
Chapter 2-Wastewater Characterization & Treatment

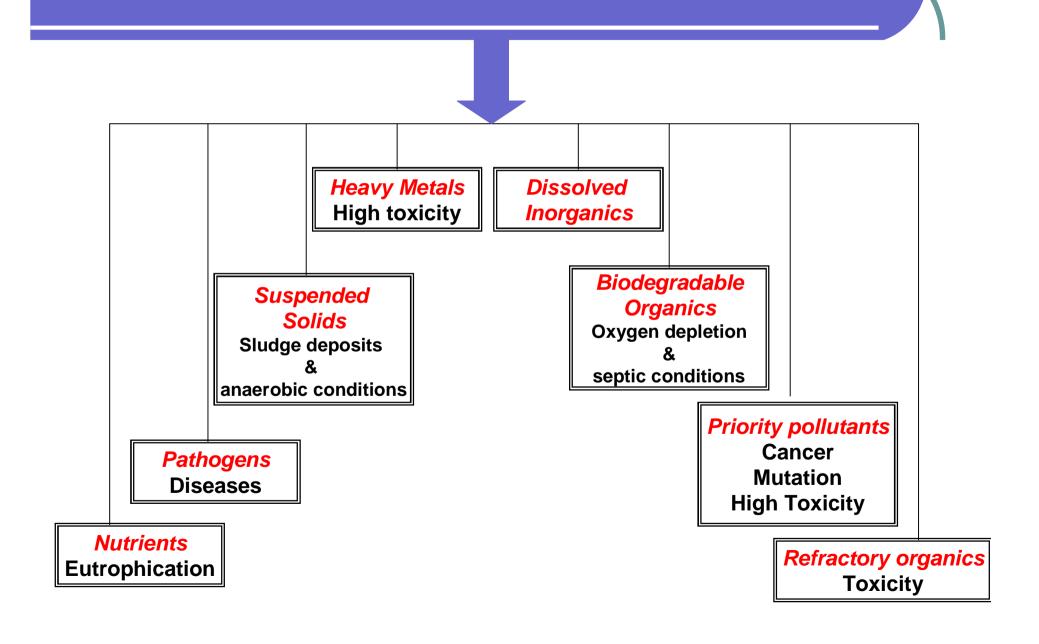
Raúl Muñoz Pedro García Encina

What's the problem???

High Content of C, N, P

O₂ depletion in Water Bodies

Eutrophication of lakes and rivers


Photo by Jess Ven Dyke

Eutrophication - an algal bloom resulting from too much nutrient from sources such as phosphorus and nitrogen in fertilizers.

Source of wastewater

Source	Pollutants			
Domestic	Organic matter (proteins, lipids, carbohydrates), phosphorous, solids, ammonium, pathogens.			
Industrial	Chemicals, Hydrocarbons			
Agricultural	Pesticides, Fertilizers			
Storms	Atmospheric Depositions			

Constituents of Wastewater

Pollutants in Wastewater

Class	Example
Particulate/suspended	Sand, clay
Organic matter	Sugar, proteins, synthetic chemicals
Inorganic (nutrients)	Nitrate, nitrite, ammonium, phosphate
Biological	Bacteria, algae, viruses
Heavy metals	As, Cu, Cd, Pb, Hg
Hazardous & persistent organics	PAHs, pesticides, VOCs

Examples of wastewaters

i ypicai scwa	ge composition
Component	mg/l
TS	300 – 1200
SS	100 - 350
TOC	80 – 290
BOD ₅	110 – 400
COD	250 – 1000
Total N	20 - 85
Ammonia	12 – 50
Nitrite	0
Nitrate	0

4 - 15

Total P

Coking wastewater			
Component	mg/l		
Phenol	190 - 3400		
NH ₄ +-N	100 - 470		
Total nitrogen	110 - 530		
Cyanide	5 - 25		
Thiocyanate	120 - 820		
COD	1200 - 4500		

What are the main differences between the two effluents and the consequences on future treatment?

Examples of wastewaters

Typical Swine manure wastewater

Component	mg/l
TS	33000
VS	22700
TOC	4000
BOD5	25000
COD	55000
Total N	5000
Ammonia	3500
Nitrite	0
Nitrate	0
Total P	1600

Wastewater composition also depends on the country!!!

Country/ constituent	g/capita·d	TSS, g/capita d	g/capita·d	g/capita d	Total P, g/capita
Brazil	55-68	55-68	8-14	ND	0.6-1
Denmark	55-68	82-96	14-19	ND	1.5~2
Egypt	27-41	41-68	8-14	ND	0.4-0.6
Germany	55-68	82-96	11–16	ND	1.2-1.6
Greece	55-60	ND	ND	8-10	1.2-1.5
India	27-41	ND	ND	ND	ND
Italy	4960	55-82	8-14	ND	0.6-1
Japan	40-45	ND	1-3	ND	0.15-0.4
Palestine ^b	32-68	52-72	4-7	3-5	0.4-0.7
Sweden	68-82	82-96	11-16	ND	0.8-1.2
Turkey	27-50	41-68	8-14	9-11	0.4-2
Uganda	55-68	41-55	8-14	ND	0.4-0.6
United States	50-120	60-150	9-22	5-12	2.7-4.5

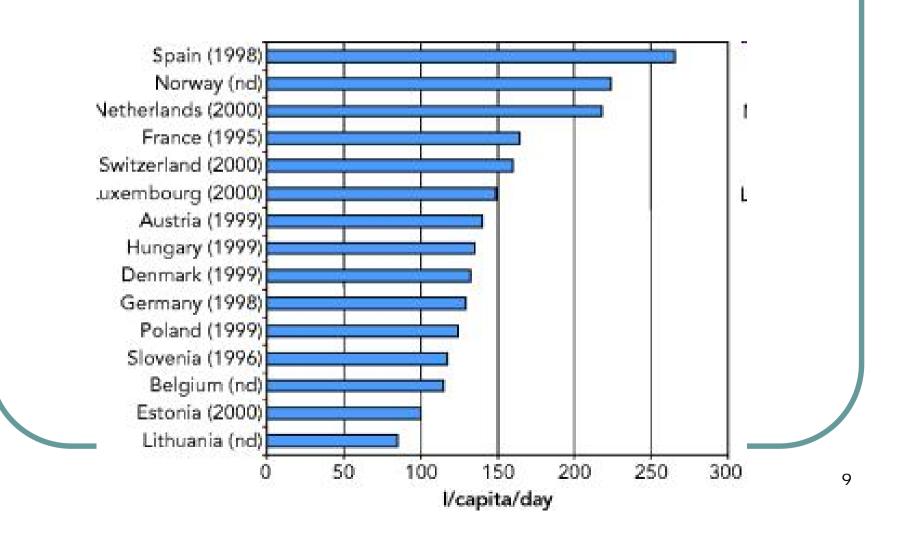
Adapted from Henze et al. (1997), Ozturk et al. (1992), Andreadakis (1992), and Nashashibi and van Duijl (1995).

bWest Bank and Gaza Strip.

Domestic Wastewaters

The main sources are: Residential areas, Commercial Districts, and Institutional or Recreational Facilities.

Flow Rates: 60- 90 % of water consumption becomes WW


Table 3-1
Typical wastewater
flowrates from urban
residential sources in
the United States

Household size.	Flowrate, go	Flowrate, gal/capita d Flowrate, L/capita d			
no. of persons	Range	Typical	Range	Typical	
1	<i>75</i> –130	97	285-490	365	
2	63-81	76	225-385	288	
3	54-70	66	194-335	250	
4	41-71	53	155-268	200	
5	4068	51	150-260	193	
6	39-67	50	147-253	189	
7	37-64	48	140-244	182	
8	36-62	46	135–233	174	

Adapted in part from AWWARF (1999).

Domestic Wastewaters

Household water use in selected countries (I/capita/day)

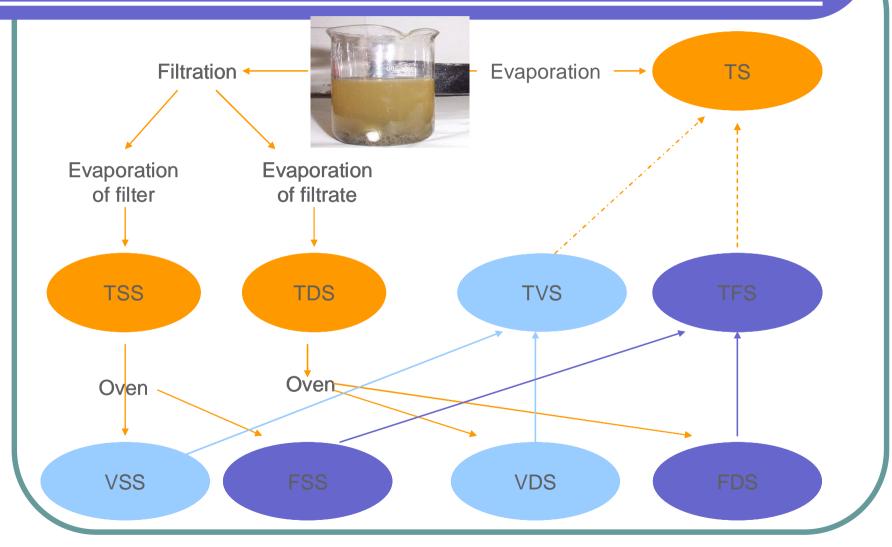
Domestic wastewaters

Table 3-13
Typical unit loading factors and expected wastewater constituent concentrations from individual residences in the United States

			Concentral	ion, mg/L
			Volume, L (gal/ca	
Constituent	Unit	Typical value ^b	ে 190 (50)	460 (120)
BOD ₅	g/capita-d	85	450	187
COD	g/capita·d	198	1,050	436
TSS	g/capita-d	95	503	209
NH ₃ as N	g/capita·d	7.8	41.2	17.2
Organic N as N	g/capita·d	5.5	29.1	12.1
TKN as N	g/capila-d	13.3	70.4	29.3
Organic P as P	g/capita·d	1.23	6.5	2.7
Inorganic P as P	g/capita-d	2.05	10.8	4.5
Total P as P	g/capila-d	3.28	17.3	7.2
Oil and grease	g/capita-d	31	164	68

^{*}Adapted from Crites and Tchobanoglous (1998).

^bData from Table 3–12, Columns 6 and 7, assuming 25 percent of the homes have kitchen waste-food grinders.


Physical characteristics

- Solids (TS, TVS, TSS, TFS, VSS, FSS, TDS...)
 - Total Solid (TS) = residue after evaporation at 103-105°C
 - TS = Total Suspended Solids (TSS >2-0.45 μm) + Total Dissolved Solids (TDS < 2-0.45 μm)
 - Total Solids = Volatile Solids (removed by ignition at 550 °C) + Fixed Solids (not removed by ignition)
- Other parameters: Turbidity (TSS), color, conductivity (TDS), temperature, sludge settleability (picture)

Imhoff cones are used to measure sludge settleability: the volume of sludge that settle after 1 h (typical. 60%)

Fractionation solids

T- Total; S- Suspended; D-Dissolved; V- Volatile; F- fixed

Why is this important to us?

- Suspended solids can be removed physically. For biomass, this allows recirculation. Soluble organic matter (VDS) is often easier to degrade than insoluble (suspended) organic matter. It is therefore important to measure the suspended fraction (that must solubilize or be hydrolyzed prior to degradation).
- TSS = organic-SS + inorganic-SS. The organic fraction is often considered as the VSS. Inert organics and inorganics take up valuable "reactor space", influence O₂ transfer and influence the design.
- Biomass density (number of cells per unit of volume) is important because it is related to the capacity of the system. Biomass is measured as VSS.
 However, VSS = active biomass + inactive VSS (dead cells, debris, etc) + other organics.

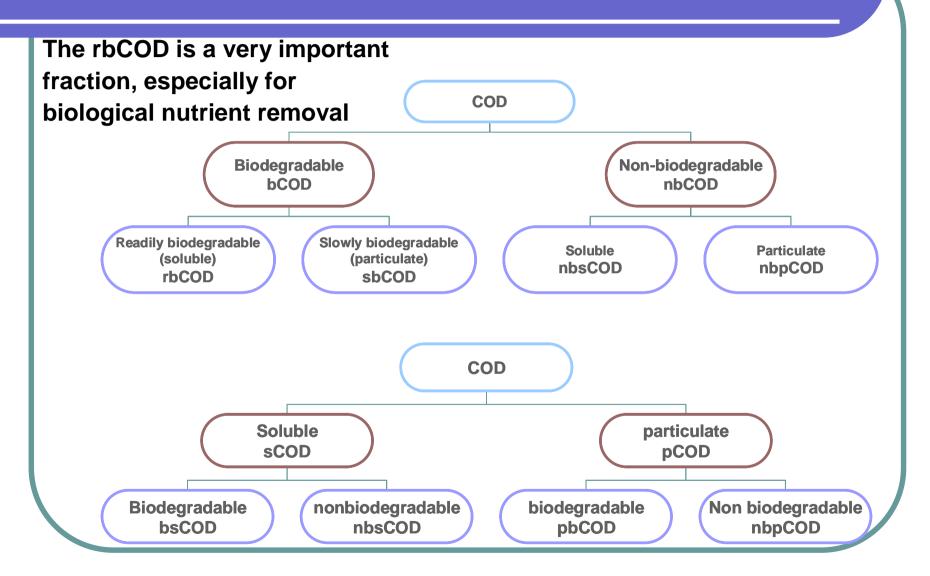
Organic matter

Organic Matter = proteins (40-60%) + carbohydrates (25-50%) + oils & fats (8-

12%) + synthetic organics. It is represented by

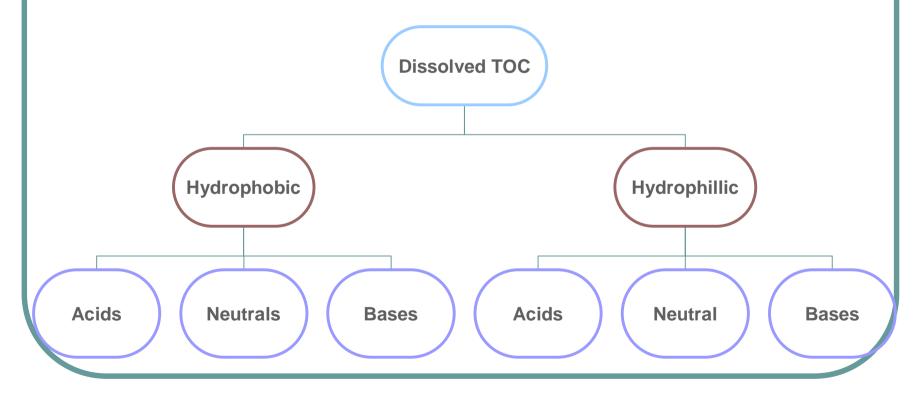
- COD = chemical oxygen demand
- BOD = biological oxygen demand
- o **TOC** = total organic carbon
- ThOD = theoretical oxygen demand (calculated from the wastewater composition)

Aggregate Measurements

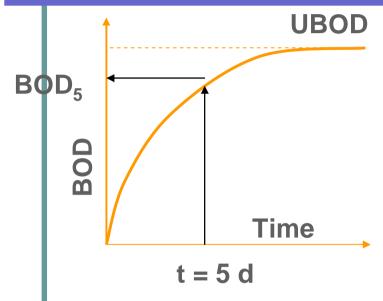

What are these generic parameters used for?

- Level of pollution for pollutants that cannot be monitored individually
- Process design (BOD = indication of aeration needed)

Measurements


- BOD: A (diluted) sample of wastewater is incubated at room temperature in the dark for 5 (BOD₅) or 7 (BOD₇) days and the dissolved oxygen concentration is recorded with an electrode. If necessary, the sample is inoculated with a rich microbial inoculum (i.e. activated sludge).
- <u>COD</u>: Chemical oxidation with Cr₂O₇²⁻ under acidic conditions (+ heat). Assessment by colorimetry.
- <u>TOC:</u> Measurement of organic carbon present in the wastewater.

COD fractionation



TOC fractionation

- Can also be fractionated into particulate and dissolved TOC (0.45 µm filtration)
- Can also be fractionated according the following properties:

BOD_t vs UBOD

BOD = biological measurement
dependent on initial biological activity,
type of organic matter, inherent
biodegradability, toxicity and time. For
domestic wastewater UBOD ≈ 1.5BOD

The Ultimate BOD takes into account the oxidation of organic matter (COHNS): $COHNS + O_2 \rightarrow C_5H_7NO_2$ (biomass) $+ CO_2 + H_2O + NH_3 + products + heat$

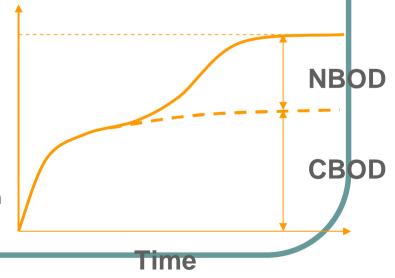
And the *endogenous respiration*:

$$C_5H_7NO_2 + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$$

CBOD vs NBOD

 In addition to organic matter (carbonaceous BOD or CBOD), microorganisms can oxidize ammonia to nitrite and nitrate. This results in a Nitrogenous BOD (NBOD)

$$NH_3 + 3/2O_2 \rightarrow HNO_2 + H_2O$$
 (*Nitrosomonas*)


$$HNO_2 + 1/2O_2 \rightarrow HNO_3$$
 (Nitrobacter)

$$NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$$

Because of the low μ of Nitrifiers, NBOD becomes important from the 6th day of incubation

BOD

Pasteurisation or chlorination-dechlorination methods suppress nitrification

ThOD

- When the wastewater composition is known, the ThOD is calculated as the amount of O₂ required to oxidize organic matter or ammonium to CO₂, NO₃ and H₂O.
- Example: Determine the ThOD (mg) and the theoretical TOC (mg) of 1 mol of glycine (CH₂(NH₂)COOH)

$$CH_2(NH_2)_2COOH + \frac{3}{2}O_2 \rightarrow NH_3 + 2CO_2 + H_2O$$

 $NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$
 $ThCOD = \left(\frac{3}{2} + 2\right) molO_2/mol glycine$
 $3.5 molO_2/mol glycine = 112 g O_2/mol glycine$

Comparison

Wastewater	BOD ₅ /COD	BOD ₅ /TOC
Untreated	0.3 - 0.8	1.2 – 2.0
After primary settling	0.4 - 0.6	0.8 – 1-2
Final effluent	0.1 - 0.3*	$0.2 - 0.5^*$

^{*} CBOD₅

 $BOD_5/COD > 0.5$, the waste is easily biodegradable

BOD₅/COD < 0.3, problem with biological treatment

Typically bsCOD = 1.6BOD

Inorganics (N & P)

- Nitrogen can be present in many forms (NH₄+, NH₃, NO₃-, NO₂-, Org-N) and certain parameters include several species (Tot-N).
- Similar for phosphate (Org-P, PO₄³⁻, HPO₄²⁻...)
- Other important parameters: dissolved oxygen (DO), Cl-, pH, and alkalinity.

Nitrogen

N is a macronutrient; a building-block in protein synthesis.

Biomass is 6-10 % N. Typically biomass is represented by C₅H₇NO₂

N is present in several oxidation states induced by microorganisms

$$\stackrel{-III}{NH}_3 - \stackrel{0}{N}_2 - \stackrel{I}{N}_2 O - \stackrel{II}{NO} - \stackrel{III}{NO}_2 - \stackrel{IV}{NO}_2 - \stackrel{V}{N}_2 O_5$$

T	Form of nitrogen	Abbrev.	Definition
	Ammonia gas	NH ₃	NH ₃
	Ammonium ion	NH1	$NH_4^+ - \leftarrow \rightarrow NH_3 + H^+$
	Total ammonia nitrogen	TAN	NH ₃ + NH ₄ ⁺
	Nitrite	NO ₂	NO ₂
	Nitrate	NO ₃	NO ₃
	Total inorganic nitrogen	TIN	$NH_3 + NH_4^+ + NO_2^- + NO_3^-$
	Total Kieldahl nitrogen	TKN	Organic N + NH ₃ + NH ₄
	Organic nitrogen	Organic N	$TKN - (NH_3 + NH_4^+)$
	Total nitrogen	TN	Organic N + NH ₃ + NH ₄ + NO ₂ + NO ₃

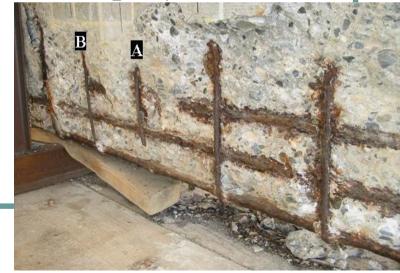
Phosphorous

P is a macronutrient; building-block in nucleic acids and cellular membrane synthesis

Biomass is 1 % P.

Type	State	Comments
Orthophosphates	PO ₄ ³⁻ ; HPO ₄ ²⁻ , H ₂ PO ⁴⁻ , H ₃ PO ₄	Readily available for µorganisms
Polyphosphate	Several molecules of P	slow hydrolysis prior to microbial uptake
Organic Phosphate	Organically bound	Minor compound in Domestic WW

Sulphur

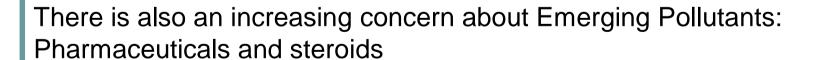

S is required for protein synthesis and released during its degradation. In the absence of O_2 or NO_3^- :

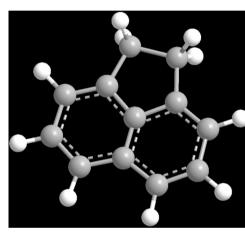
Organic Matter
$$+SO_4^{2-} \rightarrow S^{2-} + H_2O + CO_2$$

$$S^{2-} + 2H^+ \rightarrow H_2S$$

If the H_2S stripped from the WW is oxidized to $H_2SO_4 \rightarrow Corrosion$

Problems


Heavy Metals and Priority Pollutants


Special concern and need for careful monitorization due to:

- High Toxicity
- Carcinogenicity
- Mutagenicity
- Teratogenicity

US-EPA List of priority pollutants: e.g. Benzene, lead

http://www.epa.gov/waterscience/methods/pollutants.htm

Pathogens

 Bacteria, Protozoa, Helminthes & viruses discharged by infected humans or animal

 Typical diseases associated are typhoid, dysentery, diarrhea and cholera

 Enumeration by direct counting, plate culture, membrane filter etc: often target a specific populations of known pathogens: the indicator organisms (i.e. E coli).

Intensive research to develop fast methods!

Pathogens

Organism	Concentration in raw was wastewater, b MPN/100 mL	Infectious de dose, number of e organisms
Bacteria:	•	
Bacterioides	107-1010	
Coliform, total	107-109	
Coliform, fecal ^d	104-108	106-1010
Clostridium perfringens	103-105	1-10,0
Enterococci	104-105	
Fecal streptococci	104-107	
Pseudomonas aeruginosa	103-106	
Shigella	100-103	10-20
Salmonella .	102-104	10 ¹ -10 ⁸
Protozoa:		
Cryptosporidium parvum oocysts	101-103	1-10
Entamoeba histolytica cysts	10-1-101	10-20
Giardia lamblia cysts	103-104	<20
Helminth:		
Ova	101-103	
Ascaris lumbricoides	10-2-100	1-10
Viruses:		
Enteric virus	103-104	1-10
Coliphage	103-104	

Pathogenic Microorganisms are few and difficult to isolate and identify → Need for the use of surrogate (indicator microorganism)

Water use	Indicator organism
Drinking water	Total coliform
Freshwater recreation	Fecal coliform
	E. coli
	Enterococci
Saltwater recreation	Fecal coliform
	Total coliform
¥	Enterococci
. Shellfish-growing areas	Total coliform
	Fecal coliform
Agricultural irrigation	Total coliform
(for reclaimed water)	
Wastewater effluent	Total coliform
disinfection	Fecal coliform
	MS2 coliphage

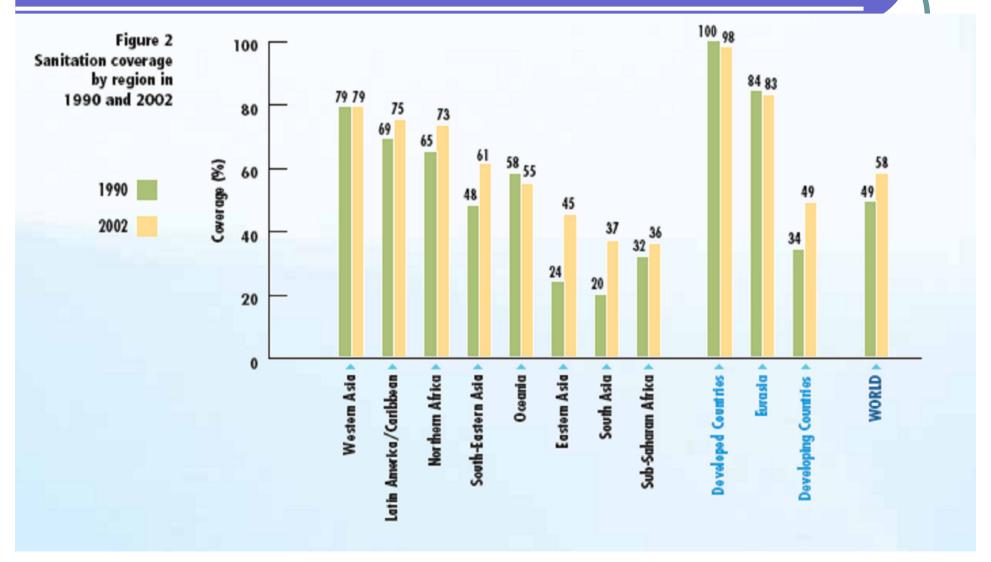
Alkalinity

Alkalinity originates from OH-, CO₃²⁻, HCO₃-, Borates, silicates, phosphates, etc.

Buffers the wastewater against sudden changes is pH

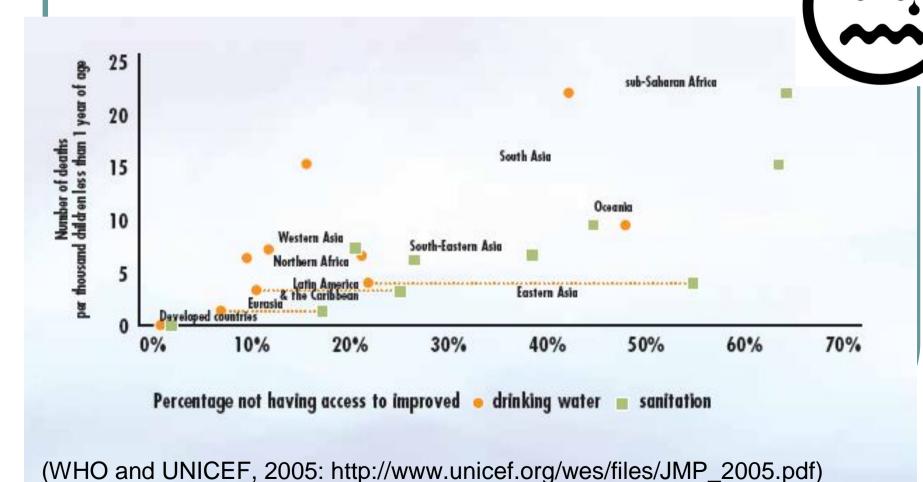
Key parameter is biological treatment systems.

$$Alk, \left\lceil \frac{eq}{m^3} \right\rceil = \left\lceil \frac{meq}{L} \right\rceil = \left[HCO_3^- \right] + 2\left[CO_3^{2-} \right] + \left[OH^- \right] - \left[H^- \right]$$

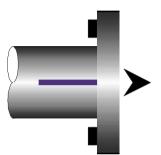

It is however usually expressed as mg $CaCO_3$ where 1 meq = 50 mg $CaCO_3$

Alkalinity is produced and consumed during WW treatment

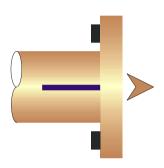
Toxicity


- Classified according duration (short term, long term), method (static, flow through)
- Common test organisms include Selenastrum capricornulum (freshwater algae) and fathead minnow (fish)
- Common terms:
 - o Effective concentration (EC) or dose (ED), i.e. 48h-EC50
 - o Lethal concentration (LC) of dose (LD)
 - o Lowest observed effect concentration (LOEC)
 - o Non observed effect concentration (NOEC)

Water sanitation and Morbidity


Water sanitation and Morbidity

2.6 Billion People lack sanitation facilities in the world!!!



In BioWin 3

COD Influent

BOD Influent

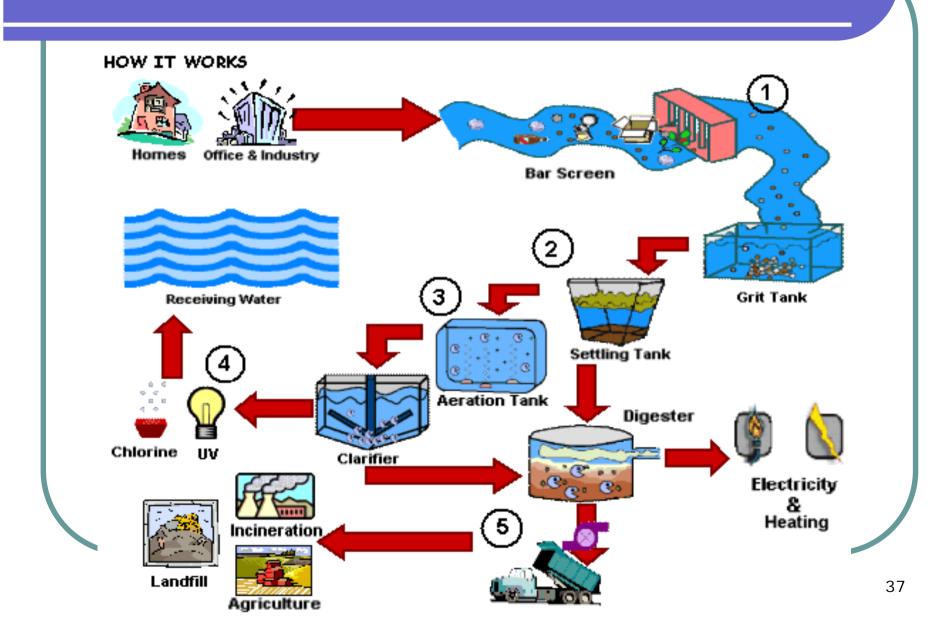
- Two Types of input: Constant Flow and Composition vs User Scheduled
- BioWin 3.0 allows you to load influent files
- Variables specified: Flow rate, Total COD, TKN, TP, Nitrate, pH,
 Alkalinity, Inorganic SS, Ca²⁺, Mg²⁺, Dissolved O₂

In BioWin 3

WasteWater Fraction

Name	Description
F _{bs}	Fraction of total influent COD which is readily biodegradable
	[(Sbsc + Sbsa) / Total influent COD]
Fac	Fraction of readily biodegradable COD which is VFAs
	[Sbsa / (Sbsa+Sbsc)]
F _{xsp}	Fraction of slowly biodegradable influent COD which is particulate [Xsp / (Xsc + Xsp)]
Fus	Fraction of total influent COD which is soluble unbiodegradable
Fup	Fraction of total influent COD which is particulate unbiodegradable
F _{na}	Fraction of influent TKN which is ammonia
Fnox	Fraction of influent biodegradable organic nitrogen which is particulate
F _{nus}	Fraction of influent TKN which is soluble unbiodegradable
Fpo4	Fraction of influent TP which is phosphate
FupN	The N:COD ratio for the influent particulate unbiodegradable COD
FupP	The P:COD ratio for the influent particulate unbiodegradable COD

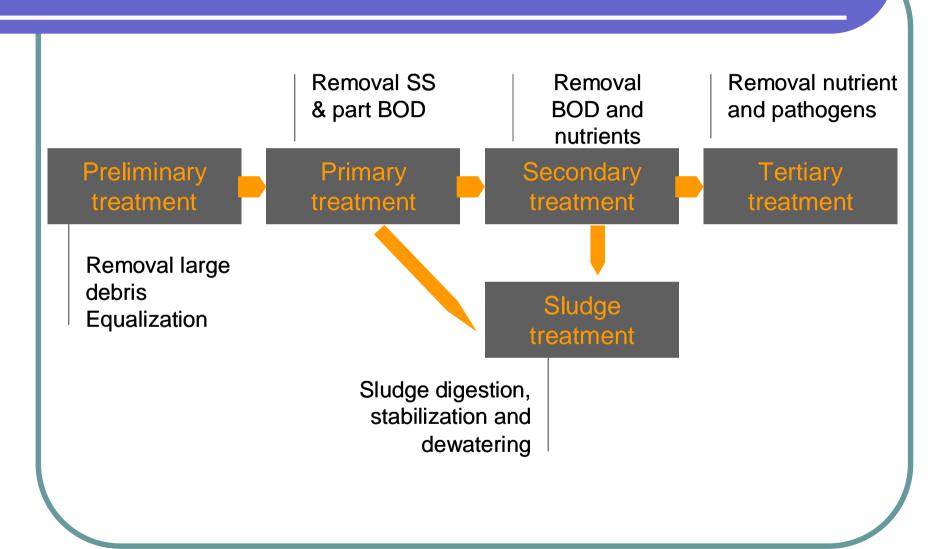
In Biowin 3


WasteWater Fraction

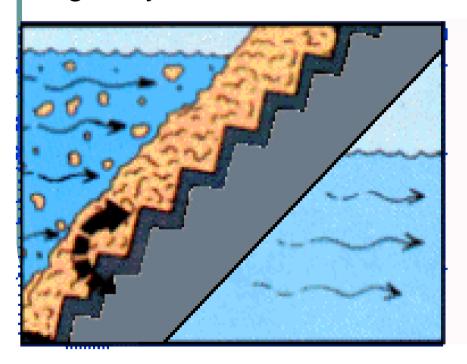
Name	Description
FZ _{bh}	Fraction of total influent COD which is non-polyP heterotrophic organisms.
FZ _{ba}	Fraction of total influent COD which is autotrophic organisms.
FZ _{aob}	Fraction of total influent COD which is ammonia oxidizing organisms.
FZ _{nob}	Fraction of total influent COD which is nitrite oxidizing organisms.
FZamob	Fraction of total influent COD which is anaerobic ammonia oxidizing organisms.
FZ _{bp}	Fraction of total influent COD which is polyP heterotrophic organisms.
FZ _{bpa}	Fraction of total influent COD which is propionic acid acetogen organisms.
FZ _{bam}	Fraction of total influent COD which is acetoclastic methanogen organisms.
FZ _{bhm}	Fraction of total influent COD which is H2-utilizing methanogen organisms
FZ _{bm}	Fraction of total influent COD which is anoxic methanol utilizing organisms

Introduction to Wastewater treatment

- ✓ What are the main steps involved?
- ✓ Where are biological processes used?
- **✓** What are the challenges?


Example: City of Toronto WWTP

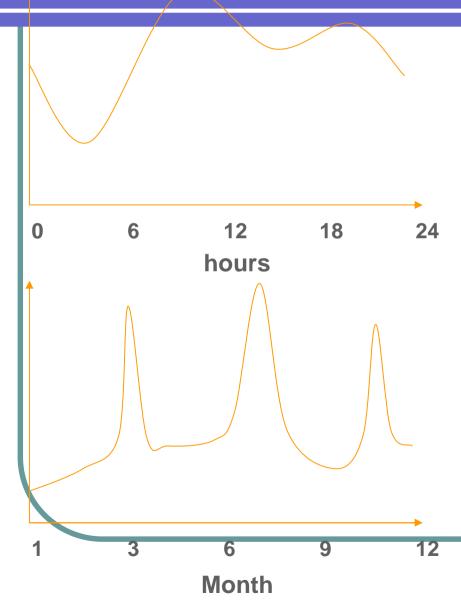
Mechanisms of pollutant removal


Mechanism	Pollutants affected
Adsorption/desorption	Heavy metals, trace organics
Microbial activity (including photosynthesis)	Mainly organic matter & nutrients, but also heavy metals, trace organics & pathogens
Chemical reactions (hydrolysis, photolysis, oxidation, reduction)	Organic matter, pathogens, nutrients
Filtration	TSS
Sedimentation	TSS
Flocculation	TSS
Volatilization	VOC, NH ₃ , CH ₄ , H ₂ S

Simplified Model

Preliminary Treatment

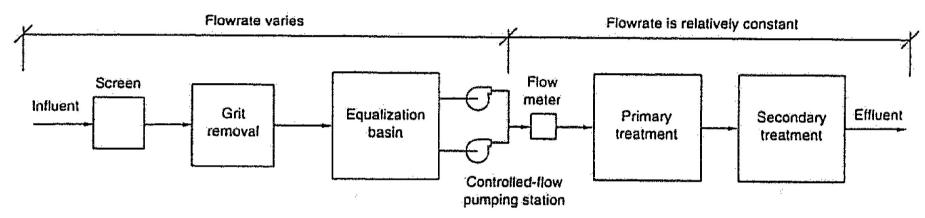
- Removal of large (screens) and heavy (grit) solids
- Equalization tank to avoid fluctuations and provide gravity forces



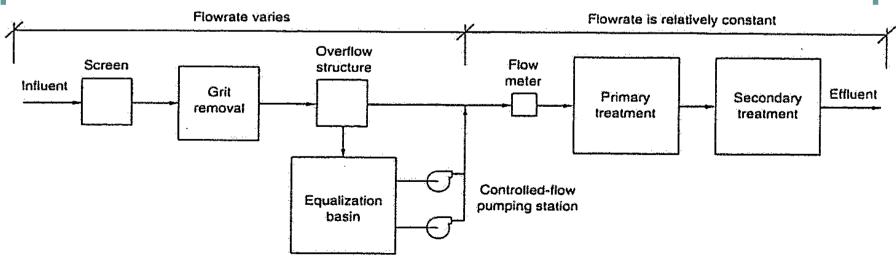
Examples: Screening

Need for equalization

Typical daily variation of municipal wastewater: User peaks during morning and evening are seen with a 1-2 hours delay at the WWT


Typical yearly variation of municipal wastewater in South France: Winter peaks reflect storms and summer peaks reflect the increase of population (up to 100 times)!

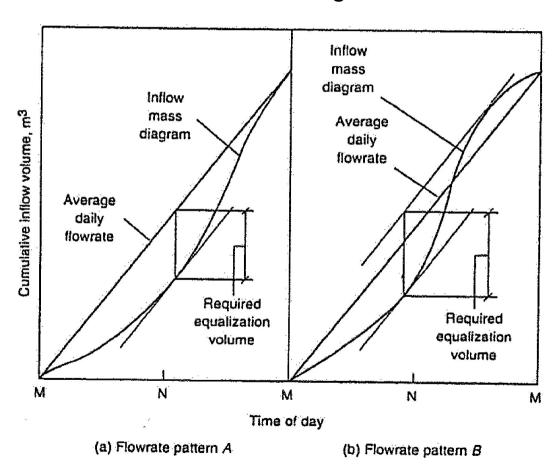
Equalisation tank


- © Biological Treatment is enhanced because shock loadings are eliminated, pH stabilized and inhibiting substances diluted
- Enhanced effluent quality and secondary settler performance
- Surface area in filtration processes is reduced
- Higher efficiency in chemical treatment processes
- Large land areas needed
- Odour problems
- Additional Maintenance
- Capital costs increase

Equalisation Tank

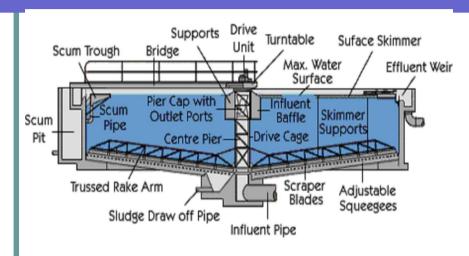
In-line Equalisation: Good Concentration and Flowrate damping

Off-line Equalisation: Minimize Pumping Requirements

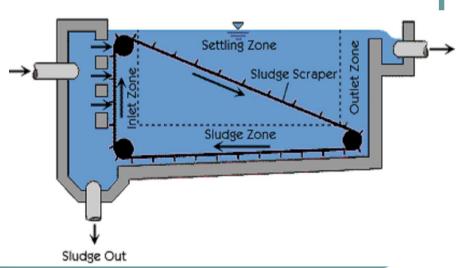


Equalisation Tank

Inflow cumulative volume diagram


Figure 5-11

Schematic mass diagrams for the determination of the required equalization basin storage volume for two typical flowrate patterns.



In practice, 10 - 20 % larger than the theoretical one to account for: Internal recycle streams, unforeseen diurnal peaks,

Primary treatment

 Physical separation of solids and greases from the wastewater by sedimentation

Examples

Secondary treatment

Biological removal of dissolved organic material and/or nutrients

 The most common processes are ponds (small scales), activated sludge systems and trickling filters.

Generate sludge (VSS) that often needs to be removed

Examples

Tertiary treatment

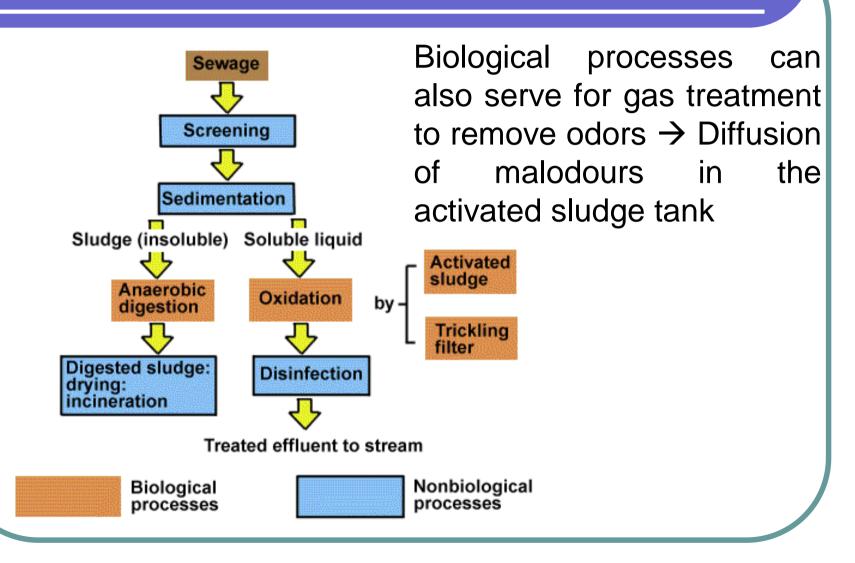
- Removal of nitrates: Biological Nitrification/Denitrification
 Assimilation into algal biomass
- Removal of phosphates: Coagulation + Flocculation or biological
- Removal of pathogens: UV, chlorine, ozone, ponds

 Special treatment for recalcitrant chemicals: Carbon adsorption, AOPs, air stripping

Sludge handling

Why sludge handling???

- Reduce pathogens sludge volume & energy production:
 Aerobic/Anaerobic digestion
- Reduce water content: Thickening/dewatering by sedimentation, drying, centrifugation, press filters
- Final treatment: Incineration or disposal in landfill or composting

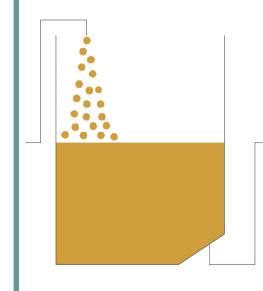


Example

CH₄- 60- 75 % CO₂: 20-40 % H₂S: < 2 % Gas outlet Methane gas Scum layer Scum removal Sludge inlet Supernatant Supernatant removal **Actively digesting sludge** Stabilized sludge Sludge outlet

Remember that biological treatment are never alone!!!

Example 2



Challenges in the WWTP of the 21th Century

- Reduce sludge production
- Remove emerging and persistent organic pollutants
- Improve monitoring
- Upgrade old facilities
- Improve efficiency to meet requirements for water reuse
- Water separation (yellow/grey/brown)
- Reduce energy consumption (approx. 60 % of the total energy cost are due to aeration!!)

In BioWin 3

Equalization Tank: completely mixed vessel in which there is no reaction

Need to specify Volume: → Cumulative volume

Diagram Method

Two operation modes:

- Constant Liquid Volume in the Tank (Inflow rate = Outflow rate) → Concentration Damping
- Variable Liquid Volume in the Tank (Need to specify the Outflow rate and Initial liquid holdup) → Flow rate and Concentration Damping

Assignment: Equalization Tank Design and Simulation in BioWin 3