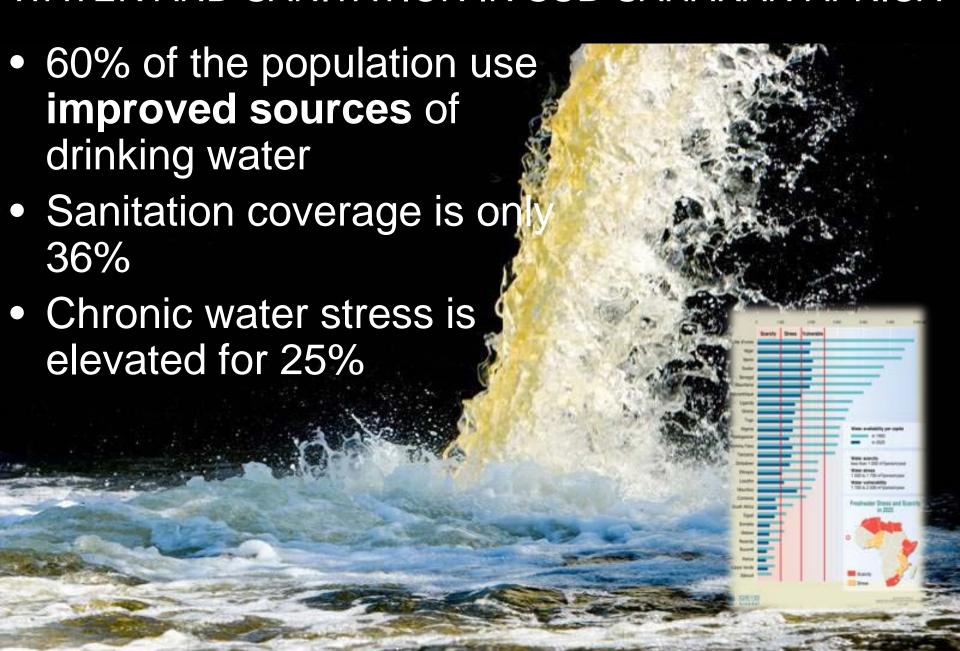

WATER REUSE IN AFRICA

CONTENT


- BACKGROUND
- WASTEWATER REUSE EXAMPLES
- WATER REUSE SPECIFIC CASES
 - Indirect potable reuse of wastewater
 - Direct industrial reuse of wastewater
 - Direct potable reuse of industrial (mine) water
 - Direct potable reuse of wastewater
- PERCEPTIONS ON POTABLE WASTEWATER REUSE
- SUMMARY AND CONCLUSIONS

WATER AND SANITATION IN SUB-SAHARAN AFRICA

WATER REUSE IN AFRICA

- Raw human waste used for centuries in both rural and urban areas
 - Broad agriculture and aquaculture
 - Maintain the organic fraction of soil (conditioning and humus replenishment)
- Untreated or only partially treated sludges are applied in the vast majority of cases
- Reuse extremes range from piped distribution of treated wastewater to illegal diversion of raw wastewater by farmers

WASTEWATER REUSE

- Agriculture accounts for major water use in developing countries (about 75 - 80% of total) followed by industry and domestic use
- In semi-arid African areas
 - Wastewater may constitute 25 75% of available irrigation water (Angola, Namibia, Botswana and Zimbabwe)
 - In South Africa 15 20% of wastewater is reused in agriculture
 - In 1990 Morocco was using about 16% of its wastewater for irrigation

WASTEWATER REUSE

- data is sparse and often estimated or derived from models
- United Nations FAO Aquastat lists wastewater reuse data for only 5 African countries (F = FAO estimate)

Country	Treated Wastewater Reused (10 ⁹ m³/yr)
Egypt	2.971 (2000)
Libyan Arab Jamahiriya	0.04F (2000)
Tunisia	0.021 (2001)
Mauritania	0.0007F (2000)
Namibia	0.007F (2000)

WASTEWATER REUSE EXAMPLES

Tunisia

- Citrus, fodder
- 24% of treated wastewater effluent used for irrigated agriculture

Morocco

Vegetables, fodder

Ghana

- Vegetables, ornamental plants
- Sludge from public toilets and septic tanks transported for decades to urban fringe farms in the North

Dakar

Small scale horticulture (waste/groundwater mix)

Botswana

Peri-urban farming around Gaborone

Tunisia

Ghana

Morocco

Dakar

Djibouti

Plans for production of orchards and market gardening

Egypt

 Unofficial and uncontrolled wastewater reuse estimated between 2.8 and 4 km³

Morocco

 In Ben Slimane, 5 600 m³/day of treated wastewater effluent is used for golf course irrigation

• Fish cultivation in sewage ponds (small scale)

- Kenya
- Malawi
- South Africa
- Zimbabwe

WATER REUSE SPECIFIC CASES

- Indirect potable reuse of wastewater
 - South Africa, Mossel Bay WWTW
- Direct industrial reuse of wastewater
 - South Africa, Durban Water Recycling Plant
- Direct potable reuse of industrial (mine) water
 - South Africa, eMalahleni Water Reclamation Plant
- Direct potable reuse of wastewater
 - Namibia, Goreangab Water Reclamation Plant

Indirect potable reuse of wastewater

South Africa, Mossel Bay WWTW

(Picture: Wolwedans Dam, Source: Mossel Bay Municipality)

MOSSEL BAY WWTW

- Proposed indirect potable use of treated wastewater effluent to augment raw water supply
- Wastewater treatment works to provide 5 Ml/day of high quality treated effluent from the works
- To be introduced into the existing rising main from the Wolwedans Dam
- Construction to commence June 2010

Treatment process

- Pre-treatment (in-line strainers)
- Ultrafiltration (UF)
- Reverse osmosis (RO)
- Portion of effluent desalinated in the RO plant and resulting permeate blended with UF filtrate
- Objective is to reduce the conductivity of the WWTW effluent to the same order of magnitude as the Wolwedans Dam water

Wolwedans Dam - aerial view

WATER REUSE SPECIFIC CASES

Direct industrial reuse of wastewater

South Africa, Durban Water Recycling Plant

(Picture: DWRP, Source: VWS Envig)

DURBAN WATER RECYCLING PLANT

Durban Water Recycling Plant

- Commissioned in 2001
- Treats 47.5 MI/day of domestic and industrial wastewater to a near potable standard
- Sales to industrial consumers for direct use in their processes

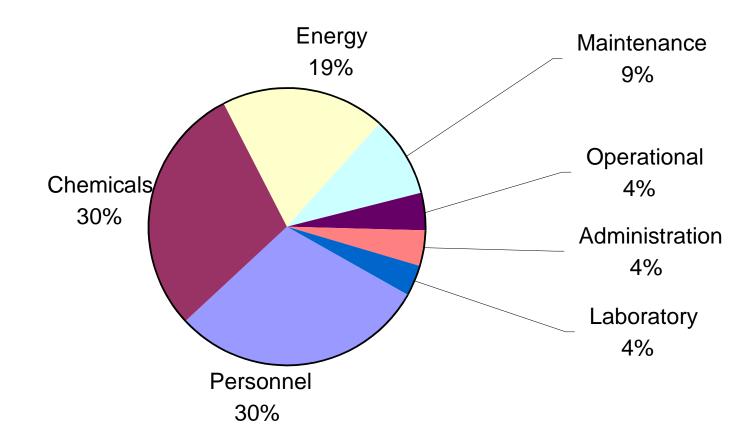
Public Private Partnership

- eThekwini Water Services
- Durban Water Recycling (Pty) Ltd

Wastewater source

- Predominantly domestic in nature
- Industrial effluents comprise 10% by volume and 20% by pollution loading

Treatment Process


- Preliminary screening and primary settling
- Activated sludge
- Chemical dosing and lamella settling
- Rapid dual media filtration
- Ozonation
- Granular activated carbon
- Chlorination
- Reticulation and storage before distribution to Mondi and Sapref

Water Quality

- Meets or exceeds the SANS241 South African Drinking Water Class I standard for 96% of the parameters
- Typical non-compliances include sodium, conductivity and oil and grease
 - Relates to non-compliant feed water quality
- Facility to augment the reclaimed water volume by potable water addition
 - Ensure continuity of supply
 - Blending for quality control purposes

Operational cost breakdown

Advantages for the metro council (EWS)

- Delayed capital investment (marine outfall and potable supply infrastructure)
- No capital investment for recycling plant
- Long term revenue stream from a recycled water levy
- Reduced cost of water services to Durban's citizens
- Reduces treated wastewater discharge by 10%

Advantages for the end-users (Mondi Paper and Sapref)

- 44% reduction in water tariff (2001) for Mondi
- Likelihood that the price of recycled water will escalate at a lower rate than potable water
- Enhanced security for water supply in times of drought

WATER REUSE SPECIFIC CASES

Direct potable reuse of industrial (mine) water

eMalahleni Water Reclamation Plant

(Picture: EWRP, Source: Keyplan)

eMALAHLENI WATER RECLAMATION PLANT

eMalahleni Water Reclamation Plant

- Joint initiative between mining companies (Anglo Coal and BHP Energy Coal)
- Designed to recover potable water from acid mine drainage from several mines in the Witbank coalfields
- 25 MI/day plant was commissioned in 2007

Treatment Process

- Keyplan HiPRO in-house technology specifically developed for the treatment of acid mine drainage
- Multistage sequential ultrafiltration and reverse osmosis membrane systems
- Inter-stage precipitation of low solubility salts

Operations

- 99% water recovery with waste production at <1% brine
- Low toxicity solid waste products (100 tons)
 - Impure gypsum cake (iron, manganese, aluminium, other metal contaminants)
 - Impure gypsum cake (magnesium contaminated)
 - High purity gypsum cake
- 18 MI/day supplied directly to the eMalahleni local municipality potable water reservoirs
 - Accounts for 20% of daily water requirements

Advantages

- Additional water for domestic use
- Excess water for mining activities such as dust suppression have made such operations selfsufficient
- Prevents polluted mine water decanting into the environment
- Improves catchment water quality as excess treated water is discharged to the local river systems
- Ultimate goal of zero waste facility may be realised

WATER REUSE SPECIFIC CASES

Direct potable reuse of wastewater

Namibia, Goreangab Water Reclamation Plant

(Picture: GWRP, Source: City of Windhoek)

GOREANGAB WATER RECLAMATION PLANT

1968

Windhoek reliant on boreholes and catchment dams
65 to 200 km away

1969

Goreangab Water Reclamation Plant with a capacity of 4 800 m³/day commissioned

1992 and 1997

 Droughts lead to interim extension and then design of a new plant

2002

 New Goreangab Reclamation Plant with a capacity of 21 000 m³/day commissioned

- Multi-barrier approach to reclamation and treatment of wastewater to produce drinking water
- Minimise risks associated with direct reclamation
 - A number of partial, full and multiple barriers for the most critical parameters
 - Six partial/complete barriers for resistant pathogenic protozoa
 - Five barriers for problematic organic compounds

- Raw water sources for new plant
 - Goreangab Dam and/or secondary treated effluent from Gammams Wastewater Treatment Plant
- Currently 100% effluent is treated in the new plant as the Goereangab Dam quality and quantity has deteriorated
- Constitutes approximately 18% of the city's potable water supply
- Treated effluent from the first plant is used for irrigation of parks and recreation fields
- Since 1968, no outbreak of waterborne disease has been experienced

Old Goreangab Plant Process

- Flocculation
- Dissolved air flotation (upgraded unit process)
- Settling
- Rapid sand filtration (upgraded to dual-media)
- GAC filtration
- Breakpoint chlorination
- Chemical stabilisation
- Booster chlorination
- Intermediate chlorination

New Goreangab Plant Process PAC (standby) - Pre-ozonation Chemical dosing and coagulation Dissolved air flotation Rapid dual media filtration Ozonation - Sequential BAC, GAC and ultra-filtration Chlorination Chemical stabilisation Pumping, blending and distribution

PERCEPTIONS ON POTABLE WASTEWATER REUSE

- Study on religious, philosophical and environmentalist perspectives conducted in Durban, South Africa found
 - No fundamental religious objections to potable wastewater reuse
 - Concerns around the environment, global warming, water scarcity and pollution
 - People are willing to think creatively about sustainability
 - Key concerns are emotional and/or related to concerns about technical competency
 - Initiatives would be prone to politicization around equity/justice issues
- In general, people are not comfortable with the idea of potable water recycling
 - Reject potable water reuse on grounds that other interventions exist with superior equity implications
 - Consensus converged around potable reuse as a last resort

SUMMARY/CONCLUSIONS

- Apart from a few cases, formal and sophisticated wastewater reuse is still in its infancy in Africa
- Existing wastewater management systems hinder the advancement of water reuse
- Some innovative application of water reuse have emerged over the past few years
- Substantial potential exist for war reuse in Africa