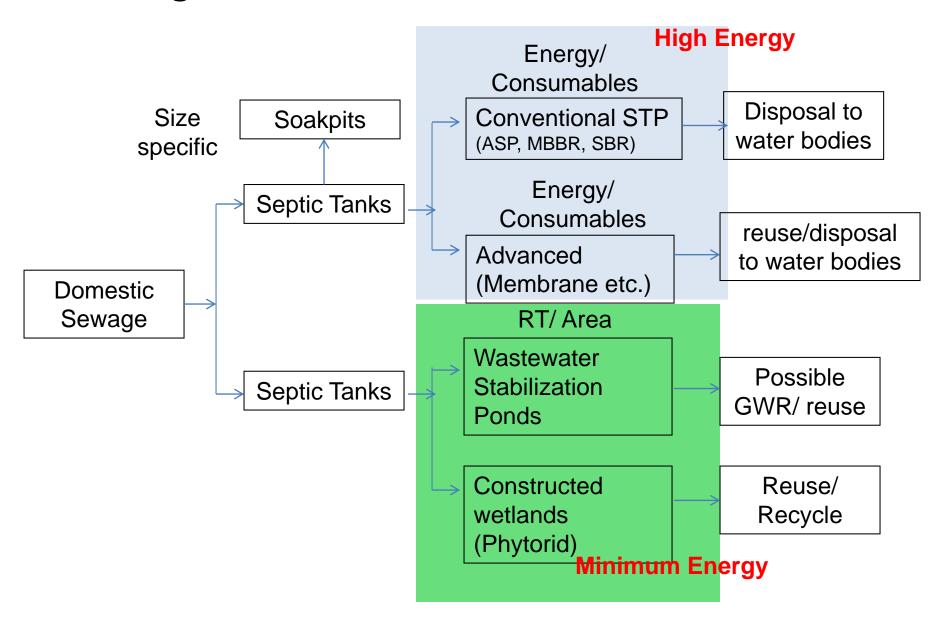
Grey-water Treatment and Technologies

At Center of India: Nagpur

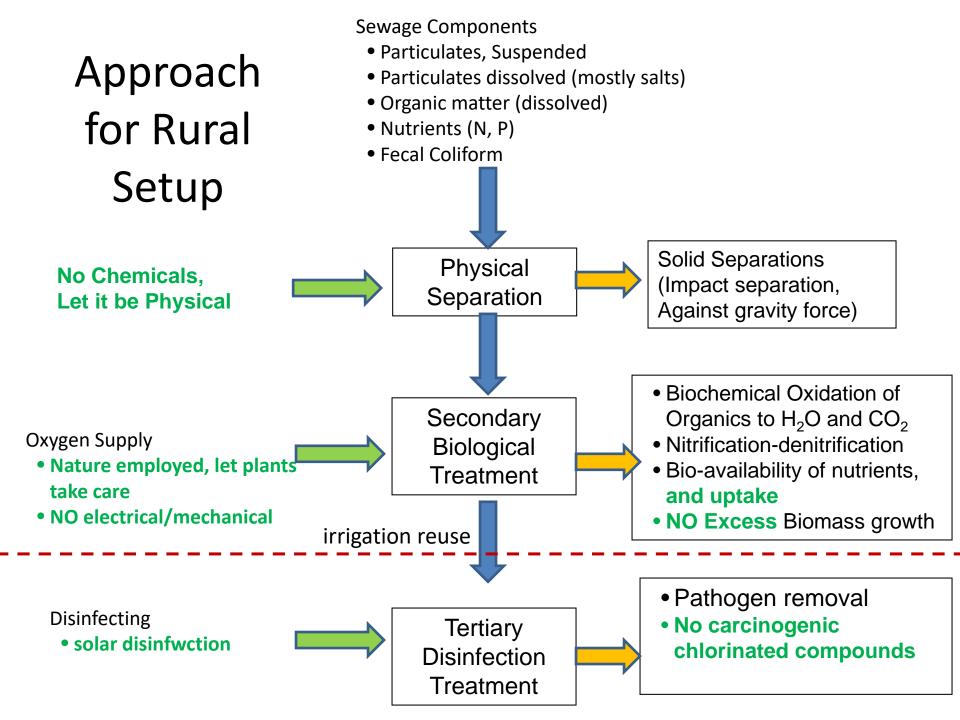

Rajesh B. Biniwale, Ph.D., D.Sc.

Sr. Principal Scientist and Head Cleaner Technology and Modeling Division National Environmental Engineering Research Institute Nagpur 440020 India rb_biniwale@neeri.res.in

Director Ecologique Science Technik (India) Pvt.Ltd. 39, Agnelayout, Nagpur 440025

director@estpl.co.in rajeshbiniwale@gmail.com 9822745768

Sewage Treatment: Methods, Issues, solutions



Sewage Components Science Particulates, Suspended Particulates dissolved (mostly salts) Behind Organic matter (dissolved) Nutrients (N, P) Sewage • Fecal Coliform **Treatment Solid Separations** Coagulants Physical (terminal settling Conventionally alum Separation velocity) Surfactants Biochemical Oxidation of Organics to H₂O and CO₂ Secondary Oxygen Supply Nitrification-denitrification Biological Conventionally aerators Bio-availability of Diffusers Treatment nutrients Biomass growth/recycle Disinfecting agent (strong oxidants) **Tertiary** Pathogen Conventionally Chlorine Disinfection removal

Treatment

Hypo-chlorides

Ozone

Technology Selection Approach

Sr. No.	Technology	Application	Advantages	Challenges
1	Soak-pit	House-hold	Low cost Can treat wastewater	High water table area Potential to contaminate GW Water can not be recycled directly Solid particles in Grey water
2	Decentralised CWs	Community levels	Moderate Costs and operation is easier Water available for reuse	Topography should support for gravity flow Will need to consider avoiding solid waste
3	End-of the village CWs	Village Level	Already some places ww ponds are created, applicable very well. Can convert WWSPs to handle more wastewater	Receives entire wastewater which could have faecal matter (at least animal waste) Technology becomes slightly capex extenssive

Design Approach

- Operating windows for wastewater, parameters
- Source based selection of unit operations
- Space availability and levels
- Proximity of end use of treated water
- Quality of water required
- Soil strata
- Design of plant, conceptual, structural and asthetics

Extent of Treatment

- In case of Grey-water, pollutant loads are low
- If the reuse is for irrigation purpose then treatment upto BOD <30 mg/L should be fine
- Grey water treatment should be considered as different than STP

Decentralized treatment: + points

- Improve <u>reachability</u>, reduce the need for sewage transportation system
- Allowing <u>use</u> of the treated water <u>in-situ</u>
- Minimizing pumping, transportation, thus energy efficient
- Smaller systems technically <u>empowering</u> the <u>smaller LUBs</u>
- Treatment where it is needed

Phytorid: Paradigm Shift in STP Technology

- Technology is based on <u>ecological wastewater</u> <u>treatment</u> designed to mimic the cleansing functions of <u>wetlands with a smaller footprint</u>.
- Combination of <u>Physical separation</u> and nature available <u>biological components</u> to treat sewage.
- Designed to effectively work in <u>tropical</u> <u>conditions</u> and properly camouflage in the <u>aesthetics</u> of landscape.

Parameter	Inlet sewage quality	Treated water quality	Standards for inland surface water	Standards Land Irrigation	
рН	7.1 to 7.5	7.2	5.5-9.0	5.5-9.0	
BoD (mg/L)	80 to 300	<10 to 20	30	100	
CoD (mg/L)	130 to 350	< 50 to 100	250	Not Specified	
TSS (mg/L)	80 to 90	< 15	100	200	
Fecal Coli Farm (MNP/100ml)	10 ⁶ to 10 ⁷	<500			
Nitrogen (mg/L)	10 to 50	4-5	5	Not Specified	
Phosphate (mg/L)	10 to 50	1-4	5	Not Specified	

Phytorid Technology: Case studies

Area
Required is
0.2-0.3 Sqm
per capita

Phytorid Treating Nag River Water: Pilot Project

Plant at Agricultural college, PKV Nagpur Plant Capacity 100 m³/day

Treated water

नीरी

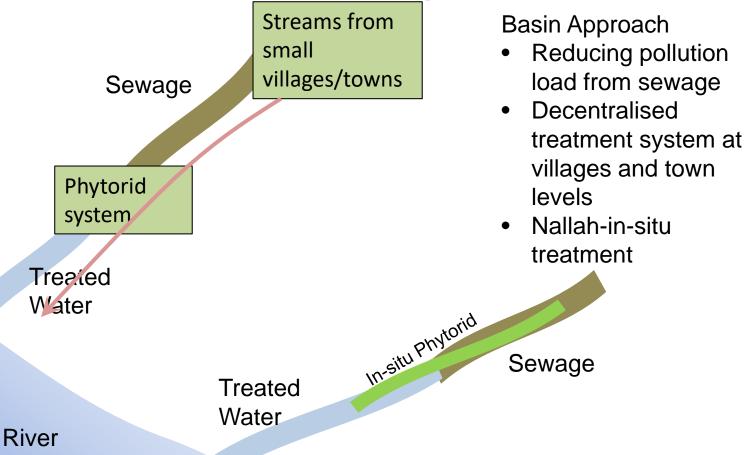
NEERI

Performance of PHYTORID for Sewage typical results

Parameter	Inlet sewage quality	Treated water quality	Standards for inland surface water	Standards Land Irrigation		
рН	7.1 to 7.5	7.2	5.5-9.0	5.5-9.0		
Biochemical Oxygen Demand (mg/L)	40 to 130	<10	30	100		
Chemical Oxygen Demand (mg/L)	130 to 350	< 20-35	250	Not Specified		
Total Suspended solids (mg/L)	80 to 90	< 10	100	200		
Fecal Coli Farm (MNP/100ml)	10 ⁶ to 10 ⁷	<20				
Nitrogen (mg/L)	10 to 50	4-5	5	Not Specified		
Phosphate (mg/L)	10 to 50	1-4	5	Not Specified		

Case Study: Semi-Urban

Lonar Lake, Maharashtra


Capacity:500 kld

Area: 600 m²

Reuse of Treated Water: Irrigation

Approach for the sewage treatment

Maharashtra Project: NABARD-MJP

Sr No	Village	Capacity of WWTP (In MLD)					
1	Shiroli	0.85& 0.25					
2	Kodoli	1.0&0.15					
3	Lonand	0.7					
4	Ozar	1.0 & 0.6					
5	Kalwan	0.6					
6	Chandwad	1					
7	Pimpalgaon	1					
8	Jamkhed	0.6&0.50					
9	Shevgaon	1					
10	Murbad	0.55 &0.45					
11	Pasthal	0.6					
12	Varangaon	0.6					
13	Loni Kalbhor	1					
14	Hiwarkhed	0.55					

Operation and Maintenance

Periods in Months	1	2	3	4	5	6	7	8	9	10	11	12
Maintenance Item												
Replantation (partial if			0									0
needed)												
Water Quality analysis	0	0	0		0		0		0			0
Cleaning of Screening	0	0	0	0	0	0	0	0	0	0	0	0
Chamber [this could be every												
week, in case load of floating												
matter is high]												
Harvesting of overgrown			0			0			0			0
plants and roots												
Hydraulics/ water level Checks						0						0
Solids Cleaning in Phytorid				0				0				0
Chambers												
Cleaning of Settling chamber												0
Gravel checks and reshuffle			0			0			0			0
Pump maintenance (if pump is			0			0			0			0
installed)												
Biomedia augmentation (10%			0			0						0
of the first time addition)												

Conclusions

- Constructed wetland is the needed innovative technology: Ecologically benign
- Nearly free of fossil based energy therefore sustainable and doable
- Cost effective in terms of O&M is most important factor

Thank You

More Information contact Dr. Rajesh Biniwale

(M) 09822-745-768