

BOILER WATER TREATMENT FOR KILN DRY OPERATIONS Technical

Presentation

IMPORTANT TOPICS

- PRETREATMENT
- TEMPERATURE VS OXYGEN
- FEED WATER / DA
- BOILER WATER
- CONDENSATE

Boiler Water Pretreatment

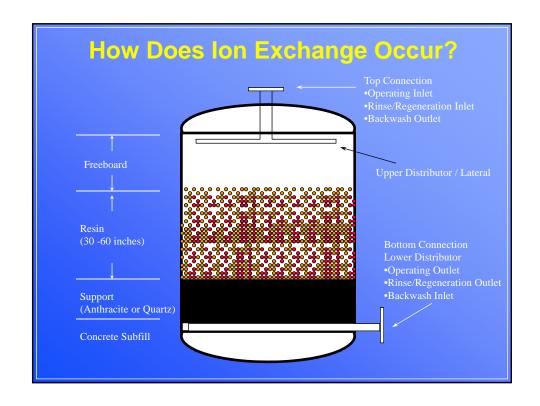
- Purpose Statistically 75% of all boiler water problems manifested in the boiler have a root cause in the pretreatment system
- Process Walk through the processes, key factors, monitoring, and operational impacts of pretreatment systems
- Payoff Cleaner boilers, increased energy efficiency, reduced maintenance time and costs, increased plant production time and capacity

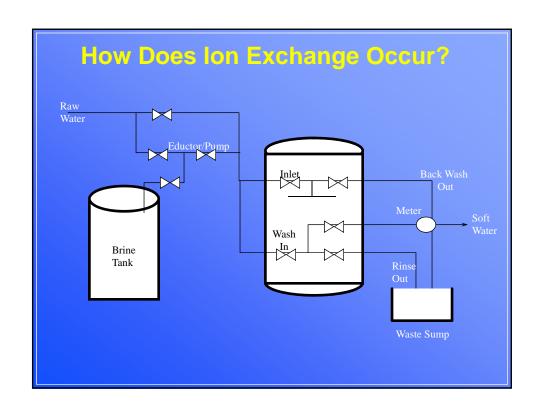
Pretreatment Methods

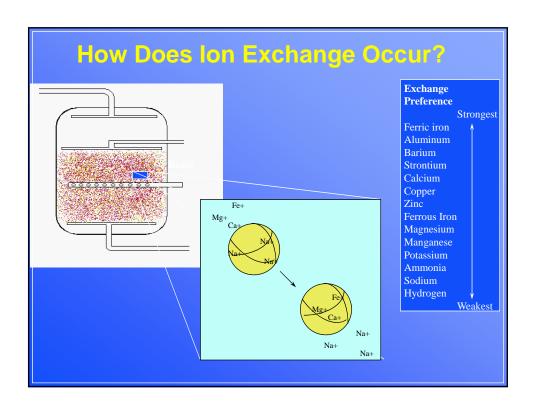
- Lime Softening
- Ion Exchange
 Softening & Demineralization
- Deaeration:

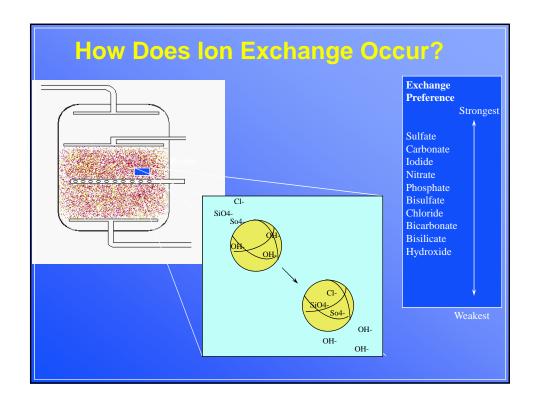
Full Mechanical & Heaters

Ion Exchange Technology

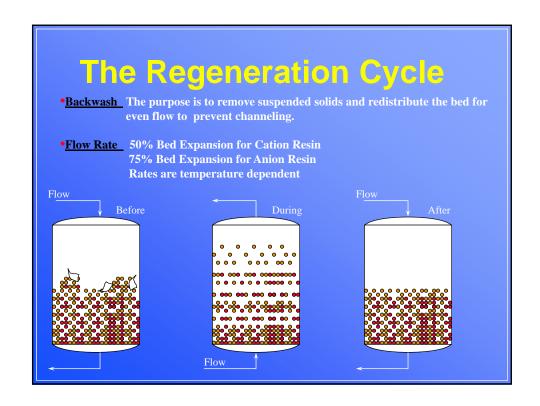

Ion Exchange

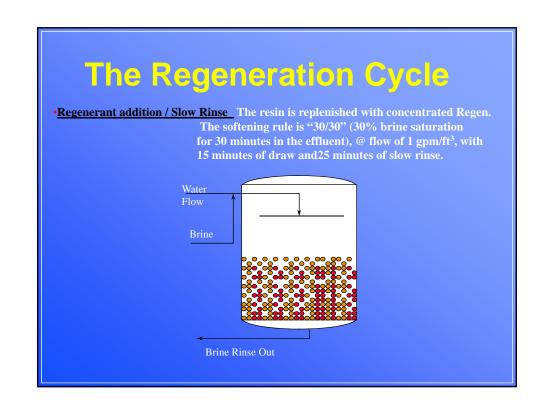

- Purpose of softening. What is it? Why do we do it?
- How softening occurs
- The regeneration cycle
- Critical factors and troubleshooting
- Areas of opportunity and operational enhancement

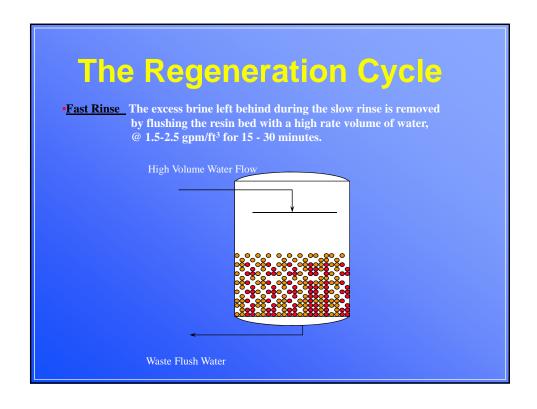

Purpose of Softening. What is it? Why do we do it?


- Well and surface water naturally contains calcium and magnesium - referred to as hardness as well as other iron and manganese that are removed in softening.
 Examples: Ca, Mg, Fe, Mn, Ba, Al
- These ions adversely impact water and process systems by leading to scaling, corrosion and/or contamination.
- **\$** Removing them improves heat transfer, increases equipment life, and lowers overall operating costs.
- This process is known as Softening.

Hardness can even make a glass of water taste bad!

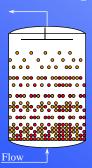






The Regeneration Cycle

- Resin Exhaustion When the brine supply on the resin is depleted, the bed is considered "exhausted". The resin must be replenished by a regeneration process.
- Regeneration Regenerating the resin beds is a three step process:
 - 1 Backwash
 - 2 Regenerant Addition
 - 3 Slow Rinse
 - 4 Fast Rinse

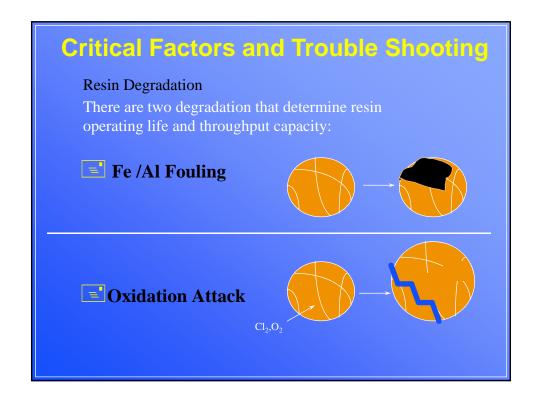

Critical Factors That Affect Run Length Trouble Shooting

- Loss of Resin
- Resin Degradation
- Regeneration Efficiency
- Monitoring Practices

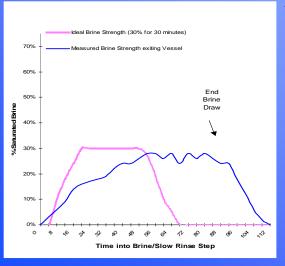
Critical Factors and Trouble Shooting

Loss of Resin During Backwash 1 Excessive Backwash Flowrate

- **2** Fluctuating Seasonal Temperatures



Tempe rature (°F)	Water Viscosity (cp)	% Bed Expansion
40	1.5	130
50		100
60		75
70	1.0	60
80	0.8	50


Flow Rate of 6 gpm/ft²

Evaluating

- Flowrate should de determined by Flow(gpm) = [Area(ft^2)] [$3.46 + 0.072 \text{ T}({}^{\circ}\text{F})$]
- 10-20 minutes backwash under proper flow will redistribute the resin bed.
- Monitor backwash rates seasonally to ensure temperature fluctuations are compensated.
- Measure freeboard annually or use resin traps to ensure resin is not being lost.

Critical Factors and Trouble Shooting

Regeneration Efficiency

• To provide full service run lengths, the resin must be completely regenerated with brine with both the necessary contact time and regenerant concentration.

Critical Factors and Trouble Shooting

MONITORING PRACTICES

Efficient use of regenerant and maximum unit reliability can only be ensured by monitoring the indicators that provide insight into the unit's operating performance.

- Outlet Hardness Dependent upon use
- Throughput -Each run
- Backwash Flow Rate Semiannually
- Backwash Temperature Summer & Winter
- Resin Level Annually
- Resin Integrity 3-5 years
- Regeneration Efficiency 1 2 years

Critical Factors and Trouble Shooting

Summary / Recap

The factors that affect run length and reliability

- Loss of Resin
- Resin Degradation
- Regeneration Efficiency
- Monitoring Practices

Areas of Opportunity for Operational Enhancement

- 1. Reduce foulants that decrease run length
 - Filter and/or prevent carry over
 - Fouling treatment
- 2. Use water unchlorinated or dechlorinated
 - Reduce oxidant attack of resin
- 2. Monitoring
 - Ensuring the unit's operational performance is being delivered For Example: Hardness, Run length, etc.
- 3. Regeneration Monitoring
 - Ensuring the unit is regenerated
 - Preventing excess regenerant use
- 4. Seasonal temperature monitoring for backwash adjustments
 - Prevent loss of resin through backwash
 - Prevent accumulation of debris and channeling
- **5.** Resin Integrity evaluation
 - Ensuring the resin is not fouled or broken down

Areas of Opportunity for Operational Enhancement

COST IMPACT AREAS

- **\$** Reduced Potential for Production of Hard Water
 - Ensures the Prevent of Scaling Operating Equipment
- **\$** Reduced Regenerations
 - Reduced Regenerant Costs
- **\$** Increased Resin Usage Life
 - Lower Resin Replacement Costs
- **\$** Prevent A Production Bottleneck

Deaerators And Oxygen Removal Technology

Discussion

- What Is Deaeration?
- The Process Removing O₂
- Equipment
- DA Problems
- Operational Impacts
- Monitoring

What Is It?

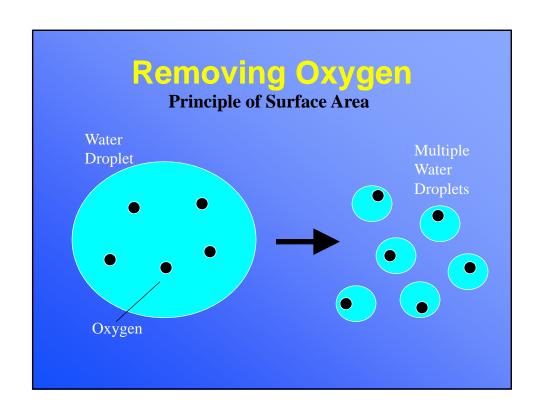
• Deaeration is the process of removing oxygen and other noncondensable gases from the boiler feed water like Co2

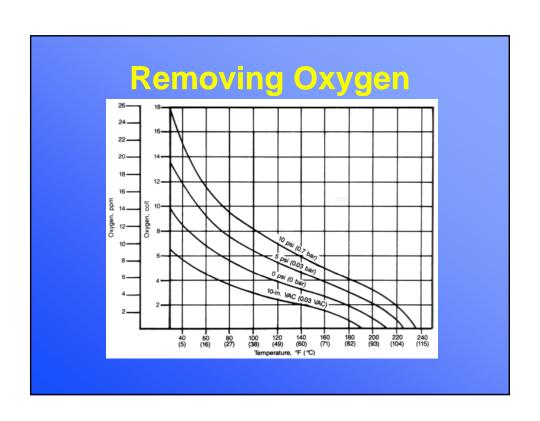
Removing Oxygen

- Water @ 70°F and Atmospheric Pressure
 Will Have About 7,000 ppb of O₂
- A Properly Functioning DA Will Reduce the Level to Approximately 5 - 10 ppb
- The Remaining O₂ Is Removed With an Oxygen Scavenger, (i.e. Sulfite etc)

Removing Oxygen

- Three Driving Forces
 - 1- Heat

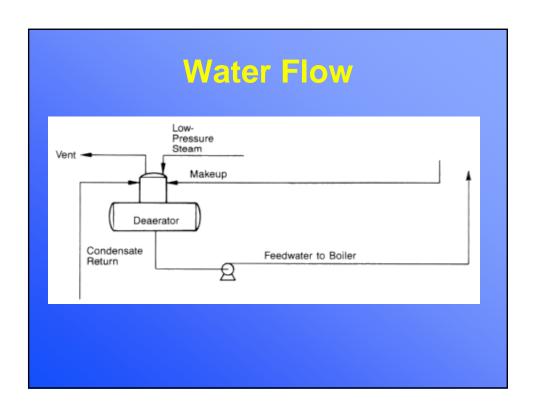

(Low Pressure Steam, Condensate)

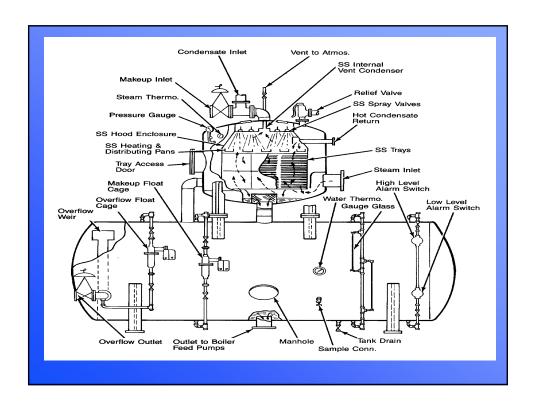

2- Surface Area

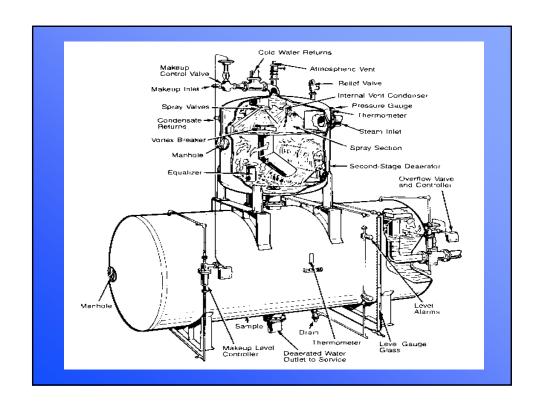
(Nozzles, Trays)

3- Pressure

(Vent)




The Corrosion Process


- Anode: $Fe^{0} ---> Fe^{+2} + 2e^{--}$
- Cathode: $2e^{-} + H_20 + \frac{1}{2}0_2 --> 2OH^{-}$

Piking

DA Problems

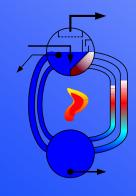
- Inadequate Venting
- Inadequate Steam Flow, Steam Pressure, or Condensate
- Flows Outside of Design Specifications
- Broken, Plugged or Missing Nozzles
- Broken, Plugged or Missing Trays
- Broken or Missing Baffles

Operational Impacts

- Corrosion Potential
- Fe in the Boiler
- Higher Oxygen Scavenger Usage
 - Increased Boiler Conductivity, Lower Cycles
 Reduced Boiler Efficiency
 - Greater Chemical Costs
- Reduced DA Life

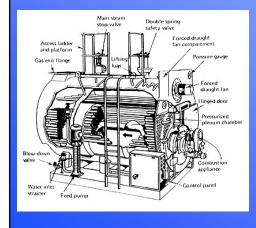
Monitoring

- Flow
- Temperature
- Pressure
- Scavenger Usage
- Venting
- Inspections

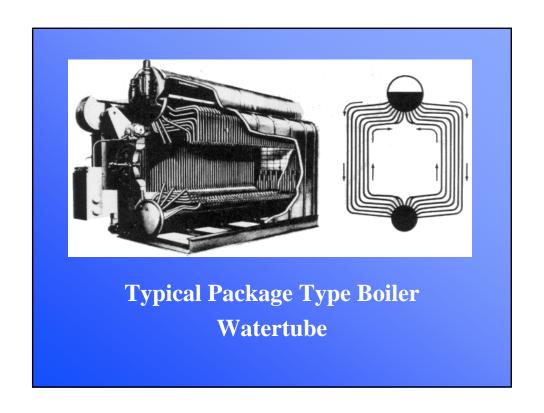

Highlights

- Maintain 4" Clearness on Vent
- Change Nozzles Whether They Need It or Not
- Maintain Dome and Storage Within 5°F
- Maintain Temperature/Pressure Within
 5°F of Saturated Steam
- Monitor Scavenger Usage
- Clean Trays Annually & Maintain Equipment

Boiler


- Boiler Systems:
 - Boiler Basics
 - ASME Guidelines: Water
 - Chemical Treatment Options
 - Inspection: What you find tells the story
 - Steam line treatment

Boiler Types



- Firetube
- Watertube
- Electric
- Once Through
- Nuclear Reactor

Boiler Fuels

- Wood
- Coal
- Natural Gas
- Waste Heat
 - Furnace Off Gases
 - Incinerators
 - Etc.
- Nuclear

FIRE TUBE BOILER

ASME Guidelines Industrial Fire tube boilers up to 300psi

Drum Operating Pressure (psig)	0-300		
Feedwater:			
Dissolved Oxygen before scavenger feed (mg/l O)	<0.04		
Dissolved Oxygen after scavenger feed	<0.007		
Total iron (mg/l Fe)	<0.1		
Total copper (mg/l Cu)	<0.05		
Total hardness (mg/l CaCO ₃)	<1.0		
Ph range @ 25°F	7.0-10.5		
Nonvolatile TOC (mg/l C)	<10		
Oily matter (mg/l)	<1		
Boiller Water			
Silica (mg/l SiO ₂)	<150		
Total Alkalinity (mg/l CaCO ₃)	<700		
Free Hydroxide alkalinity (mg/l CaCO ₃)	Not specified		
Unneutralized conductivity (μmho/cm @ 25°F)	<7000		

ASME Guidelines Industrial Watertube Boilers up to 900psi with superheaters & turbine drives

	<300psi	<450psi	<600psi	<750psi	<900psi
Dissolved Oxygen (1)	<7ppb	<7ppb	<7ppb	<7ppb	<7ppb
Total Iron	<.1ppm	<.05ppm	<.03ppm	<.025ppm	<.02ppm
Total Copper	<.05ppm	<.025ppm	<.02ppm	<.02ppm	<.015ppm
Total Hardness	<.3ppm	<.3ppm	<.2ppm	<.2ppm	<.1ppm

Recommended Feedwater Quality

(1) Before Chemical Oxygen Scavenger

ASME Guidelines Industrial Watertube Boilers up to 900psi with superheaters & turbine drives

	<300psi	<450psi	<600psi	<750psi	<900psi
Silica	<150ppm	<90ppm	<40ppm	<30ppm	<20ppm
Total Alkalinity (1)	<350ppm	<300ppm	<250ppm	<200ppm	<150ppm
Conductivity (2)	<5400uM	<4600uM	<3800uM	<1500uM	<1200uM

Recommended Boiler Water Quality

Drum	Boiler water	Boiler water	Boiler water	Steam p
Pressure	TDS	total alkalinity	total	range (p
(psig)	(ppm TDS)	(ppm as	suspended	TDS
		CaCO ₃)	solids	
2.222		4.40 =00	(ppm TSS)	0.0.4.0
0-300	700-3500	140-700	15	0.2-1.0
301-450	600-3000	120-600	10	0.2-1.0
451-600	500-2500	100-500	8	0.2-1.0
601-750	200-1000	40-200	3	0.1-0.5
751-900	150-750	30-150	2	0.1-0.5
901-1000	125-625	25-125	1	0.1-0.5
1001-1800	100	Dependent	1	0.1
		on type of		
		boiler water		
		chemical		
		treatment		
1801-2350	50	program	None	0.1
1601-2350	50		detected	0.1
			aciecieu	
2351-2600	25			0.05
2601-2900	15			0.05

Types of Programs

- Phosphate
- Phosphate/Polymer
- Chelant/Polymer
- Phosphate/Chelant/Polymer
- All Polymer
- Coordinated pH/Phosphate/Polymer

Phosphate Polymer

Boiler Water Polymers are Crucial to the Success of any Internal Treatment Programs

Phosphate Treatment Alone Not Optimal

In a phosphate precipitation treatment program, the magnesium portion of the hardness contamination is precipitated preferentially as magnesium silicate. If silica is not present, the magnesium will precipitate as magnesium hydroxide. If insufficient boiler water alkalinity is being maintained, magnesium can combine with phosphate.

Magnesium phosphate has a surface charge that can cause it to adhere to tube surfaces and then collect other solids. For this reason, alkalinity is an important part of a phosphate precipitation program.

Phosphate/Polymer Treatment Characteristics

- Hardness controlled by precipitation
- Polymers used to control hardness sludge and metal oxides
- Phosphate residual used for program control
- Hydroxide alkalinity required (pH: 10.5-12)

Boiler Water Polymers

The mechanisms by which boiler water polymers function are

- Complexation / Solubilisation
- Crystal modification
- Dispersion

Calcium
phosphate,
magnesium
silicate
crystals formed
in
boiler water
without
Dispersant
polymer

Calcium
phosphate,
magnesium
silicate
crystals
formed in
boiler water in
the presence of
a sulphonated
polymer

Program Selection Considerations

- Boiler pressure, design
- Pre-treatment plant type
- Feedwater quality
- Hot well, deaerator type
- Steam turbine
- Control capabilities

Phosphate/Polymer Treatment Boiler Control Parameters

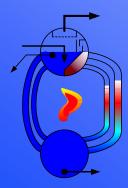
- Phosphate residual as PO4 depending on hardness in the feedwater
- usually associated with boiler pressure
- M alkalinity of 700 ppm as CaCO3
- Polymer : min 15 ppm as polymer
- Still the most used method for treating low pressure boilers

Phosphate/Polymer

Advantages

- Tolerates a wide range of Feed water hardness
- Non corrosive treatment
- Suitable for low to medium pressure systems
- Easy operator control

Disadvantages


- Is a precipitation program (some deposition is normal)
- Higher blow down rates may be required

Chelant Programs

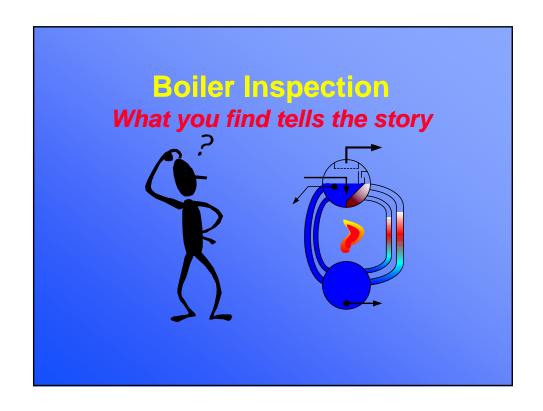
- Require <1ppm BFW Hardness
- Good up to 1000psi
- Clean Program non precipitating
- Reduced blowdown required
- Chelant corrosion from chemical over-feed

Upset Conditions What to expect from high BFW hardness

- Chelant Programs
 - Hard scale:
 - Calcium Carbonate

Chelant/Phosphate/Polymer Treatment

Advantages


- Primarily a solubilising treatment
- Effective on hardness and iron
- May allow reduced blowdown
- Increased reliability and efficiency
- Easy and accurate control test
- Tolerates a wide range of feedwater hardness
- Suitable for low to medium pressure systems

Disadvantages

- Some precipitation is possible
- Potentially corrosive if misapplied
- Competing ION

All Polymer Treatment

- Certain polymers can be effective complexing agents
- Principle mechanism is complexation of soluble impurities
- Secondary mechanism is dispersion of particulates
- Fed to the boiler feed water

Boiler Scale

What Causes Boiler Scale?

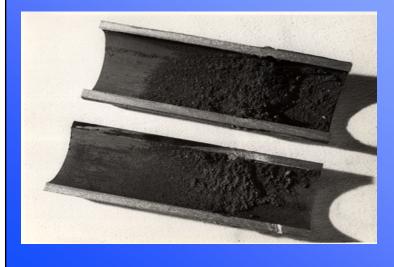

Looking inside the drums

- Steam drum water line
 - Erratic indicates high riser velocity \ fireside problem
 - Incorrect height inhibits circulation \ control problem
- Scale appearance
 - Uniform and smooth coating is new, patchiness is old
 - Stratified \ intermittent BFW hardness problem
 - Non-stratified \ continuous BFW hardness problem
- Amount of tube scaling
 - Wide transition zone indicates circulation problem
 - Riser deposition can indicate to much heat

What Causes Boiler Scale?

Looking inside the firebox

- Firebox flame pattern
 - Heavy impingement inhibits circulation \ firing problem
- Fireside tube slagging
 - Slagging reduces heat transfer and inhibits circulation
- Missing Refractory
 - Can change heat zones and cause circulation problems



A 0.024 inch thick scale on a tube wall increases the input heat required to produce the required steam by 362F!

Even small amounts of scale are very insulating!

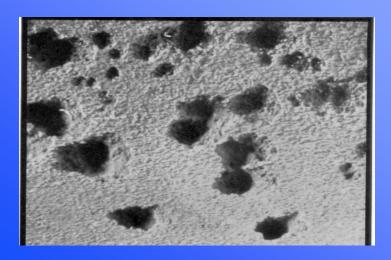
This also increases your fuel cost!

Boiler Deposits

What Causes Boiler Deposit?

- Poor quality boiler feedwater makeup
- Pretreatment system corrosion
- Pretreatment system solids passage
- Condensate system corrosion
- Internal boiler corrosion
- Steam blanketing
- Improper internal treatment control
- Improper Blowdown

Common Deposits in Boilers


Type:

Typically Caused By:

- Silica
- Alumina
- Iron Oxide
- Copper
- High Solids

- Steam blanketing \ Low OH \ High BFW Silica
- Steam blanketing \ BFW Alumina
- BFW iron \ Condensate Corrosion \ Preboiler corrosion
- BFW copper \ Condensate Corrosion \ **Preboiler corrosion**
- Sodium Salts
 Evaporation to dryness
 - Improper control of TDS

Boiler Corrosion

Corrosion Types in Boilers

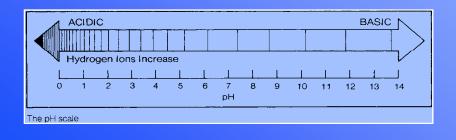
Type:

- Oxygen attack
- Alkalinity concentration
- Acid attack
- attack
- Ammonia attack

Typically Caused By:

- BFW Oxygen
- Concentration of caustic under deposits
- Acid leaks into BFW or condensate
- Chelant \ Polymer Excessive chemical concentration
 - High ammonia returned in condensate or from BFW

Neutralizing Amines


- Neutralize carbonic acid
- Do not protect against oxygen corrosion
- Maintain condensate pH 8.5-9.0
- Add in direct proportion to amount of CO₂ in steam
- Most products are blends of two or more neutralizing amines
- Important operational considerations are volatility, acid neutralization ability, and basicity

Neutralizing Amines

Basicity - a measure of amine's ability to raise pH in condensate

Enough amine must be added to neutralize all carbonic acid

Additional amine then added to maintain pH

Steam Line Treatment

The four most common neutralizing amines (or amine blends) are ammonia, AMP, cyclohexylamine, diethylaminoethanol, and morpholine. Neutralizing amines are fed to maintain a pH of 8.2 to 8.6; however, in difficult to control systems a wider pH value of 7.6 to 8.6 may have to be used.

Ammonia

Ammonia is used in steam lines where the steam contains a large amount of carbon dioxide or where there is an appreciable amount of steam loss from the condensate system. The advantage of ammonia is that the relative cost is less than other amines. The disadvantage is that it cannot be used in systems containing copper or nickel.

Cyclohexylamine

Cyclohexylamine has been used primarily for low pressure systems (50 down to 5 psi) and also for systems with long condensate runs. This amine has a lower solubility ratio and may cause plugging in the steam line.

Diethylaminoethanoi

Diethylaminoethanol also called DEAE is versatile in that the distribution ratio is between that of cyclohexylamine and morpholine making it a very good medium run amine, effective in many industrial condensate systems. The disadvantage is that DEAE is not very effective in low pressure systems.

Morpholine

Morpholine has a low distribution ratio and is commonly blended with other amines. The short distribution ratio makes morpholine effective on short run systems and also for the protection of steam turbines.

Blow down controllers are used to manage total dissolved solids during load swings and can be useful in Kiln Dry Operations

Clarity Water Technologies, LLC P.O. Box 1229 Twnsp of Washington, NJ 07676

Thomas Hageman Partner/Dir of Product Development Durgin Rd Chichester, NH 03258 603-568-5653

