

Lecture 5: River Water Quality

(Jan 16th, 2015)

by Dr. Arun Kumar (arunku@civil.iitd.ac.in)

Objective: To introduce river water quality concepts and fundamentals

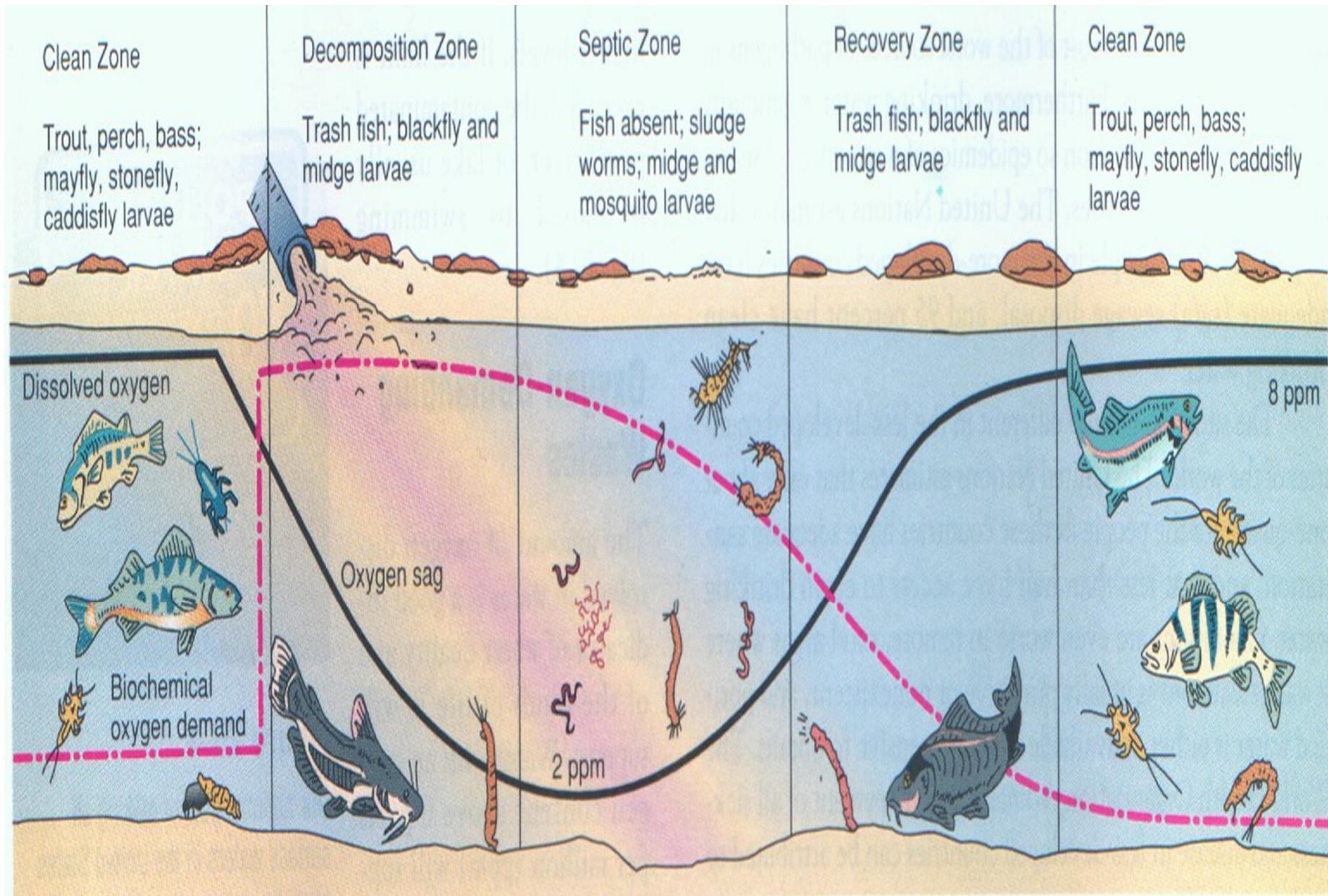
Previous class

- Discussion on parameters
 - Pathogens
 - Inorganic ions
 - Heavy metals
 - Organic compounds
 - Suspended solids
 - Excess nutrients

Implications of wastewater discharge on river water quality

- What happens when wastewater is discharged in river?
- Which parameter to study first?
- How to track trend of important parameter with time and distance along the movement of river?
- What other parameters to measure?

Dissolved oxygen (DO)


- Important for aquatic species-need some minimum level of DO
- Important for aquatic plants
- Lack of DO can result in development of anaerobic conditions which can be result in anaerobic breakdown; generation of methane and carbon dioxide

Dissolved oxygen (DO)

- What are factors that affect the amount of dissolved oxygen concentration in a river?
- What is the approximate dissolved oxygen concentration in a healthy natural water body?
- Which are the steps in developing a DO sag curve?
- How is the lowest DO concentration point in the sag curve called?
- If there was no change in the waste addition in a stream throughout the year, will the DO be higher in winter or summer?

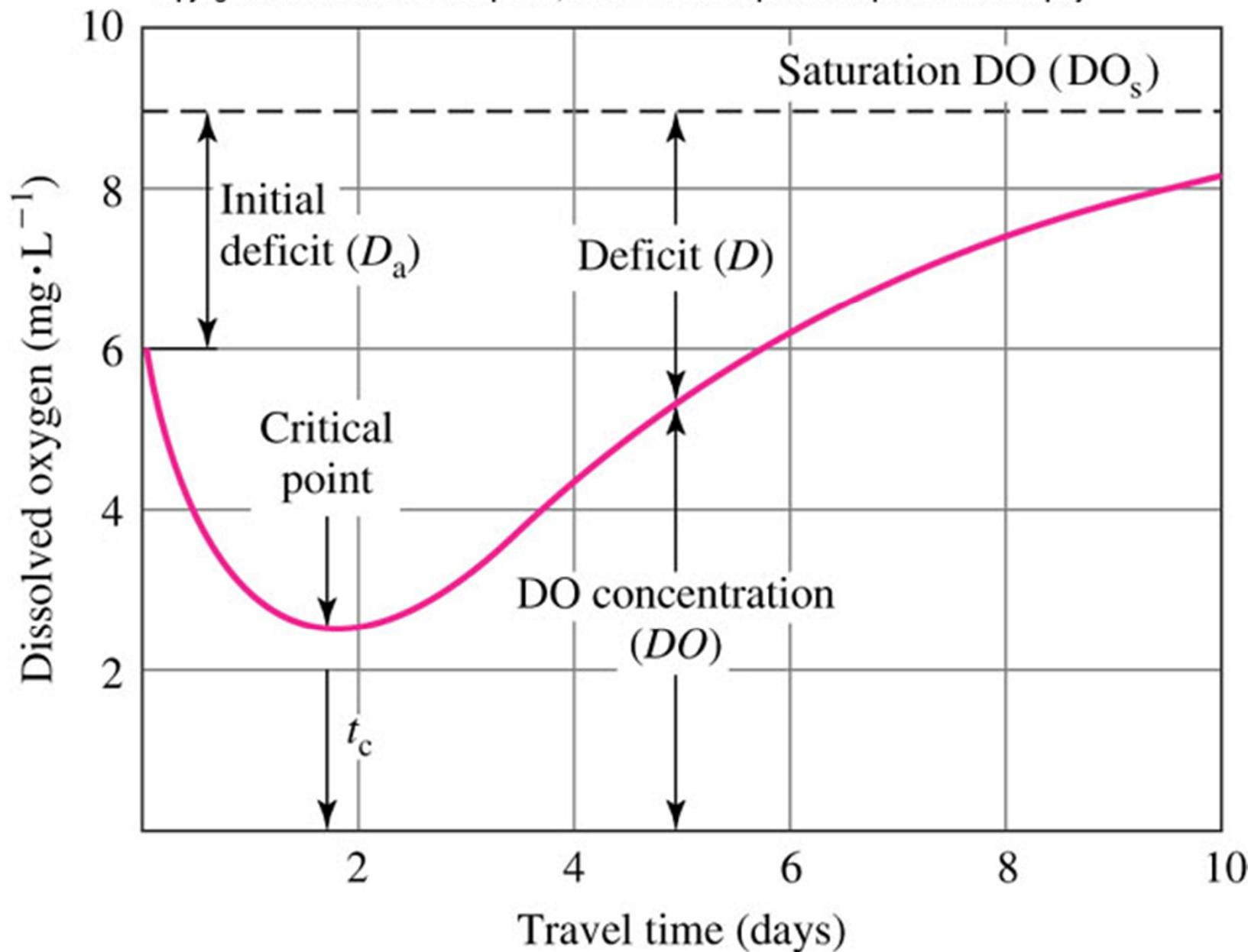
Effect of Oxygen Demanding Wastes on Rivers

- Amount of **dissolved oxygen (DO)** in water is the most commonly used indicator of a river's health.
- The solubility of oxygen depends on temperature, pressure, and salinity and the dissolved oxygen concentration in a healthy stream ranges from **7-9 mg/L**.
- As DO drops below **4 or 5 mg/L** the forms of life that can survive begin to be reduced.
- In an extreme case, when anaerobic conditions exist, most higher forms of life are killed.

(Source: *Environmental Science: A Global Concern*, 3rd ed. by W.P Cunningham and B.W. Saigo, WC Brown Publishers, © 1995)

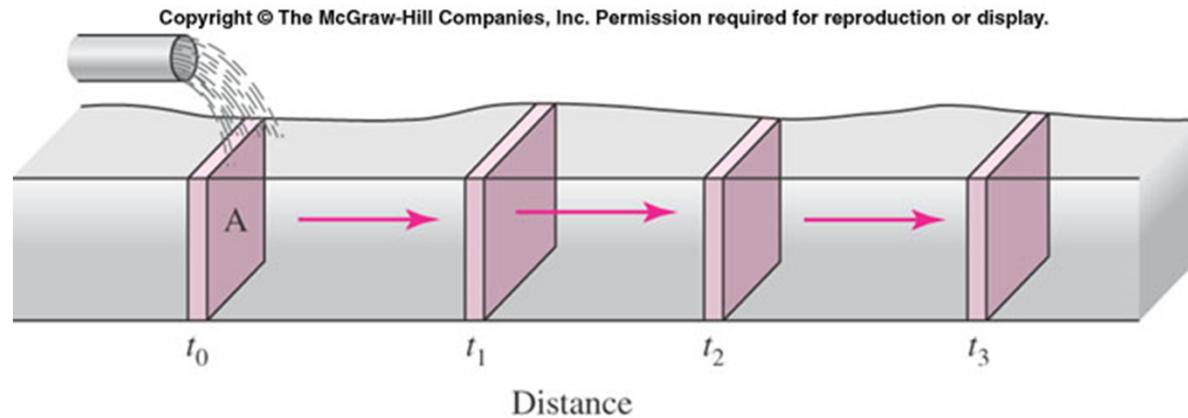
Dissolved Oxygen Depletion

Factors Affecting Amount of DO Available in Rivers


- Oxygen demanding wastes affect available DO
- Tributaries bring their own oxygen supply
- Photosynthesis adds DO during the day but the same plants remove oxygen at night
- Respiration of organisms living in water as well as in sediments remove oxygen
- In the summer rising temperatures reduce solubility of oxygen
- In the winter oxygen solubility increases, but ice may form blocking access to new atmospheric oxygen

Modeling DO in a River

- To model all the effects and their interaction is a difficult task
- The simplest model focuses on two processes:
 - The removal of oxygen by microorganisms during biodegradation (de-oxygenation)
 - The replenishment of oxygen at the interface between the river and the atmosphere (re-aeration)


Dissolved Oxygen Sag Curve

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

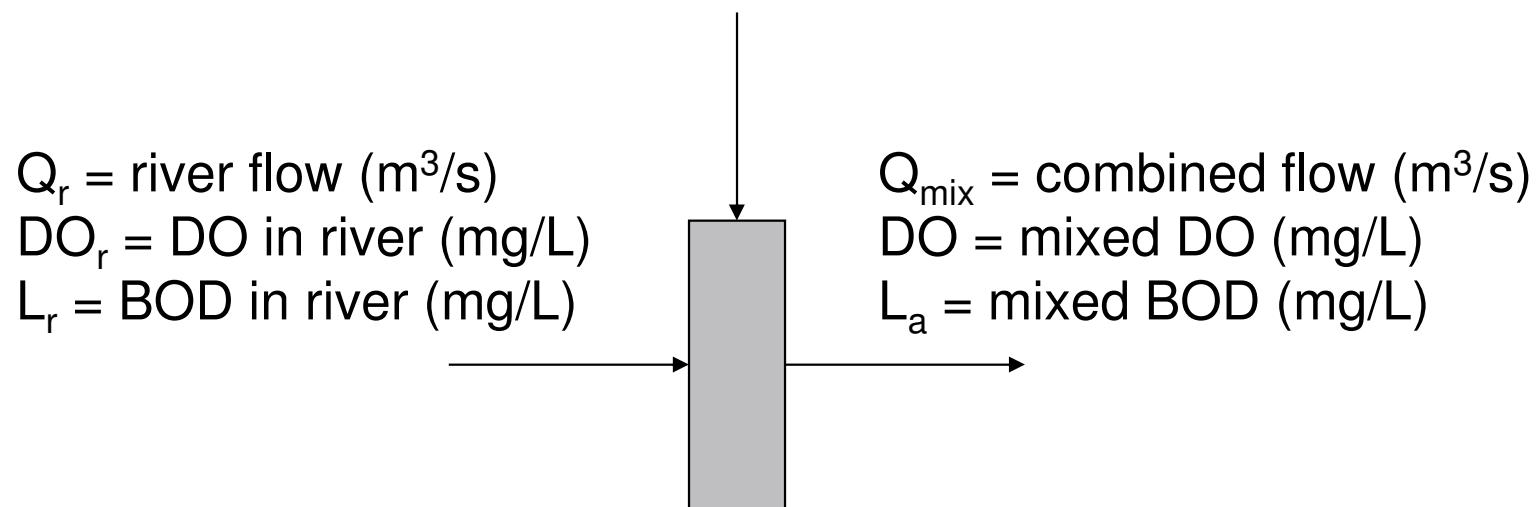
Mass Balance Approach

- River described as “plug-flow reactor”

- Mass balance
- Oxygen is depleted by BOD exertion (de-oxygenation)
- Oxygen is gained through re-aeration

Steps in Developing the DO Sag Curve

1. Determine the **initial conditions**
2. Determine the **de-oxygenation rate** from BOD test and stream geometry
3. Determine the **re-aeration rate** from stream geometry
4. Calculate the **DO deficit** as a function of time
5. Calculate the **time and deficit at the critical point** (worst conditions)


1. Determine Initial Conditions

Mass Balance for Initial Mixing

Q_w = waste flow (m^3/s)

DO_w = DO in waste (mg/L)

L_w = BOD in waste (mg/L)

1. Determine Initial Conditions

→ a. Initial dissolved oxygen concentration:

$$DO = \frac{Q_w DO_w + Q_r DO_r}{Q_w + Q_r}$$

→ b. Initial DO deficit:

$$D_a = DO_s - DO$$

where:

D_a =initial DO deficit (mg/L)

DO_s =saturation DO conc.(mg/L)

1. Determine Initial Conditions

Therefore, the initial deficit after mixing is

$$D_a = DO_s - \frac{Q_w DO_w + Q_r DO_r}{Q_{mix}}$$

where D_a is the initial deficit (mg/L)

Note: DO_s is a function of temperature, atmospheric pressure, and salinity. Values of DO_s are found in tables.

1. Determine Initial Conditions

Solubility of Oxygen in Water (DO_s = DO_{saturation})

DO_s is a function of temperature, atmospheric pressure and salinity

Temperature (°C)	Chloride concentration in water (mg/L)			
	0	5000	10,000	15,000
0	14.62	13.73	12.89	12.10
5	12.77	12.02	11.32	10.66
10	11.29	10.66	10.06	9.49
15	10.08	9.54	9.03	8.54
20	9.09	8.62	8.17	7.75
25	8.26	7.85	7.46	7.08
30	7.56	7.19	6.85	6.51

Source: Thomann and Mueller (1987).

1. Determine Initial Conditions

→ c. Initial ultimate BOD concentration:

If, the BOD data for the waste or river are in terms of BOD_5 , calculate L for each

$$L = \frac{BOD_t}{1 - e^{-kt}}$$

Therefore, initial *ultimate* BOD concentration

$$L_a = \frac{Q_w L_w + Q_r L_r}{Q_w + Q_r}$$

2. Determine de-oxygenation rate

2. Determine De-oxygenation Rate

$$\text{rate of de-oxygenation} = k_d L_t$$

where: k_d = de-oxygenation rate coefficient (day⁻¹)

L_t = ultimate BOD remaining at time (of travel down-stream) t

If k_d (stream) = k (BOD test) and $L_t = L_0 e^{-k_d t}$

$$\text{rate of de-oxygenation} = k_d L_0 e^{-k_d t}$$

3. Determine re-aeration rate

3. Determine Re-aeration Rate

$$\text{rate of re-aeration} = k_r D$$

k_r = re-aeration constant (time $^{-1}$)

D = dissolved oxygen deficit ($DO_s - DO$)

DO_s = saturated value of oxygen

DO = actual dissolved oxygen at a given location downstream

3. Determine re-aeration rate

- O'Connor-Dobbins correlation:

$$k_r = \frac{3.9u^{1/2}}{h^{3/2}}$$

where k_r = re-aeration coefficient @ 20°C (day⁻¹)

u = average stream velocity (m/s)

h = average stream depth (m)

- Correct rate coefficient for stream temperature

$$k_r = k_{r,20} \Theta^{T-20}$$

where $\Theta = 1.024$

4. Calculate DO deficit as a function of time

4. DO as function of time (Streeter-Phelps equation or oxygen sag curve)

- Rate of increase of DO deficit = rate of deoxygenation – rate of reaeration

$$\frac{dD}{dt} = k_d L_t - k_r D$$

- Solution is:

$$D_t = \frac{k_d L_o}{k_r - k_d} \left(e^{-k_d t} - e^{-k_r t} \right) + D_a \left(e^{-k_r t} \right)$$

4. Calculate critical time and DO

5. Calculate Critical time and DO

Critical Point = point where steam conditions are at their worst

$$t_c = \frac{1}{k_r - k_d} \ln \left[\frac{k_r}{k_d} \left(1 - D_a \frac{k_r - k_d}{k_d L_a} \right) \right]$$

$$D_c = \frac{k_d L_a}{k_r - k_a} \left(e^{-k_d t_c} - e^{-k_r t_c} \right) + D_a e^{-k_r t_c}$$

D = dissolved oxygen deficit

Example 1

Q2. Problem # 3-19 (Peavy et al. Text Book). A wastewater treatment plant disposes of its effluent in a surface stream. Characteristics of the stream and effluent are shown below. [5+5+5 points]

Parameter	wastewater	stream
flow (m^3/s)	0.2	5
Dissolved oxygen, mg/L	1	8
Temperature, $^{\circ}\text{C}$	15	20.2
BOD_5 at 20°C , mg/L	100	2
Oxygen consumption rate (K_1 at 20°C) (1/day)	0.2	-
Oxygen reaeration rate (K_2 at 20°C) (1/day)	-	0.3

- What will be the dissolved oxygen conc. in the stream after 2 days?
- What will be the lowest dissolved oxygen concentration as a result of the waste discharge?
- Also calculate the maximum BOD_5 (20°C) that can be discharged if a minimum of 4.0 mg/L of oxygen must be maintained in the stream?

Answer:

Parameter	wastewater (given)	stream (given)	Wastewater and stream water mixture
flow (m ³ /s)	0.2	5	$Q_{\text{mixture}} = 5 + 0.2 = 5.2 \text{ m/s}$
Dissolved oxygen, mg/L	1	8	$DO_{\text{mixture}} = (0.2 * 1 + 8 * 5) / (5 + 0.2) = 7.73 \text{ mg/L}$
Temperature, °C	15	20.2	$Temp_{\text{mixture}} = (0.2 * 15 + 20.2 * 5) / (5 + 0.2) = 20 \text{ deg C}$ (No temp. correction required)
BOD ₅ at 20°C, mg/L	100	2	$BOD_{\text{mixture}} = (0.2 * 100 + 2 * 5) / (5 + 0.2) = 5.77 \text{ mg/L}$
Oxygen consumption rate (K ₁ at °C) (1/day)	0.2		0.23 (No temp. correction required) (assumed for stream water)
Oxygen reaeration rate (K ₂ at °C) (1/day)	-	0.3	0.3 (No temp. correction required)

$$\begin{aligned}\text{Ultimate BOD} &= Y_{\text{ultimate}} = L_0 = (5\text{-day BOD in mixture water}) / [1 - \exp(-K1_{\text{mixture}} * 5)] \\ &= (5.77 \text{ mg/L}) / [1 - \exp(-0.23 * 5)] = 8.44 \text{ mg/L}\end{aligned}$$

Initial DO deficit (D_0)

$$\begin{aligned}\text{For } 20^\circ\text{C stream water temperature, equilibrium concentration of oxygen} &= 9.17 \text{ mg/L} \\ D_0 &= 9.17 \text{ mg/L} - 7.73 \text{ mg/L} = 1.44 \text{ mg/L}\end{aligned}$$

To get DO after 2 days in stream water after mixing, we need to calculate DO deficit after 2 days first and then calculate DO (at 2 days). DO deficit at 2 days is given by

$$\begin{aligned}D(t=2 \text{ days}) &= [K1 * L_0] * [\exp(-K1 * t) - \exp(-K2 * t)] / (K2 - K1) + D_0 \exp(-K2 * t) \\ &= [0.2 * 8.44] * [\exp(-0.2 * 2) - \exp(-0.3 * 2)] / (0.3 - 0.2) + 1.44 \exp(-0.3 * 2) \\ &= [1.94] * [0.6703 - 0.5488] / (0.07) + 0.7903 = 3.07 \text{ mg/L}\end{aligned}$$

$$D(t=2 \text{ days}) = DO_{\text{saturated}} - DO(2 \text{ day}) = 3.07 \text{ mg/L}$$

$$DO(2 \text{ day}) = 9.17 - 3.07 = 6.10 \text{ mg/L} \text{ (answer for part i)}$$

Time for critical DO deficit (t_c)

$$= 1 / (K2 - K1) * \ln [(K2 / K1) * (1 - D_0 * (K2 - K1) / (K1 * L_0))]$$

$$\begin{aligned}&= 1 / (0.3 - 0.23) * \ln [(0.3 / 0.23) * (1 - 1.44 * (0.3 - 0.23) / (0.23 * 8.44))] \\&= 14.29 * \ln [1.3 * (1 - 1.44 * 0.036)] = 14.29 * \ln [1.23] = 2.95 \text{ days}\end{aligned}$$

$$\begin{aligned}\text{Critical DO deficit } (D_c) &= (K1/K2) * L_0 \exp(-K1 * t_c) \\&= (0.23/0.3) * 8.44 \exp(-0.23 * 2.95) = 6.47 * 0.507 = 3.28 \text{ mg/L}\end{aligned}$$

$$D_c = DO_{\text{saturated}} - DO_{\text{critical}} = 3.28 \text{ mg/L} \Rightarrow DO_{\text{critical}} = 9.17 - 3.28 = \mathbf{5.89 \text{ mg/L}} \text{ (answer for part ii)}$$

Required minimum DO = 4.0 mg/L in stream water. As DO at critical location is 5.89 mg/L, greater than the recommended DO level, no modification in wastewater effluent characteristics is required.

To calculate maximum BOD_5 in effluent water, calculate allowable DO deficit (i.e., $D_{allowable}$)
 $= DO_{saturated} - DO_{minimum} = 9.17 - 4.0 = 5.17 \text{ mg/L}$ [Note that 5.17 mg/L DO deficit is allowable and we are having 5.89 mg/L critical DO deficit.]

Now with calculated allowable DO deficit (this is assumed to be the critical deficit now) and calculated $t_{critical}$ (assumed to be similar to previous case, i.e., 2.95 days), calculate ultimate BOD in this case. Then calculate 5-day BOD of the mixture stream water and then calculate 5-day BOD of the effluent which will be the desired maximum 5-day BOD value.

$$\begin{aligned} D_{allowable} (t=t_{critical}) &= D_{critical,new} \\ \Rightarrow 5.17 &= (0.23/0.30) * L_0 [\exp(-0.23 * 2.95)] = 0.77 * 0.51 L_0 = 0.3927 L_0 \\ \Rightarrow \text{Ultimate BOD of the mixture water} &= L_0 = 5.19 \text{ mg/L} / (0.3927) = 13.17 \text{ mg/L} \end{aligned}$$

Now 5-day BOD in mixture water is calculated.

$$5\text{-day BOD}_{\text{mixture}} = L_0 * [1 - \exp(-K1_{\text{mixture}} * 5)] = (13.17 \text{ mg/L}) * [1 - \exp(-0.23 * 5)] = 9.0 \text{ mg/L}$$

5-day BOD in effluent water is calculated now.

$$\text{BOD}_{\text{mixture}} = (5\text{-day BOD}_{\text{eff}} Q_{\text{eff}} + 5\text{-day BOD}_{\text{stream}} Q_{\text{stream}}) / (5 + 0.2)$$

$$9.0 \text{ mg/L} = (5\text{-day BOD}_{\text{eff}} * 0.2 + 2 * 5) / (5 + 0.2)$$

$$5\text{-day BOD}_{\text{eff}} * 0.2 + 10 = 9.0 * 5.2 = 46.8$$

$\Rightarrow 5\text{-day BOD}_{\text{eff}} = (46.8 - 10) / 0.2 = 184 \text{ mg/L}$ (answer for part iii). This is maximum value of 5-day BOD in wastewater effluent which can be discharged in the stream water without exceeding the minimum required DO value of 4 mg/L.