

www.utm.my

Lecture 4

Design exercise

Dato' Prof. Ir. Dr. Zaini Ujang

PE (M), MIEM, C.Eng. (UK), C.Sci. (UK), C.W.E.M. (UK), DNS

Institute of Environmental & Water Resource Management (IPASA) Universiti Teknologi Malaysia

zaini@utm.my / http://www.fkkksa.utm.my/staff/zaini

© ZAINI UJANG

Group design exercise

A mixed development area in a <u>water catchment area</u> is to be developed across a river system with 10,000 unit residential, 200 shop lots, 5 schools and 50 units of SMI. The SMI types are shown in Table. The intake for raw water treatment plant is located 2 km downstream of the river in the catchment (Class II, average $Q_{drv} = 100 \text{ m}^3/\text{min}$, average width = 3 m, depth = 1 m).

Task:

- 1. Provide various frameworks available for sustainable wastewater management system
- Select the most appropriate framework in order to protect the quality at the water intake point
- 3. Provide a feasibility design for the wastewater treatment plant (s) (only)
- 4. Estimate the cost the system

Types	No.	Effluent quality	Average flow rate	
Food processing	20	COD = 3000 mg/l	200 m ³ /d each	
Tannery	5	COD = 40,000 mg/l, color > 2000 NTU	50 m³/d each	
Beverage	10	COD = 5000 mg/l	400 m ³ /d each	
Slaughter house	5	COD = 10,000 mg/l, oil & grease > 1000	300 m ³ /day each	
Mechanical workshop	10	Scheduled wastes	<50 m ³ /d each	

© 7AINI UJANG

Activated sludge: Design parameters (1)

Process Modification	$\theta_{ m c}$,d	F/M lb BOD ₅ /lb MLVSS.d	Volumetric loading rate, lb BOD ₅ / 10 ³ ft ³ .d	MLSS,mg/l	V/Q, h	Q _r /Q
Conventional plug flow	3-15	0.2-0.6	20-40	1000-3000	4-8	0.25-0.75
Complete mix	0.75-15	0.2-1.0	50-120	800-6500	3.5	0.25-1.0
Step feed	3-15	0.2-0.5	40-60	1500-3500	3-5	0.25-0.75
Single-stage nitrification	8-20	0.10-0.20 (0.02-0.15)*	5-20	1500-3500	6-15	0.50-1.50
Separate stage nitrification	15-100	0.05-0.20 (0.04-0.15)*	3-9	1500-3500	3-6	0.50-2.00

© ZAINI UJANG

Activated sludge: Design parameters (2)

Process Modification	$ heta_{ m c}$,d	F/M lb BOD ₅ /lb MLVSS.d	Volumetric loading rate, lb BOD ₅ / 10 ³ ft ³ .d	MLSS,mg/l	V/Q, h	Q _r /Q
Contact Stabilization	5-15	0.2-0.6	60-75	(1000-3000)' (4000-9000)"	(0.5-1.0)' (3-6)''	0.5-1.50
Extended Aeration	20-40	0.04-0.10	5-15	2000-8000	18-36	0.5-1.50
Oxidation Ditch	3-15	0.04-0.10	5-15	2000-8000	8-36	0.5-1.50
Intermittent decanted extended aeration	8-20	0.04-0.08	5-15	2000-8000	20-40	N/A
Sequencing Batch Reactor	15-100	0.04-0.10	5-15	2000-8000	12-50	N/A

© ZAINI UJANG