BENEFICIAL RE-USE OF TREATED SEWAGE EFFLUENT

Presented By

Mohammed Abdul Aziz Najem Al Awadhi

Director of Sewage Treatment Plant Department

Dubai Municipality

TSE reuse in 4 x application directions:

- Discharge of TSE to the creeks, rivers, natural lakes and the sea to maintain natural balance of water.
- Irrigation water for greenery covered areas (gardens, lawns, parks).
- 3. Industrial water for chilled water network of extended air conditioning systems.
- 4. Decorative facilities like park pools, ponds of golf clubs, lakes of prestigeous buildings.

Typical lay-out of Sewage Treatment Plant (STP) comprises:

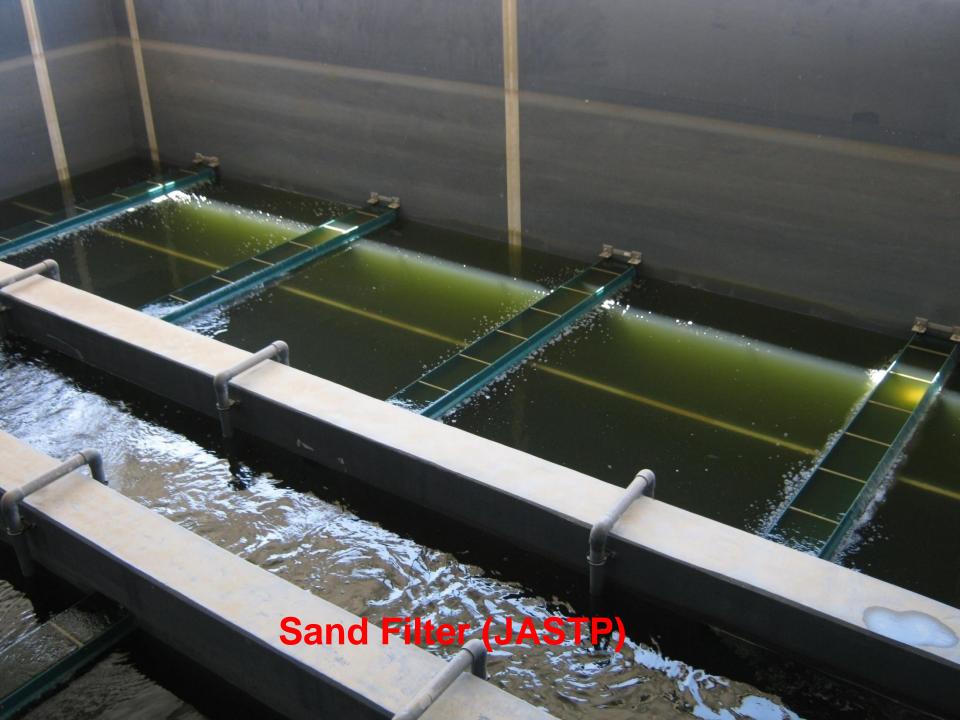
- Mechanical Treatment.
- 2. Biological Treatment.
- 3. Tertiary Treatment with filtration and disinfection to achieve high quality of TSE.
- 4. Sludge Handling Zone.
- 5. Chemical Treatment at any stage of process.

Treatment Stages **Mechanical Treatment** Stage 1 Biological **Treatment** Stage 2 Biological **Treatment** Sludge **Treatment**

Screens

- 1. STP must be safeguarded by Coarse Screens (10 15 mm spacing).
- 2. Fine Screening Requirement:
 - A. 6 mm bar spacing or punched holes for conventional STP
 - B. MBR Plant preferred: <1 mm mesh or punched hole screening

Efficient Screening and how it works (at 6 mm perforation)



Sand Filtration and Disinfection

- Gallery of Sand Filters, each of them filled with layers of sand in different particle size
- Residual suspended solids will be removed from the bio- treated effluent.

Disinfection can be achieved by application of facilities as follows:

1. Traditional Chlorination.

1. Ozonation (by generation of Ozone).

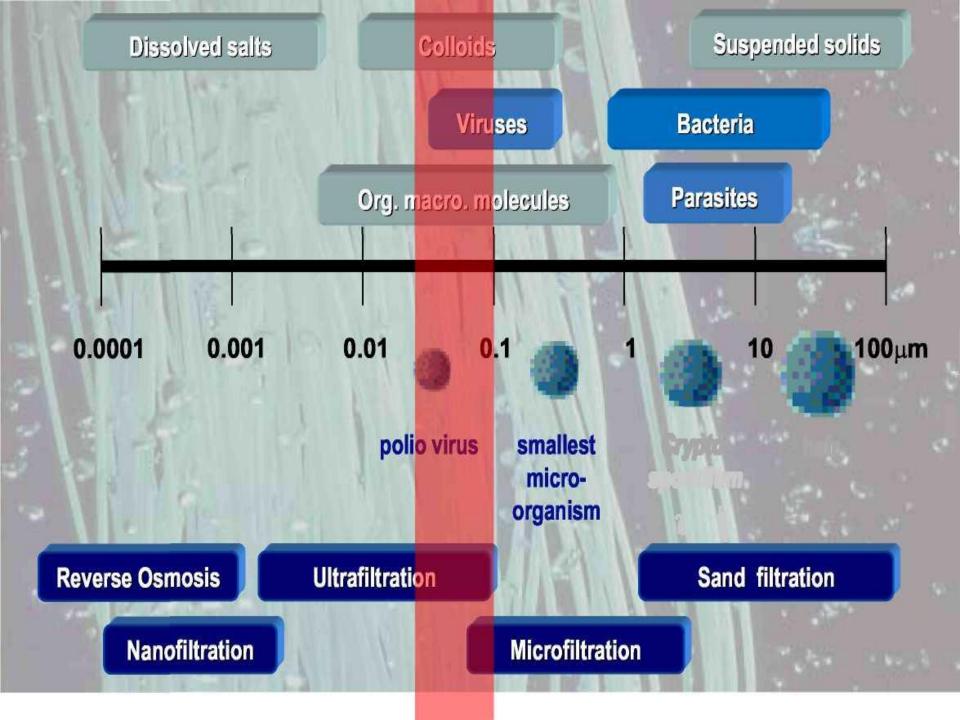
2. Ultra Violet (UV) Radiation.

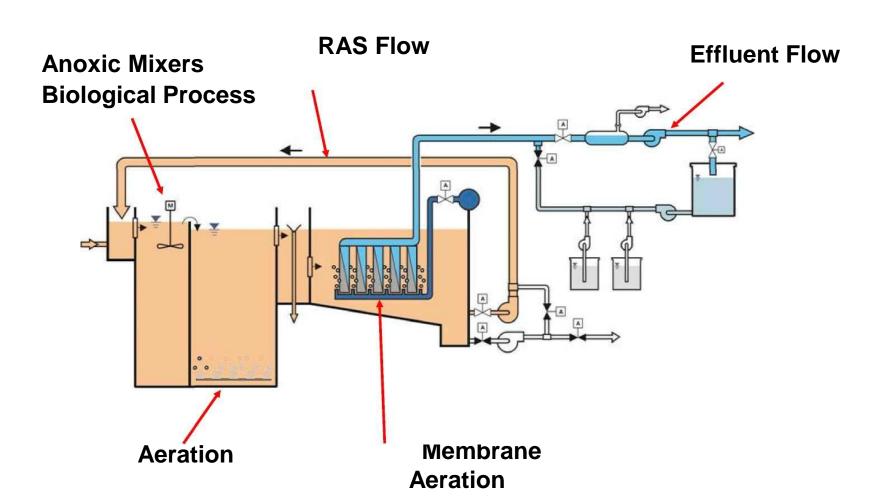
Chlorination usually consists of two stages:

- 1. Pre-chlorination is done:
 - A.Before or after sand filters.
 - **B.Prior to effluent storage basins.**
- 2. Post chlorination, which maintains residual chlorine just before pumping the water for irrigation to the city.

Quality of Treated Sewage Effluent (TSE) Filtered Water from Biological Activated Sludge Process Plant as follows:

Parameter	STP Eff. Jabel Ali	DM Standard	
		Drip	Spray
рН	7.2	6 - 8	6 - 8
Suspended solids (mg/L)	< 5	50	10
Biological Oxygen Demand (mg/L)	1.5	20	10
Chemical Oxygen Demand (mg/L)	<20	100	50
Ammonia – Nitrogen (mg/L)	<2	5	1
Fecal Coliform (number/100 ml)	Nil	500	20




Market Price Comparison:

S.NO.	Water Type	Price (Dhs) per Cubic Meter
1	STP Effluent	1.1
2	Potable (drinking) water from DEWA	7.7

Filtered (10 micrometers)TSE from traditional Sewage Treatment Plant (STP) or final product of Membrane Bio-Reactor (MBR) process may go for further treatment by Reverse Osmosis (RO) to receive high quality Permeate.

Typical MBR Plant

Effluent Parameters of MBR followed by RO.

Permeate is suitable to fill decorative lake.

Water Parameter	Units	MBR TSE	RO Permeate
TDS	mg/L	1500	100
Total Hardness CaCO3	mg/L	400	5
Calcium	mg/L	64	4
Chloride	mg/L	800	40
T-alkalinity	mg/L	70	60
PH (dimensionless)		6-8	7.5-8.0
Electrical Conductivity	(µS/cm)	250	130

Effluent Quality Defined by Discharge Point or Re-use

Parameter	Irrigation Water	Decorative Waters	Marina Water
E. Coli (per 100 mls)	2.2	<100	2.2
Pseudomonas aeruginose (per 10 mls)			
Nitrate – NO3 (mg/l)			
Nitrite – NO2 (mg/l)			
BOD (mg/l)	<5	<25	<5
Total Nitrogen (mg/l)		<10	<10
Total Suspended Solids (mg/l)	<5		<5
Total Phosphorous (mg/l)		<1	<1
рН	6-9	6-9	6-9
Conductivity (µS/cm)	<700		<700

Effluent Quality Defined by Discharge Point or Re-use (cond....)

Parameter	Irrigation	Discharge Rate	Effluent Quality
Turbidity (NTU)	<0.5		<0.5
Total Hardness - CaCO3 (mg/l)			
Ammonia – NH4	<2		<2
Chloride – CI (mg/I)	<100		<100
Sodium – Na (mg/l)	<70		<70
Sulphate - SO ₄ (mg/l)			
Manganese – Mn (mg/l)			
Iron – Fe (mg/l)			

Cooling water Make-up EffluentQuality

Parameter	Value
Chlorides (ppm)	80-90
Alkalinity (ppm)	60-70
Ca Hardness (ppm)	50-70
El. Conductivity (µS/cm)	400-500
рН	7.5-8.0
TDS (ppm)	270-350
Total Hardness (CaCO3) - ppm	75-85

Thank you for Attention