
Water Treatment Membrane Processes - Introduction -

Membrane Separation

Definition of Membrane Process

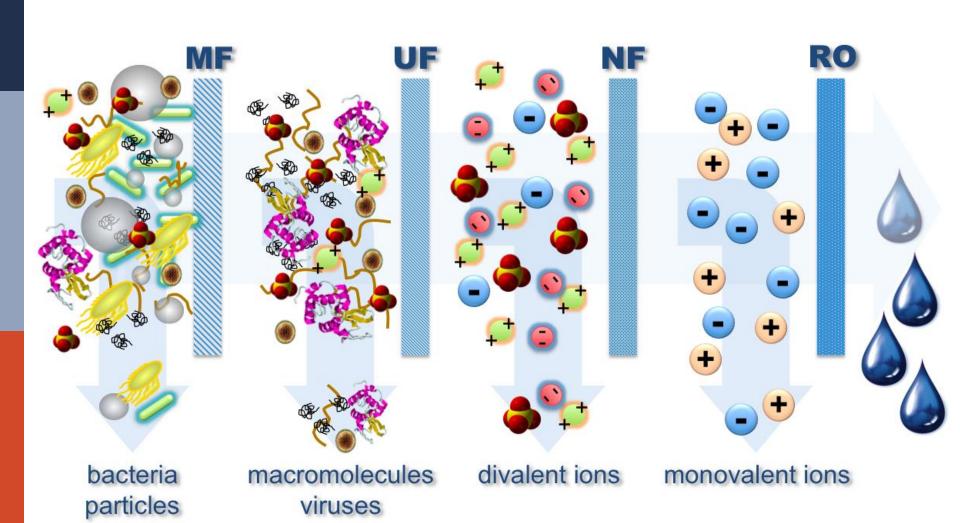
- In a membrane separation process, a feed consisting of a mixture of two or more components is partially separated by means of a semipermeable barrier through which one or more species move faster than the other species
- In water and wastewater treatment applications, membrane processes are used as a solid/liquid separation process. In this case, water is more readily transported through the membrane than solids (both suspended and dissolved)

Classification of Membrane Operations

- Driving force
- Mechanism of separation
- Membrane structure
- Phases in contact

Classification of Membrane Operations

- Pressure-driven membrane operations
- Permeation operations
- Dialysis operations


Pressure-driven Operations

Microfiltration (MF)

Ultrafiltration (UF)

Nanofiltration (NF)

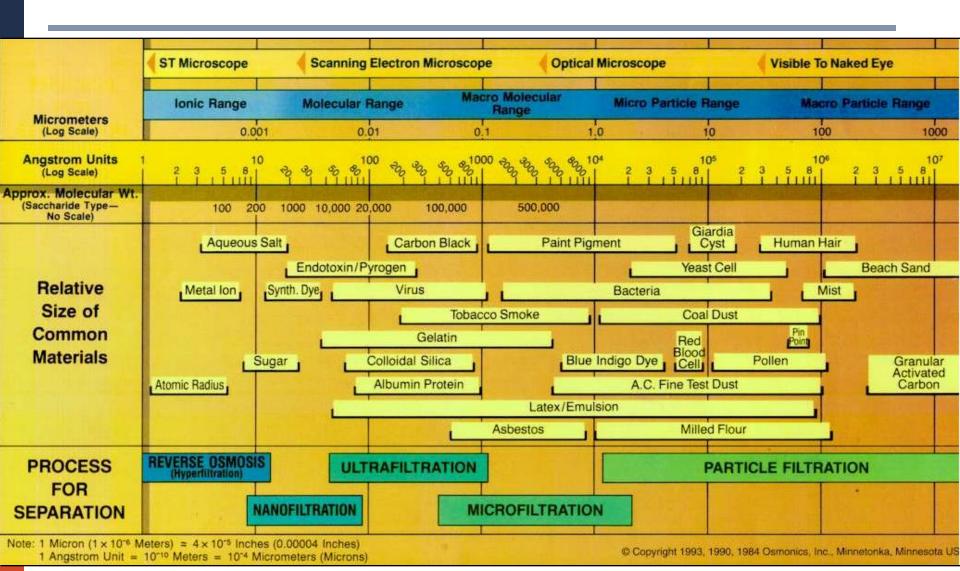
Reverse Osmosis (RO)

RO

- The solvent is transferred through a dense membrane tailored to retain salts and lowmolecular-weight solutes
- To produce "pure" water from saline solution, feed pressure must exceed the osmotic pressure of the feed solution
- In order to obtain economically viable flows, at least twice the osmotic pressure must be exerted as hydraulic pressure (e.g., 50-80 bars (700-1,100 psi) for seawater)

NF

- Sometimes referred to as low-pressure RO or membrane softening process
- Lies between RO and UF in terms of selectivity of the membrane
- Designed to remove multivalent ions but can remove sodium and chloride fairly well
- Looser NF membranes are more like UF and tighter NF membranes more closely resemble RO
- Recently has been employed for organic control
- □ Typical operating pressure: 5-14 bar (70-210 psi)


UF

- Considered as a clarification and disinfection operation
- Membrane is porous and rejects most macromolecules, microorganisms, and all types of particles
- Osmotic pressure effects are negligible
- Typical operating pressure: 0.5-5 bar (7-70 psi)

MF

- Major difference between MF and UF is pore size –
 0.05-5 micron for MF
- Primary application is particulate removal (clarification)
- Typical pressures like UF

Selection of Membrane Processes

Membranes in Treatment of Drinking Water

- The application of specific pressure-driven membrane process is highly dependent on the characteristics and quality of the source water
 - Surface water: MF, UF, NF
 - Groundwater (fresh): MF, UF
 - Groundwater (brackish): MF/UF pretreatment, NF, RO
 - Seawater: MF/UF pretreatment, NF, RO

Membranes in Treatment of Wastewater

- The application of specific pressure-driven membrane process in wastewater treatment is highly dependent on the characteristics/quality of the source water and the pretreatment process/es used
 - Raw wastewater: MF/UF, MBR, FO (not mainstream...yet)
 - Effluent: MF/UF pretreatment, NF, RO

Membrane Technologies and their Traditional Counterparts

Membrane Separation Technology	Constituents Removed	Comparable traditional Water Treatment Method
MF	Bacteria and large colloids; precipitates and coagulates	Ozonation-UV, chlorination, sand filtration, bioreactors, coagulation-sedimentation
UF	All of the above + viruses, high MW proteins, organics	Sand filter, bioreactor, activated carbon
NF	All of the above + divalentions, large monovalentions, color, odor	Lime-soda softening, ion exchange
RO	All of the above + monovalentions	Distillation, evaporation, ion exchange
ED/EDR	Dissolved ionic salts	Ion exchange

Target Solutes

MF: Microbes (protozoa and bacteria) Turbidity (particles and colloids) UF: Same as MF + viruses, "some" NOM **NF:** Same as UF + NOM, SOCs (e.g., Atrazine), Divalent cations (Ca²⁺, Mg²⁺, Zn²⁺, Cd²⁺, etc.), Polyvalent anions (SO_4^{2-} , PO_4^{3-} , AsO_4^{3-} , CrO_4^{2-} , etc.) **RO:** Same as NF + simple ions (TDS, NO₃⁻, ClO₄⁻) **MF + Coagulant:** viruses, NOM (also fouling reduction) **UF + PAC:** SOCs, NOM (also fouling reduction) **Submerged MF and UF:** Fe and Mn (aeration), NOM (with coagulant), SOCs (with PAC)

Ranges of Pressure and Flux

Mem brane	Pore Size	Pressure		Flux	
Class	or MWCO (µm or Dalton)	psi	kPa	gfd (gal/ft²-day)	LMH (L/m²·hr)
MF	0.1 – 0.5 μm	1.4 - 14	10-100	60 – 120	100 – 200
UF	1 – 100 kD	7.0 - 70	50-500	30 – 60	50 – 100
NF	100 – 500 D	100 - 400	700-2,800	15 – 30	20 – 50
RO	n/a	200 - 1,000	1400-7,000	15 – 30	20 – 50
MF (Immersed)	0.2 μm	-1.4	-10		
UF (Immersed)	0.04 μm	-7.0	-50	20 - 50	35 – 85

conversions

1 psi = 0.068 atm

1 atm = 101.3 kPa (kN/m^2) = 14.7 psi 1 kPa = 0.145 psi or 1 psi = 6.90 kPa $gfd = LMH \times 1.7$

Ranges of Energy Consumption

Membrane Class	Recovery	Pressure		Energy consumption kWh per	
		psi	kPa	1,000 gal	m³
MF	94-98	15	100	0.1	0.4
UF	70-80	75	525	0.8	3.0
NF	80-85	125	875	1.4	5.3
LPRO	70-85	225	1,575	2.7	10.2
RO	70-85	400	2,800	4.8	18.2
ED	75-85			2.5	9.5

Permeation Operations

Gas Permeation (GP)

Gas Diffusion

Pervaporation (PV)

Membrane Stripping (MS)

Membrane Distillation (MD)

Engineered Osmosis (EO)

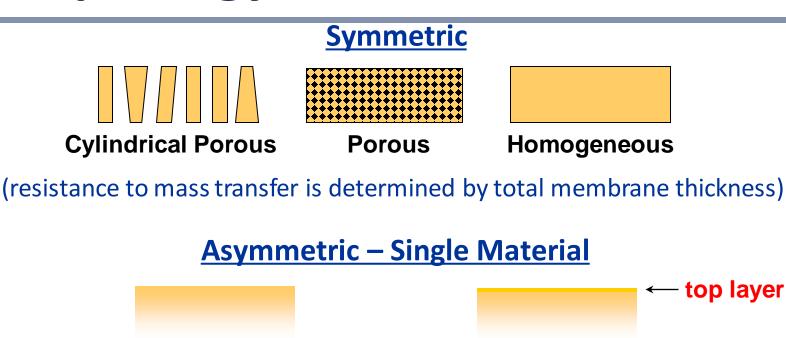
Other Classifications

Separating Mechanisms

- Separation based on difference in size (sieving)
 - MF, UF, DIA
- Separation based on difference in solubility and diffusivity of material in the membrane (solutiondiffusion mechanism)
 - GP, PV, RO, FO
- Separation based on difference in charges of the species to be separated (electrochemical effects)
 - ED, EDR

Rejection Capabilities (pressure-driven processes)

- RO membranes are typically characterized by manufacturers in terms of NaCl rejection, e.g., 96% or 99.9% NaCl rejection
- NF membranes may be characterized in terms of NaCl or MgSO₄ rejection or they may be characterized in terms of molecular weight cut-off (MWCO)*, e.g., 98% MgSO₄ and 80% NaCl rejection
- UF membranes are typically characterized using <u>MWCO</u>, e.g., 13,000 or 80,000 MWCO
- \blacksquare MF membranes are typically characterized by <u>pore size</u>, e.g., 0.1 or 1 μm

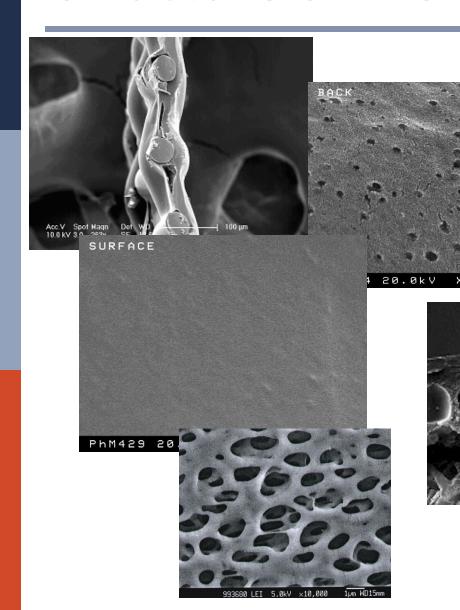

^{*} MWCO is determined by fitting rejection data of acromolecules (e.g., dextrans or proteins)

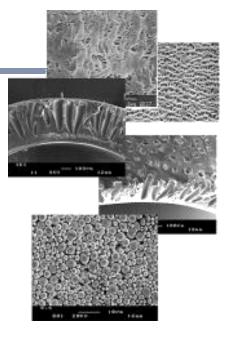
Porosity

- □ Porous membranes (MF, UF, NF, DIA)
 - Macroporous: > 50 nm
 - Mesoporous: 2 50 nm
 - Microporous: < 2 nm</p>
- Nanoporous membranes
 - Dense media
 - Diffusion of species takes place in the free volume present between the macromolecules chains of the membrane material
- IX membranes
 - Specific type of nanoporous membranes

Morphology

Porous

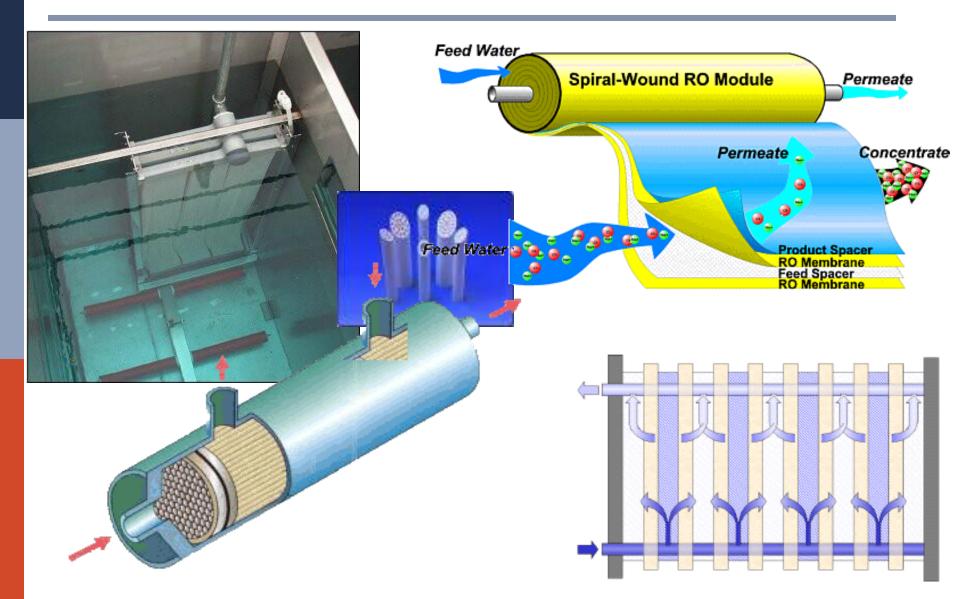

<u>Asymmetric – Composite</u>



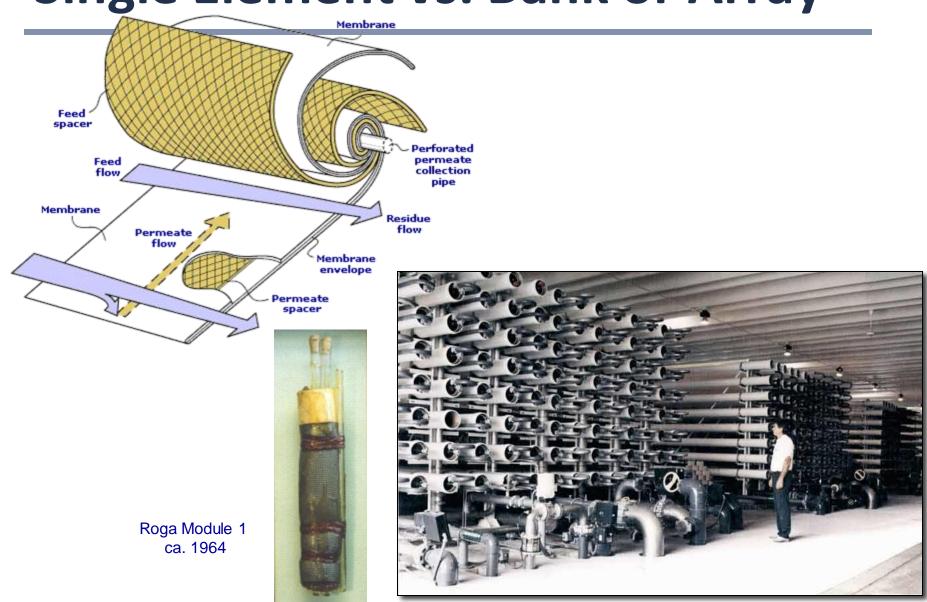
Porous with Top Layer

(resistance to mass transfer determined by skin layer thickness)

Structure of Membranes



Geometry / Packaging


■ Flat-sheet membranes (spiral wound, plate-and-frame)

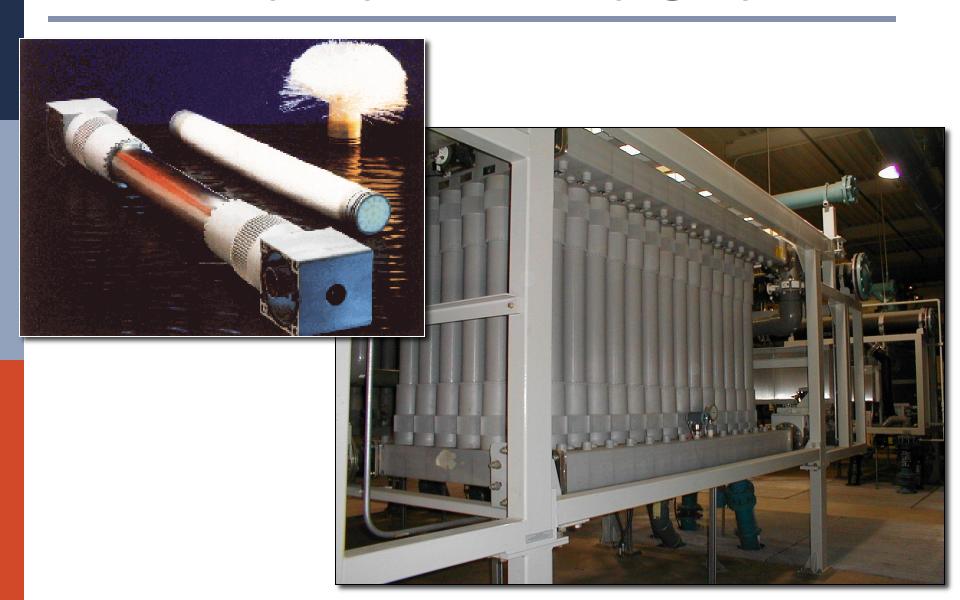
- □ Tubular membranes (shell-and-tube, immersed)
 - Tubes
 - Capillaries
 - Hollow fibers

Geometry / Packaging

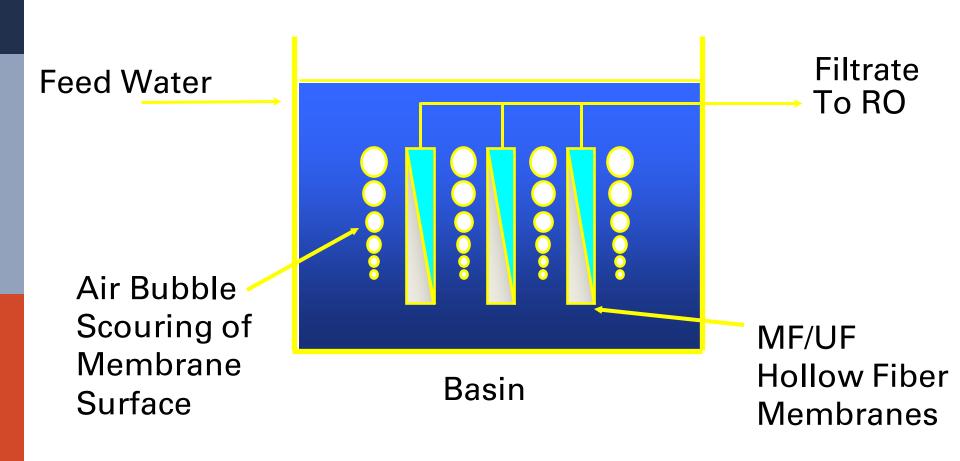
Spiral Wound Module Single Element vs. Bank or Array



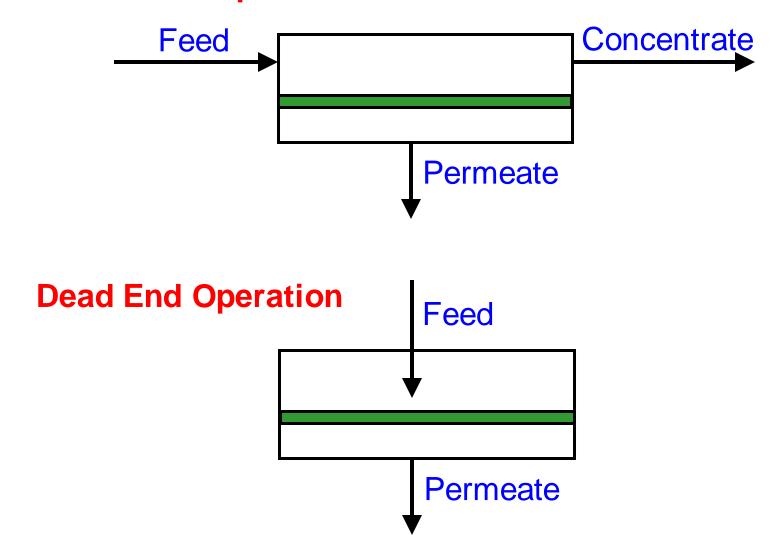
Spiral Wound Module Installation



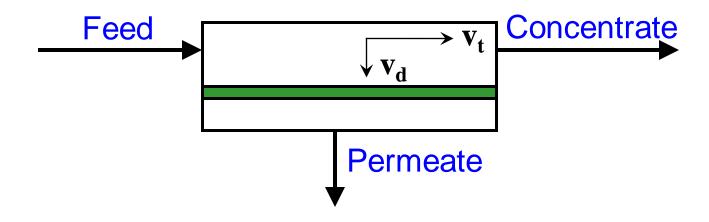
Hollow Fiber Membrane Single Fiber (left) vs. Module (right)


Hollow Fiber Membrane Module (left) vs. bank (right)

Submerged Membrane – MF/UF

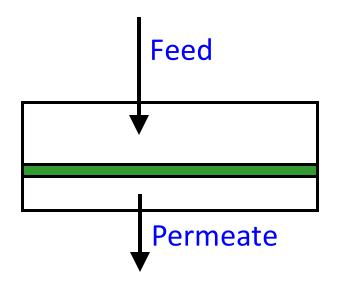

- Uses
 - Surface water treatment
 - Pretreatment for RO
 - Membrane bio reactors (MBR)
 - Filtration for non-potable reuse (add MF after secondary WW treatment and produce water for irrigation)
- Operation
 - Membranes are immersed in basin of feed water
 - Operate under suction
- Advantages
 - Operate at lower pressures than pressurized systems
 - Less fouling potential good for wastewater treatment
 - Membrane cleaning and fixing

Submerged Membranes



Flow Configuration Cross Flow vs. Dead End Filtration

Cross Flow Operation



Cross Flow Operation

- □ Feed flow is parallel to membrane surface
- Retained particles are scoured
- Have concentrate stream
- Preferable for concentrated solutions to control thickness of deposit on membrane (fouling)

Dead End Operation

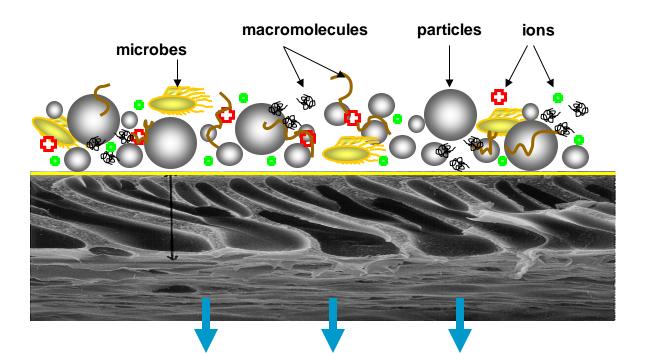
- □ Feed flow is perpendicular to membrane surface
- Retained particles form a cake layer on surface
- No concentrate stream
- Preferable for dilute solutions due to lower energy requirements (pumping)

Comparison of Cross-flow Membrane Configurations

	Cost	Packing Density	Operating Pressure Capacity	Membrane Types	Fouling Resistance	Cleanability
Traditional Spiral-Wound	Low	High	High	Many	Fair	Fair
Hollow Fiber	Low	UF-High RO-Very High	UF-Low RO-High	Few	UF-Good RO-Poor	UF-Good RO-Poor
Tubular	High	Low	UF- Moderate	Few	Very Good	Very Good
Plate & Frame	High	Moderate	High	Many	Fair	Fair

Adapted from "Select Engineering Principles of Crossflow Membrane Technology" Osmonics Inc. Technical Paper, P/N 56821

Membrane Materials


- Polymeric membranes:
 - Polysulfone
 - Polyethersulfone
 - Polyphenylsulfone
 - Polyvinylidene Fluoride (PVDF)
 - Polypropylene (PP)
 - Polyethylene (PE)
 - Cellulose and Cellulose acetates (CA)
 - Polyamide (PA)
 - Polyacrylonitrile (PAN)
 - Polytetrafluoroethylene (PTFE)
 - Polycarbonate (PC)
 - Polymethylmethacrylate (PMMA)

- Ceramic membranes:
 - Aalumina
 - Titania
 - Zirconia
 - ATZ mix
 - chemical, mechanical and thermal stability
 - ability of steam sterilization and back flushing
 - high abrasion resistance
 - high fluxes
 - > durable
 - bacteria resistance
 - possibility of regeneration
 - dry storage after cleaning

Membrane Properties

- □ Pure water permeability (PWP)
- Pore size
- Molecular Weight Cut-Off (MWCO)
- Hydrophobicity/hydrophilicity
- Surface/pore charge
- Surface roughness
- Chemical stability / chlorine tolerance

Principles of Mass Transport and Rejection in Pressure-Driven Membrane Processes

Overview

- RO, NF, UF, and MF have many similarities (geometry, flow configuration, material...)
- Principals of rejection differ substantially
 - In RO, function of relative affinity of solute and solvent to the membrane
 - In MF, mainly due to physical sieving

Membrane Performance

- The performance of a membrane is determined by mainly two parameters, flux and rejection:
 - Flux (J), or permeation rate, is the volume flowing through the membrane per unit area per time (Q/A)
 - Rejection (R), refers to a local relationship between upstream and downstream concentrations
- Another important parameter is recovery (r), which is defined as the amount of material collected as a useful product divided by the total amount of the material entering the process: in membrane separations, the useful product is most often the permeate water

Water and Solute Flux

Water flux (J_w), or permeation rate, is the volume flowing through the membrane per unit area per time (Q/A)

$$J_{w} = \frac{Q_{water}}{A_{membrane}} = \frac{V_{water}}{A_{membrane} \cdot time}$$

- In membrane processes it is a function of driving force, membrane properties, and feed quality
- Specific permeate flux is the water flux calculated above normalized to the applied driving force

$$J_{sp} = \frac{Q_{p}}{A \times P} \mathbb{E}[gpd/ft^{2} \cdot psi][gfd/psi], \mathbb{E}[MH/bar]$$

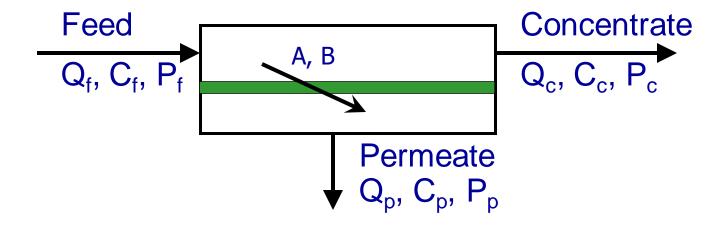
Note: in MF/UF, DP = net applied pressure (NAP)

Water and Solute Flux

■ Solute Flux is the mass of solute flowing through the membrane per unit of area per time

$$J_s = \frac{m_{solute}}{A_{membrane}} = \frac{mol_{solute}}{A_{membrane} \cdot time}$$

■ In membrane processes it is a function of driving force (concentration), membrane properties, and solute/particle properties

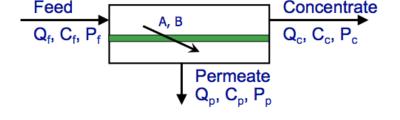

Water Recovery Rate (r)

■ The ratio of the useful product (permeate) flow rate and the flow rate of feed to the process

$$r = \left(\frac{Q_p}{Q_f}\right) * 100\%$$

- Global recovery rate:
 - Where Q_p is the product (permeate) flow rate and
 - Q_f is the feed flow rate
- In membrane processes, because of the modularity and various configurations, it is important to distinguish between membrane/module recovery and system recovery

Material Balance in Membrane Separation

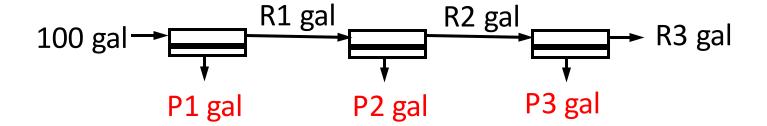

Material Balance in Membrane Separation

Mass balance for water flow

$$Q_f = Q_c + Q_p$$

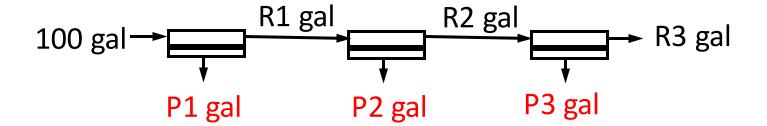
■ Mass balance for solute flux

$$Q_fC_f = Q_cC_c + Q_pC_p$$

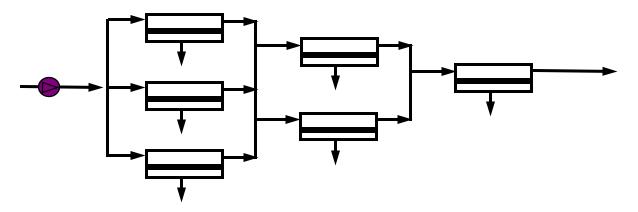


Product recovery

$$r = (Q_p/Q_f) \cdot 100\%$$

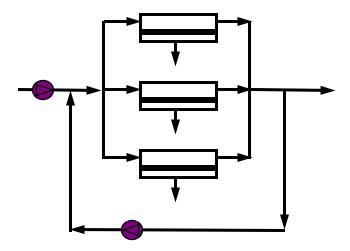

Example of Process Recovery

■ Assuming each membrane (or each stage) operated at 20% recovery, what is the total system recovery


Example of Process Recovery

■ Repeat the exercise with 50% recovery per stage, what is the production rate of the third stage?

Staging

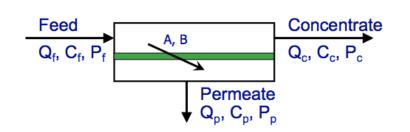

■ In RO and NF operations, membranes are often staged

tapered design compensates for loss of feed volume through system

Recirculation

In MF and UF, some concentrate is often recirculated to the inlet

- Flexible (can control degree of recirculation)
- Economics (tradeoff between power for recirculation pump and additional recovery)


Material Balance in Membrane Separation

Mass balance for water flow

$$Q_f = Q_c + Q_p$$

Mass balance for solute flux

$$Q_f C_f = Q_c C_c + Q_p C_p$$

Product recovery

$$r = (Q_p/Q_f) - 100\%$$

Global Rejection

$$R = \left(\frac{C_f - C_p}{C_f}\right) \cdot 100\% = \left(1 - \frac{C_p}{C_f}\right) \cdot 100\%$$

Rejection (R)

- Location-specific ratio of product concentration and feed concentration
- □ Global rejection...

$$R = \left(1 - \frac{c_p}{c_f}\right) * 100\%$$

where c_p is the solute concentration in the permeate and c_f is the solute concentration in the feed

□ Global system rejection...

$$R_{mass} = \left(1 - \frac{C_p}{C_f} r\right) * 100\%$$

- May yield different value as function of time
- Variability of feed, permeate $\{C_p = f(R)\}$, membrane condition...

Rejection (R)

Local rejection due to change in bulk feed concentration in the flow channel

$$R = \left(1 - \frac{c_p}{c_{wall}}\right) * 100\%$$

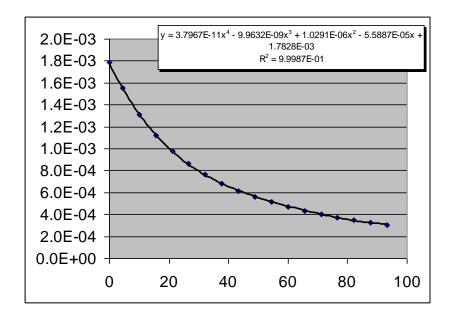
$$c_{\text{wall}} \ge c_{\text{bulk}} \ge c_{\text{feed}}$$

- If we know the permeate flux and mass transfer coefficient (we will talk about it later), the concentration at the membrane surface can be predicted by calculating a polarization factor (PF)... $c_{wall} = PF \cdot c_{bulk}$
- Apparent rejection calculated based on bulk concentration:

$$R_{apparent} = \left(1 - \frac{c_p}{c_{bulk}}\right) * 100\%$$

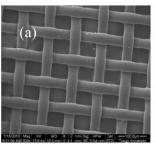
Temperature Effects

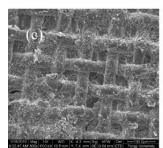
- □ Higher transmembrane pressure in the winter, or
- More membranes in the winter to prevent fouling/cleaning
- Water demand difference between summer and winter may offset loss in membrane productivity
- Membrane fouling

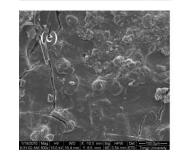

http://watertreatmentguide.com/temperature_correction.htm

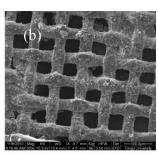
Temperature Effects

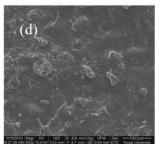
- Change in temperature may result in a wide range of effects that go beyond the viscosity of the permeate alone
- □ Different ways to model effects of temperature:
 - Arrhenius equation: $J_T = J_{20} \exp(s/T)$
 - J₂₀ = permeate flux at reference temperature of 20 °C
 - s = empirical constant, membrane specific
 - T = temperature
 - □ For MF and UF: Flux₂₀ = Flux_T (μ_T/μ_{20}); or $\frac{J_T}{J_{25}}$ = 1.03^(T-25)
 - Temperature Corrected Flux (TCF)

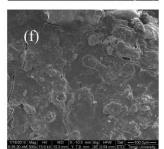

Temperature Effects

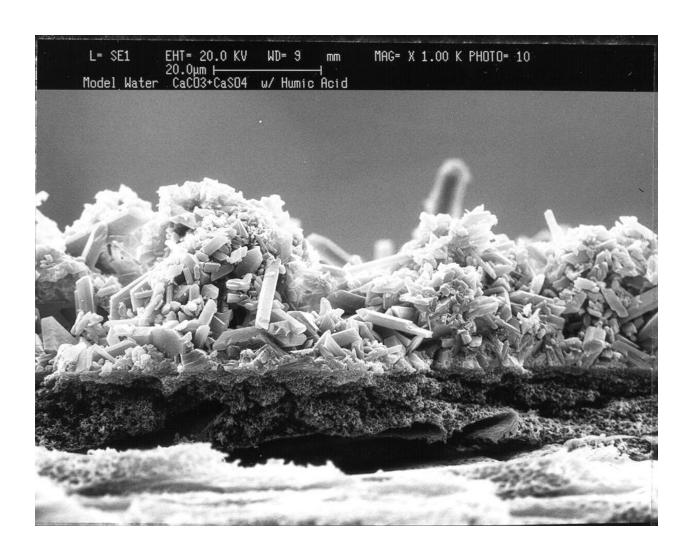

- □ Primary effect due to influence on viscosity
- □ For temperatures in the range of 0-35 °C
 - μ (centipoise) = 1.777 0.052 T + 6.25x10⁻⁴ T²
 - centipoises = Pa-sec x 1,000
 - μ (Pa-sec) = 3.797x10⁻¹¹ T⁴ 9.963*10⁻⁹ T³ + 1.029x10⁻⁶ T² 5.589x10⁻⁵ T + 1.783x10⁻³




Membrane Fouling


- Deposition
 - Silt and suspended solids
- Scaling
 - Inorganic deposits formed due to concentration of sparingly soluble salts beyond the chemical solubility limit
- Biofouling
 - Microbiological growth entering or within element
- Organic fouling
 - Interactions of natural or synthetic organics

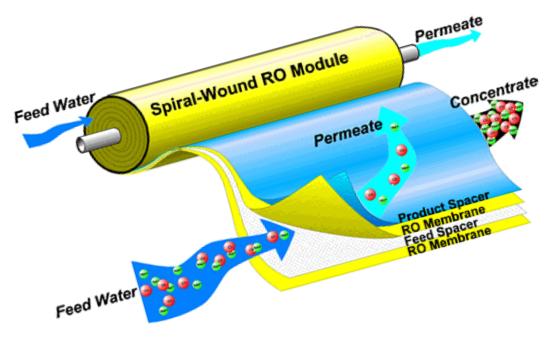




Scaling SEM

Scaling SEM

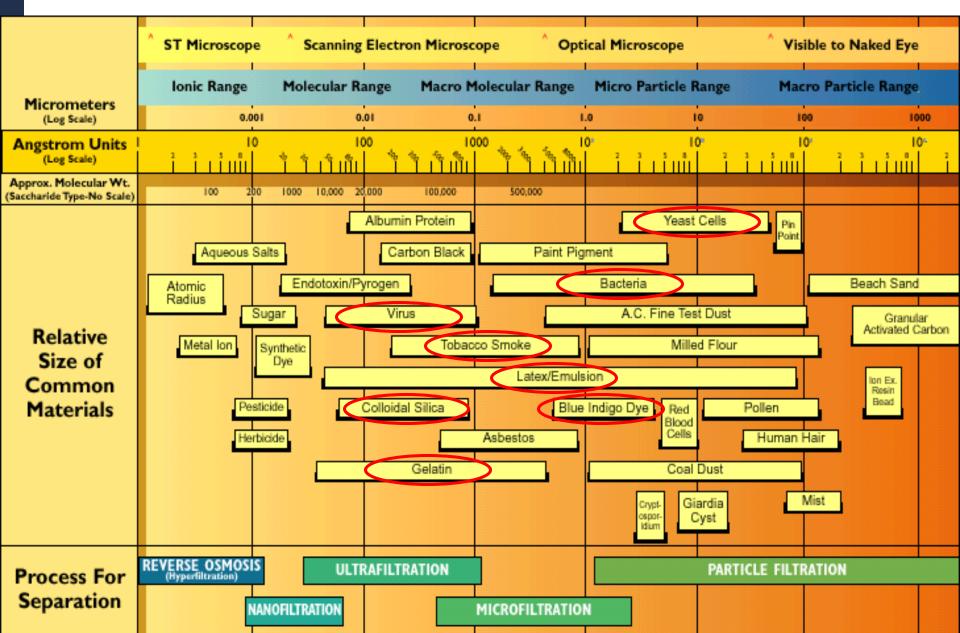
Silt Density Index (SDI)


- Empirical test of filterability
- Measures the tendency of a raw water to foul a membrane
 - Use 0.45 μm filter in a dead-end filtration cell
 - t_i time required to filter a fixed volume of raw water through a clean membrane (~500 ml)
 - t_f time required to filter the same volume after the membrane has been used for a defined length of time
 - Standard conditions: 47 mm filter, 2 bar (30 psi) transmembrane pressure, total time (t₁) of 900 sec

$$SDI = \frac{100(1 - t_i/t_f)}{t_t}$$

Water Treatment Membrane Processes

Microfiltration and Ultrafiltration


Overview

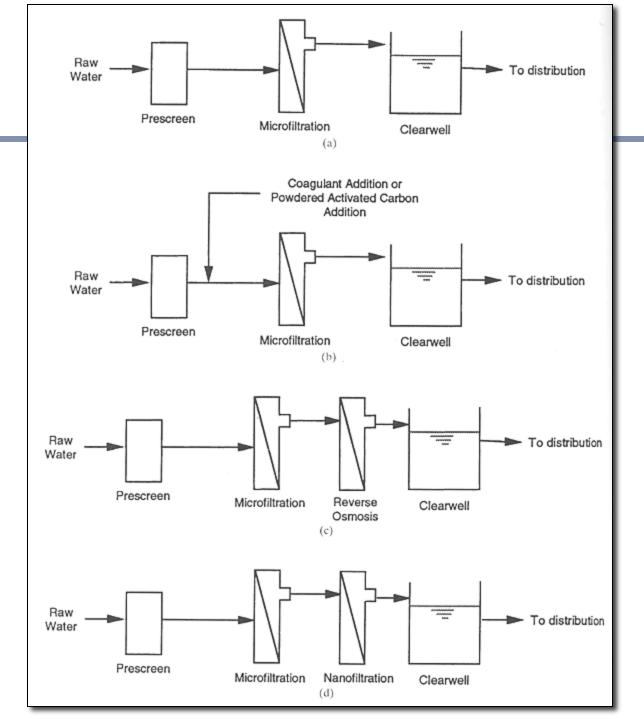
- Initial use of deep filtration microfilters...disposable, not sustainable...
- MF membranes provide removal by retention of contaminants on the membrane surface
- Lowest pressure membrane process
- Pore size of 0.05 5 micron
- □ Cake filtration provides additional removal capabilities ...smaller particles than pore size can be removed

Current Status

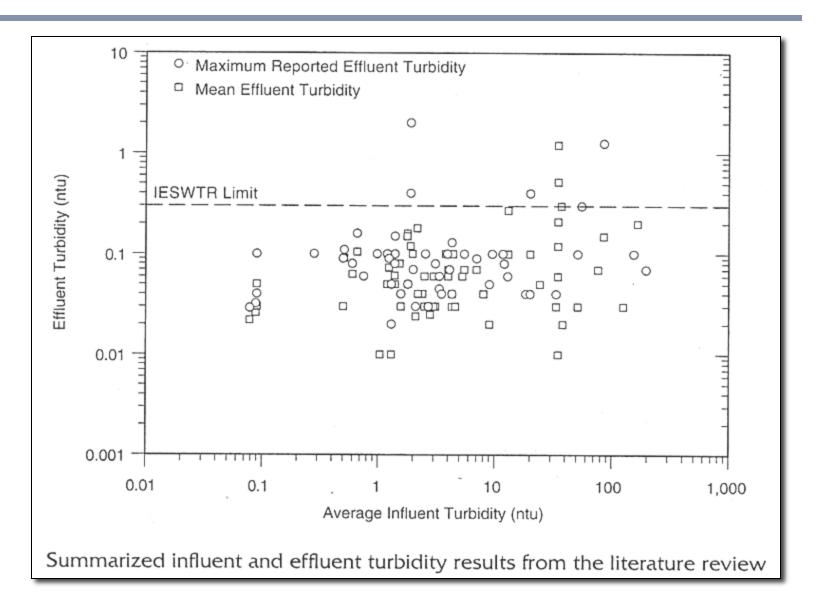
- MF and UF generally accepted as being capable of meeting filtration requirements for drinking water production
 - Turbidity removal / disinfection
- MF can resolve the conflict between need to provide primary disinfection and DBP formation
- LT2ESWTR identified membranes as treatment technique for higher level removal of cryptosporidium
- Substantial diversification of membrane processes and configurations

Filtration Spectrum

Treatment Capabilities


- Removal of particulate matter
 - Turbidity
 - Particles
 - Microbial control
- Removal of organic and inorganic species when feed water is pretreated (coagulation, adsorption)
 - DOC/DBP precursors
 - color / taste / odor
 - Pesticides
 - Iron / manganese (aeration / chemical oxidation)
 - Arsenic

Treatment Capabilities


Parameter		Pretreatment needed for substantial removal	
		MF	UF
Particulate/microbial	Turbidity	None	None
	Protozoa	None	None
	Bacteria	None	None
	Viruses	Coagulation	None
Organic	TOC	Coagulation / PAC	Coagulation / PAC
	DBP precursor	Coagulation / PAC	Coagulation / PAC
	Color	Coagulation / PAC	Coagulation / PAC
	T&O	Coagulation / PAC	Coagulation / PAC
	Pesticides	PAC	PAC
Inorganic	Iron & manganese	Oxidation	Oxidation
	Arsenic	Coagulation	Coagulation
	Hydrogen sulfide	Oxidation	Oxidation


Modes of Application

Turbidity Removal

Particle Removal

Water Permeation Across Clean MF/UF Membranes

- Pure water transport through clean porous membrane is:
 - \blacksquare Directly proportional to transmembrane pressure ($\triangle P$)
 - Inversely proportional to viscosity (μ)
- Modeled using modified form of Darcy's Law:

$$J = \frac{Q_{total}}{A} = \frac{\Delta P}{\mu R_m}$$

 \square R_m \equiv hydraulic resistance of the clean membrane to water permeation (units?)

Example: Membrane resistance

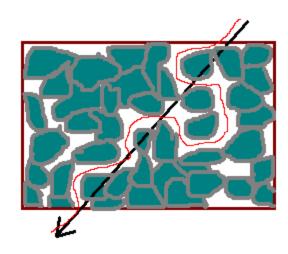
■ An MF membrane is tested in the lab by filtering clean, deionized water and the flux is found to be 2,000 LMH (L/m²-hr) at 20 °C and 0.7 bar. Calculate the membrane resistance coefficient.

Water Permeation Across Clean MF/UF Membranes

- Absolute transmembrane pressure vs. pressure gradient
- Typical units of water flux
 - gfd (gal/ft²-day)
 - LMH (l/m²-hr)

□ LMH x 1.7 = gfd

Flow Through a Cylindrical Pore (Poiseuille's Law)


$$Q_{1 \, pore} = \frac{\pi \, r^4}{8\mu} \frac{\Delta P}{\Delta z}$$

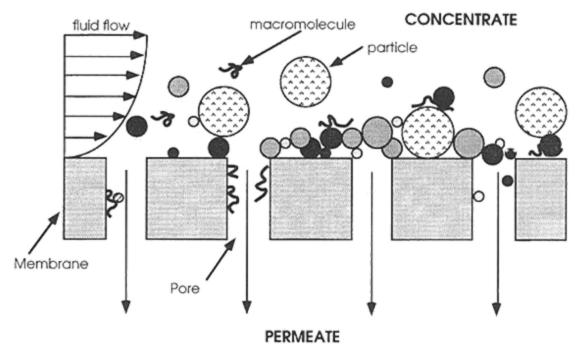
- \square $\triangle P/\triangle z$ is pressure gradient
- In real membranes pores are not perfectly cylindrical
 - Dimensionless tortuosity factor (τ) is often introduced

Flow Through Membrane Pores

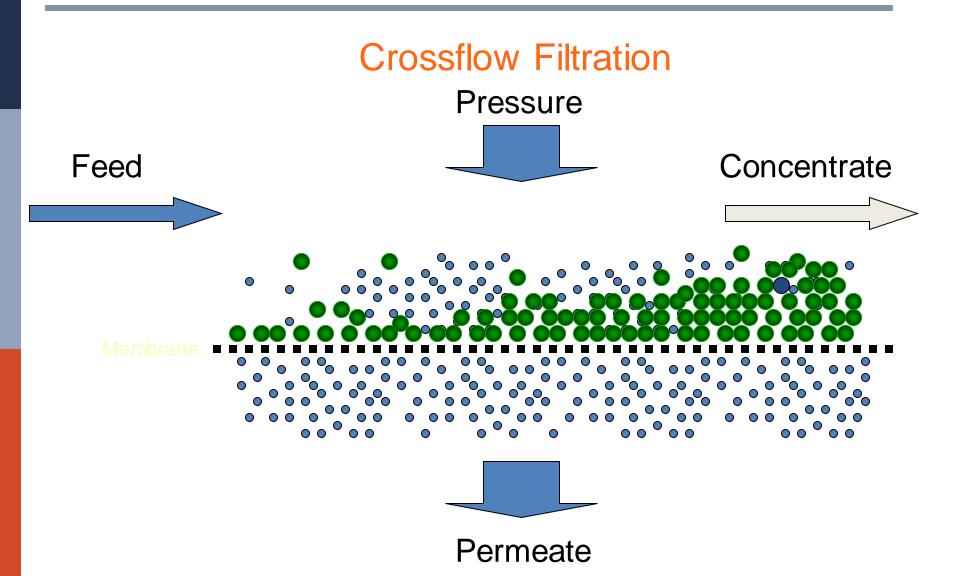
$$Q_{total} = \frac{\pi r^4}{8\mu\tau} \frac{\Delta P}{\Delta z} A \rho_{pore}$$

$$\rho_{pore} = \text{\#pores/A}$$

$$J = \frac{\pi r^4}{8\mu\tau} \frac{\Delta P}{\Delta z} \rho_{pore} = \frac{\varepsilon r^2}{8\mu\tau} \frac{\Delta P}{\Delta z} \implies R_m = \frac{8\tau\Delta z}{\varepsilon r^2}$$

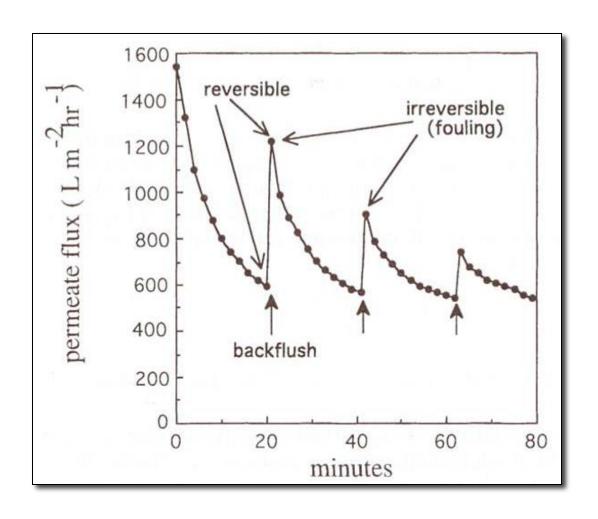

Significant Parameters

- Pore size has the highest effect on resistance to water flow
- Pore size distribution
- Specific flux for membrane comparison
 - Calculated based on area on feed side

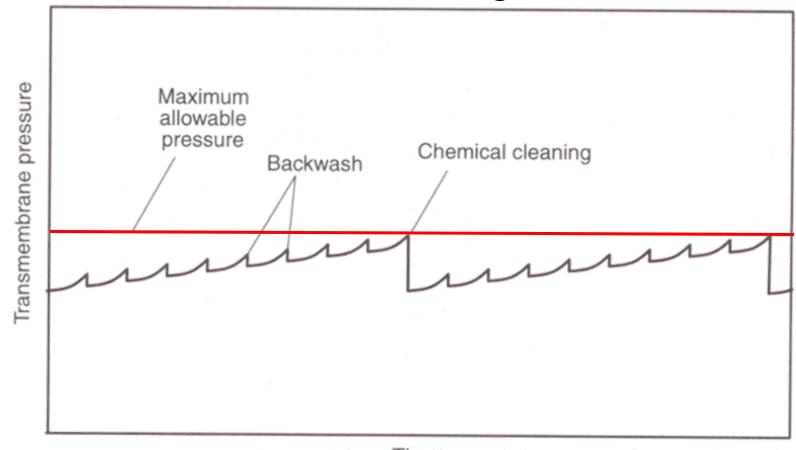

$$\Delta P = \frac{P_{Fi} + P_{Fo}}{2} - P_p$$

Reduction in Membrane Productivity

- □ Flux Decline Mechanisms
 - Fouling
 - Concentration polarization
 - Resistance in Series



Reductions in Permeate Flux


Reduction in Permeate Flux over Time

□ Reversible vs. irreversible fouling

Increase in Transmembrane Pressure Over Time

□ Reversible vs. irreversible fouling

Classwork: UF Recovery

- □ Assuming the following operating scenario:
 - UF treatment plant with 48 HydraCap60 membrane elements
 - 20 min operation with average productivity of 55 gfd
 - backwash with product water for 45 sec uses 1500 gal of permeate

- What additional information is needed?
- What is the water recovery rate?
- What is the backwashing flux?

http://www.membranes.com/pdf/HYDRAcap.pdf