

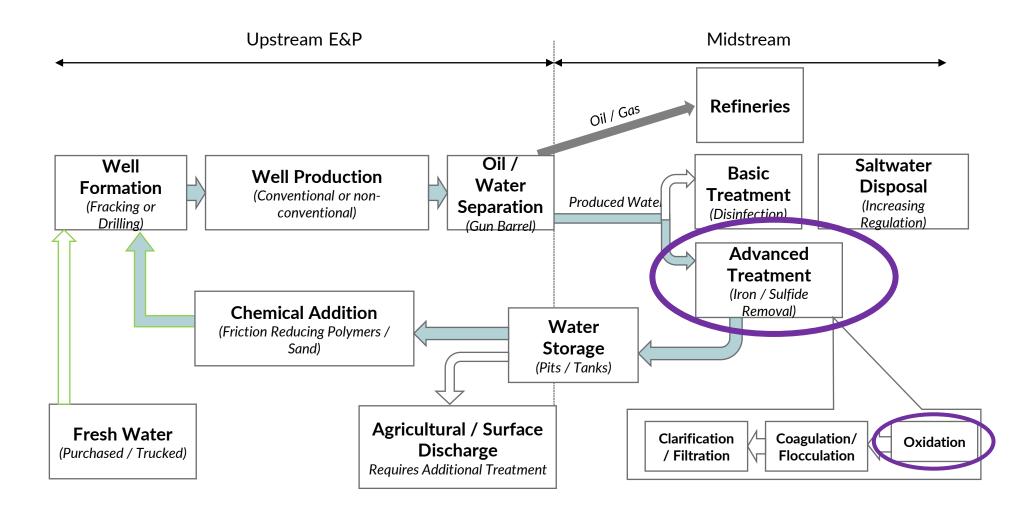
Permanganate Treatment of Oilfield Produced Water

John Sanders & Lyndon Berwick

Produced Water Society Permian Basin
Aug 16-17, 2022
Midland TX

Presentation Topics

- Oxidation and PW treatment
- Properties and reactions of permanganate
- Common key performance indicators (KPIs)
- PW treatment goals:
 - Iron removal
 - Oxidation-Reduction Potential (ORP)
 - Water Clarification
- Comparison of permanganate and hydrogen peroxide
 - Field and laboratory data from Permian Basin


Key Messages

Permanganate Treatment of Produced Water

- Offers a rapid and effective pre-treatment alternative to oxidation with hydrogen peroxide
- Eliminates the need for addition of inorganic coagulant, allowing a simplified 2-product treatment program
- Reduces required doses of polymer/flocculant chemicals
- Can provided an optimized, cost-effective total treatment strategy

Produced Water Treatment Flowchart

Common Oxidizers

Chemical oxidizers are applied to:

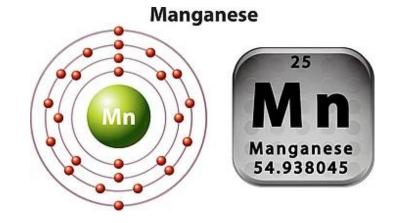
- Oxidize iron and other metals, dissolved sulfides, and H₂S
- Increase oxidationreduction potential (ORP)
- Assist solids removal and water clarification

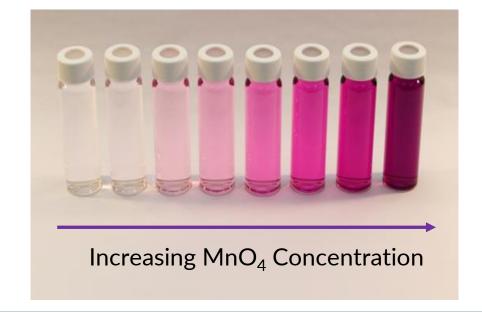
Reference:

Produced Water Treatment Fundamentals, Module 2 Lisa Henthorne, President Produced Water Society

Oxidant: Pros and Cons

Purpose: precipitate metals and H₂S to enable efficient separation in downstream equipment.


Chemical	Pros	Cons
Potassium Permanganate	 Effective oxidant Available as solid chemical – easier and less costly to transport Relatively safe to use 	 Somewhat more costly to procure than alternatives Less recognized in the oil and gas industry If overdosed, a pink color results – can be used as indicator
Chlorine Dioxide	 Strong oxidant Effective treatment at low doses Relatively inexpensive to procure Well understood 	 Use of explosive gas in chemical makeup process poses HSE risk Requires complex onsite generation procedure Challenging to store
Hydrogen Peroxide	 Strong oxidant Effective treatment at low doses Inexpensive Safe to use compared to other oxidants 	 Liquid form makes transportation more expensive option. May require more storage volume than other oxidants pH adjustment often required Will readily consume light oils
Ozone	 Very strong oxidant with OH radical Alkalinity reduces ozone decomposition Insitu generation 	 Limited residual properties OH radical non-selective, assimilable organics may increase May be more expensive than alternatives Supply chain more limited

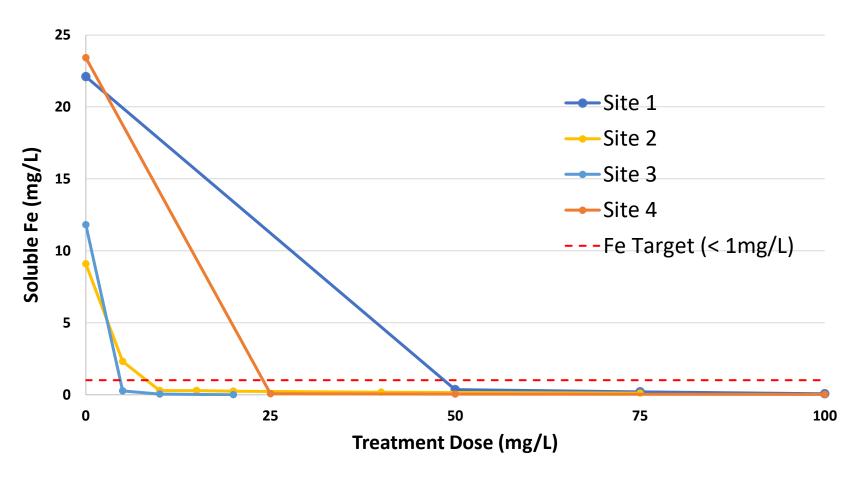


Permanganate Products

- Permanganate is a highly oxidized form of manganese
- CAIROX® potassium permanganate:
 - Crystalline **solids**, 97% or greater assay
- CARUSOL® liquid permanganate:
 - Concentrated <u>liquids</u>, 20% or 40% as pre-dissolved water solutions

Permanganate Reactivity

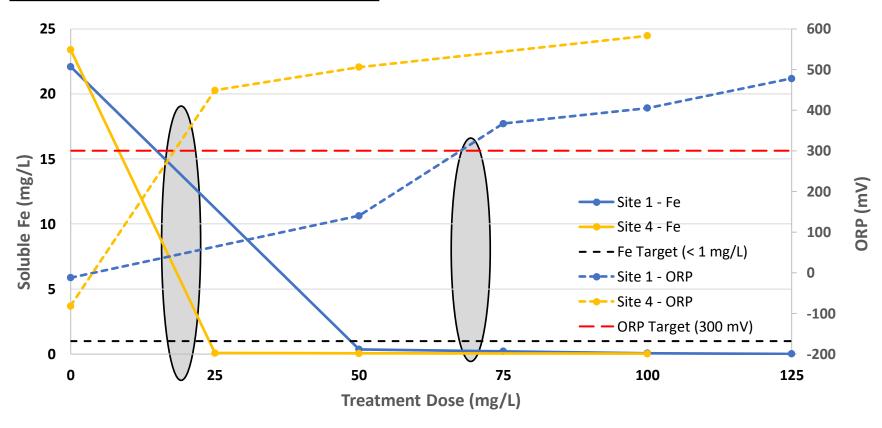
Permanganate Reactivity with Selected Inorganic Compounds			
Very Fast (1 second)	Sulfites (IV), Sodium bisulfite		
Fast (20 seconds)	Nitrite (III)		
	Iron (II) $3 \text{ Fe}^{+2} + \text{MnO}_4^{-2} + 7 \text{ H}_2\text{O} \longrightarrow 3 \text{ Fe}(\text{OH})_3 + \text{MnO}_2 + 5 \text{ H}^+$		
	Arsenic (III) $3 \text{ As}^{+3} + 2 \text{ MnO}_4^- + 4 \text{ H}_2\text{O} \longrightarrow 3 \text{ As}^{+5} + 2 \text{MnO}_2 + 8 \text{ OH}^-$		
Medium Fast (5 minutes)	Sulfide $3 \text{ H}_2\text{S} + 4 \text{ MnO}_4^- \longrightarrow 2 \text{ SO}_4^{-2} + \text{S} + 3 \text{ H}_2\text{O} + 3 \text{ MnO} + \text{MnO}_2$		
	Manganese (II) $3 \text{ Mn}^{+2} + 2 \text{ MnO}_4^- + 2 \text{ H}_2\text{O} \longrightarrow 5 \text{ MnO}_2 + 4 \text{ H}^+$		



Treatment Goals and KPIs

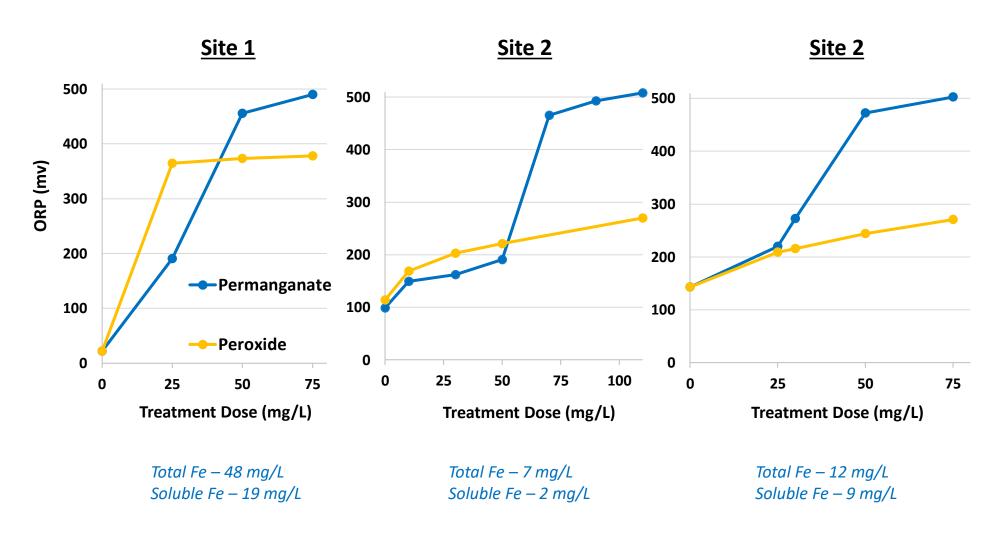
KPI	Common Limits
Total Iron	< 2 mg/L
Oxidation-Reduction Potential (ORP)	> 300 mV
Turbidity	10 - 100 NTU
Sulfides (including H ₂ S)	0 ppm (for H ₂ S)
рН	6-8
Microbiology	< 100 ng/mL ATP

Iron Oxidation



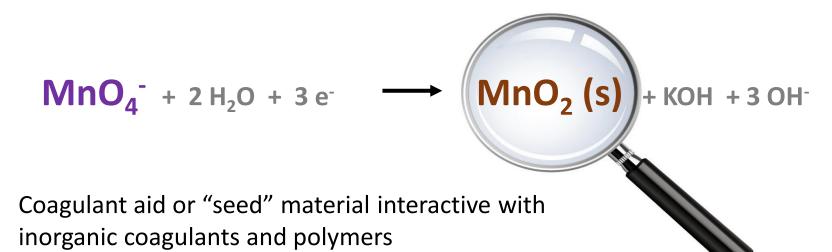
Rapid oxidation of soluble iron (Fe⁺²) to insoluble iron (Fe⁺³)

ORP v. Iron Removal


Site 1 and 4 – ORP v. Soluble Iron

Rapid increase in ORP as soluble iron is oxidized and precipitated

$ORP - MnO_4 v. H_2O_2$


Treatment Goals and KPIs

KPI	Common Limits
Total Iron	< 2 mg/L
Oxidation-Reduction Potential (ORP)	> 300 mV
Turbidity	10 - 100 NTU
Sulfides (including H ₂ S)	0 ppm (for H ₂ S)
рН	6-8
Microbiology	< 100 ng/mL ATP

Permanganate Reaction Product - MnO₂

Look closely at the <u>manganese dioxide</u> (MnO₂) precipitate that forms when permanganate reacts. It has some great benefits...

- Adsorbs other charged impurities positively charged ions, and some organics
- Provides an active surface for the oxidation of sulfides by dissolved oxygen

Manganese Dioxide - Clarification Aid

Produced Water Raw

PW + 25 ppm CAIROX® Potassium Permanganate

Floc formation with MnO₂

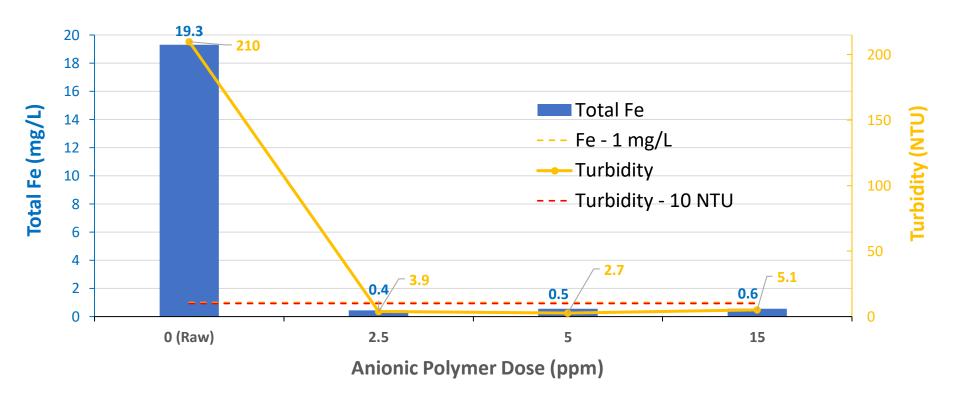
PW + 25 ppm CAIROX® + Anionic Emulsion Polymer

No additional coagulant required

Manganese Oxide - Clarification Aid

Flowback Water + 80 ppm CAIROX® Potassium Permanganate

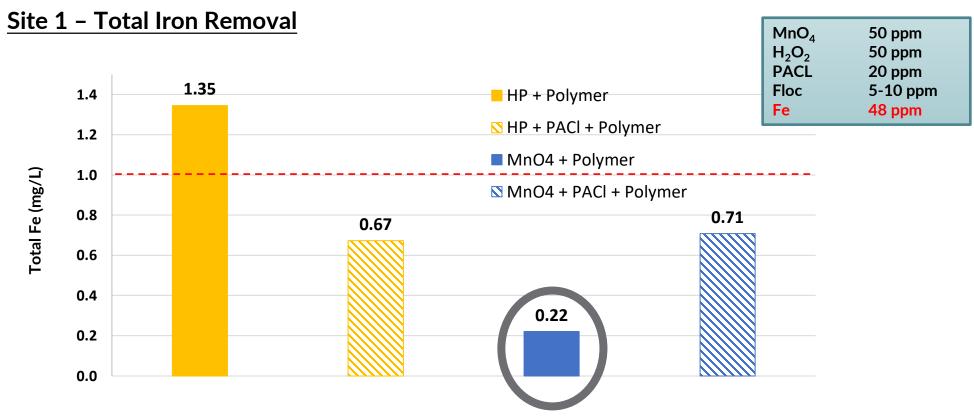
Flowback Water + 80 ppm CAIROX® + Anionic Emulsion Polymer



No additional coagulant required

Coagulation of Solids with MnO₂

<u>Site 4 – Total Iron and Turbidity Removal</u>

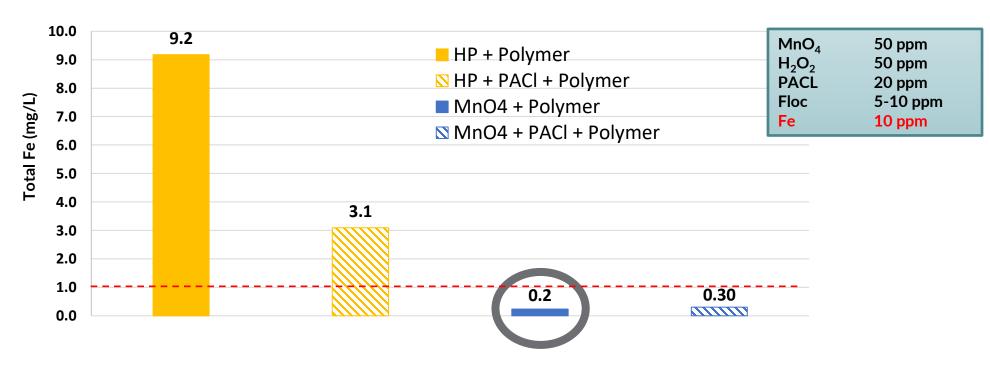


Target KPIs achieved with:

• Low MnO₄ dose (10 ppm), no coagulant, 2-product program, 8x lower polymer dose (v. peroxide)

Total Iron Removal - MnO₄ v. H₂O₂

Permanganate achieved target iron levels (< 1 mg/L) with:

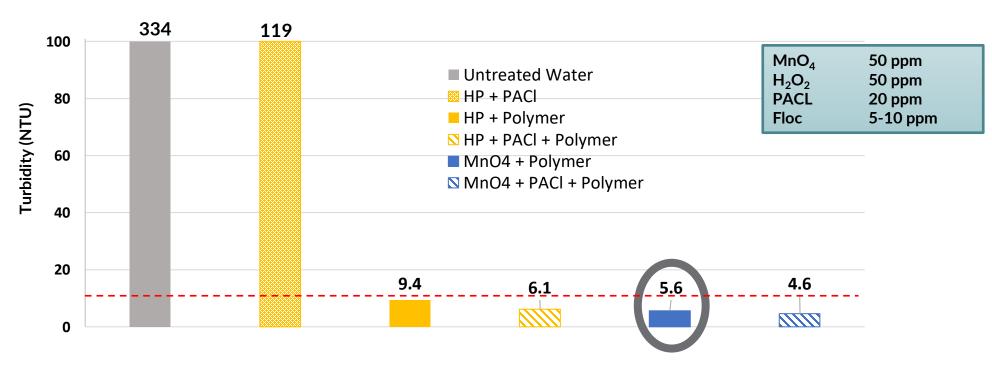

• 2-product program

No inorganic coagulant

Total Iron Removal - MnO₄ v. H₂O₂

Site 2 - Total Iron Removal

Permanganate achieved target iron levels (< 1 mg/L) with:

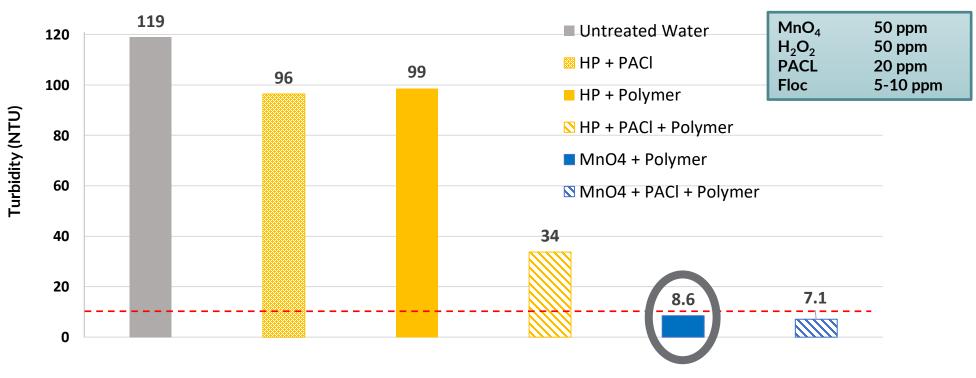

2-product program

No inorganic coagulant

Clarification - MnO₄ v. H₂O₂

Site 1 - Clarification/Turbidity

Permanganate achieved target turbidity (< 10 NTU) with:


• 2-product program

No inorganic coagulant

Clarification - MnO₄ v. H₂O₂

Site 2 - Clarification/Turbidity

Permanganate achieved target turbidity (< 10 NTU) with:

• 2-product program

No inorganic coagulant

Summary

Permanganate Treatment of Produced Water:

- Offers a <u>rapid and effective</u> pre-treatment alternative to oxidation with hydrogen peroxide
- Provides an excellent in-situ <u>coagulation aid</u> for solids removal and clarification
- Eliminates the need for addition of inorganic coagulant simplified <u>2-product</u> <u>treatment program</u>
- Reduces required doses of polymer/flocculant chemicals
- May provide <u>more consistent treatment</u> efficiency and performance for variable incoming water composition

Contact Us

in

Presenter: John Sanders

Phone: (281) 967-0316

Email: John.Sanders@carusllc.com

315 5th Street, Peru, IL

800-435-6856 • 1-815-223-1500

salesmkt@carusllc.com

www.carusllc.com

