
Cations					
Na⁺	mg/L	8860.0	Ca ²⁺	mg/L	769.9
K ⁺	mg/L	306.4	Li ⁺	mg/L	n.d
Mg ²⁺	mg/L	1657.3	NH ₄ ⁺	mg/L	n.d
Anions					
F-	mg/L	6.9	NO ₃ -	mg/L	32.5
Cl-	mg/L	23121.5	HPO ₄ ²⁻	mg/L	n.d
SO ₄ ²⁻	mg/L	3550.5	NO ₂ -	mg/L	n.d
Br-	mg/L	108.4			


^{*}n.d: not detected.





Testing Treatment Optimum Conditions of Synthetic and Real PW.

Testing Treatment Optimum Conditions of Synthetic and Real PW.

Results & Conclusion

Index >

- ❖ High removal efficiency (>90%) of Phenols in less than 60 min, while Toluene was totally removed within 90 min. Benzene on the other hand was reduced by only 70-80% within 120 min.
- The results highlight the potential of the hybrid AO-ECL remediation technique for treating organics in brines, such as produced water.
- ❖ The degradation power of the system is attributed to the synergistic effect of heterogeneously formed hydroxyl radicals (BDD(• OH)) and the homogenous evolution of chlorine and/or generation of highly oxidizing chlorine radicals (Cl •), or ozone that have significantly improved the BTEX degradation process.
- ❖ Efficiency for selective removals of BTEX and phenols in spiked seawater, synthetic and PW were very high while overall reduction of TOC in the real PW was low.

THANK YOU

