

Boiler Water Treatment

08 December, 2015

Vinod Desai
Thermax - Chemical Division

Contents

- ✓ Water Chemistry w.r.t. Boiler
- ✓ Problems associated w.r.t. Water chemistry
- ✓ Objective and importance of boiler water treatment
- ✓ Various programs in boiler water treatment
- ✓ Dosing of chemicals and monitoring

Water Chemistry

IMPURITY

GASEOUS

PROBLEM CAUSED

Dissolved Oxygen

Pitting Corrosion

Carbon Dioxide

Condensate Corrosion

IMPURITY

SOLUBLE/IONIC

Calcium/Magnesium

Sodium/Potassium

Chloride/Sulfate

Carbonates/Bicarbonates

Hydroxides

Silica

PROBLEM CAUSED

Scaling

Corrosion

Corrosion

Scaling/Foaming

Scaling/Foaming

Scaling/Deposition

IMPURITY

INSOLUBLE/NONIONIC

PROBLEM CAUSED

Suspended Solids/Silt

Fouling

OTHERS

Oil/Organics

Foaming / carryover

Water- impurities related problems in Boiler

SCALING

Location - Boiler water tubes

INADEQUATE MAKE UP WATER QUALITY

SCALING

SCALE FORMING IONS Ca ++,Mg ++,CO3--,HCO3 --,SiO3

$$Ca + 2 HCO3 \rightarrow CaCO3 + H2O + CO2$$

$$Ca + SO4 \rightarrow Ca SO4$$

$$Mg + SiO3 \rightarrow MgSiO3$$

- OVER HEATING OF TUBES
- REDUCTION OF HEAT TRANSFER
- CALLS FOR SHUT DOWN
- RESTRICTION OF WATER FLOW

CONTAMINATED CONDENSATE LEAKAGE
OF TURBINE CONDENSORS/ PROCESS LEAKS

CORROSION

LOW pH
DISSOLVED OXYGEN

METAL LOSS, PITTING
LOSS OF PROTECTECTIVE OXIDE FILM
(DESIRED PROTECTECTIVE FILM IN BOILER
IS MAGNETIC IRON OXIDE, Fe3O4. OXYGEN
DESTRUCTS THE PROTECTIVE OXIDE FILM)
Fe3O4 + O2 --> 6 Fe 2O3

Oxygen pitting of a boller feedwater pipe.

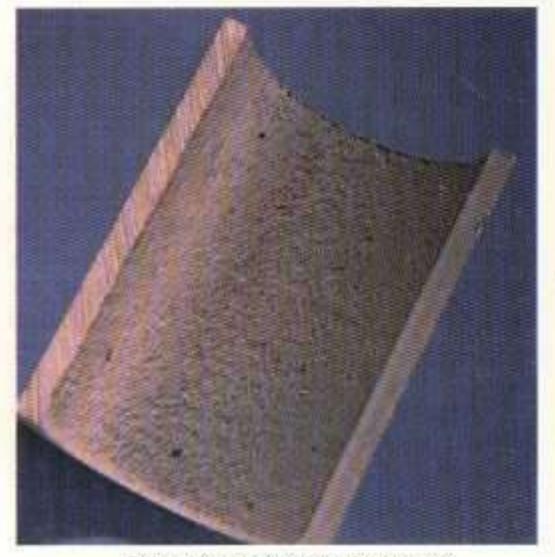
Economizer tube severely damaged

by oxygen.

CORROSION

HIGH CAUSTIC ALKALINITY

CAUSTIC CORROSION / EMBRITTLEMENT
Fe3O4 + 4NaOH = 2 NaFeO2 + Na2FeO2 + H2O
(Sodium ferroate)
Fe + NaOH = Na2FeO2(Sodium Ferrite) + H2



CORROSION

CARBONDIOXIDE

CONDENSATE CORROSION
BICARBONATES + HEAT \rightarrow CO2
CO2 + H2O \rightarrow H2CO3 (CARBONIC ACID)
Fe + H2CO3 \rightarrow Fe (CO3)2

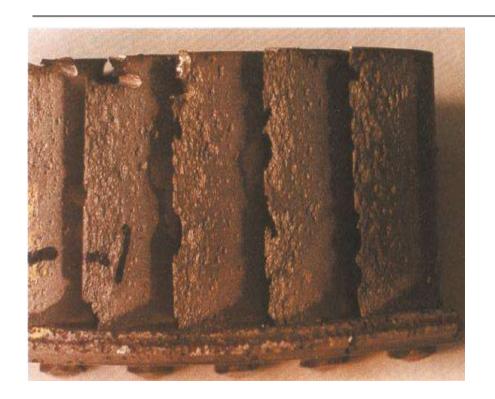
Boller tube shows effect of acid attack.

MECHANICAL

- HIGH WATER LEVEL
- INCOMPLETE SEPARATION
- OF STEAM& WATER
- HIGH STEAMING RATE
- BOILER DESIGN
- UNEVEN FIRE DISTRIBUTION
- LOAD FLUCTUATIONS

CARRYOVER

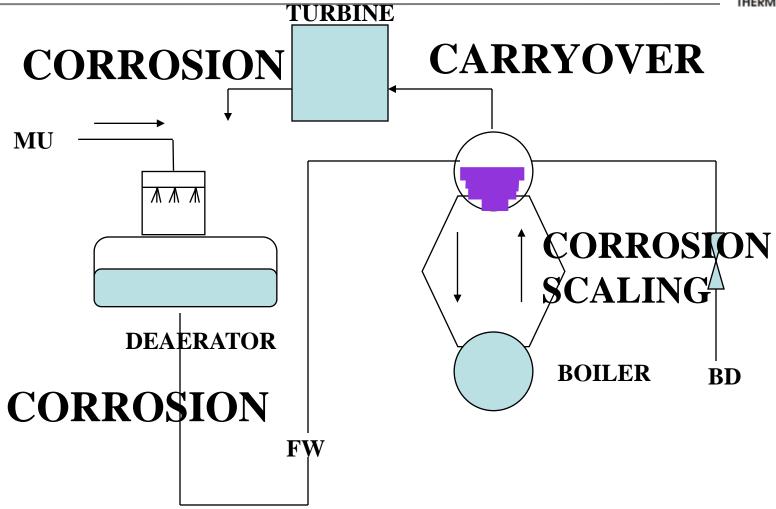
EFFECT


- AFTER BOILER DEPOSITS
- PLUGGED VALVES AND TRAPS
- DEPOSITION ON TURBINE BLADES

CHEMICAL

- HIGH TDS (TOTAL DISSOLVED SOLIDS)
- HIGH ALKALINITY
- LEAKAGE OF OIL / ORGANICS

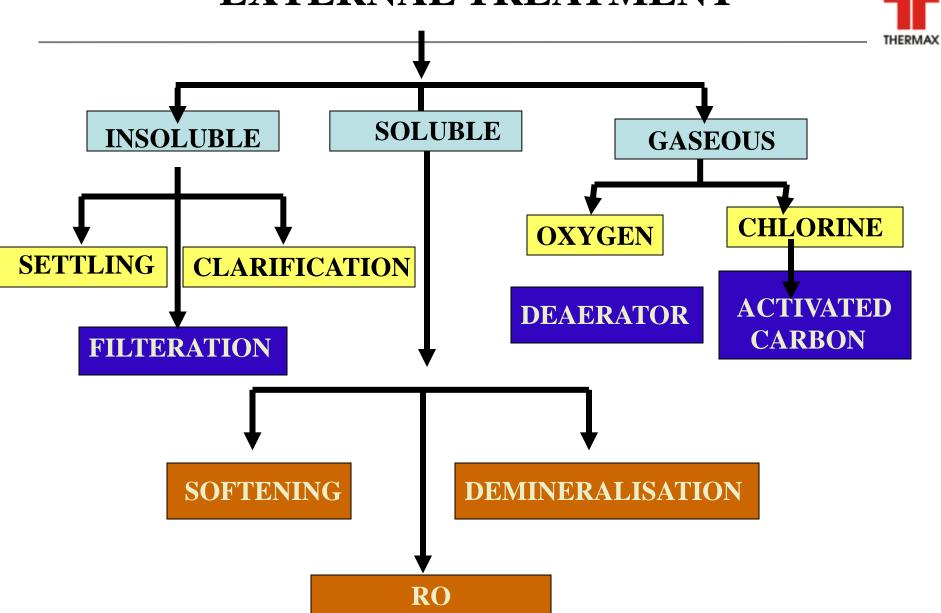
TURBINE DEPOSITS



Corroded blades

Deposits on turbine before cleaning

WATERSIDE PROBLEMS IN BOILER SYSTEM



Types of boiler feed water treatment

External treatment

Internal treatment

EXTERNAL TREATMENT

INTERNAL TREATMENT - OBJECTIVE

Malfunctioning In External Treatment

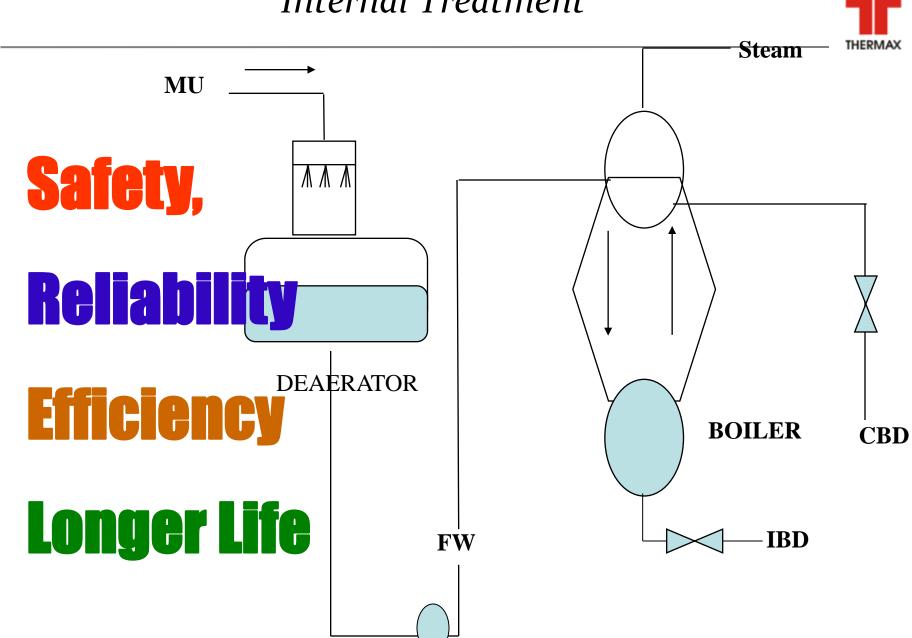
- RO/FILTERS/DM PLANT/DEAERATOR
- Change in Inlet Water Quality
- Increase in Inlet Water Quantity
- Decrease in Resin Exchange Capacity
- Improper Regeneration of Resin

Internal Treatment - Need

External treatment is supported with internal treatment

To take care during upsets in water quality

To maintain the BFW/BW & Steam quality as per specified norms.


INTERNAL TREATMENT- INSURANCE

- TO MINIMISE REPLACEMENT COST

 Very low compare to replacement cost of equipment
- TO AVOID POOR HEAT TRANSFER DUE TO SCALING ISSUES
 Increases Fuel Consumption / Cost of Steam
- TO AVOID PRODUCTION LOSS

Internal Treatment

THERMAX LIMITED

Internal Treatment - Various Programs

Phosphate Hydroxide Program

Polyphosphate-Polymer Based

Coordinated Phosphate control

Oxygen scavengers

Neutralizing amines

All volatile treatment

Oxygen Scavenger

Features of oxygen scavenger

Oxygen scavenging

Metal Passivator

Volatile compound

Organic Treatment

Blend of Neutralizing Amines

Different types of Amines

- Morpholine
- Cyclohexylamine
- Diethyl-aminoethanol (DEAE)
- Methoxypropylamine
- Amino Butanol
- Dimethyl amino ethanol (DMAE)

Function of Neutralizing Amines

- to maintain the pH of the feed water
- to maintain the pH of condensate water'

Ensuring corrosion protection of pre (feed water section) and post boiler (condensate water system)

While selecting any neutralizing amine program, three factors are to be considered.

- **Distribution ratio-** It indicates how much of the amine will go with the steam and how much remains in the condensate.
- Basicity- It indicates the capacity of the amine to neutralize the acidity
- Thermal Stability- Is a measure of ability of the amine to be used in modern high temperature and pressure boilers without degradation.

Usually a blend of 2 or 3 different types of amines are used to provide protection to entire condensate system.

Standard boiler water treatment

Combination of

 Tri Sodium Phosphate + Di Sodium Phosphate

Oxygen scavenger

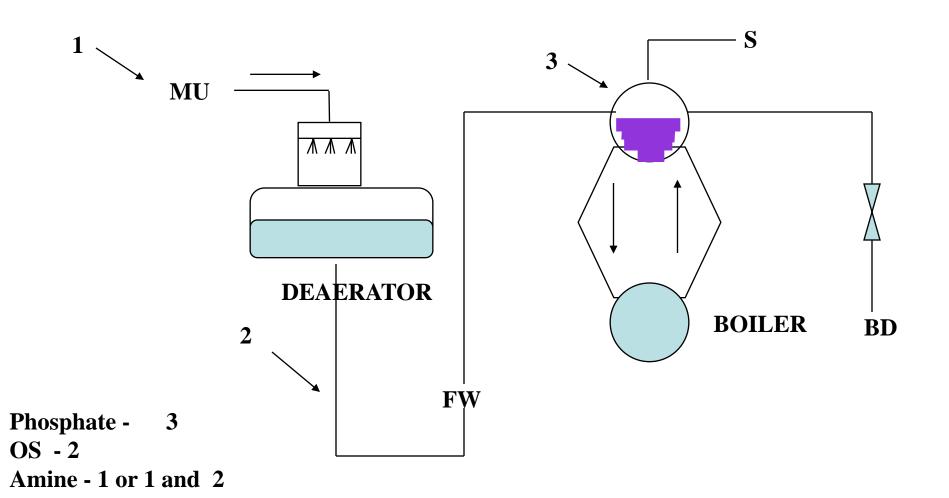
Neutralizing amine

DOSAGE

OXYGEN SCAVENGER

Based on Feed water temperature

SCALE / CORROSION INHIBITOR


 Based on PO4 residual to be maintained in boiler/ on blowdown

NEUTRALIZING AMINE

 Based on pH of BFW/BW/Condensate water

Boiler Treatment recommended Chemical Feed Points

ALL VOLATILE TREATMENT

FUNCTION OF AVT

Filming amine

Dispersing amine

Neutralization amine

PROTECTIVE FILM BARRIER

THERMAX LIMITED

NEUTRALIZING REACTION

BENEFITS OF AVT

- Forms Protective Film preventing O₂ pitting
- Neutralizes CO₂ completely
 & prevents carbonic acid
 Corrosion
- Disperses loose corrosion deposits

- Can be dosed through LP dosing section
- Ease in monitoring less parameters
- Liquid formulation ease of handling
 Elimination of Phosphate

BETTER

EASIER

LIMITATIONS OF AVT

- Primarily used in Power boilers where make water is 99% steam condensate (Pure water)
- High purity Feed water is mandatory MB-DM Make up and non-contaminated condensate
- Increases load on CPU and reduces life of Resin
- Excess level of Ammonia accelerate Copper corrosion
- Low boiler water pH (8.4 to 8.8) chances of Silica carry over to turbine
- No protection from Chloride attack as no buffer alkalinity is available
- Non –acceptance of pH range of 8.4 to 8.8 by boiler manufacturer
- No authenticated recommendation by boiler manufacturers, Boiler Regulatory Authorities.

Dosing Procedure

- All the chemicals are to be dosed on continuous basis (24 hrs) with the dilution in water.
- Recommended 10 % dilution. However, it can vary according to dosing system capacity
- All the dosages are based on feed water quantity

Qty required in kg /day = Dose in ppm X FW quantity in MT X 24

Blow-down

- CBD (Continuos blowdown)
- To remove concentrated water continuously
- Located in the area of highest boiler water concentration Preferred way of blowdown as minimal loss of water and heat recovery of heat content by use of blowdown flash tank
- IBD(Intermittent blowdown)
- To remove sludge from the boiler
- Located in the bottom part of lowest boiler drum

One has to select the appropriate chemicals from mentioned list to use it as program

The selection of the program would be based on

- Boiler pressure
- Application of the steam
- Feed water pre-treatment
- Feed water quality
- Boiler operating conditions (like feed water temperature, % blow down, etc.)
- Customer requirement

Monitoring

Monitoring of the treatment consists of

- Drawing and analyzing all the water samples including condensate water for defined parameters at decided interval on continuous basis
- Based on the analysis, take necessary actions to maintain the desired water parameters in defined limits
- Record the analysis and actions taken
- In case of upset in the treatment, frequency of analysis to be increased till system comes to normal

WATER ANALYSIS

- Correct frequency of water analysis
- Follow standard analytical procedures
- Calibration of instruments
- Correct sample analysis
- Accurate water analysis
- Corrective steps incase of upset

Parameters to be analyzed

- •pH
- Conductivity/TDS
- Phosphate
- •Sulfite/Hydrazine
- •Silica
- Alkalinity
- Chloride
- Iron
- •Residual Amine (incase of AVT)

Preservation

- Wet preservation (Boiler under shut for approx. less than month)
- By maintaining Sodium Sulfite @ 200 ppm in water and pH 10.5 in case of low pressure boiler
- By maintaining Hydrazine @ 200 ppm in water and pH 10.5 in case of high pressure boiler

Dry preservation

After complete drying either of the following desiccants to be used

- Quicklime @ 6 lb / 100 ft3 of boiler volume
- Silica gel @ 17 lb / 100 ft3 of boiler volume
- Activated alumina @ 27 lb / 100 ft3 of boiler volume

