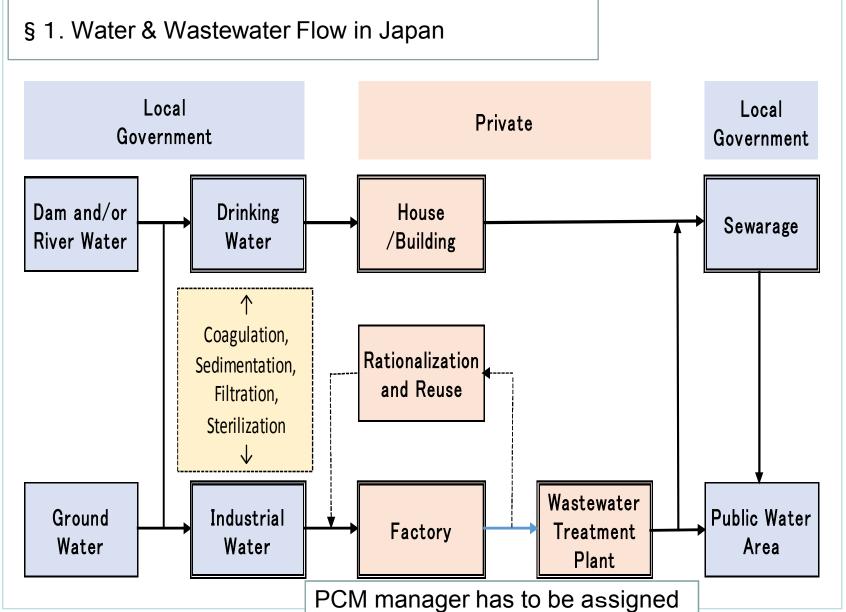
WRPC

Wastewater Treatment Technology [№1-41]

Training Course

Introduction of Organic Waste & Inorganic Waste Water Treatment System.


Prepared by WRPC(KH)
(November 2015)
hataya@wrpc.jp

Contents

- § 1 Water & Wastewater Flow in Japan
- § 2 Biological Treatment System
 Anaerobic & Aerobic Biological Treatment
 Activated Sludge System
 MBR(Membrane Bio Reactor)
- § 3 Nitrification and Denitrification System
- § 4 Inorganic Waste Water Treatment System Fluoride Waste
- § 5 Sludge Dehydration Produced Sludge Volume & Filter Press
- § 6 Removal of Heavy Metals Cr+6, CN Waste Treatment Cr+3, Pb, Cu, Zn, Ni, Cd etc.
- § 7 Oil Removal
- § 8 Waste Water Discharge Limits
- § 9 Environmental Standards
- § 10 Sewage Treatment & Water Regeneration
- § 11 Additional Data(Graph-1/4~4/4)

§ 2. Biological Treatment System

The following biological treatment systems are for Organic waste water...

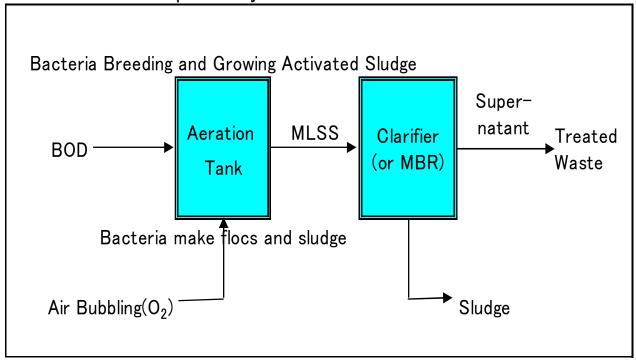
- (1) Anaerobic Biological Treatment Digestion)
 - → BOD is decomposed by anaerobic bacteria such as methane bacteria.

Methane Bacteria

Reaction $CH_3COOH \rightarrow CO_2 + CH_2$

(Acetic Acid) (Carbon Dioxide Gas) (Methane Gas)

Filature: High BOD Concentration such as Human Waste.


Retention Time needs long(30~60days)

Digestion gas can be utilized for energy resources.

The produced sludge is smaller than aerobicic biological method.

- (2) Aerobic Biological Treatment(Activated Sludge System)
 - → BOD is decomposed by aerobic bacteria as follows.

Standard Activated Sludge Method

Step Aeration Method
Oxi-contact Method

Re-aeration Method

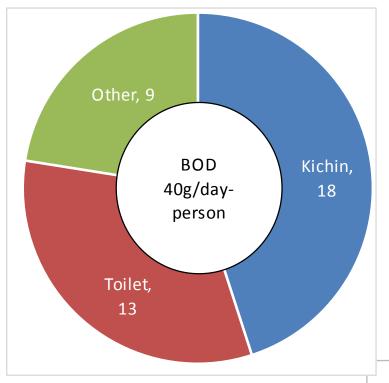
Oxidation Ditch

Variation of Activated Sludge System

(3) Kind of Activated Sludge System and Comparison of Parameters

	BOD Load		MLSS Concentration		Aeration (Times/	Pretensi	on Time
Treatment Method	kg/MLSS	kg/m^3	pr	om	Influent)	Hi	rs
Conventional Activated Sludge	0.2-0.4	0.3-0.8	1500·	-2000	3 – 7	6 -	- 8
Step Aeration	0.2-0.4	0.4-1.4	1000	-1500	3 - 8	4 -	- 5
Re-aeration Method	0.2-0.2	0.8-1.4	2000-8000		> 12	> 5	
Long Areation Method	0.03-0.05	0.15-0.25	3000-6000		> 15	16 - 24	
Oxidation Ditch	0.03-0.05	0.1-0.2	3000-	-4000	_	24 -	- 48
Index of O	rganic Was	te Water					
① COD Chemical Oxygen Demand)							
⇒ Consumed Dissolved Oxygen Quantities by composition							
of Organics at 100°C, with H ₂ SO ₄ and indicated as mg O/I(ppm)							

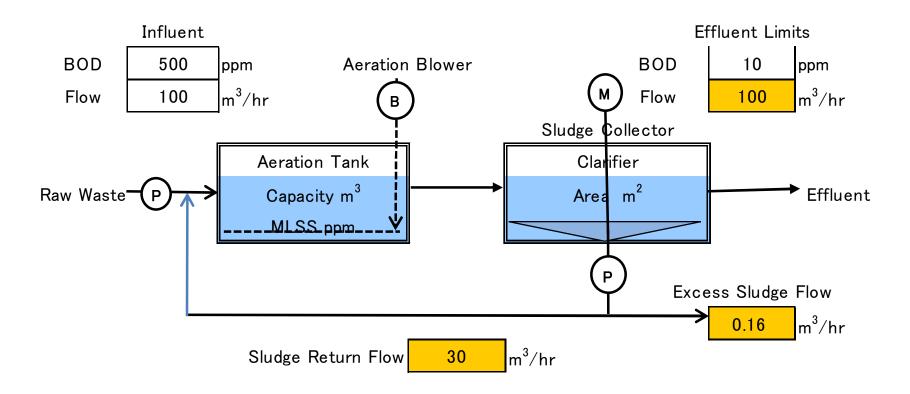



2 BOD(Biochemical Oxygen Demand)

 \Rightarrow Consumed Dissolved Oxygen by composition of Organics During bacteria incubation at 35°C, 5 days and indicated as mg O/I(ppm)

< 10ppm	BOD > COD
10∼100ppm	BOD = COD
> 100ppm	BOD < COD

(4) Domestic Drainage to Sewage in Japan



Water Quality for Sewage(Tokyo Bureau of Sewerage)

·	<u> </u>	<u>_ </u>	<u></u>			
Domestic	Dranage	Discharge		Limits		
BOD 148	ppm(Ave)	BOD <	BOD < 3ppm		BOD < 25ppm	
	Environ	nmental Condition				
	BOD	< 5ppm	< 3ppm			
	Kind of Fish	Carp, Crucian carp	Salmon, Ayu			

(5) Block Flow and Mass Balance of Activated Sludge System

Para	meter of Activ	ated Sludge System	Operation	Reco	mmending Values
	① BOD of Influ	ent	1200	kg-BOD/d	=m ³ /hXBODppmX24
	② BOD Load	Sludge Load	0.2	kg/MLSS	=kg-BOD/d/MLSSKg
Measuring		Volume Load	0.6	kg/m³	$=kg-BOD/d/m^3$
Cylinder	3 Aeration Tar	nk Capacity	2,000	m ³	
	4 MLSS (Mixed	d Liquor SS)	2,500	ppm	1000~2000ppm
	⑤ Aeration Tim	ne	20.0	hrs	$=m^3/m^3/h$
	6 DO Conc. in Aeration Tank			ppm	
←	7 30minutes S	50	%		
	8 SVI(Sludge V	olume Index)	200	70 ~ 250	=SVX10000/MLSSppm
		of Clarifier	150	m ²	
	10 Linear Veloci	ty(LV) in Clarifier	0.7	m/hr	To be below 0.8m/hr
① Sludge Return Rate			30	%	20∼80% of Influent
	② Sludge Conc	entration	0.8	%	flow
	BOD→Sludge	e Convert Ratio	40	%	
	(14) Excess Sludge Quantity(DS)			kg-DS/d	=kg-BOD/dX%/100
	Æ N D	DOD N D D .:	1 100	-	

(15) Nutrient Ratio BOD: N: P Ratio is to be as 100:5:1

For improving nutrient ratio, nutrient is to be dosed such as ammonium sulfate.

WRPC

WATER REUSE PROMOTION CENTER

(6) Description of Activated Sludge System(1/2)

The following shows the examples of troubles which often occurs in the activated sludge treatment system.

Bulking occurs

Due to factors such as the following, fungi such as occurs in the activated sludge process in general, SVI value may increases and occurs caused by higher SVI value than 300, it's called "bulking.".

① In case of BOD High Load ar⇒ To Reduce BOD Load.

② pH Adjustment ⇒ pH becomes lower due to aeration because

CO₂ is dissolved by aeration.

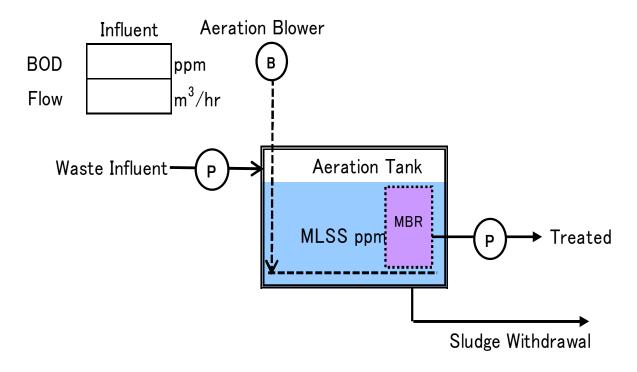
To maintain slightly alkaline side. Bu NaOH dosing.

③ Over Aeration ⇒ Miniaturization of Flocs

 N_2 -gas increase and flocs are easy to float up.

(4) Aeration Shortage ⇒ The treated BOD becomes worth.

To maintain DO 1~5ppm in the aeration tank.


⑤ Persistent Chemicals are contained ⇒ Persistent Chemicals=COD-BOD in the influent waste.

- (6) Unless N, P are contained in the influen ⇒ Nutrient has to be dosed.
- $\begin{tabular}{ll} \hline \emph{T} & \emph{If the activated sludge becomes anaerobic condition, fermentation occurs} \\ \emph{and deadly, poison and bad smell gas such as H_2S are produced, especially,} \\ \emph{the clearance between sludge collector and bottom, the sludge will be} \\ \emph{fermentated and scum is produced in the clarifier, and goes to treated water} .$
- 8 If influent waste contains oxidation reagents such as H_2O_2 , NaClO etc., bacteria may be killed, it is necessary to dose reduction reagent such as Na_2SO_3 etc for neutralization.

(7) Advanced Technology(MBR) of Activated Sludge System

§ 3 Nitrification, Denitrification System

In case of high T-N, T-P content waste(Eutrophication of water), It is necessary to remove it because of [Wealth of Nutrients] causes and affect to living environment. especially in Tokyo Bay, Ise Bay and Setonaikai area, waste discharge of this type is strictly limited by Japanese law. P can be removed by coagulation method, however, T-N has to be removed by employing nitrification and denitrificationsystem.

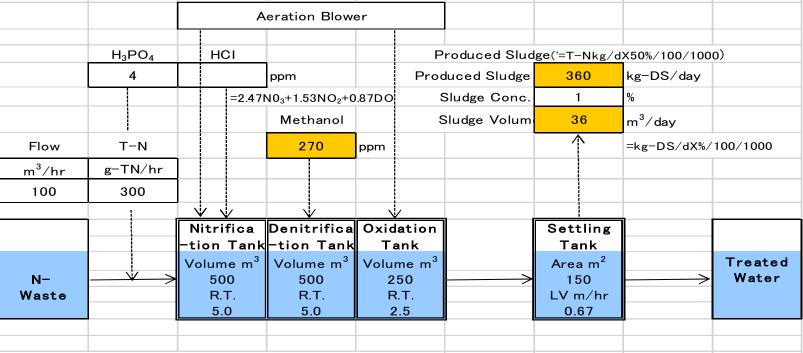
Note;
$$NH_4-N + NO_3-N + NO_2-N = T-N(Total Nitrogen)$$

(1) N-waste Treatment Method

In this system, NH_4^+ is converted to NO_3^- (Nitrification) and decomposed to N_2 (Denit -rification) aerobic biological method and T-N contained N-waste can be reduced.

Explanation of Nitrification Process

of Nitrification


The above reaction proceeds by breeding and growing of Nitrosomonas, Nitrosococus and nitrobactor bacteria which are mineral nutrition fungus type.

	① Tem	The nitrification process proceeds at 20~30°C						
	② pH	In nitrificat	n nitrification, 2 moles of H+ are produced against ammonia					
Factor of		1 mole,the	refore, Na(OH dosing is	s needed to	o maintain	pH.	
Nitrification	③ DO	If DO beco	mes lower	than 2~3 ₁	opm, nitrific	cation bact	teria	
Reaction		activity als	so becomes	s lower.				
	4 Sludge	5 ∼ 7days·	··Nitrificati	on reactio	n is smaller	than com	imon	
	Age	waste.						
React	ion of	$2NO_2^- + CH_3OH \rightarrow CO_2 + N_2 + 2OH + 7H_2O$						
Denitri	fication	$6NO_3^- + 50$	CH ₃ OH →	3N ₂ + 6OH	+ 7H ₂ O			
Needed Methar	nol Quantit	y for Deniti	rification R	eaction				
Methanol Dosin	g Quantity	has to be	applied to	(McCarty)	Cm=2.47N0	0 ₃ +1.53NO ₂	+0.87DO)	
Furnale		NO ₃ -N	NO ₂ -N	DO	Metha	nol Dosing Q	uantity	
Example	⇒	108	0	4	⇒	270	ppm	
The metha	The methanol of 2.5times of influent T-N has to be dosed.							
Expected	Sludge Volu	⇒50% of I	nfluent T-N	becomes	sludge.			

(2) Block Flow and Mass Balance

(3) Operational Condition and Parameters

Monitoring Item	Nitrification Tank Outlet	Denitrification Tank Outlet	Oxidation Tank Outlet
рН	7 ~ 8	7 ~ 8	7 ~ 8
Dissolved Oxigen(DO)	> 4 ppm		> 4 ppm
Ammonia Nitrogen(NH ₄ -N)	< 0 ppm	< 0 ppm	< 0 ppm
Nitrite Nitrogen(NO ₂ -N)	< 10 ppm	< 0ppm	< 0 ppm
Nitrate Nitrogen(NO ₃ -N)		< 0 ppm	< 0 ppm

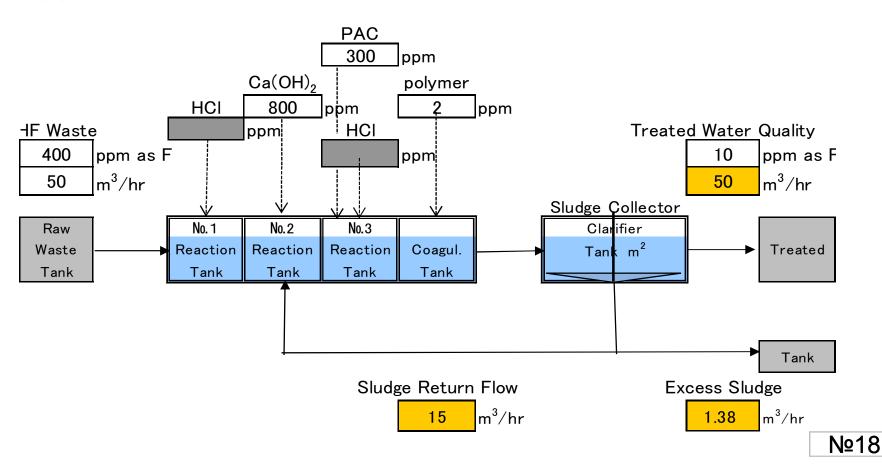
Note: If COD becomes higher caused by the excess(remained) methanol in the oxidation tank, and it can be reduced by air bubbling.

§ 4. Inorganic Waste Water Treatment System

The following substances are show typical hazardous of inorganics.

	Inorganics	Hazardous	Removal Method	Discharg	Discharge Limits	
F ⁻	Fluorine	Deadly Poison	Coagulation & Sedimentation	< 8-15	mg/l	
Pb ²⁺	Lead	Deadly Poison	Coagulation & Sedimentation	< 0.1	mg/l	
Cd^{2+}	Cadmium	Deadly Poison	Coagulation & Sedimentation	< 0.1	mg/l	
Ar ⁻	Arsenic	Deadly Poison	Coagulation & Sedimentation	< 0.1	mg/l	
CN ⁻	Cyanide	Deadly Poison	Decoposition by Oxidation	< 1	mg/l	
Cr ⁶⁺	Hexavalent Chromium	Deadly Poison	Cr ⁶⁺ ⇒Cr ³⁺ by Reductioon	< 0.5	mg/l	
Cr ³⁺	Trivalent Chromium		Coagulation & Sedimentation			
Ni ²⁺	Nikel		Coagulation & Sedimentation			
Cu ²⁺	Cu ²⁺ Copper		Coagulation & Sedimentation			
Zn ²⁺	Zn ²⁺ Zinc		Coagulation & Sedimentation			

The above substances waste have to separately be received and individually treated.



(1) F-Waste Treatment System for Fluoride Removal

The waste contained F^- ion (Hazardous substance) is to be removed as the following Method Lime and Coagulant are dosed to the fluoride waster while adjusting pH, and CaF_2 flocs are produced in the water. as reaction formula..formula..the following chemical reaction.

Chemical Reaction
$$2HF$$
 $Ca(OH)_2$ \Rightarrow CaF_2 $2H_2O$

(2) Block Flow

(3) Operational Condition and Parameters

- ① No.1 Reaction Tank pH
- 2 No.2 Reaction Tank pH
- 3 No.3 Reaction Tank pH
- 4 10% Ca(OH)₂
- \bigcirc PAC(10% A₂O₃)
- 6 0.1% Polymer
- (7) Sedimentation Tank Area
- 8 Sedimentation Tank (LV)
- 9 Sludge Return Rate
- 1 Sludge Conc.
- 1 Produced CaF₂Sludge
- 12 Produced AI(OH)₃Sludge
- (13) Excess Sludge(DS)Volume

```
6.0-7.0
```

- 6.5 7.5
- 6.5 7.0
 - 400 I/hr

Lime Solution makes scales in the pipe.

- <mark>100</mark> l/hr
- 50 m²
- 1.0 m/hr To be LV < 3m/hr
- 30 %
- 3.0
- 936 kg-DS/day = $m^3/hXFppmX24X78/20/2X24/1000$
- $\frac{55}{\text{kg-DS/day}} = \frac{3}{hXPACppmX0.1X78X2/102X24/1000}$
- 991 kg-DS/day =①+②

§ 5 Dehydration of F-Waste Sludge An excess sludge of F waste treatment usually dehydrates as sludge cake by filter press and transfers for disposal. Sludge Flow 1.38 m³/hr kg/day Sludge Cake 2,478 Sludge Conc. Cake Moisture 3.0 60 Operation Cycle 1.71 Batches/day Filter Cake Sludge Press Hopper Cake Tank m^2 30 Filtrate Area 580 ←from Filter Press Specification Filtrate Volume Cake Thickness 18 mmCake Moisture < 55~75 \% An air bubbling has usually to be done to privet sludge fermentation in the sludge storage tank. The following shows typical operation diagram of filter press. Typical Operation Diagram of Filter Press **Process** Duration Stand By Filtration 60 minutes Squise 20 minutes 10 minutes Open Flame Filter Cloth Rinse 20 minutes Close Flame 10 minutes

§ 6. Removal of Heavy Metal Ions

1, Pb···Lead Removal

The waste which contains Pb²⁺ion (Hazardous substance) is to be removed by the following Method and Pb(OH)₂, coagulant(Ferric Chloride···FeCl₃) and polymer are dosed to the Pb waste while pH adjusting, flocs are produced in the water.as the following chemicals reaction formula.

$$Pb^{+2} + 2OH^{-} \rightarrow Pb(OH)_{2}$$

2. Other Heavy Metal Ions

The following heavy metals Hazardous substances) can also be removed by the same [Alkaline Coagulation] method.

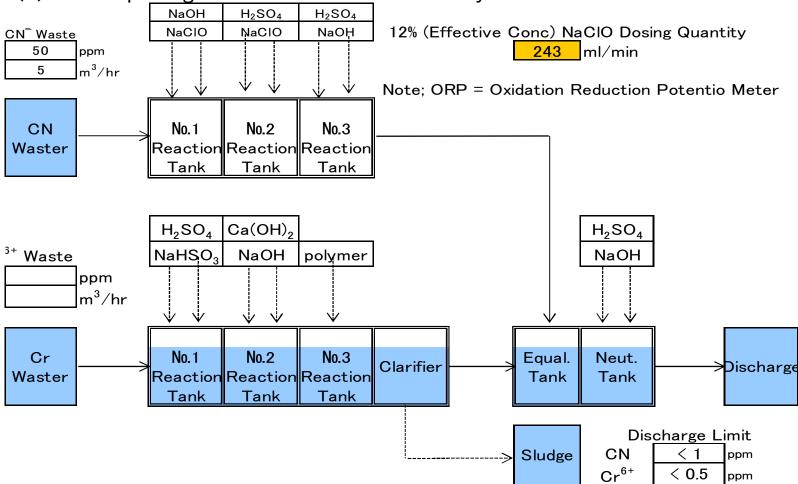
$$Pb^{+2} + 2OH^{-} \rightarrow Pb(OH)_{2}$$
 $Ni^{+2} + 2OH^{-} \rightarrow Ni(OH)_{2}$
 $Cu^{+2} + 2OH^{-} \rightarrow Cu(OH)_{2}$
 $Zn^{+2} + 2OH^{-} \rightarrow Zn(OH)_{2}$
 $Cd^{+2} + 2OH^{-} \rightarrow Cd(OH)_{2}$
 $Cr^{+3} + 3OH^{-} \rightarrow Cr(OH)_{3}$

The Alkaline Coagulation/Sedimentation Methods are usually employed for removal							
of heavy metals wa	ste and fee	e following	g points ar	e very im	portant f	or it.	
Heavy Metals	Coagula- tion pH	pH = 9.0		pH = 10		pH > 10.5	
Cr ³⁺ (Chromium)	8.0 ~ 9.0						
D. 2+ (1)	9.0 ~	2.5ppm	0.21ppm	0.025ppm	2.1ppm	LIDI O T	
Pb ²⁺ (Lead)	9.5	Pb ²⁺	HPbO ₂	Pb ²⁺	HPbO ₂	HPbO ₂ ⁻ Increase	
Cd ²⁺ (Cadmium)	> 10.0	44ppm		0.44ppm		0.04ppm	
Ni ²⁺ (Nickel)	> 10.0						
2+ (0	9.0 ~						
Cu ²⁺ (Copper)	10.0						
Zn ²⁺ (Zinc)	> 10.0						

Nº22

Additional Tools for Other Produced Sludge Volume Calculation.

Flow Rate m ³ /hr	Dosing Chemicals	Concent ration (ppm)	Produced Sludge	Produce d Sludge Quant'sk g-DS/d	Calculation
	PAC		Al(OH) ₃	73	=m ³ /hXPACppmX0.1X78X2/102X24/1000
	$FeCl_3$		Fe(OH) ₃	319	=m ³ /hXFeCl ₃ ppmX107/161X24/1000
	F ⁻		CaF_2	936	=m ³ /hXFppmX78/20/2X24/1000
100	Pb ²⁺	000	Pb(OH) ₂	559	=m ³ /hXPbppmX241/207X24/1000
100	Ni ²⁺	200	Ni(OH) ₂	757	=m ³ /hXNippmX93/59X24/1000
	Cu ²⁺	Ī	$Cu(OH)_2$	735	=m ³ /hXCuppmX98/64X24/1000
	Zn ²⁺		Zn(OH) ₂	731	=m ³ /hXZnppmX99/65X24/1000
	Cr ³⁺		Cr(OH) ₃	951	=m ³ /hXCrppmX103/52X24/1000


Note: PAC (Poly Aluminum Chloride) ··· Coagulant

3. Hexavalent Chlomium(Cr⁶⁺), Cyanide(CN⁻) Waste Treatment System

The electroplateing waste usually contains CN and Cr6+ and these are quite strong toxic substances, and has to strictly decompose/remove to lower than the discharge limits before these waste discharge..

(1) Electroplating Waste Water Treatment System NaOH H₂SO₄ H₂SO₄

(2) Cyanide ··· CN Waste

- 1 If pH becomes acid side in CN waste, deadly poison gas will come out, therefore, pH has to be maintained to alkaline side....Strict Precautions
- ② CN can be decomposed by the following 2 stage chemical reactions in Alkaline-Chlorine Method of CN-waste.

```
1st Stage Reaction NaCN + NaClO → NaCNO + NaCl (Reaction Time > 10minutes)

pH Meter ... pH = 10.5 ... To be maintained by dosing NaOH solution.

ORP Meter ... ORP 300~350mV ..... To be maintained by dosing oxidation reagent( Cl₂ ).
```

2nd Stage Reaction 2NaCNO + 3NaClO \rightarrow N₂ + 3NaCl + 2NaHCO₃ (Reaction Time > 30minutes)

pH Meter ... pH = 7.5 ... To be maintained by dosing HCl solution.

ORP Meter ... ORP 600~650mV ... To be maintained by dosing oxidation reagent(Cl₂).

1st + 2nd Reaction

recommended.

 $2NaCN + 5NaCIO + 2H_2O \rightarrow N_2 + 5NaCI + 2NaHCO_3 となる。$

Therefore, in order to decomposition of CN 1gr, it is necessary to dose 6.63gr of effective chlorine.

[
$$5Cl_2$$
 / $2CN$ = 71 / 26 X 2= 6.63 gars] \cdots 7times \cdots \circ

12% (effective Cl₂ concentration) NaClO Dosing Quantity ... 243 ml/min

② If heavy metals such as Fe are contained in CN waste, it is difficult to decompose CN by making a satiable cyano complex, and in such case, "Prussian Blue Method" by adding excess Fe, and sedimentation method) is

(3) Hexavalent Chromium···Cr⁶⁺Waste Water Treatment

- ① Chromium···There are 2 kinds as trivalent chromium(Cr^{3+}) and hexavalent chromium (C^{6+}). both discharge limits are very strict.
- ② Hexavalent Chromium···Cr⁶⁺complex are make as CrO₃. red color and acidic substanc
- ③ Removal of Hexavalent Chromium···C^{r6} is usually converted to trivalent chromium by adding reduction reagent, $[Cr^{6+} \Rightarrow Cr^{3+}]$ and make chromium hydroxide Cr(OH)3 flocs by adding coagulant(FeCl₃ + polymer) and sedimentation alkaline coagulation/sedimentation method).

Reduction		CrO ₃ 1kg 還元す	るに要する還元
Reagent	Chemical Reaction	eduction Chemica	H ₂ SO ₄
F.	2H ₂ CrO ₄ +2Fe+6H ₂ SO ₄ →	0.56kg	
Fe	$Cr_2(SO_4)_3 + 3Fe(SO_4)_3 + 8H_2O$		2.94kg
E-SO - 7H O	$2H_2CrO_4++6FeSO_4+6H_2SO_4 \rightarrow$	8.34kg	
FeSO ₄ •7H ₂ O	Cr ₂ (SO ₄) ₃ +3Fe(SO ₄) ₃ +8H ₂ O		2.94kg
Na_2SO_3	$2H_2CrO_4+3Na_2SO_3+6H_2SO_4 \rightarrow$	1.89kg	
Na ₂ 3O ₃	$Cr_2(SO_4)_3 + 3Na_2(SO_4)_3 + 8H_2O$		1.47kg
NaUSO	$4H_2CrO_4+6NaHSO_3+3H_2SO_4 \rightarrow$	1.56kg	
NaHSO₃	2Cr ₂ (SO ₄) ₃ +3Na ₂ SO ₄ +8H ₂ O		0.74kg
20	$2H_2CrO_4+3SO_2 \rightarrow$	0.96kg	
SO_2	Cr ₂ (SO ₄) ₃ +8H ₂ O		

§ 7. Oil Removal

1.0il Separator

The Oil contained in Oily waste can be removed by the following flotation system.

- (1) API (American Petroleum Institute)
- (2) PPI (Parallel Plate Interceptor)
- (3) CPI(Corrugated Plate Interceptor)

These method due to the following Stoke's Formula.

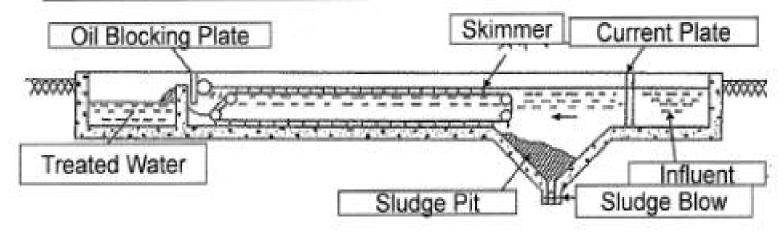
$$U_{t} = \frac{g (\rho_{w} - \rho_{o}) d^{2}}{18 \mu}$$

$$U_{t} = \text{Up flow Velocity of Oil Dropet (cm/s)}$$

$$\rho_{w}, \rho_{o} = \text{Decity of Oil Dropet and Water (g/cm3)}$$

$$d = \text{Diameter of Oil Dropet (cm)}$$

$$g = \text{Acceleration of Gravity (cm/s}^{2})$$

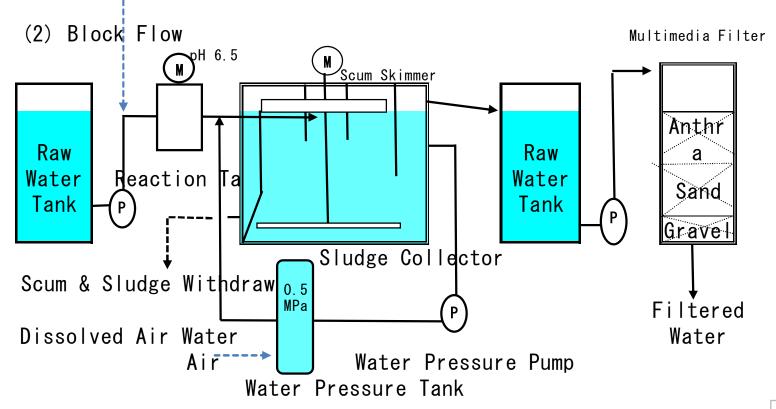

$$\mu = \text{Water Viscosity (g/cm.s)}$$

Calculation Example

$$U_t = \frac{980}{18 \times 0.01} \times (1.0-0.9) \times 0.015^2 = 0.12 \text{cm/s}$$

API Oil Separator
According to API design manual,
In case of W(Width) = 1.8~6.1m, H(Depth) = 1.9~2.4m,
to be designed as H / W = 0.3~0.5 and averaged V(velocity)
in tank is to be maintained as below 0.9m/min.
The tank L(Length) is also as following formula.

L = VH / Ut X fs X ft
fs = Short Pas factor (1.2)
ft = Turbulence Factor(1.45~1.07) ← Due to V/Ut


- 2. Dissolved Air Flotation(DAF) System
 - (1) Chemical Dosing

The following ①, ②, ③ and ④ chemicals are generally dosed to water pre-treatment system.

- 1 NaClO(Sodium Hypochlorite) for killing bacteria and Decomposing organics.
- ② Chloric Acid(HCl)

for pH Adjustment

- ③ $PAC([Al_2(OH)_nCl_{6-n}]_m$ Poly Aluminum Chloride) Coagulant for making flocs $(A; (OH)_3)$
- 4 Polymer (Poly Electrolyte) for Coagulation Aid

§ 8. Waste Discharge Limits

1. Discharge Limits of Hazardous Substances Uniform standard limits)
According to (Article No. 54 Prime Minister's Office Ordinance 1993) effluent
standards related to the Water Pollution Control Law)

Kind of Hazardous Substances	Discharge Limits				
Cadmium Compounds	< 0.1	mg/l	0.1	mg/l	
Cyanide and Cyanide Compounds	< 1	mg/l	1	mg/l	
Organic Phosphorus Compounds	< 1	mg/l	1	mg/l	
Lead and Lead Compound	< 0.1	mg/l	0.1	mg/l	
Hexavalent Chromium Compounds	< 0.5	mg/l	0.5	mg/l	
Arsenic and Arsenic Compounds	< 0.1	mg/l	0.1	mg/l	
Mercury Compounds of Alkyl Mercury Compounds and Other Mercury	< 0.05	mg/l	0.05	mg/l	
Alkyl Mercury Compound	To be	N.D.	To be	e N.D.	
PCB	< 0.003	mg/l	0.003	mg/l	
Trichloroethylene	< 0.3	mg/l	0.3	mg/l	
Tetra Chlorethylene	< 0.1	mg/l	0.1	mg/l	
Di-chloro Ethylene	< 0.2	mg/l			
Carbon Tetrachloride	< 0.02	mg/l	(0.03	mg/l)	
1. 2-Di-chloro Ethylene	< 0.01	mg/l			
1. 1-Di-chloro Ethylene	< 0.2	mg/l			
Sys-1. 2-Di-chloro Ethylene	< 0.4	mg/l			
1. 1. Trichloroethylene	< 3	mg/l	(3	mg/l)	
1. 1. 2-Trichlorethylene	< 0.06	mg/l			
1. 3-Trichlorethylene	< 0.02	mg/l			
Theorem	< 0.06	mg/l			
Simonize	< 0.02	mg/l			
Thiobencarb	< 0.2	mg/l			
Benzene	< 0.1	mg/l			
Selene and Selene Compound	< 0.1	mg/l			
Boron and Boron Compound	< 10	mg/l	Other Ar		
Fluorine and Fluorine Compound	< <u>230</u> < 8	mg/l mg/l	Sea Area Other Ar		
That the and That the Compound	< 15	mg/l	Sea Area		
Ammonium, Nitrite, Nitrate Compounds	< 100	mg/l			

2. Sewer Discharge Limits of the Technical Standards

(Sewerage Order for Enforcement of the Act 1959)

Item	Allowable Limits		
рН	> 5.8 < 8.6		
Coli form Group	< 3000 Peices/cm ²		
Biological Oxygen Demand(BOD)	10 ~ 15 mg/l		
Suspended Solid(SS)	< 40 mg/l		
Nitrogen content	10 ~ 20 mg/l		
Phosphorus Content,	0.5 ~ 3 mg/l		

The number to comply with the plan effluent quality Sewer construction Ordinance (No.35 Sewer Enforcement Order)

3. Total Volume Control and Drainage Regulations

	Discharge Limits	Total Control Discharge Limits	
Purpose	Creating Environmental Standards	Creating environmental standards in wide-area closed system water is particularly significant pollution	
Applied Area	Japanese Whole Area	Specified water area(Tokyo Bay, Ise Bay and Setonaikai Area)	
Method of Limitation	Limits are to be regulated at each by each discharge points	Discharge quantities are to be regulated at each by eac facilities.	
Limits	(Additional Standards)	Limits by COD Values.	
	(In case of COD, 100 mg/l)	$L = C \times Q \times 10^{-3}$	
		L: Permissible Lord (kg- COD/d)	
		C: Regulated Limits at products	
		category by governor. (mg/l	
		Q: Applied Waste Quantity(m ³ /d)	
Improvement Order	Application to Governor	It may be odder to re-set more strict discharge limits than existing above tem C values.	
at new project.	(It may be subject to change		
	the plan by the governor order		
	in some case.)		
		I N	

№33

§ 9. Environmental Standards

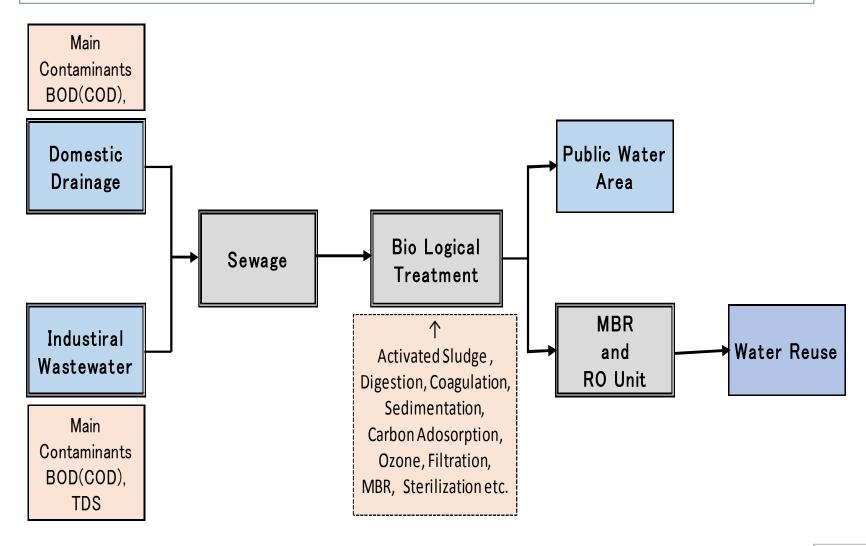
1. Environmental Quality Standards

for Water Pollution···Environmental Standards for Protection of Human Health Article 16 Environmental Standards Act, "Environmental Standards" Setting

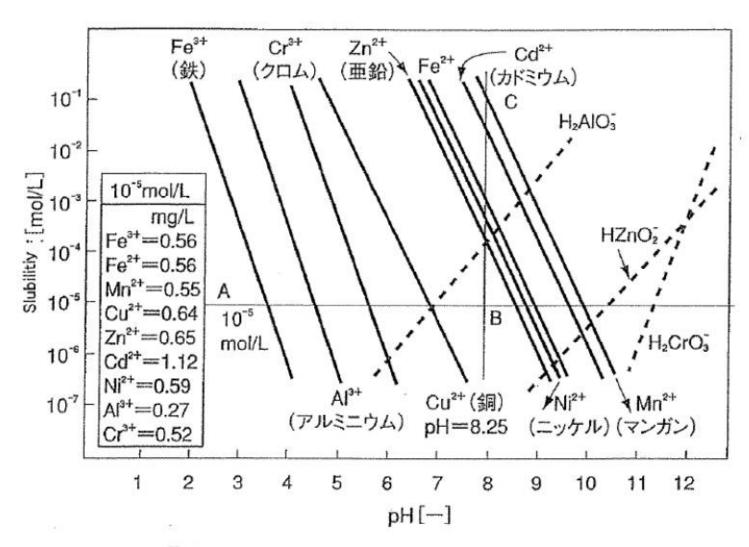
Item	Standard		
Cadmium and Cadmium Compounds	< 0.01 mg/l		
Cyanide and Cyanide Compounds	Non Detect		
Lead	< 0.01 mg/l		
Hexavalent Chromium	< 0.05 mg/l		
Arsenic	< 0.01 mg/l		
Total Mercury	< 0.0005 mg/l		
Alkyl mercury Compounds	Non Detect		
PCB	Non Detect		
Di-chloromethane	< 0.02 mg/l		
Di-chloral Ethylene	< 0.002 mg/l		
Carbon Tetrachloride	< 0.004 mg/l		
1. 2-Di-chloro Ethylene	< 0.02 mg/l		
1. 1-Di-chloro Ethylene	< 0.04 mg/l		
Sys-1. 2-Di-chloro Ethylene	< 1 mg/l		
1. 1. Trichloroethylene	< 0.006 mg/l		
1. 1. 2-Trichlorethylene	< 0.03 mg/l		
1. 3-Trichlorethylene	< 0.01 mg/l		
Theorem	< 0.002 mg/l		
Simonize	< 0.006 mg/l		
Chiobenkarupu	< 0.003 mg/l		
Benzene	< 0.02 mg/l		
Benzene	< 0.01 mg/l		
Selene	< 0.01 mg/l		
Nitrate Nitrogen and Nitrite Nitrogen	< 10 mg/l		
Fluorine	< 0.2 mg/l		
Boron	< 1 mg/l		

1 Standard Values are to be shown as Annual Averaged.

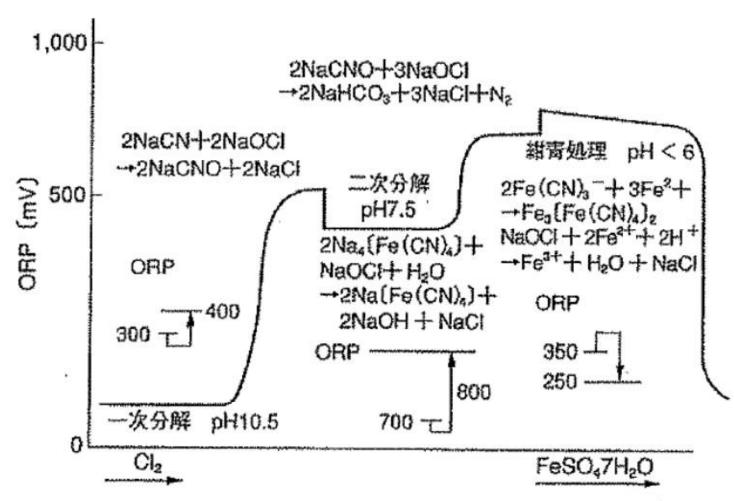
2 The above discharge limits of Florien and Boron are not applied in Sea Area.


2. Emission Standards in accordance with Living Environment

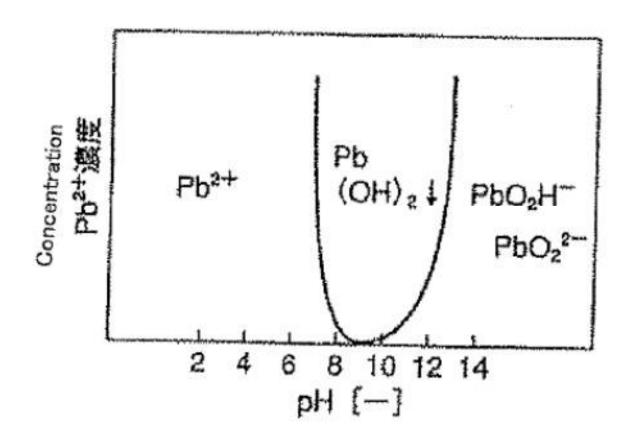
Item	Discharge Limits	
	Other Place	> 5.8 < 8.6
Hydrogen Ion Concentration = pH	Sea Area	> 5.8 < 9.0
		< 160 mg/l
Biochemical Oxygen Demand = BOD	(Day Averaged	< 120 mg/l)
Chamical Owers Damand - COD		< 160 mg/l
Chemical Oxygen Demand = COD	(Day Averaged	
Suspended Solid = SS	(5)	< 200 mg/l
<u> </u>	(Day Averaged	
Mineral Oil Content	< 5 mg/l	
Plant type Oil Content	< 30 mg/l	
Phenol Contend	< 5 mg/l	
Copper	< 3 mg/l	
Zinc	< 5 mg/l	
Soluble Iron Content	< 10 mg/l	
Manganese	< 10 mg/l	
Chromium Content	< 2 mg/l	
Fluorine Content	< 15 mg/l	
Escherichia Coli Group	(Day Averaged	< 3000 pcs/cm ²
NII.	< 120 mg/l	
Nitrogen Content	(Day Averaged	< 60 mg/l)
	< 16 mg/l	
Phosphorus Content	(Day Averaged	< 8 mg/l)


Nº35

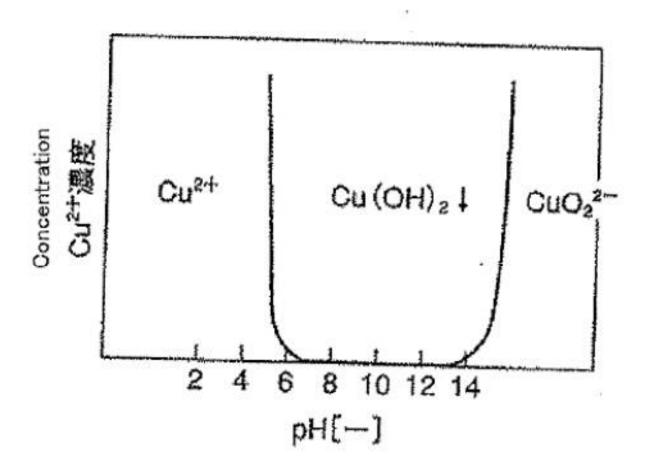
§ 10. Sewage Treatment and Water Regeneration



§ 11. Additional Data 1/4


Relation between pH and Metal Ion Solubility

Additional Data 2/4


CN Waste Treatment by Alkaline-Chlorine Method

Additional Data 3/4

Relation between pH and Pb Solubility

Additional Data 4/4

Relation between pH and Cu Solubility

Thank you for your attention!