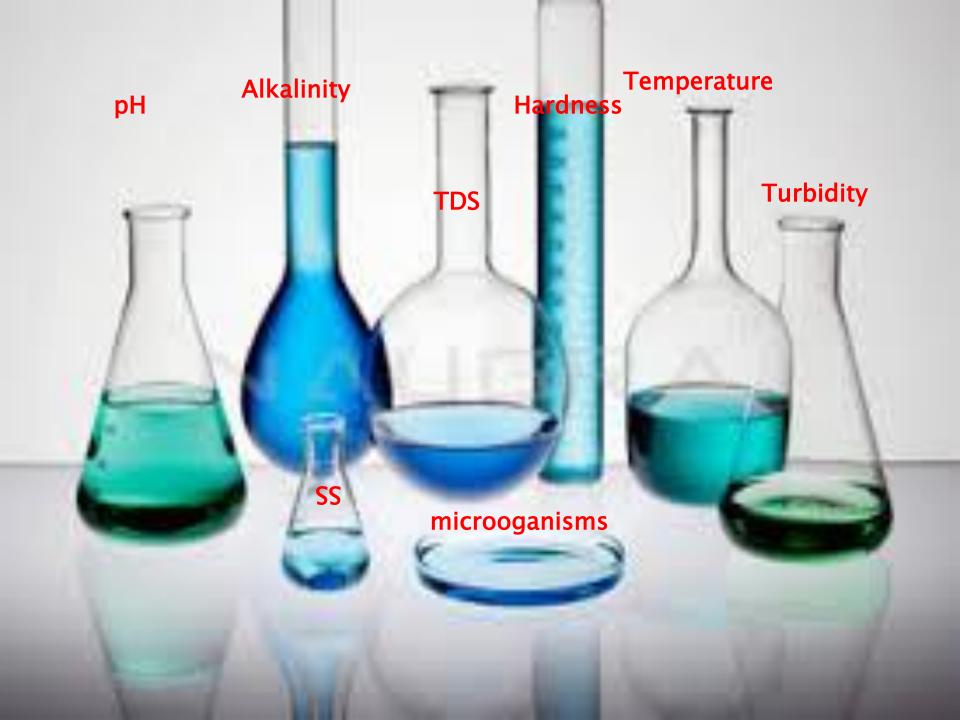


Cooling Water Treatment Principles

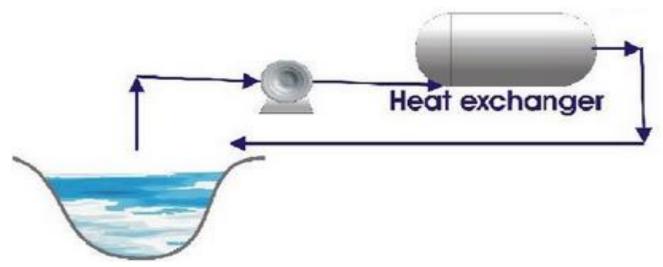
Chem: Ahmed Anwer

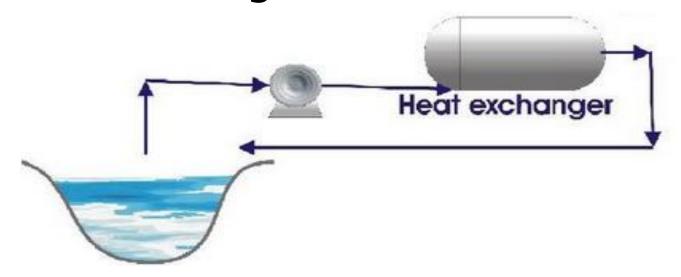

PhD Researcher "Corrosion Inhibition"

Mob: 01001347037

Email: info@chemaxeg.com

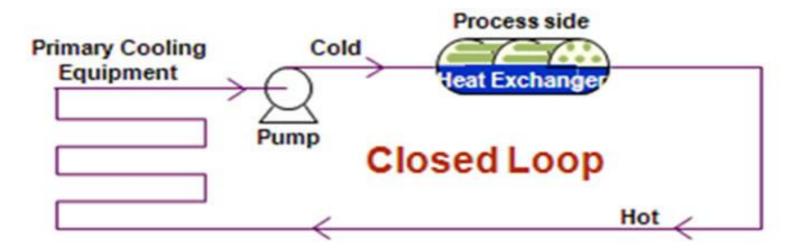
Cooling Systems


Why,, imagination


- 1. Once Through
- 2. Closed Recirculating
- 3. Open Recirculating

1. Once Through

- > Simplest type
- ➤ Water passes through heat exchangers only one time
- ➤ Discharged back to original source
- Mineral content of water remains unchanged


1. Once Through

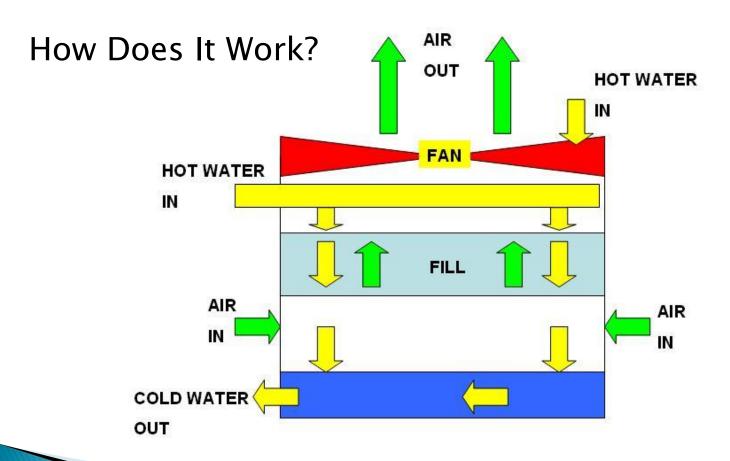
Advantages

Disadvantages

2. Closed Recirculating

EXAMPLES

Mold & machine cooling Jacket reactors Diesel Engine Jackets Automobile Radiators Chilled Water Systems

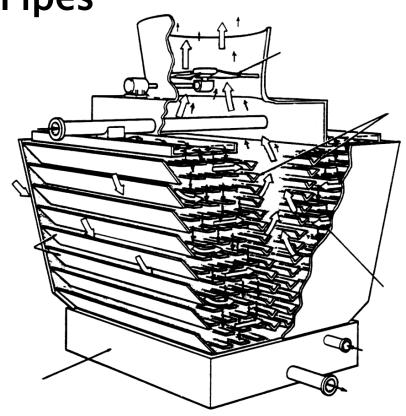

CHARACTERISTICS

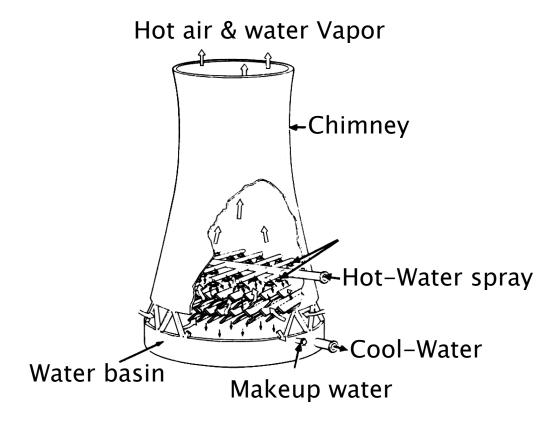
Cooling by Heat Transfer and Primary system Average Temperature Change 5-10°C Amount of Water Used: Negligible

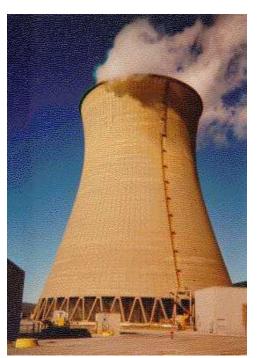
2. Closed Recirculating

- ➤ Advantages
 - > Fixed volume of cooling water
 - > No water is evaporated.
 - ➤ No water loss (except leaks)
 - ➤ No Scale in most closed circuits
- ➤ Disadventages
 - Corrosion
 - Microbial growth

3. Open Recirculating


3. Open Recirculating Air outlet Drift eliminators Warm water Water distribution Pack Heat (or fill) exchange plant Air intake Cooled water Collecting reservoir Pump

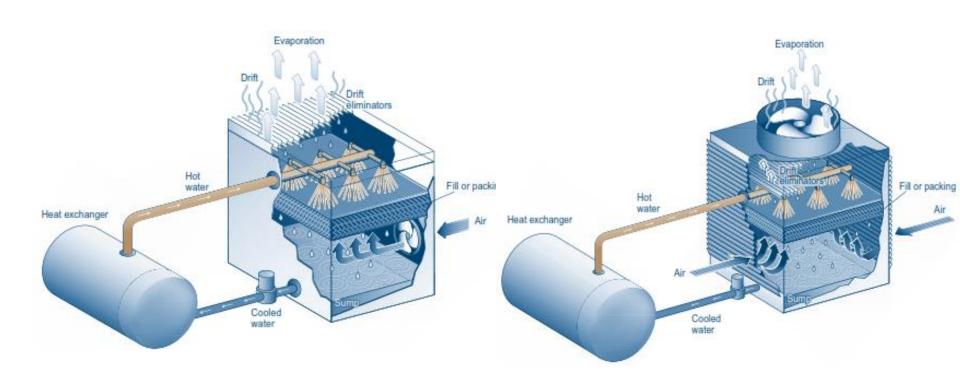

Components of Cooling Systems


Cooling Tower

- Frame and Casing
- Filling material
- Cold water basin
- Drift eleminator
- Louvers
- Nozzles
- Fans and motors

Recirculating pumps Heat exchangers Pipes

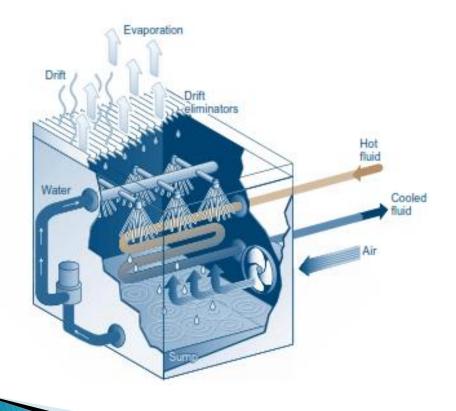
Natural Draft



Forced Draft Towers

Induced Draft Towers

Mechanical Draft

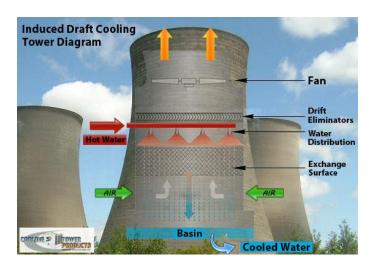


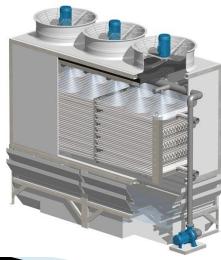
Forced Draft Towers

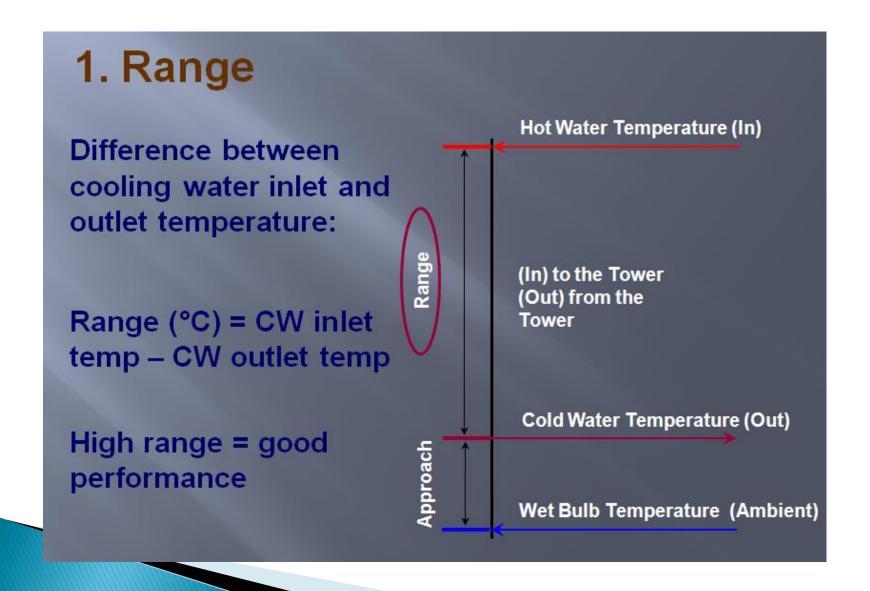
Induced Draft Towers

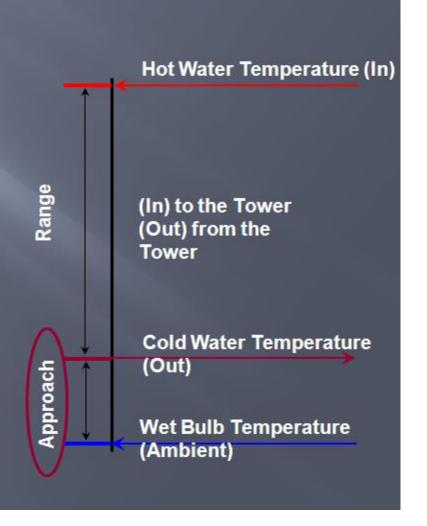
Mechanical Draft

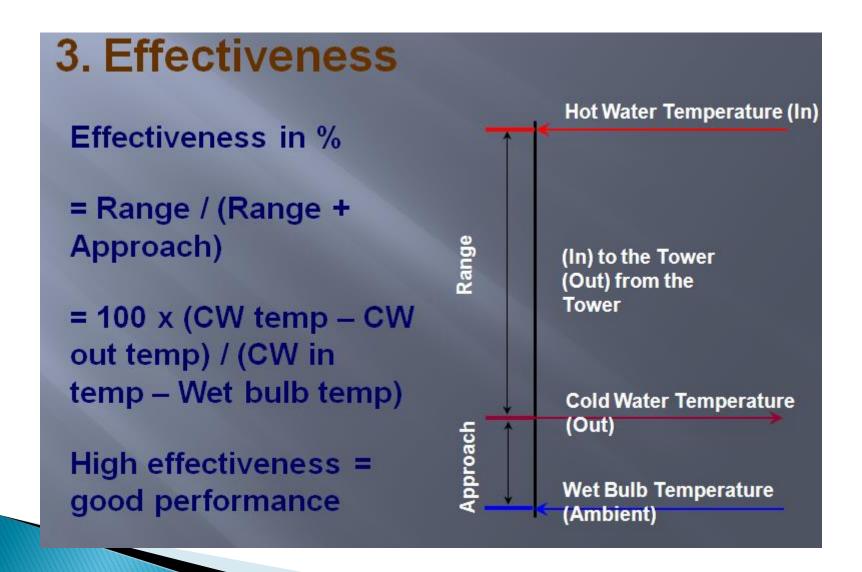
A device that cools air through the evaporation of water


Evaporative cooler








2. Approach

Difference between cooling tower outlet cold water temperature and ambient wet bulb temperature:

Approach (°C) = CW outlet temp – Wet bulb temp

Low approach = good performance


```
T1 = 20^{\circ}C T1 = 22^{\circ}C T2 = 30^{\circ}C T2 = 38^{\circ}C Wet Pulp = 17°C Wet Pulp = 20°C Efficiency = ??
```

Which is better?

Cooling Parameters

- Recirculation Rate (RR)
- Evaporation (Evap)
- Make up (Mup)
- Blowdown (BD)
- Cycle of Concentration (C.C), (N.C)
- Each 10°F that the RR needs to be cooled, one percent of the cooling water is evaporated.

Make up & blow down

Make up =evaporation +blow down

$$\rightarrow$$
 MU = Evap + BD

▶ BD*C.C =Evap+ BD

$$BD = \frac{evp}{(c.c-1)}$$

Cooling Parameters

Example

```
    T1= 85F
    TDS inlet= 200
    RR= 4400 gpm
```

Calculated (Evap, BD and Mup)

Circulating Water Quality Guidelines

Property of Water	Recommended Level
pН	6.5 to 9.0
Hardness as CaCO ₃	30 to 750 ppm
Alkalinity as CaCO3	500 ppm maximum
Total Dissolved Solids	1500 ppm maximum
Conductivity	2400 micromhos
Chlorides	250 ppm maximum as CI
	410 ppm maximum as NaCl
Sulfates	250 ppm maximum
Silica	150 ppm maximum

Water Chemistry

pН

Alkalinity

Hardness

Silica

Nitrate & nitrite

Phosphate

Ammonia

Chloride

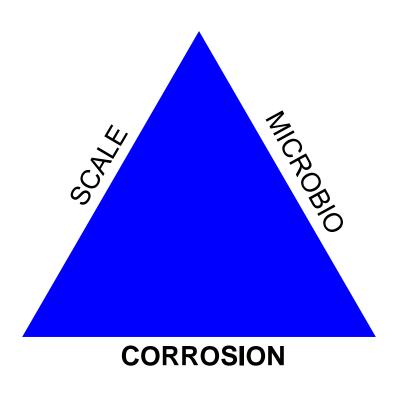
Fluoride

Iron

Zinc

Cu

Ni


Suspended Solids

Organics

Bacteria

Cooling Systems Problems

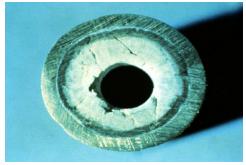
- **≻**Scale
- **≻**Corrosion
- > Biological growth
- **≻**Fouling

Scale

- Scale is the formation of mineral deposits.
- Solids precipitate when they reach the limit of their solubility.

- Calcium Carbonate
- Magnesium Silicate
- Calcium Phosphate
- Calcium Sulfate
- Iron Oxide
- Iron Phosphate
- Zinc Phosphate
- Others...

CaCO₃

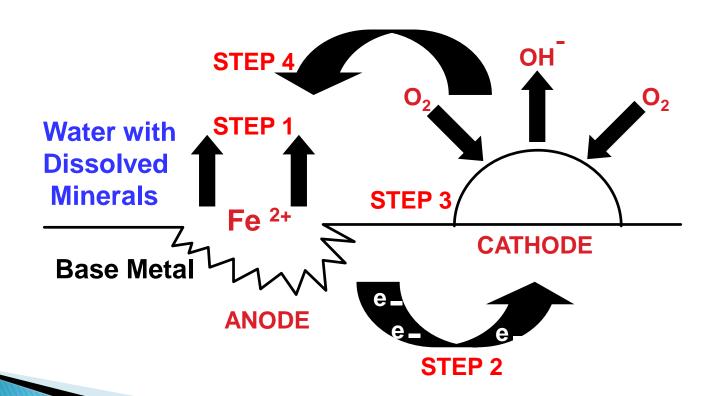


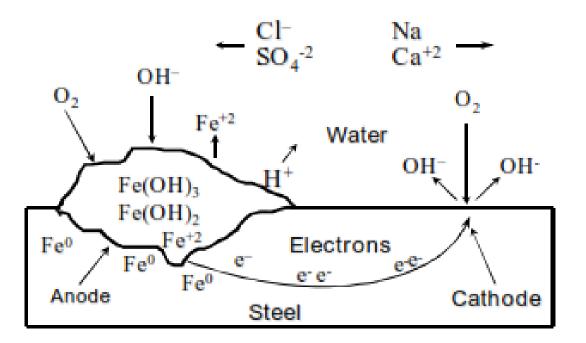
CaPO₄

Factors affecting scale formation

- Mineral Concentration
- Water Temperature
- > pH
- Flow rate
- Retention time
- Heat flux and skim temperature of heat exchanger.

Prevention


CaCO₃


CaPO₄

Corrosion

- The mechanism by which metals are reverted back to their natural "oxidized" state
- > Corrosion required metal, oxygen and water.

Corrosion

Corrosion

▶ For corroding metals, the anodic reaction is of the form

$$M \rightarrow M_{interface}^{n+} + ne^{-}$$

 $M_{interface}^{n+} \rightarrow M_{bulk}^{n+}$

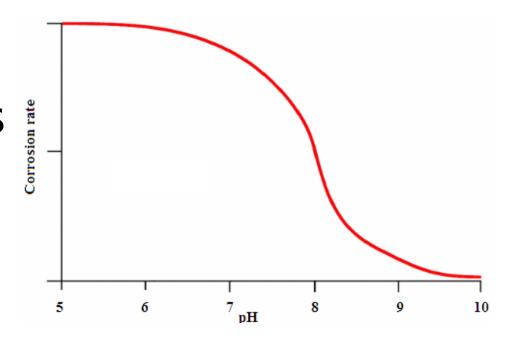
Charge Transfer Mass Transfer

Cathodic reaction is of the form

In acidic medium

$$H_{bulk}^+ \rightarrow H_{interface}^+$$

$$2H^+ + 2e^- \rightarrow H_2$$

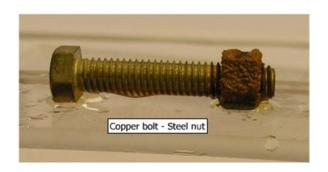

$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$$

In Alkaline medium

$$O_2$$
 bulk \longrightarrow O_2 interface
 $^{1}/_{2} O_2 + H_2O + 2 e^- \longrightarrow 2 OH^-$

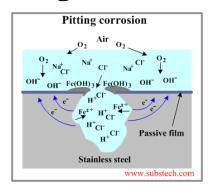
Factors affecting Corrosion formation

- pH
- TDS
- DISSOLVED GASSES
- Microorganisms
- Temperature
- Metallurgy

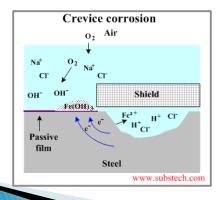

Corrosion Control

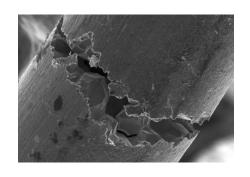
- Use corrosion resistant alloys
- Adjust (increase) system pH: Scale
- Apply protective coatings
- Use sacrificial anodes: Zn/Mg
- Apply chemical corrosion inhibitors

Uniform Corrosion



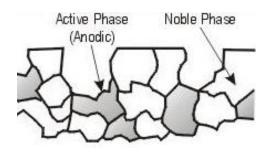
Galvanic Corrosion


Pitting Corrosion

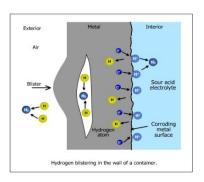

Crevice Corrosion

Intergranular Corrosion

Stress Corrosion Cracking



Erosion Corrosion


Selective leaching Corrosion

Hydrogen Damage

Microbial Corrosion

Micro biological growth

Bacteria, algae, Fungi

- Produce acidic waste that lowers pH and cause corrosion
- Form slime masses that foul & cause reduced heat transfer
- (Common biofilms are 4 times more insulating than CaCO₃ scale)

How do Microorganisms enter a Cooling Water System?

Classifications of Bacteria

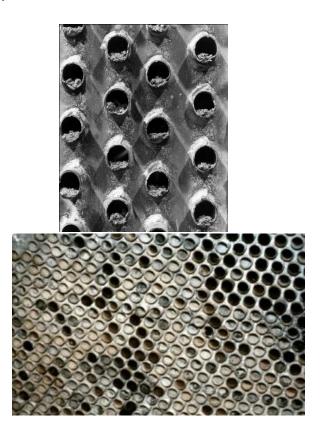
Planktonic

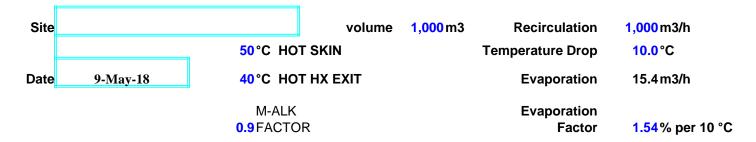
Free floating bacteria in bulk water

Sessile

- Bacteria attached to surfaces
- Over 95% of bacteria in a cooling system are sessile and live in BIOFILMS

Factors affecting Boigouling formation


- NUTRIENT (Ammonia, oil, organic)
- WATER TEMPERATURE
- pH VALUE 6.0 : 9.0
- DISSOLVED OXYGEN
- SUN LIGHT
- NUMBER OF BACTERIA
- TURBIDITY
- SLIME VOLUME
- SLIME ADHESION DEGREE
- WATER FLOW RATE


Fouling

Acumulation of solid material, other than scale.

- o Silt, Sand, Mud
- o Dirt & Dust
- o Process contaminants, e.g. Oils
- Corrosion Products
- Microbial growth

Calcuations

	рН	M-ALK mg/l	Ca mg/l	Mg mg/l	SiO2	COND	CI	SO4	%	LSI	LSI	MgSi	CaMgSi	PURGE	t ½
		CaCO3	CaCO3	CaCO3	mg/l	μS/cm	mg/l	mg/l	MU	SKIN	BULK	mg/l	mg/l	m3/h	days
1	7.60	125.0	150.0	100.0	10	420	60	100	100.0%						
2	0.00	0.0	0.0	0.0	0	0	0	0	0.0%						
CYCLES	7.60	125.0	150.0	100.0	10	420	60	100	100.0%	MAKE	UP				
1.5	8.21	168.8	225.0	150.0	15	630	90	150		1.29	1.12	OK	OK	30.8	0.94
2.0	8.39	225.0	300.0	200.0	20	840	120	200		1.69	1.52	OK	OK	15.4	1.88
2.5	8.53	281.3	375.0	250.0	25	1050	150	250		2.01	1.84	OK	OK	10.3	2.81
3.0	8.64	337.5	450.0	300.0	30	1260	180	300		2.27	2.10	OK	OK	7.7	3.75
3.5	8.73	393.8	525.0	350.0	35	1470	210	350		2.48	2.32	OK	OK	6.2	4.69
4.0	8.81	450.0	600.0	400.0	40	1680	240	400		2.67	2.50	OK	HIGH	5.1	5.63
4.5	8.88	506.3	675.0	450.0	45	1890	270	450		2.84	2.67	OK	HIGH	4.4	6.56
5.0	8.95	562.5	750.0	500.0	50	2100	300	500		2.99	>2.8	HIGH	HIGH	3.9	7.50
5.5	9.01	618.8	825.0	550.0	55	2310	330	550		>3.0	>2.8	HIGH	HIGH	3.4	8.44

- ✓ Scale Inhibitors
- ✓ Corrosion Inhibitors
- ✓ Biocides

Scale Inhibitors

Operate through two different mechanisms.

1-nucleation inhibition:

Decreasing stability of the growing nucleons

2-crystal growth blocking

Blocking of the growth processes of the growing crystals

Scale Inhibitors

			HEDP	PBTC	PAA		
Scaling	LSI RSI/PSI		(100% Active Basis)				
None	0.0	> 5.8	0.0	0.0	0.0		
Slight	0.2	5.6 - 5.7	0.2	0.1	0.5		
Moderate	0.5	5.3 - 5.5	0.5	0.3	1.0		
Strong	1.0	4.7 - 5.2	1.0	0.5	2.2		
Very Strong	1.5	4.3 - 4.6	2.0	1.2	4.0		
Severe	2.0	4.1 – 4.2	3.0	1.8	X		
Very Severe	2.5	3.9 - 4.0	X	2.4	X		
Highly Stressed	> 2.7	< 3.9	X	X	X		

HEDP= Hydroxyethylidene Diphosphonic Acid

PAA= Poly Acrylic Acid

PBTC = Phosphonobutane-1,2,4-Tricarboxylic Acid

Corrosion inhibitors

Anodic inhibitors

React with Meⁿ⁺ on the anode, forming insoluble hydroxides which are deposited on the metal surface as insoluble film and impermeable to metallic ion.

Nitrates, molybdates, sodium chromates, phosphates, hydroxides and silicates

Cathodic inhibitors

Prevent the occurrence of the cathodic reaction of the metal. Have metal ions able to produce a cathodic reaction.

 $Mg(OH)_2$, $Zn(OH)_2$, $Ni(OH)_2$

Thus producing insoluble compounds that precipitate on cathode.

Biocides

Oxidizing Biocides

- Cl₂
- NaOCI
- BrOCI

- Chlorine dioxide
- Hydrogen peroxide
- Ozone

Non-oxidizing Biocides

- BHAP: 2-Bromo-4-hydroxyacetophenone
- Glutaraldehyde: Pentane-1,5-dial
- Isothiazolines: Alkyl isothiazolin-3-ones
- Quats: Alkyldimethylbenzylammonium chloride

<u>Biodispersants</u>

- Moly/Phosphonate
- Alkaline /Zinc
- Stabilized Phosphate
- All Organic
- Oxidizing Biocides
- Non Oxidizing Biocides

Moly/Phosphonate

- For corrosive, low hardness &/or alkalinity water.
- Molybdate-based corrosion inhibitor phosphonate for scale inhibition
- Good at high skin temperatures.

Molybdate: 6-16 ppm (as MoO_4)

Phosphonate: $1-2 \text{ ppm (as PO}_4)$

▶ Calcium : 0-500 ppm

M−Alkalinity : 50 −2,000 ppm

► Temperature : 57– 82°C

Conductivity : 2,000 uS/cm

Alkaline /Zinc

- low level of zinc with ortho phosphate for corrosion control
- Polymeric dispersant used for scale control at high pH
- Zinc provides cathodic corrosion protection
- Ortho phosphate provides anodic corrosion protection
- Operate at higher pH to provide excellent corrosion

Zinc : 0.5–2.0 ppm

Ortho PO₄ : Extremely variable

▶ Calcium : 15–1,000 ppm

▶ M-Alkalinity : 50 –1,500 ppm

Temperature : 71°C max.

Conductivity: 6,000 micromhos max.

- Stabilized Phosphate
- ▶ High levels of ortho PO₄ to provide corrosion protection.
- Polymeric dispersant provides calcium phosphate stabilization.
- Operates at near-neutral pH.
- Low make-up calcium &/or M-alkalinity

O−PO₄ : 8 −17 ppm (Ca dependent)

Calcium : 15 −1,000 ppm

pH : 6.8-8.4 (Ca dependent)

Temperature : 66°C max.

Conductivity : 7,500 micromhos max.

- All Organic
- Non-heavy metal/phosphate program
- High pH & alkalinity conditions to provide corrosion protection in a scale forming cooling system environment.
- Organic scale inhibitors prevent mineral deposits.

• Calcium : 80–900 ppm

M-Alkalinity : 300-500 ppm

▶ pH :8.5-9.4

► Temperature :43–60°C

Conductivity :4,500 microS

Oxidizing Biocides

- Penetrate microorganism's cell wall
- Burn-up the internals of the organism
- Effective against all types of bacteria.
- Kill everything given sufficient concentration levels & contact time

Examples

- Cl₂
- NaOCI
- BrOCI
- Ozone
- Chlorine dioxide
- Hydrogen peroxide

Non-oxidizing Biocides

BHAP

- 2-Bromo-4-hydroxyacetophenone for bacteria and, slimes.
- Useful for once-through cooling systems
- Dose rate is 1 to 3 ppm
- For recirculating cooling systems 10 to 20 ppm up to 80ppm

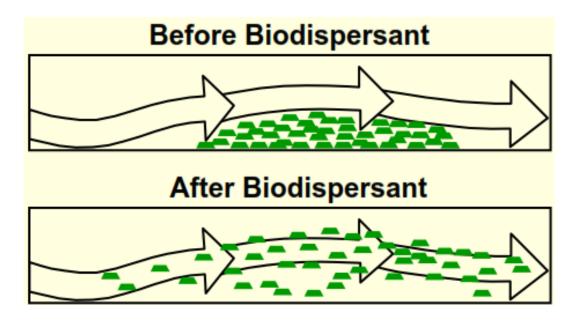
Non-oxidizing Biocides

Glutaraldehyde

- Pentane-1,5-dial.
- good penetrating ability.
- Effective against SRBs and biofilms. <u>NOT</u> against algae and fungi.
- Cross-link outer proteins of cell
- Fast-acting biocide (3 to 4 hours, up to 4 or 6 hours with difficult slimes) a wide pH range (typically pH 6.5 to 9.0)
- Typical use concentration is 100 to125 ppm up to 200 to 300 ppm

Non-oxidizing Biocides

Isothiazolines


- Alkyl > isothiazolin 3 ones
- Bactericide and algaecide
- wide range of pH
- Inhibiting microbial respiration and food transport through the cell wall.
- Contact time is typically 5 to 6 hours.
- Dose p rate is typically 50 to 120 ppm

Non-oxidizing Biocides

Quats (ADBACs)

- Alkyl dimethyl benzyl ammonium chlorides "Quaternary ammonium compounds".
- The kill mechanism is due to the cationic nature, whereby an electrostatic bond is formed with the cell wall, which affects permeability and protein denaturing.
- Optimum pH 6.5–8.5
- Deactivated by high hardness (typically over 500 ppm.
- dose rate 50 to 100 ppm
- Contact time is typically 4 to 6 hours.

Biodispersants

Monitoring of cooling systems

- Follow up system hydraulics
- Water chemistry
- Measuring corrosion rate
- Measuring scaling rate
- Bacterial count
- Monitoring chemicals dozing rate
- Devises and equipment