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ABSTRACT

Advanced wastewater treatment plants have complex biological Kinetics, time variant
influent rates and long processing times. The modeling and operation control of wastewater
treatment plant gets complicated due to these characteristics. However, a robust operational system
for a wastewater treatment plant is necessary to increase the efficiency of the plant, reduce energy
cost and achieve environmental discharge limits. These discharge limits are set by the National
Pollutant Discharge Elimination System (NPDES) for municipal and industrial wastewater
treatment plants to limit the amount of nutrients being discharged into the aquatic systems.

This document summarizes the research to develop a supervisory operational and control
system for the Valrico Advanced Wastewater Treatment Plant (AWWTP) in the Hillsborough
County, Florida. The Valrico AWWTP uses biological treatment process and has four oxidation
ditches with extended aeration where simultaneous nitrification and denitrification (SND) takes
place. Each oxidation ditch has its own anaerobic basin where in the absence of oxygen, the growth
of microorganisms is controlled and which in return also helps in biological phosphorus removal.
The principle objective of this research was to develop a working model for the Valrico AWWTP
using BioWin which mimics the current performance of the plant, predicts the future effluent
behavior and allows the operators to take control actions based on the effluent results to maintain
the discharge permit limits. Influent and experimental data from online and offline sources were
used to tune the BioWin model for the Valrico Plant.

The validation and optimization of the BioWin model with plant data was done by running

a series of simulations and carrying out sensitivity analysis on the model which also allowed the

Vi



development of operation policies and control strategies. The control strategies were developed
for the key variables such as aeration requirements in the oxidation ditch, recycle rates and wastage
flow rates. A controller that manipulates the wasting flow rate based on the amount of mixed liquor
suspended solids (MLSS) was incorporated in the model. The objective of this controller was to
retain about 4500-4600 mg/L of MLSS in the oxidation ditch as it is maintained by the Valrico
Plant. The Valrico AWWTP recycles around 80% of their effluent and hence, the split ratios were
adjusted accordingly in the model to recycle the desired amount. The effluent concentrations from
the BioWin model for the parameters such as Total Nitrogen (TN), Ammonia, Nitrate, Nitrite,
Total Kjeldahl Nitrogen (TKN) complied with the discharge limits which is usually less than 2

mg/L for all the parameters.
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CHAPTER 1: INTRODUCTION

Over the last century, major part of the world has been facing degradation of environment
because of the continuous growth in population. With the growing population, there is a striking
increase in usage and wastage of water for domestic purposes. Domestic wastewater is usually the
water discharged from household purposes such as toilets, dishwashers, showers, sinks, washing
machines etc. These types of discharges are usually rich in inorganic pollutants and can increase
load on the environment in terms of Total Suspended Solids (TSS), Chemical Oxygen Demand
(COD) or Biological Oxygen Demand (BOD). Hence, in an effort to minimize the pollution caused
by the discharge of wastewater in other water bodies, a system called the National Pollutant
Discharge Elimination System (NPDES) was established to set some strict permit limits and
monitor the discharge from the wastewater treatment plants.

The wastewater treatment process can be broken into two major sections: primary
treatment and secondary treatment. The first stage is the removal of rock solids and suspended
solids physically by using screens. The second stage is biological treatment where microorganisms
consume organic matter and convert it into inorganic compounds. According to the United States
Environmental Protection Agency (EPA), most of the organic matter is removed from wastewater
during biological treatment. The two major goals of wastewater treatment are nitrogen and
phosphorus removal. These two processes can be carried out biologically in an economically
feasible and environmentally friendly manner. In recent years, Simultaneous Nitrification and
Denitrification (SND) has taken over the conventional methods for nitrogen removal because of

its efficiency in operation and cost effectiveness. In case of phosphorus, sometimes biological
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methods are not efficient because of lack of carbon. This is because there are only limited easily
biodegradable organic matter which leads to a competition between phosphorus removal and
denitrification for the carbon source. Hence, to make up for the lack of carbon, some additional
organic matter is added to the biological reactors which increases the cost of operation and results
in generation of one more pollutant. However, there is an alternative for this problem which is the
use of enhanced biological phosphorus removal which works efficiently for domestic waters with
low C/N ratio [1].

Nowadays, with the increment in number of wastewater treatment plants, it has become
challenging to manage the wastewater systems. Therefore, to ensure proper discharge from the
wastewater treatment plants, new and stricter regulations for nutrient removal have being
incorporated. To comply with these limits, there is a need for modeling and operation control of
wastewater treatment plants. However, the modeling of wastewater treatment systems tends to
become intricate due to certain characteristics such as unusually long residence times, plenty of
tunable kinetic parameters and large variations in influent component flow rates.

Nevertheless, with the advancements in technology, activated sludge modeling, flowsheet
simulators and computational fluid dynamics have emerged as some significant tools for modeling
wastewater treatment plants. Over the years, dynamic modeling has come across as a remarkable
approach for developing operational models in process design and management. Moreover, these
models help in establishing operating policies and control strategies for the wastewater treatment
plants which in turn maximizes the plant performance and comply with the required permit limits.

BioWin, a flowsheet simulator software by EnviroSim Associates Ltd., Canada is used for
modeling wastewater treatment plants. The software can model the plant operations, controls, and

activated sludge kinetics. BioWin has a set of kinetic and stoichiometric parameters which can be



tuned with based on the data obtained from online sources such as SCADA data. The BioWin
software package comes with a controller called the BW Controller which allows the user to
develop control strategies based on the requirement of the treatment plant. Usually, there are three
main types of control schemes used in activated sludge processes: 1) Dissolved Oxygen (DO) and
Aeration, 2) Return Activated Sludge (RAS) and 3) Waste Activated Sludge (WAS). The amount
of dissolved oxygen supplied to the oxidation ditch plays a key role in operating the oxygen ditch
efficiently. On the other hand, it is of immense importance to manage the amount of sludge that is
being recycled and wasted to make sure that the right amount of activated sludge is sent back to
the head of the plant.

The several chapters of this thesis go over the basic operations and dynamic modeling of
the wastewater treatment systems. In Chapter 2, the microbiology and ecology of the wastewater
system with general kinetics and characterization is discussed.

In Chapter 3, several types of conversion processes occurring in a wastewater system are
discussed.

In Chapter 4, the wastewater treatment process is described with some information about
the diverse types of control strategies being used in the wastewater systems.

In Chapter 5, diverse ways to model the wastewater systems have been discussed. This
includes the use of various simulation software and several types of activated sludge modeling is
also described.

Chapter 6 covers the development of the BioWin model and the comparison of simulation
results with the data collected from the treatment plant.

Chapter 7 provides a conclusion and some discussion about the future work related to this

project.



CHAPTER 2: MICROBIOLOGY OF WASTEWATER TREATMENT

Biological wastewater treatment plants are based on natural processes occurring in a water
body. These natural processes include the decomposition of the organic matter with the help of
existing microorganisms in the wastewater. Since, wastewater treatment systems are complicated
with several types of reactions such nitrification, denitrification, etc. taking place, it has become
utterly important to utilize the enormous amount of existing technology to optimize and design
such complex systems. The main goal of introducing this technology is to have the purification
process operated at higher rates and under restrained conditions [2].

Most of the wastewater treatment plants are designed in an engineering fashion but these
plants also depend on organisms like bacteria, algae, fungi and protozoa to break down organic
substances. On the other hand, the efficiency of a biological wastewater treatment plant can be
determined by the activity of the microorganisms occurring in the water body [3]. Therefore, it is
important to understand the microbiology and ecology of the wastewater treatment.

In biological wastewater treatment plants, autotrophs and heterotrophs are naturally
occurring and can be influenced by various operating conditions of the system, location of the
plant and typical wastewater characteristics [3] [4]. Heterotrophs depend on absorption of carbon
to sustain their life and are responsible for degradation of readily biodegradable COD (rbCOD)
under aerobic, anoxic or aerobic conditions. On the other hand, autotrophic organisms depend on
either light or inorganic substances for sustaining their life and are responsible for oxidation of

ammonia to nitrate or nitrite (nitrification) [5]. WWTP’s with nitrification by autotrophs are



comparatively more expensive than aerobic heterotrophs because autotrophic nitrifiers have slow
growth rate and lower oxygen utilization kinetics [5].

2.1 Ecology

Microorganisms play an essential role in wastewater treatment plants depending on the
process being used. To biodegrade a wider range of substrates, they are arranged in species-rich
structure rather than pure cultures. Two main types of microorganisms involved in aerobic
treatment are bacteria and protozoa. Fungi, rotifers and other organisms are comparatively less
important [2].

Bacteria and protozoa are the two main groups for the conversion of organic substances.
Bacteria are unicellular prokaryotic microorganisms which have rigid cell wall. Autotrophic
bacteria are more sensitive than heterotrophic bacteria. Also, there are limited ranges of
temperature and pH for optimal growth rate of bacteria [2]. Organic matter can be separated as a)
easily biodegradable and b) slowly biodegradable. Mostly, easily biodegradable matter is available
in typical domestic sewage.

Protozoa are unicellular eukaryotic microorganisms without a cell wall. The main function
of protozoa in wastewater treatment is decomposition of organic and inorganic nutrients. In
wastewater treatment plants with high sludge retention time and low load, several types of protozoa
such as flagellates, amoebas and ciliates are present [6]. Other than removal of organic matter,
protozoa clarifies the effluent in terms of suspended solids. Some researchers could determine that
the absence of protozoa in mixed liquor resulted in an increase of organic carbon, Biological
oxygen Demand (BOD) of the effluent, and mixed liquor suspended solids (MLSS) [7].

The two basic configurations for biomass growth are a) Dispersed growth and b) Attached
growth. Dispersed growth has no supporting structure for the biomass and grows in liquid medium

in a dispersed form [2]. It is usually used in systems such as stabilization ponds, activated sludge,
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and up-flow anaerobic sludge blanket reactors. In attached growth, biomass is aggregated in the
form of biofilms. These biofilms allow the biomass to attach to the reactor and doesn’t let it wash
out when the flow rate is high [8]. In [9] a study was performed comparing biofilms with dispersed
growth resulting in a list of several advantages over dispersed growth such as different biological
particles of numerous sizes, shapes etc. and ability to modify growth rates, operating in continuous
reactors.

2.2 Reaction Kinetics

In any biological wastewater treatment plant, the knowledge of the type of reactor being
used, the knowledge of the components going in and out (mass balance) and reaction kinetics are
of foremost importance. The reactions taking place in wastewater treatment plants are mostly slow
and hence it is important to consider the reaction kinetics. One of the most common expressions
used for relating substrate concentration and specific growth rate in any biological wastewater

treatment plant was proposed by Monod. The expression is given as:

as_ S (2.1)
dt ™K. +S

where:

ds

— = reaction rate
dt

Tmax = Maximum reaction rate
S = substrate concentration
Ks = half saturation coef ficient
This equation can be expressed in both zero order and first order kinetics. For zero order
kinetics ds/dt = rmax Where the rate of reaction becomes constant and is not dependent on the

concentration of the substrate anymore. In first order kinetics, the substrate conversation is directly
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proportional to the reaction rate which starts from a very low concentration and reaches the
concentration where reaction rate is maximum.

2.3 Wastewater Characterization

In wastewater treatment plants, several conversion processes such as oxidation of organic
matter under aerobic and anaerobic conditions result in formation of various products such as CO»,
CHa, N2, etc. Hence, it is important to describe the interaction of biomass with these nitrogenous
and carbonaceous matter.

2.3.1 Organic Matter

For more than 20 years, Biological Oxygen Demand (BOD) and Chemical Oxygen
Demand (COD) have been used to characterize wastewater. In activated sludge systems, usually
COD is preferred as it is measured easily and quickly as compared to BOD which is a long and

cumbersome process [10]. The several COD components can be represented as shown in figure 2-

1.
Complex
< Short- Chaln Fatty
COD
Total Influent <
COD
Figure 2-1 Characterization of Organic Matter

2.3.2 Biomass

Biomass is usually represented in terms of suspended solids as these are solids that settle

in the reactor. These solids are categorized further as not all the solids take part in the conversion



processes. Therefore, the most frequently used terms for biomass are volatile suspended solids

(VSS) and total suspended solids (TSS). A more detailed characterization is shown in figure 2-2.

Inorganic Suspended

i
Solids Biodegradable volatile

suspended solids

Total Suspended Solids

Inert Volatile Suspended

Solid
Organic Suspended S

Solid
OGS Active Volatile

Suspended Solids

Non-active Volatile
Suspended Solids

Figure 2-2 Characterization of Biomass
2.3.3 Nitrogenous Matter

Nitrogen containing compounds are important to characterize in wastewater systems as
nitrogen directly relates to the pollution caused by sewage. The nitrogen detected in wastewater is
in the form organic nitrogen if the pollution is caused recently. Although, if the pollution is not
recent, the nitrogen is present in the form of nitrate which attributes for problems such as
eutrophication of rivers and other harmful situations in water [11]. Hence, under different
conditions, various forms of nitrogen are relatively distributed. Organic nitrogen and ammonia

combine to give Total Kjeldahl Nitrogen (TKN) and the characterization is shown in figure 2-3.



Soluble
Free and Saline Biodegradable <
Ammonia
Total TKN Particulate
Organically Bound
Nitrogen
Soluble
Unbiodegradable <

Particulate

Figure 2-3 Characterization of Nitrogenous Matter
2.3.4 Phosphorus Content
Phosphorus is essential for the growth of microorganisms but the overuse of fertilizers
these days is causing many consequences [12]. Also, phosphorus being a non-renewable resource
which might exhaust in next 50-100 years, it is of immense importance to recover phosphorus and
limit its pollution [12]. Polyphosphates and orthophosphates are inorganic forms of phosphates

and the other forms are characterized as shown in figure 2-4.

Orthphosphate

Total Phosphorus Biodegradable

Organically Bound
Phosphorus

Unbiodegradable

Figure 2-4 Characterization of Phosphorus Content



CHAPTER 3: BIOLOGICAL REACTIONS IN WASTEWATER TREATMENT

The biological nutrient removal technology has been widely used in the wastewater
treatment systems over the last 20 years. The use of well-defined aerated and non-aerated zones
helps in achieving nutrient removal of varying degrees. Nutrient removal has been noticed in
treatment facilities where the anaerobic and anoxic zones are not designed explicitly. Nevertheless,
several biological reactions such as nitrification, denitrification, simultaneous nitrification and
denitrification, biological phosphorus removal etc. take place in wastewater treatment systems and
the Kinetics related to these reactions are significantly useful in developing the dynamic models
for the wastewater treatment systems.

3.1 Conversion of Carbonaceous Matter

Usually in biological treatment systems, an anaerobic treatment is done before aerobic
treatment. Some authors evaluated the cost effectiveness of anaerobic processes with aerobic
processes and found out that capital costs for the anaerobic systems were less sensitive to the
increase in wastewater strength as compared to aerobic systems. They also stated that, operating
and maintenance costs for the aerobic systems were much higher because of the constant use of
aeration which is not applicable in case of anaerobic systems [13].

3.1.1 Aerobic Conversion

In aerobic conversion, free dissolved oxygen acts as an electron acceptor. Heterotrophic
bacteria are the main organisms responsible for the aerobic conversion of the carbonaceous matter
[13]. To obtain high degree of efficiency in wastewater treatment plants mostly aerobic processes

are used as the removal of organic matter is higher and the biomass produced is well flocculated
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which results in a lower concentration of suspended solids in effluent. They are more suitable for
treating wastewater with low strength (COD < 1000 mg/L) and are most effective when operated
in a pH range of 6.5 to 8.5 [14]. The common equation for aerobic conversion can be written as:

CeH1,04 + 60, - 6C0, + 6H,0 + Energy 3.1)

The more general form of this equation can be written as:

1
CeHy0, + 5 (4x +y = 22)0, = XCO, + %HZO (3.2)

This equation allows us to calculate the oxygen required and carbon dioxide produced [2].

3.1.2 Anaerobic Conversion

In anaerobic conversion, organic matter is converted in to methane (CH4), carbon dioxide
(CO2) and water (H20) in the absence of oxygen via three processes which are hydrolysis,
acidogenesis with acetogenesis and methanogenesis. Anaerobic conversion is not as efficient as
aerobic conversion but its progressing using the concept of resource recovery and utilization and
working towards achieving pollution control [15]. Anaerobic conversion is used for treatment of
wastewater with high strength (COD > 4000 mg/L. When treating wastewater with high strength,
anaerobic process is more efficient than aerobic as it requires less energy with potential bioenergy
and nutrient recovery, but it is impossible to completely stabilize the organic matter and hence a
series of aerobic treatments are required after to meet the effluent discharge limits [14]. The
common equation for anaerobic conversion is given as:

C6H1206 4 3CH4, + 3C02 + Energy

(3.3
This equation can be simplified and written in a more general fashion as follows:
4x —y — 2z 4x —y + 2z 4x +y— 2z
CcH,0, + +H20 - + 5 ++CH4 (3.4)
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3.2 Conversion of Nitrogenous Matter

In the past 20 years, simultaneous biological nutrient removal (SBNR) has been widely
applied in wastewater treatment systems [16]. In such treatment systems, there are no defined
anoxic or aerobic zones. The minimum conditions required for SBNR processes are usually a
macro-environment (bioreactor with microorganisms) and a floc microenvironment for developing
anaerobic and aerobic zones within the floc [17]. The processes occurring in such systems are
usually nitrification, denitrification, simultaneous nitrification-denitrification and biological
phosphorus removal.

3.2.1 Nitrification

Nitrification is a simple conversion of ammonia to nitrites and further to nitrates. In
wastewater treatment plants, nitrification takes place in two steps: at first, oxidation of ammonia
(NHas+-N) takes place in the presence of Nitrosomonas and is converted into nitrite (NO>—N) and
which is further transformed to nitrate (NOsz—N) by Nitrobacter. The nitrifying bacteria involved
in the process are autotrophs which use carbon to convert the inorganic matter into mineralized

products [18]. The first reaction is the conversion to nitrite in the presence of Nitrosomonas:

Nitrosomonas

2NH;} +30, ——— 2NO; + 4H* + 2H,0 (3.5)

and the second reaction is the conversion of nitrites to nitrate in the presence of Nitrobacter:

Nitrobacter

2NO; + 0, ———— 2NO3 (3.6)
The above two equations when combined can be written as:
NH{ + 20, - NO3 +2H* + H,0 (3.7)
These autotrophs have a chemo lithotrophic nature which results in a smaller maximum
specific growth rate and increased minimum solids retention time and signifies slow growth rate

of nitrifiers [19]. This leads to a higher value of oxygen half saturation coefficient (K,) for
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autotrophs signifying that nitrifiers cannot tolerate low oxygen concentration. If in a continuous
process, the concentration of dissolved oxygen is lower than the oxygen half saturation coefficient
(Ko), minimum solids retention time will increase resulting in rise of ammonia concentration in
the effluent and washout of biomass from the system [5].

3.2.2 Denitrification

The reduction of nitrate (NOs—N) to nitrogen gas (N>) is called denitrification which takes
place under anoxic conditions. The main organisms involved are heterotrophic, which act as an
electron acceptor instead of oxygen. There is a slight possibility that aerobic heterotrophs are
competing with denitrifiers for the same substrate and hence this can cause a disruption in the
denitrification process [5]. The reaction for denitrification is as follows:

2NO; + 2H* = Ny + 2.50, + Hy0 (3.8)

Both oxygen and nitrate are accepted as electron acceptors by denitrifiers. They tend to use
oxygen when its concentration is high in the reactor, hence they need a medium with low oxygen
for denitrification [20]. The process of denitrification takes place via several intermediate products
such as nitric oxide, nitrite and nitrous oxide. Hence, during the reduction process, there is a
possibility of accumulation of these intermediates if the concentration of dissolved oxygen is

higher and the concentration of substrate (electron donor) is low [5].

3.2.3 Simultaneous Nitrification and Denitrification

This process occurs when nitrification and denitrification take place simultaneously in one
reactor without any clear distinction between the aerated and non-aerated zones. Several
environmental conditions are to be maintained for simultaneous occurrence of nitrification and
denitrification. Some of those conditions are as follows:

e Concentration of dissolved oxygen should be optimum so that it can support autotrophic

nitrification and is also ample for denitrification to occur.
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e Nitrifiers have slow growth rate hence sufficient solids retention time should be provided
in order to let them grow.
e For heterotrophic denitrification to take place, adequate amount of electron donor should

be available [5].

Since nitrification and denitrification are two conflicting processes, it is logical to carry out
the processes in two different reactors but SND takes place in a single reactor with controlled
oxygen which is much more feasible and has several advantages over nitrification and
denitrification. These advantages include less carbon usage (22-40%), less energy requirements,
neutral pH, use of a single tank and 30% reduced sludge yield [20].

Some researchers have investigated the process of SND in activated sludge systems with
low concentration of oxygen which was obtained as 0.3-0.8 mg/L for the process to occur
efficiently. The SRT for this investigation was set to 45 days and resulted in the removal of
nitrogen at a rate of 66.7% [21]. Also, the efficiency of Nitrification and Denitrification depends
on various parameters such as: Chemical Oxygen Demand (COD), Hydraulic and Solid Retention
Time (HRT and SRT), pH etc. [22].

3.3 Biological Phosphorus Removal

Phosphorus is known to be one of the factors that limits the biomass growth. Hence, its
removal is very important to reduce the nutrients and meet the quality standards for the discharge
of water from wastewater treatment plants [23]. There are biological and chemical processes used
for the removal of phosphorus but compared to chemical processes, biological processes are much
more feasible and environmentally friendly. A discharge limit of 50 pg/L in Europe and 10 pg/L

in North America is required for phosphorus content in the effluent from wastewater treatment
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plants [1]. For municipal discharge in the USA, the permit limit for total phosphorus is set as 1
mg/L by EPA as of 2017 and may be improved to 0.23 mg/L in future [24].

Biological processes are categorized as aerobic, anaerobic and anoxic, which are
extensively for domestic wastewater treatment plants [1]. Wastewater treatment systems using
biological processes make use of phosphorus accumulating organisms (PAOs) which can uptake
excess phosphorus. These PAOs are used to uptake volatile fatty acids (VFAS) and store them as
polyhydroxyalkanoic acids (PHASs). Later, the stored PHAs are oxidized by PAOs followed by
uptake of phosphate and are finally removed from the system upon the discharge of the sludge.

There are several chemical processes for phosphorus removal as well such as chemical
coagulation with various metals typically aluminum, iron, and magnesium. The process is very
complex but being well-studied and is still used in many treatment systems. In short, the process
can be described as a combination of precipitation, coagulation and adsorption on the surface of
formed metal hydroxide of which adsorption is considered to be the dominating mechanism. More
research is being done to see the effect of activated sludge on the process of phosphorus removal
by trying to collect mixed liquor from the aeration tank [24].

3.4 Modeling of Biological Reactions in Wastewater Treatment

In order to develop a dynamic model for an advanced wastewater treatment plant, the
above-mentioned reactions and their kinetics must be considered. Researchers have been
developing several models to simplify the existing activated sludge kinetics. The simplified
kinetics can be further used for model validation, operation and control purposes. Various Kinetic
models such as Monod’s kinetics, Contois kinetics, Haldane kinetics etc. have been used to

develop the kinetics for the biological reactions in wastewater treatment.
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3.4.1 Microbial Growth Rate

Monod Kinetics has been used for years to describe the growth of bacteria, but some
researchers stated that Monod Kinetics cannot be used for describing growth rate without
considering the effects of other factors such as pH, temperature and endogenous decay [25]. The
Monod equation mentioned in equation 2.1 was then modified for predicting the growth of

bacteria:

- Ky (3.9)

where:

S = substrate concentration

Um = Specific growth rate

K, = half saturation coef ficient
K, = decay constant

3.4.2 Biomass Concentration

The kinetics for biomass is usually obtained by carrying out a material balance around the

reactor:
; _ : (3.10)
Input + Recycle + Formation — Output = Accumulation
where accumulation = 0, which gives:
uY (So — S)(Ks + S)
- i (3.11)

" mS(1— R(E, - 1))
where

X = biomass concentration
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Y =Yield
E, = Activation Energy
Sy = intial concentration of the substrate
S = substrate concentration
Um = Specific growth rate
K = half saturation coef ficient
3.4.3 Bio Floc Model

Biomass usually contains flocs made of organic and inorganic substances. These flocs are
typically used in defining the performance of the activated sludge system in wastewater treatment
process. Hence, it is important to study the reactions and kinetics associated with the flocs in the
wastewater system. Some researchers have developed models to describe the main reactions
occurring in the activated sludge systems while accounting for the metabolic reactions and mass
transfer taking place inside the floc [26]. The figure 3-1 shows a typical spherical floc [26].

r+Ari

ri

Ni +
\ ANi

2Rp

b
v

Figure 3-1 Representation of a Typical Spherical Floc

where

N; = The flux or mass transfer rate of component (i) per unit time per unit area

at radius (r)
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N; + AN; = That flux at radius (r + Ar)

r = The variable for floc radius

R, = The floc radius

Ar = The thickness of the dif ferential shell

i = Referes to the substrate S, nitrate Z, ammonia H and oxygen C.

The following model was developed by carrying out a steady state mass balance for substrate:

d?s N 2ds @1SC N 0,52
w2 wdw S+DC+D  S+DC+DEZ+D (3.12)
where:
r
w= —
Ry
g= ST L dily biodegradable substrat
K (mgD) = readily biodegradable substrate

Z = nitrate nitrogen

C = dif fusional resistance of dissolved oxygen

_ pRjuHng
Y17 DK,
PRyupMg
V2= v
DSKSYH

3.4.4 Dissolved Oxygen Model

Matson and Characklis developed a mass transfer model to represent the consumption of
oxygen by estimating the radius of the anoxic core. The following assumptions were made for
determining the size of the core: steady state, zero order kinetics and the dissolved oxygen (DO)

gradient between floc surface and bulk liquid is negligible, the radius is derived as [27]:
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6SaDa]1/ 2
Xcka

r= [R2 —
where:
R = radius of floc
S, = electron acceptor concentration (DO) in bulk liquid
D, = dif fusion coef ficient for electron acceptor in the floc

X, = organism concentration in the floc,and

k, = maximum substrate utilization rate for the electron acceptor
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CHAPTER 4: WASTEWATER TREATMENT PROCESS AND CONTROL

STRATEGIES

For many years, the objective of wastewater treatment has been the removal of biological
nitrogen and phosphorus combined with reduction of biological oxygen demand and total
suspended solids. The objective has remained the same throughout the years except for the fact
that the focus has now shifted to protect the environment and reduce long term health effects.
There are several ways in which the wastewater can be treated such as by using physical, chemical
and biological processes. The conventional wastewater treatment process includes five steps: 1)
pretreatment, 2) primary treatment, 3) secondary treatment, 4) tertiary treatment and 5)
disinfection. A generalized block flow diagram for an advanced wastewater treatment plant is

shown in figure 4-1.
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Figure 4-1 Generalized Block Flow Diagram of a Biological Wastewater Treatment Plant
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4.1 Pretreatment
Pretreatment or preliminary treatment is done to prepare the wastewater in such a way that

it does not hinder the further biological processes. It is mainly used for the removal of grits, oily
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scum and floating debris so that these do not damage the treatment equipment. There are several
ways in which the pretreatment can be done, such as through screening, equalization, grit
chambers, etc.

4.2 Primary Treatment

The main aim of primary treatment is to remove solids that can easily settle and float.
Usually, settling tanks or clarifiers are used for primary treatment as the wastewater coming from
pretreatment might contain some suspended solids which are removed by gravity settling. Most of
these suspended solids are organic in nature and hence, a good amount of BOD is reduced at this
stage and the remaining dissolved BOD can be removed in the secondary treatment [28]. Other
than BOD, primary treatment also removes TSS and phosphorus. Some coagulants may also be
added to carry out natural sedimentation which is followed by floatation which helps in oil and
grease removal [29]. A picture showing the primary treatment at the Valrico Advanced Wastewater

Treatment Plant is shown in figure 4-2.

Figure 4-2 Primary Treatment (Headworks) at the Valrico Plant

4.3 Secondary Treatment

Secondary treatment is a way of introducing the biological processes in the wastewater

treatment system since the first two processes of the treatment are physical processes. Even after
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the reduction in levels of BOD, there is still a large amount of dissolved organic matter left in the
wastewater to be removed [28]. Oxygen is one of the main components required for this
decomposition along with favorable pH, temperature, and other environmental conditions. The
solids retention time (SRT) for such treatment systems ranges from 12 — 30 days and the hydraulic
retention time is about 9 — 20 hours [30]. Secondary treatment is divided in three parts: anoxic

basin, oxidation ditch and clarifier as shown in figure 4-3, 4-4 and 4-5 respectively.

Figure 4-3 Secondary Treatment (Anoxic Basin) at the Valrico Plant
4.3.2 Activated Sludge System

In activated sludge system, the microorganisms are mixed with organic matter in an
aeration tank. The mixture of the microorganisms and the organic matter is called mixed liquor.
And the amount of suspended solids measured in the aeration tank is called mixed liquor suspended
solids (MLSS). One of the important parameters for activated sludge is F/M ratio which is food
(substrate or BOD) to biomass (MLVSS) ratio [31].

The effluent coming from the primary treatment has some BOD left in it. Therefore, it is
passed through the aeration tanks where in the presence of oxygen, BOD is degraded. Mostly, in

the aeration tank a particular amount of dissolved oxygen around 2 mg/L is maintained. But it can
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be anywhere in between 1.5 — 4.0 mg/L [28]. Adding more dissolved oxygen to the oxidation
ditches, does not make the process of degradation efficient but only results in increasing the energy
and costs required for the operation. But if the dissolved oxygen is low then there are chances of
sludge bulking in the aeration tank. Sludge Bulking is one of the common problems in activated
sludge systems which is caused by several filamentous organisms leading to poor settling
characteristics. Activated sludge systems mainly consist of the following essential elements:

e Aeration Tank (Primary Clarifier)

e Settling Tank (Secondary Clarifier)

e Pumps

e Excess Sludge Removal

Figure 4-4 Secondary Treatment (Oxidation Ditch) at the Valrico Plant

The next stage after primary clarification is secondary clarification consisting of settling
tanks. The microorganisms are sent to secondary clarification after they are done using all the
dissolved organic matter. The output from the secondary clarifier is usually divided into two
streams:

e Overflow: is collected from the top of the clarifier is the clarified water which is sent for

further treatment which is called tertiary treatment or disinfection show in figure 4-6.
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e Underflow: is collected from the bottom of the clarifier and is called suspended solids or

sludge which are deactivated because of no food source in the clarifier.

Figure 4-5 Secondary Treatment (Clarifiers) at the Valrico Plant

Since the microorganisms are activated, they are ready to consume more nutrients and
hence a fraction of the activated sludge is sent to the start of the treatment process. This sludge is
called return activated sludge (RAS) and hence the process is started all over again. The remaining
activated sludge which is not sent to the headworks, is disposed from the system and is called
waste activated sludge (WAS).

4.4 Tertiary Treatment

After secondary treatment, the wastewater still needs to be treated more for the removal of
nitrogen, phosphorus and other pollutants. There are several physical, chemical and biological
processes used for nitrogen and phosphorus removal termed as tertiary treatment. Most of the
inorganic nitrogen is removed during the biological process but a small amount of dissolved
organic nitrogen still exists in the water and hence other advanced processes are used to remove
the remaining nitrogen and phosphorus [32]. The details about nitrogen and phosphorus removal

are discussed in later chapters.

24



4.5 Disinfection
The last and the final stage of treatment is called disinfection. The process is carried out to
remove all the pathogenic organisms. Disinfection can be done in several ways:
e Adding various chemicals such as chlorine dioxide, chlorine gas or sodium hypochlorite.
e Ozonation

e Exposure to ultra violet (UV) radiation.

These processes are efficient enough to remove up to 99.99% or more of coliform. The

details about these processes are out of scope of this thesis.

Figure 4-6 Disinfection (UV) at the Valrico Plant

4.6 Control Strategies

Wastewater plants with activated sludge system are very much reliable and can handle
shock loads but still there is a need for much more control and monitoring. Hence, it is essential
for wastewater treatment plants to have proper operation and control strategies in order to make
the plant work more efficiently. To control the activated sludge process, it is very important to
review the operating data and lab data and select the parameters which will provide the optimum

performance in a cost-effective manner.
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4.6.1 Dissolved Oxygen and Aeration Control

In biological nutrient removal systems, almost 50-60% of the total energy consumed is
because of aeration. Hence, it is of great significance to maintain the Dissolved Oxygen (DO) level
in aeration tank. One of the most efficient ways to control aeration is by controlling the
concentration of dissolved oxygen based on the ammonia concentration in the effluent [33]. This
IS because most of the oxygen is consumed in the nitrification process. For such purposes mostly,
a feedback controller with an integral coupled to an integral DO controller is known to save energy
and have good effluent standards. Sometimes it is also good to use a combination of feed forward
and feed backward controllers to achieve an optimum performance in case of systems with small
reactors and highly dynamic fluid [34]. Usually, the dissolved oxygen concentration should be
maintained around 1-4 mg/L. If the concentration drops below 1 mg/L, the activity of
microorganisms will decrease and results in death of the microorganisms. Hence, it is important
to maintain the DO level in order to achieve sufficient mixing, microorganism activity and propose
decomposition of the organic wastes, all the time [35].

4.6.2 Returned Activated Sludge Control

Return Activated Sludge (RAS) is the amount of mixed liquor suspended solids (MLSS)
which are sent back to the aeration tank once they are settled in the clarifier. Hence, it is important
that the MLSS settles well in the clarifier in order to be returned. The RAS returned to the aeration
in conventional processes is usually about 15-75% of the influent flow whereas in extended
aeration it can range from 50-200% [36]. RAS control can be approached in two ways:

e Influent flow is controlling the RAS flow rate independently — In this case, the RAS
flowrate is set constant and hence it results in a maximum concentration of MLSS when

the influent flow rate is minimum and vice versa. This is because the amount of MLSS
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coming to the clarifier is changing based on the inflow, but the amount removed from the
clarifier is the same.

e RAS flowrate is controlled as a constant percentage of the influent — In this case, a constant
percentage of the influent flow rate is sent back to the aeration tank. This makes sure that
the amount of MLSS returned to the aeration tank is constant through high and low flow

rates [36].

4.6.3 Waste Activated Sludge Control

Waste Activated Sludge Control (WAS) is the amount of MLSS that is wasted. It is done
to keep a balance between the amount of food available and the microorganisms. Since the
microorganisms are continuously consuming BOD and COD from wastewater, they start growing
and multiplying. Hence, it is important to waste the excess sludge. Instead of wasting sludge from
the clarifier, it can also be wasted from the mixed liquor in the aeration tank. However, in this case
because of the large quantity of sludge, sufficient sludge handling facilities are required which is
not accessible to most of the plants [36]. When the sludge is wasted from RAS, it can be controlled
by measuring the amount of volatile suspended solids (VSS) in the RAS. If the amount of VSS in
RAS is decreasing, it is advised to increase the WAS flow rate so that a proper amount of VSS is
wasted and vice versa. The main techniques for controlling the WAS are as follows:

e Constant MLVSS Control

e Constant Gould Sludge Age Control
e Constant F/M Control

e Constant MCRT Control

e Sludge Quality Control
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There were several studies done using a BiowWin model to run simulations based on trying
to keep MLVSS, MCRT and F/M ratio constant but the results showed a variation in SRT and
WAS flow rate. Hence, it leads to the conclusion that these three parameters cannot be held

constant together [37].
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CHAPTER 5: GENERAL PURPOSE MODELING AND COMPUTATIONAL

PLATFORM

There have been several computer-based models used for simulation of wastewater
treatment plants, but the question is, are these models suitable for the simulation of wastewater
treatment plants and the answer is very positive. This is because, these days there are strict limits
on the effluent from the plants. Hence, it is very important to have proper designed models with
controls to meet the discharge limits and a maintain cost efficient and sustainable treatment
environment.

5.1 Activated Sludge Modeling

Activated sludge modeling has been used for modeling of wastewater treatment plants for
several years. These models are being used for various applications such as design, optimization,
control and research. A Task Group was established by the International Association on Water
Pollution Research and Control (IAWPRC) in 1982 to develop mathematical models for Activated
Sludge Processes. The Task Group developed the first model for activated sludge process known
Activated Sludge Mode No. 1 (ASM1), which was mainly developed for nitrogen removal [38].
Later, in 1995 when biological phosphorus removal came into light and the process was better
understood the Task Group published Activated Sludge Model No. 2 (ASM2). This model was a
combination of nitrogen removal and biological phosphorus removal. A third model was
established shortly after ASM2 to incorporate the element of denitrification. It was named ASM2d

and it included denitrifying PAOs [39]. And finally, in 1998 the Task Group established ASM3
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which is the most updated model including a two-step model for nitrification and denitrification.
Other than these models, the Task Group also presented a set of default values for the parameters
which would give realistic results with minor changes. They also published a guideline for
characterization of wastewater and developed a set of computer codes with the ASM3 model.

Table 5-1 Comparison of Activated Sludge Models

UCT MODEL ASM1 ASM2 ASM3
Process 14 8 19 9
Equations
Model 14 19 20 13
Components

5.1.1 Activated Sludge Modeling 1

The ASM1 model is still one of the most widely used models in wastewater treatment
plants all over the world. This model consisted of concepts adapted from a model developed earlier
in University of Cape Town (UCT), which were based on death-regeneration and bisubstrate
hypotheses.

ASM1 had some similarities to the earlier UCT model. For describing the growth rate of
autotrophs and heterotrophs, the model still uses the Monod relationship. COD was used for
defining the carbonaceous material and act as a link between the biomass, the organic substrate
and the oxygen utilized. There were some modifications as well which were introduced in ASM1,
such as for enmeshed biodegradable material to be released in to the bulk liquid, it needs to be
broken down to extracellular enzymatic action to be hydrolyzed in to readily biodegradable COD
[40]. Switch functions were also added to ASM1 which worked as on and off functions and could
control the process rate equations based on the environmental changes. Also, the sources of organic

nitrogen were finally treated differently than organic nitrogen. The model parameters for ASM1
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are listed in Table 5-2 and 5-3. As mentioned in Table 5-1, the activated sludge model 1 (ASM1)
has 19 model components. Out of those 19 model components, 14 of the parameters are kinetic
parameters (table 5-2) while the remaining five are stoichiometric parameters (table 5-3).

Table 5-2 Kinetic Parameters for ASM1

S.No. Kinetic Parameters Symbol Unit
1. Heterotrophic max. specific growth rate iy day!
2. Heterotrophic decay rate by day?
3. Half-saturation coefficient (hsc) for Ks g COD m3
heterotrophs
4, Oxygen hsc for heterotrophs Ko H g0o, m?
5. Nitrate hsc for denitrifying heterotrophs Kno g NOs-N m3
6. Autotrophic max. specific growth rate i day?
7. Autotrophic decay rate ba day?
8. Oxygen hsc for autotrophs Ko g0, m3
9. Ammonia hsc for autotrophs K g NH3-Nm?3
10. Correction factor for anoxic growth of Ng dimensionless
heterotrophs
11. Ammonification rate Ka m3 (g COD day)™*!
12. Max. specific hydrolysis rate kn g slowly biodeg. COD (g cell COD
day)?
13. Hsc for hydrolysis of slowly biodegradable Kx g slowly biodeg. COD (g cell COD)
substrate -1
14. Correction factor for anoxic hydrolysis Nh dimensionless
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Table 5-3 Stoichiometric Parameters for ASM1

S.No. Stoichiometric Parameters Symbol Unit
1. Heterotrophic yield Yy g cell COF formed (g COD
oxidized)
2. Autotrophic yield Ya g cell COF formed (g N oxidized)™*
3. Fraction of biomass yielding particulate fp Dimensionless
products
4. Mass N/mass COD in biomass ixs g N (g COD) in biomass
5. Mass N/mass COD in products from biomass ixp g N (g COD)* in endogeneous
mass

There are various drawbacks in ASM1 such as the assumptions of constant temperature
and pH. Several modifications and assumptions must be made to make it a practical wastewater
treatment system. Various coefficients for rate expressions, nitrification, denitrification etc. are
assumed to be constant. The process of hydrolysis for two processes, organic matter and organic
nitrogen occur simultaneously and are grouped together. ASM1 lacks kinetic expressions for
nitrogen and alkalinity of heterotrophic organisms. Furthermore, it cannot directly predict the
concentration of mixed liquor suspended solids [41]. ASML1 is modeled in such a way that the
hydrolysis process dominates for oxygen consumption predictions but in reality, this is a
combination of lysis, hydrolysis and storage of substrates. ASM1 had several such limitations and
therefore, there was a need for development of other models such as ASM2 and ASM3.

5.1.2 Activated Sludge Modeling 2 and 2d

ASM2 was introduced to add more processes to ASM1. ASM1 was extended to include
biological process so as to remove biological phosphorus. In order to do so several components

were added to the existing model (ASM1), making it more complex. ASM2 had polyphosphates,
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which for performance of activated sludge, is known to be of immense importance. As compared
to ASM1, ASM2 does not depend on COD for its organic material and total concentrations of the
activated sludge. The kinetics of ASM2 are complicated but can be simplified by making several
assumptions and eliminating various components of lesser significance. ASM2 was then later
extended to ASM2d by including PolyP storage and PAQOs growth processes in anoxic condition.
The kinetics for ASM2d was very much similar to ASM2 except for an extra reduction factor,
NNOs.

There were some limitations to ASM2 such as, the model was only made for domestic
treatment. And there was a temperature range associated with this mode that is around 10-25 °C.
It is only designed for pH range of 6.3 to 7.8 [41]. Also, ASM2 had an unsolved problem for
denitrification related to PAOs. This lead to an extension of ASM2 model to ASM2d, which was
introduced in order to reduce the number of processes and describe various configurations for
biological phosphorus removal.

5.1.3 Activated Sludge Modeling 3

ASM3 was proposed to reduce all the limitations of ASM1 and hence be used for future
modeling. ASM3 like ASM1 is used for nitrification, denitrification, sludge production and oxygen
consumption in activated sludge wastewater treatment plants. The main difference between ASM1
and ASM3 was that ASM3 had a storage mediated growth of heterotrophic organisms. This
concept assumed that firstly all the readily biodegradable substrate are collected and then stored
into a component called internal cell polymer (XSTO) which is further used for growth [42]. The
growth decay model in ASM1 was replaced by death regeneration model in ASM3, which made
it easier to calibrate. ASM3 does not include biological phosphorus removal like ASM2 and

ASM2d but it can be easily added to the model. The flow of COD was less complex in ASM3 as
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compared to ASML1. In ASM3, there is no flow of COD from one group to another and there is
clear separation between nitrifiers and heterotrophs.

ASM3 and ASM1 were designed to work on a temperature scale of 8-23°C. When the
temperature is not in the range, the model gives significant errors and unsatisfactory results. ASM3
has some default values for the parameters but it only provides the structure of the model, and
hence it totally depends on the user to manipulate values and identify significant parameters.
ASM3 was designed only for domestic wastewater treatment plants with aerobic and anoxic
treatments. Therefore, it would not give perfect results when used for treatment plants where the
contribution of industries dominates. Also, ASM3 considers nitrification as a single-step process
neglecting nitrite, which is acceptable for most of the wastewater treatment plants except for those
where nitrite concentration may increase in the system and hence result in errors in the treatment
plant [41] . ASM3 also cannot handle high load (small SRT) activated sludge systems because of
insufficient flocculation and storage.

5.2 Flowsheet Simulators

BioWin is one of the plant design and flowsheet simulators which is used widely and is
available from Envirosim and Associates (Canada). BioWin was mainly used for activated sludge
modeling but with latest updates it has expanded to include models for other unit processes such
as sedimentation, filtration, separation, and anaerobic digestion, etc.

BioWin is used to predict the behavior of wastewater treatment plants which is necessary
because of the dynamic behavior of the plants under variable operating conditions. BioWin is very
efficient and easy to use but the complexity comes in because of the kinetic models used in it.
BioWin has large number of parameters as it uses integrated Activated Sludge Models (ASMs). It

has default values for all the parameters but for certain application, these parameters might need
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to be varied accordingly. It also has a controller toolbox which allows BioWin to have control over
aeration, RAS, WAS etc.

There are several other softwares such as ASIM, GPS-Z, WEST, etc. used for modeling
wastewater treatment systems and most of them use activated sludge modeling [43]. They also
follow few protocols for the calibration of the model, which are as follows:

e Defining the target
e Collection of the information from the treatment plant
e Steady state and dynamic simulation

e Decision making

5.3 Computational Fluid Dynamics

Simulation softwares such as ANSYS FLUENT are used for designing various engineering
products. It is also used for simulations of fluid movements. For an efficient oxidation ditch, it is
necessary to increase the bacteria growth rate and rate of reaction, hence it is very useful in
modeling wastewater systems as it can track the fluid movements in oxidation ditches. Ansys uses
thermodynamics and hydrodynamics to model the system. The designing of the oxidation ditch in

ANSYS FLUENT is out of scope of this thesis.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter describes the various steps taken to develop the dynamic model for the Valrico
Advanced Wastewater Treatment Plant and the simulation results obtained from the model. The
simulation results from the dynamic model were then compared with the plant results in order to
validate the model.

6.1 Site Description

Hillsborough County, Florida has several wastewater treatment plants of which the Valrico
Advanced Wastewater Treatment Plant is one. The Valrico plant is a biological nutrient removal
(BNR) system which has an average influent rate of 8 MGD and a permitted annual average flow
of 12 MGD. The plant receives domestic wastewater mostly but sometimes it also receives landfill
leachate. It is also one of the most dynamic and challenging wastewater treatment plants because
of the large variations in the influent. Hence, it becomes very difficult for the operators to optimize
the plant with influent variations and meet the discharge limits. The NPDES permit limits set for
the plant for total nitrogen, total phosphorus is 3 and 1 mg/L respectively. The Valrico AWWTP
uses an extended aeration activated sludge system and can treat wastewater for longer duration
having a mean residence time of 24 days. The Valrico facility also uses supervisory control and
data acquisition (SCADA) for controlling various parameters such as aeration, RAS and WAS
flowrates. The plant is divided into several sections based on type of treatment:

e Headworks: Primary Treatment
e Anoxic Basin, Oxidation Ditch, Clarifiers: Secondary Treatment

e Sand Filters and Ultraviolet Disinfection: Tertiary Treatment
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A process flow diagram of the Valrico plant is shown in figure 6-1.
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Figure 6-1 Layout of the Valrico Advanced Wastewater Treatment Plant

The influent coming into the plant goes through the headworks first where the primary
treatment is carried out. Most of the inorganic waste such as rocks and sand are removed from the
wastewater in the headworks. This process helps in preventing damage and wear to downstream
equipment and reduces the need for maintenance of the process equipment. The next major step is
the digestion of the organics which is the removal of nitrogen and phosphorus from the wastewater
to prevent adverse health and ecological effects. The secondary treatment is a two-step biological
process which begins in the anoxic basin and is followed by the oxidation ditch. In the anoxic
basin, phosphorus removal is ensured with the help of heterotrophic bacteria as they ferment the
organic material into volatile fatty acids. The Phosphorus Accumulating Organisms (PAQOs) uptake
VFAs by releasing orthophosphate into the mixed liquor. In this manner the mixed liquor is set-up

for the next stage where PAOs uptake oxygen and orthophosphate produced in the basin in the
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oxygen rich environment. The next stage is the oxidation ditch where the wastewater is mixed with
bacteria referred to as nitrifiers. These nitrifiers initiate the process of nitrification near the aerators
in the presence of oxygen followed by the process of denitrification towards the center of the
oxidation ditch where due to less dissolved oxygen, the nitrifier activity decreases converting the
nitrates formed by the nitrification to nitrogen gas. The effluent coming out of the oxidation ditches
is mixed with alum (aluminum sulfate) to promote phosphorus precipitation before it enters the
clarifiers. Clarifiers used in Valrico are large circular settling tanks and using gravity settling for
removal of the heavier solid sludge from the wastewater. Some portion of the sludge is recycled
back to the oxidation ditches and some of it is wasted. The effluent from the clarifier is then
dewatered and filtered before it is sent for UV disinfection. This is the final stage where the
microorganisms are neutralized, ensuing that the microorganisms do not reproduce. Finally, the
effluent is split in to portions of which some is stored as reclaimed water, some is aerated and
discharged in to the environment and the rest is sent to a spray field.

Table 6-1 Physical Data for Valrico Advanced Wastewater Treatment Plant

Equipment Area of each tank (ft?) | Volume of each tank (ft%)
ANOX Basin (1 & 2) 50130 0.75
ANOX Basin (3 & 4) 25070 15
Aerators (1 & 2) 4346 0.12
Aerators (3 & 4) 6519 0.18
Oxidation Ditch (1 & 2) 102656 1.67
(Including Aerators)
Oxidation Ditch (3 & 4) 154000 2.5
(Including Aerators)
Clarifiers (1-6) 19100 0.75
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6.2 Plant Model Representation in BioWin

To represent the plant model in BioWin, data was collected from the plant. The physical
data for the plant is shown in table 6-1. Other than the physical data, influent data and experimental
data was also available from the plant. BioWin allows the user to specify typical influent
characteristics of the plant and tune the kinetic parameters. Oxidation ditches are large tanks
representing a plug flow reactor. The plant has four oxidation ditches and each oxidation ditch was
modeled as a series to represent the plug flow. The oxidation ditch in BioWin was modeled as ten
completely stirred tank reactors (CSTRs) of which two of the CSTRs were aerated and other eight
were unaerated. The series of aerated and unaerated zones allow the simultaneous nitrification and
denitrification to take place. The plant has six clarifiers which were modeled as six ideal clarifiers
in BioWin. Several splitters, pumps, filters, mixers and pipes were used to complete the model.
There are nine RAS lines which were lumped in to three RAS pumps for convenience and one
WAS line in the plant was modeled as a WAS splitter. The model was created in a way to closely
represent the SCADA process flow diagram of the plant which is visible to the operators. Since
BioWin does not have a splitter which can split into multiple fractions, hence several splitters were
used to divide the flow between the oxidation ditches and clarifiers. The split ratios for all the
splitters were calculated according to the flow going into each oxidation ditch and clarifier. One
of the two dewatering units was used for filtration and the other for wasting the sludge which is

called cake. The BioWin model of the plant is shown in figure 6-2.
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Figure 6-2 BioWin Model of the Valrico Advanced Wastewater Treatment Plant

To accurately represent the plant model in BioWin, various modeling considerations had
to be considered. The oxidation ditches at the Valrico plant are of different size. Oxidation ditches
3 and 4 are bigger in size than oxidation ditches 1 and 2. The aeration requirements were set up
according to the size of the oxidation ditch and hence, more aeration was required for oxidation
ditches 3 and 4 than oxidation ditches 1 and 2. The aeration requirements were designed similar to
the plant. The A set of aerators are always working on 100% efficiency, while the B set of aerators
keeps varying between 60-80% depending on the requirements of the plant. The current operating

policies of the plant are shown in table 6-2.
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Table 6-2 Modeling Considerations for the BioWin Model

Equipment

Settings in BioWin

Anox Basins (1 - 2)

Unaerated, 0.75 MG each

Anox Basins (3 - 4)

Unaerated, 1.5 MG each

Aerators (1A - 2A)

Aerated, 105 hp each, 0.12 MG each

Aerators (3A - 4A)

Aerated 120 hp each, 0.18 MG each

Aerators (1B - 2B)

Scheduled Aeration, 50.39 hp (average) each,
0.12 MG each

Aerators (3B — 4B)

Scheduled Aeration, 57.74 hp (average) each,
0.18 MG each

Basin Zones (1 — 8) (Oxidation Ditch 1 & 2)

Unaerated, 0.18 MG each, Total = 1.67 MG
for each ditch (including aerators)

Basin Zones (1 — 8) (Oxidation Ditch 3 & 4)

Unaerated, 0.27 MG each, Total = 2.5 MG for
each ditch (including aerators)

Clarifiers (1 - 6)

0.75 MG each

RAS Splitters

Split ratio = 0.8

WAS Splitters

Split ratio varies based on the MLSS in the
oxidation ditch
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6.3 Model Calibration and Validation

BioWin has various kinetic, stoichiometric and wastewater fractions with default values.
When default wastewater fractions are not good enough it becomes necessary to change them to
calibrate the model. This requires influent data which can be used in the influent specifier excel
file (appendix B) to calculate the fractions. The Valrico plant tests their data in the labs managed
by the Hillsborough County Public Utilities Department and records it as part of their Excel files.
This data was used in the influent specifier excel file to calculate the fractions. The input data and
the fractions are shown below in table 6-3.

Table 6-3 Influent Input Data for the BioWin Model

Parameter Units Value
Flow mgd 8.799
Total cBOD mgBOD/L 318.84
VSS mg/L 182.5
TSS mg/L 204.5
TKN mgN/L 51.15
TP mgP/L 10
Nitrate mgN/L 0
pH - 7.3
Alkalinity mmol/L 6
Calcium mg/L 80
Magnesium mg/L 15
Dissolved mg/L 0
Oxygen

For kinetic and stoichiometric parameters, n-factorial sensitivity analysis was carried out

on certain parameters which were used to design a previous BioWin model called the lumped
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model. These parameters are shown in table 6-4. The goal of this study was to see which
parameters will have a notable change on the effluent of the new expanded model. For each kinetic
parameter, the numerical value was increased by 10%, and a simulation for 15 days was run to
ensure a constant trend. Similarly, these values were decreased by 10% and a simulation was run
for 15 days. The results from the simulation were compared to the base case scenario. Since, the
expanded model is more complicated, the Kinetic parameters did not really have a notable change
in the effluent. BioWin has its own kinetics which resembles the ASM3 kinetics and the various
kinetic parameters associated with it. The categories of kinetic parameters in BioWin are listed
below:

e Common Parameters

e Ammonia Oxidizing Bacteria (AOB)

e Nitrite Oxidizing Bacteria (NOB)

e Anaerobic-Anoxic-Oxic Parameters (AAO)

e Ordinary Heterotrophic Organisms (OHO)

e Phosphate Accumulating Organisms (PAO)

The parameters which were used for sensitivity analysis and their default values are shown

in table 6-4.
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Table 6-4 Kinetic Parameters for the BioWin Model

Kinetic Parameter Default Changed Value Changed Value
Value
(+10%) (-10%)
Common Parameters
Hydrolysis 2.1 231 1.89
Hydrolysis half sat 0.06 0.066 0.054
Anoxic hydrolysis factor 0.28 0.308 0.252
Anaerobic hydrolysis factor 0.04 0.044 0.036
(AS)
Anaerobic hydrolysis factor 0.5 0.55 0.45
(AD)
AOB
Byproduct NH4 logistic slope 50 55 45
Aerobic decay rate 0.17 0.187 0.153
Anoxic/Anaerobic decay rate 0.08 0.088 0.072
KiHNO2 0.005 0.0055 0.0045
OHO
Max specific growth rate 3.2 3.52 2.88
Anoxic growth factor 0.75 0.825 0.675
Aerobic decay rate 0.62 0.682 0.558
Anaerobic decay rate 0.131 0.1441 0.1179
PAO
Max spec growth rate, P-limited 0.42 0.462 0.378
Calcium half sat 0.1 0.11 0.09
Anaerobic decay rate 0.04 0.044 0.036
Anoxic growth factor 0.33 0.363 0.297
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6.4 Control Strategies and Operational Policies

One of the other challenges in BioWin is to incorporate control schemes which are
consistent with the plant. BioWin comes with a controller package called the BW Controller. There
are several parameters in the plant that need controlling such as aeration, wastage flow rate and
recycle flow rate. To make sure that all the four aerators are working efficiently, accurate operating
policies for the aerators were collected from the plant. To maintain the right amount of dissolved
oxygen, the second (B) set of aerators were made to run on a scheduled power supply. Typically,
the first (A) set of aerators are mostly run all the time.

The other parameter that needs controlling is mixed liquor suspended solids (MLSS). The
Valrico Plant operations staff maintains a MLSS concentration based on various seasons because
of the effect of temperature. The MLSS concentration is related to the amount of solids that are
recycled back and amount that is being wasted. The wastage and recycling can be controlled by
either the splitter flowrates or their split fractions. The problem with operating the plant with high
MLSS is the increase in the amount of inert solids in the system result in increasing the load of
solids on the clarifiers and hence results in a decreased sludge quality. Therefore, the Valrico Plant
maintains an MLSS concentration of around 4500 mg/L.

A controller scheme was applied to the BiowWin model to keep the MLSS concentration
between 4500-4600 mg/L. MLSS was measured in the oxidation ditch and was manipulated based
on the split fractions of the dewatering unit from where the solids are wasted. If the MLSS
concentration in the oxidation ditch rises to more than 4600 mg/L, the controller makes sure to
start wasting more solids and hence increases the wasting fraction. Similarly, if the MLSS

concentration reaches below 4500 mg/L the wasting fraction is decreased.
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6.5 Simulation and Result Interpretation

A 30-day simulation starting from the project start date 4/4/2016 was run with the
assumptions and settings as listed in the table 6-2. The settings are modified according to the
operation log of the plant. The influent data closely represented the flow pattern usually expected
at the Valrico Plant. The MLSS concentration was controlled after communicating with the plant
operations. The data collected from the BioWin for parameters such as total nitrogen (TN), total
kjeldahl nitrogen (TKN), nitrate (NOz), nitrite (NO>), total phosphorus (TP), ammonia (NHa), pH,
dissolved oxygen (DO), etc. were compared with the data collected from the county lab. The data
collected from the county lab represents the daily average data and the data collected from the
BioWin represents hourly data. In order to compare, the BioWin data was converted in to daily

averages and was plotted against the lab data from the plant and are show in figure 6-3 to 6-10.
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As you can see in figures 6-5 to 6-10, the county lab data accurately matches the BioWin
data with few exceptions as there might be data gaps, human error or high influent concentration
recorded in the plant data on that particular day. The effluent prediction from the model is similar
to the effluent concentrations recorded at the plant. The parameters compared are effluent
parameters and they all fall within the discharge limits required for the plant. Another 30-day
simulation was run from 3/9/2018 to represent the current expected profiles of the plant and the

results are show in appendix.
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

The dynamic model for the Valrico Advanced Wastewater Treatment Plant was developed
in BioWin. The model was designed and tuned based on the plant data. The model predictions
accurately match the plant data. This chapter provides the concluding remarks based on this study
as well as the recommendations for future work.

7.1 Conclusion

After data collection and several trips to the Valrico AWWTP, a working BioWin model
exactly mimicking the plant was created. A previous model for the plant called the lumped model
was developed by the BEST group in which all the oxidation ditches and clarifiers were lumped
into one. The lumped model was helpful in providing the initial guess and design settings for the
plant but since the equipment were lumped, the model was not the most accurate representation of
the plant and there was no scope for individual control settings for each equipment. The expanded
model had all four oxidation ditches and six clarifiers with their respective volumes and operating
conditions. A scheduled pattern for aeration as it is used in the plant was also implemented in the
model. Since, the operations at Valrico AWWTP maintains an MLSS concentration of 4500 mg/L,
a control scheme was added to the BioWin model to make sure that the MLSS concentration does
not become excessively high or low. The influent flow in the model closely represents the diurnal
flow pattern of the plant. The influent data was collected from the SCADA system of the plant and
some previously done influent testing results were used to validate the flow pattern. The 24-hour

flow pattern was then used in BioWin to run the simulations.
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The BioWin model was run for different number of days to make sure that it was working
correctly. To validate the BioWin model, the effluent data from the model was compared with the
effluent data collected from the testing laboratory of the Valrico AWWTP. Since, the data available
from the plant was for the year of 2016 and was in the form of daily averages, a simulation was
run for 30 days starting from April 4™, 2016 and the results were converted to daily averages before
they were compared to the plant data for the month of April 2016. The parameters studied for the
effluent were TP, TKN, TN, ammonia, nitrate and nitrite. The effluent results match the plant data
and both the plant and the BioWin model meets the discharge limits set by the NPDES. Since the
model predictions accurately match the plant data, the model can be used for predicting effluent
behavior and taking control actions in advance. The model is also helpful in developing new
control strategies for the plant.

Another 30-day simulation was run from February to March 2018 to predict the current
and the future effluent behavior of the plant. The effluent concentrations still seem to be under the
permit limits and the results are shown in the appendix.

7.2 Recommendations and Future Work

Other than meeting the NPDES discharge limits, wastewater treatment plants also strive
for cost efficiency. To reduce the cost of operation, the plant operations can focus on some of the
areas such as, aeration control, wasting control, recycling control, solids retention time, etc. All
these parameters have a direct effect on the operating costs of the plant. An effective way to start
decreasing these costs is by making sure that these certain parameters are only utilized as much as
they are needed. It would be very helpful to have controllers for these parameters which would
automatically switch off when not required.

In future, a sample testing campaign can be conducted to validate the influent data that has

been fed in the model currently. Although, available influent data has been used in the model, it
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would be very helpful to get the effluent data in order to be able to develop model-based control
strategies. If wastewater sample analysis is done for both influent and effluent, a more accurate
data will be available to compare the results with the model. This data can also be used to tune the
kinetic parameters of the model and help increase the plant performance. The operations at the
Valrico Plant are modified according to the season and the influent coming in. A control system
can be developed in the BW controller which mimics the operation log at the plant. This will keep
the BioWin model updated with the plant operating conditions and hence provide better predictions

for the future.
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APPENDIX A: LIST OF NOMENCLATURE

AAO: Anaerobic-Anoxic-Oxic Parameters

AOB: Ammonia Oxidizing Bacteria

ASM: Activated Sludge Modeling

AWWTP: Advanced Wastewater Treatment Plant
BOD: Biological Oxygen Demand

BNR: Biological Nutrient Removal

BW: BioWin

COD: Chemical Oxygen Demand

cBOD: Carbonaceous Biological Oxygen Demand
CSTR: Continuously Stirred Tank Reactor

DO: Dissolved Oxygen

EPA: Environmental Protection Agency

F/M: Food to Microorganisms Ratio

HRT: Hydraulic Retention Time

IAWPRC: International Association on Water Pollution Research Control
MGD: Million Gallons Per Day

MLSS: Mixed Liquor Suspended Solids

MLVSS: Mixed Liquor Volatile Suspended Solids
NOB: Nitrite Oxidizing Bacteria

NPDES: National Pollutant Discharge Elimination System
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O&M: Operating and Maintenance

OHO: Ordinary Heterotrophic Organisms

PAO: Phosphorus Accumulating Organisms

PHA: Polyhydroxyalkanoic Acids

RAS: Return Activated Sludge

rbCOD: readily biodegradable Chemical Oxygen Demand
SBNR: Simultaneous Biological Nutrient Removal
SCADA: Supervisory Control And Data Acquisition
SND: Simultaneous Nitrification Denitrification
SRT: Solids Retention Time

TKN: Total Kjeldahl Nitrogen

TP: Total Phosphorus

TSS: Total Suspended Solids

UCT: University of Cape Town

UV: Ultra Violet

VFA: Volatile Fatty Acids

VSS: Volatile Suspended Solids

WAS: Waste Activated Sludge

WWTP: Wastewater Treatment Plant
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APPENDIX B: BIOWIN TUNING

Measurements Value Unit GUIDE

Main influent concentrations

Flow 1 o0 | modomag - Enter measured [ab data in column onleft (BOLD)
Total COD 900 |  mgCODL (If data is missing, estimate. May need to repeat after Step 2)
Total Kiedeh irogen 100 mglL - Check resutting fractions (BOLD)

TatalP 1 mgPIL

Other influent concentrations

Nitrate N 0.0 mghiL Parameter Value Unit Typical range
pH 73

Alkalinity (CaC03 equivalent) 3250 mgCaCOIL | 9 |Alkalinity (molar) 165 meglL 2-6
Calcium 1470 mglL

Magnesium 320 mglL

Dissolved 0xygen 03 mgO2lL

Other measurements

Effluent fitered COD 25 mgCODL | 2 [Fus T . 0.03-0.08
Infuent fitered COD (GFC) 00 | mgCODL | 9 (CODp T a0 mgCODIL

Influent FF COD %2 | mgCODL | 3 [Fhs 1o . 012-0.25
Influent acetate 300 mgCODL | 9 |Fac ! 044 . 0.0-03
Influent ammonia 486 mghiL 2 |Fna ! 069 . 05-08
Influent ortho-phosphate 10 mgPIL 3 |Fpod T os0 . 03-06
Influent carbonaceous BOD3 4900 mgO2lL 2 |COD/BODS ! 200 . 19-22
Influent fitered cBODS (GFC) 2450 mg021L

Infuent VSS 410 mgVSSIL | 9 |Fev 1135 | mgCODpmgVSS | 1517
Infuent T5S 5250 mgTSSL | 9 IS8 1 880 mglSSiL 15-45

Figure B-1 BioWin Influent Specifier Input
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Influent COD fractions  |Default Estimate Notes GUIDE
Fbs 0.160 0.214 from Step 1
Fus 1 o000 002  |from Step 1 - Change COD fractions (BOLD)
Fup 1 o130 0.157 affects BOD, VSS until match is achieved
Fzbh ] 0.020 0.080 from separate method
.
Fxs 0.640 0.523 by difference (must be = 0'1) Suggestion:
Fxsp 0.750 | 0.716 affects VSS, scale: 0to 1 Inhibited cBODS = 0.84 x "trug" tBODS
Influent values Measured Calculated Match Status Important fractions | (can be used as a check)
(From step 1)  (Basedon Fraction Value  Typical range
fractions above) COD/cBODS 2.00 1922
CODt 980 Sol. COD fraction 0.39 0.3-05
Soluble COD (GFC) 392 381 Acceptable VSS/TSS 0.83 0.75-0.85
FF COD 235 235 Excellent
tBODS 490 490 Excellent
fcBODS (GFC) 245 252 Acceptable
VSS 437 442 Acceptable
TS5 525 530 Excellent

Calculated concentrations (from CODt & fractions)

Sus N 25
Xi Y154
Sbs (Sbst + Sbsa) 20
Shst Y180
Shsa 1 30
Xs (c+p) Y513
Zbh N 78
Xst T 146 Added to Ss for BOD calcs
Xsp Y 367

Figure B-2 BioWin Influent Specifier Solver
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Figure C-6 30-day Effluent Ammonia Concentration Profile
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Figure C-10 30-day Mixed Liquor Suspended Solids Profile in the Oxidation Ditch
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68




	University of South Florida
	Scholar Commons
	June 2018

	Dynamic Modeling of an Advanced Wastewater Treatment Plant
	Komal Rathore
	Scholar Commons Citation


	tmp.1545323057.pdf.wlzK7

