

WATER CHEMISTRY

Prof. Lech Smoczyński

University of Warmia and Mazury

Chemistry Department

Plac Łódzki 4, 10-727 Olsztyn, PL tel. 89-5234801, fax. 89-5234801,

email: lechs@uwm.edu.pl

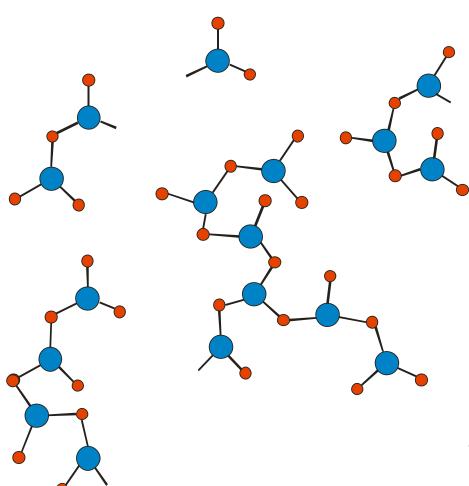
CONTENT*

- 1. Water properties
- 2. Kinetics and mass balance
- 3. Acid, base, and salt pH.
- 4. Solubility
- 5. Basic coordination chemistry
- 6. EDTA and water hardness
- 6. Redox reactions

oxygen (8)

isotopes (15O), 16O, 17O, 18O

electrons: 1s²; 2s² 2p⁴


 θ 95,84·10⁻¹² m

104,45°

water dipole structure*

Association* of H₂O molecules

Chemical Properties of Water (some selected)

- 1. electrolysis: $2H_2O \rightarrow 2H_2 + O_2$
- 2. reaction with Metal Oxides: $CaO + H_2O \rightarrow Ca(OH)_2$
- 3. reaction with Nonmetal Oxides*: $SO_2 + H_2O \rightarrow H_2SO_3$
- 4. reaction with Active Metals: $2Na + H_2O \rightarrow 2NaOH + H_2$
- 5. formation of Hydrates: $BaCl_2 + 2H_2O \leftrightarrow BaCl_2 \cdot 2H_2O$
- 6. hydrolysis**: a) $CO_3^{2-} + H_2O \leftrightarrow HCO_3^{-} + OH^{-}$ b) $C_{12}H_{22}O_{11} + H_2O \to C_6H_{12}O_6 + C_6H_{12}O_6$ c) $Al^{3+} + H_2O \leftrightarrow AlOH^{2+} + H^{+}$

Water impurities

- a. dissolved and suspended materials, gases
- b. bacteria and other microorganisms

Purification and other treatment of Water

- distillation (-a and -b) and...
 boiling at least for 15 min. (b. and...part of a.)
- 2) sedimentation (coagulation), filtration (sand) and disinfection (chlorine or aeration)
- 3) hard water and its softening
- 4) *med.* fluoridation of water against the dental caries

Many nuclear reactors use water as a moderator, a substance that slows down neutrons.

Water pollutants:

- a) oxygen-demanding <u>wastes</u> (both plants and animals)
- b) disease causing agents (pathogenic microorganisms; cholera)
- c) radioactive <u>material</u> (leakage from nuclear power plants)
- d) heat = high temperature = thermal pollution (coolant; oxygen)
- e) plants nutrients (excess of "trophic" N and P)
- f) synthetic organic <u>chemicals</u> (detergents, pesticides, food additives)
- g) inorganic chemicals and minerals (sulphates exchanging to H₂S)

In the body, WATER acts as:

- a) a component of cell and/or tissue fluid
- b) a solvent
- c) a transporting agent that facilitates the digestibility, decomposition and excretion of substances

if the water intake is greater than water output, a condition known as *endema* results.

if water intake is less than output dehydration occurs

Chemical kinetics searches the rate and mechanism of chemical reactions.

The rate of the reaction use to be mathematically expressed as:

$$v = -\frac{dc}{dt} = \frac{dx}{dt}$$

where: c – the substrate concentracion*

x – the product concentration*

In nature the most common are the first order reactions:

$$v = -\frac{dc}{dt} = k \cdot c$$

$$-\int_{c_0}^{c} \frac{dc}{c} = k \cdot \int_{0}^{t} dt$$

$$\ln c = \ln c_0 - k \cdot t$$

Integrating* the kinecs equation in the range of time (0,t) and concentration of the substrate (c_0,c) we have obtained a final formula expressing linear relationship between lnc and t, where the direction coefficient is -k.

An example of 1-st order reaction is a hydrolysis process

like: $CH_3COOC_2H_5 + HOH \rightarrow CH_3COOH + C_2H_5OH$

In practice the half of a first order reaction time $t_{1/2}$ use to be often used

t_{1/2} is defined as a time needed to react of half

of the primary concentration of the product

If
$$\mathbf{c}$$
 at $t_{1/2}$ is $0.5 \cdot \mathbf{c_0}$

then
$$\ln \frac{0.5c_0}{c} = -k \cdot t_{1/2}$$
 and $\ln(0.5) = -k \cdot t_{1/2}$

hence finally

$$rac{0.693}{k} = t_{rac{1}{2}}$$

makes possible of many simple calculations like below:

Example:

The half of a first order reaction time $t_{1/2}$ is 371.04 hours. How many hours are needed to react for 75% of the primary concentraction of the product?

for the 1st order reaction:
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$
 then $k = \frac{0.693}{t_{\frac{1}{2}}} = \frac{0.693}{15.46} = 1.08 \text{ hours}^{-1}$

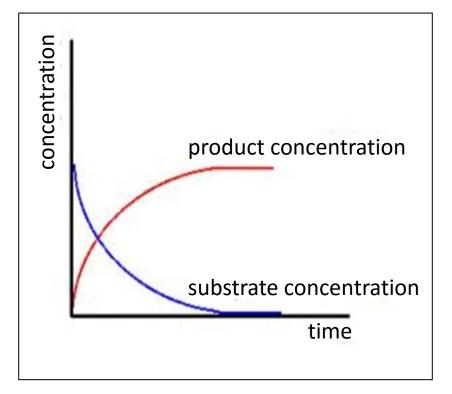
therefore
$$t = \frac{1}{k} \cdot 2.303 \cdot \lg \frac{c_0}{c} = \frac{1}{0.045} \cdot 2.303 \cdot \lg \frac{100}{25} = 739.2 \text{ hours}$$

and **not** as from simple relationship like:

and x = 556.56 hours*

Chemical rection rate increases with a temperature increasing.

The simplest approach to this phenomenon gives **Van't Hoff formula**:


$$\mathbf{k}_{\mathrm{T}+\Delta\mathrm{T}} = \mathbf{k}_{\mathrm{T}} \cdot \mathbf{a}^{(\Delta\mathrm{T}/10)}$$

expressing that each increase of 10 degrees in temperature speeds up a reaction rate by 2 - 4 times,

what means that any lab reaction carried at 200° C can be finished after

1 minute instead of **72 minutes** in **20°C** for instance*

Graph 2 shows changes of the substrate and product concentrations during so-called reversible reaction. Such a situation was considered and described by two Norwegians Gulberg and Waage in their genius* <u>law of mass action.</u>

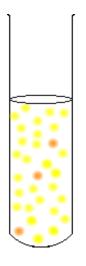
Law of mass action (Guldberg and Waage 1864)

chemical kinetics shows that: $V = -\Delta c/\Delta t = k \cdot c^p$

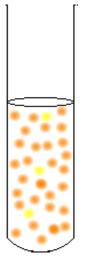
where c means molar conc. of the reactant(s)

for such a reaction: $nA + mB \leftrightarrow xC + yD$

 $*V_L = k_L \cdot [A]^n \cdot [B]^m$ (where n+m=p and [...]=c) $**V_R = k_R \cdot [C]^x \cdot [D]^y$


at an equilibrium state \mathbf{always}^{***} $\mathbf{V_L} = \mathbf{V_R}$ and finally at T=const

$$\frac{[C]^{x} \cdot [D]^{y}}{[A]^{n} \cdot [B]^{m}} = const = K$$



$$2 \text{ CrO}_4^{2-}(aq) + 2 \text{ H}^+(aq) \leftrightarrow \text{ Cr}_2\text{O}_7^{2-}(aq) + \text{H}_2\text{O}$$

$$const = \frac{K}{[H_2O]} = K' = \frac{[Cr_2O_7^{2-}]}{[CrO_4^{2-}]^2 \cdot [H^+]^2}$$

In a solution we call a <u>chromate solution*</u>, there is also a little bit of dichromate, but the predominant color will be yellow.

In a solution we call a dichromate solution*, there is also a little bit of chromate, but the predominant color will be orange.

$$H_2O \leftrightarrow H^+ + OH^-$$
 or $(2H_2O \leftrightarrow H_3O^+ + OH^-)^*$

and according to Guldberg and Waage Law

$$K = \frac{[H^+] \cdot [OH^-]}{[H_2O]} = 1.8 \cdot 10^{-16}$$

Let's calculate the concentration of "water in water" (expected to be constant) if $dH_2O = 1 \text{ g} \cdot \text{cm}^{-3}$ then $1000 \text{ cm}^3 \text{ of } H_2O \equiv 1000 \text{ g} \text{ of } H_2O$

(a)
$$1000 \text{ cm}^3$$
 - (b) $1M \text{ (solution*)}$ - (c) (contain) $18g \text{ H}_2\text{O} \text{ (1 mol of water)}$
(d) 1000 cm^3 - (e) x - (f) $1000g \text{ H}_2\text{O}$

always: $\mathbf{a \cdot b \cdot f} = \mathbf{d \cdot e \cdot c}$, therefore here

$$\chi = \frac{1000cm^3 \cdot 1M \cdot 1000g}{1000cm^3 \cdot 18g} = \frac{10^2}{1.8}M = [H_2O]^{**}$$

$$K = \frac{[H^+] \cdot [OH^-]}{[H_2O]} = 1.8 \cdot 10^{-16}$$

therefore
$$[H^+] \cdot [OH^-] = \frac{10^2}{1.8} \cdot 1.8 \cdot 10^{-16}$$

hence finally for any *ionic product*:

$$[H^+] \cdot [OH^-] = 10^{-14}$$
 (at T=298K)

let
$$pH = -lg[H^+]$$
 and $pOH = -lg[OH^-]$

 $[H^+][OH^-] = 10^{-14}$ then after $[\cdot(-lg)]$ of a left and right side

finally we have a logharitmic version: pH + pOH = 14

Let's calculate pH of water.

for water always $[H^+]=[OH^-]$; hence $[H^+]^2=10^{-14}$

and then $[H^+]=10^{-7}$

therefore $pH = -lg10^{-7} = -(-7)lg10 = 7$; pOH=?*

Example 1. Calculate pH of 0.125 M HCl.

notice, for strong acid like HCl

$$[HC1]^* = [C1^-] = [H^+] = 0.125 = 1.25 \cdot 10^{-1}$$

$$pH = -lg (1.25 \cdot 10^{-1}) = -(lg 1.25 + lg 10^{-1}) = 1 - lg (1.25) =$$

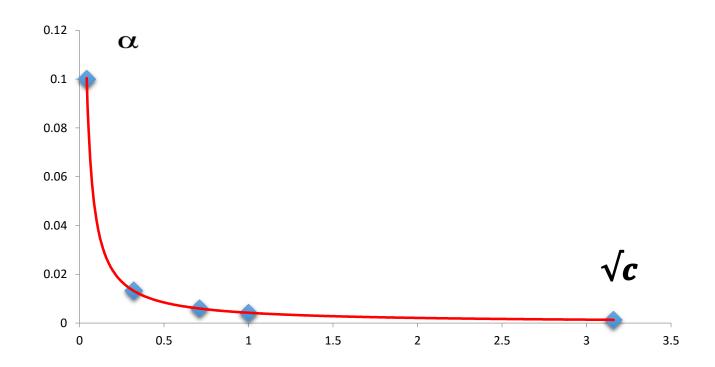
$$= 1 - 0.097 = 0.903 \approx 0.9$$

Example 2. Calculate $[OH^-]$ in the solution of pH = 12.72.

$$pOH = 14 - pH = 14 - 12.72 = 1.28$$

$$[OH^{-}] = 10^{-1.28} = 10^{-2} \cdot 10^{0.72} =$$

$$= 5.25 \cdot 10^{-2} = 0.0525*$$


this is 0.0525 molar water solutions of OH⁻ anions

Dissociation Degree

The dissociation degree is the fraction of original solute molecules that have dissociated. It is usually indicated by the Greek symbol α . The values of α use to be not available (possible to calculate), because they depend on c^* .

Example. $1.782 \cdot 10^{22}$ molecules of a weak acid HA were introduced to 1 dm^3 of the solution and pH = 3 was measured. Calculate α of the acid.

a) if pH = 3 then
$$[H^+] = 10^{-3} = 0.001$$

b) 1 mol H⁺
$$\equiv$$
 6.023·10²³ molecules 10⁻³ mol \equiv x

and then $x = 6.023 \cdot 10^{20}$ molecules/ions of H⁺ \equiv a number of the dissociated HA

c) therefore
$$\alpha = \frac{6.023 \cdot 10^{20}}{1.782 \cdot 10^{22}} = 3.38 \cdot 10^{-2} = 0.0338 \equiv 3.38\%$$

Ostwald's Law

$$\underline{CH_3COOH} \leftrightarrow \underline{CH_3COO^{-}} + \underline{H^{+}}$$

$$K = \frac{[CH_3COO^-] \cdot [H^+]}{[CH_3COOH]}$$

if
$$[CH_3COO^-] = [H^+] = c_a \cdot \alpha$$
 and $[CH_3COOH] = c_a (1 - \alpha)$

then
$$K = \frac{c_a \cdot \alpha \cdot c_a \cdot \alpha}{c_a (1 - \alpha)}$$
 and $K = \frac{c_\alpha \cdot \alpha^2}{(1 - \alpha)}$

for
$$1 \gg \alpha$$
 $(1 - \alpha) \approx 1$ and $K = c_a \cdot \alpha^2$

exactly when
$$\alpha < 0.05$$
, or when $\frac{c}{\kappa} > 400$

most cases
$$\alpha = \sqrt{\frac{K}{c_{\alpha}}}$$
 therefore $,\alpha = f(c_a)$ **

Example. Calculate pH of 0.24 M NH_3 . $(K_b=1.78\cdot10^{-5})$

$$\frac{c}{K} = \frac{0.24}{1.78 \cdot 10^{-5}} = \frac{24 \cdot 10^{-2}}{1.78 \cdot 10^{-5}} = 13.48 \cdot 10^{3} = 13480$$

(FORTUNATELY!?)* 13480 > 400 therefore

K =
$$c \cdot \alpha^2$$
 and $\alpha = \sqrt{\frac{K}{c}} = \sqrt{\frac{1.78 \cdot 10^{-5}}{0.24}}$
 $\alpha = \sqrt{\frac{17.8 \cdot 10^{-6}}{0.24}} = \sqrt{(74.2 \cdot 10^{-6})} = 8.6 \cdot 10^{-3}$

$$[OH^{-}] = \alpha \cdot c = 8.6 \cdot 10^{-3} \cdot 0.24 = 2.07 \cdot 10^{-3}$$

$$pOH = -lg(2.07 \cdot 10^{-3}) = 3 - 0.32 = 2.68, pH = 14 - 2.68 = 11.32**$$

pH of salt

anionic hydrolysis runs:

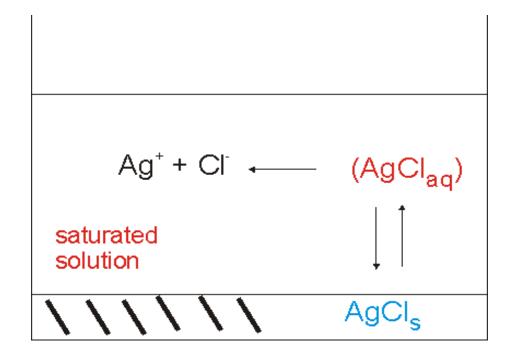
$$CH_3COO^- + H_2O \leftrightarrow CH_3COOH + OH^-$$

$$K = \frac{[\text{CH}_3\text{COOH}] \cdot [\text{OH}^-]}{[\text{CH}_3\text{COO}^-] \cdot [\text{H}_2\text{O}]} \quad \text{and} \quad K_h = \frac{[\text{CH}_3\text{COOH}] \cdot [\text{OH}^-]}{[\text{CH}_3\text{COO}^-]}$$

$$\frac{[CH_{3}COOH] \cdot [OH^{-}]}{[CH_{3}COO^{-}]} \cdot \frac{[H^{+}]}{[H^{+}]} = \frac{10^{-14}}{K_{a}} = \frac{[OH^{-}]^{2}}{c_{s}}$$

$$[OH^-] = \sqrt{\frac{c_s \cdot 10^{-14}}{K_a}}$$

Example: Calculate pH of 0.1M CH_3COOK , if $K_a=1.8\cdot10^{-5}$.


$$[OH^{-}] = \sqrt{\frac{10^{-1} \cdot 10^{-14}}{1.8 \cdot 10^{-5}}} = 7.45 \cdot 10^{-6}$$

$$pOH = 6 - lg7.45 = 6 - 0.87 = 5.13$$

therefore
$$pH = 14 - 5.13 = 8.87*$$

precipitate

(Definition) **SOLUBILITY** is *molarity* (molar conc.) of the saturated solution*.

For poorly soluble substances (salts) use to be a small value and for AgCl the solubility is app. $0.00001 (10^{-5} \text{ mol} \cdot \text{dm}^{-3})$ (will be proved soon)

According to Guldberg and Waage Law

$$K = \frac{[Ag^{+}] \cdot [Cl^{-}]}{[AgCl_{s}]} \quad where \quad [AgCl_{s}] = const,$$

and
$$K \cdot [AgCl_s] = L$$

hence
$$L = [Ag^+] \cdot [Cl^-]$$

If d = 5.56 g·cm⁻³ of solid AgCl let's calculate a molar conc. of poorly soluble (solid) salt in a solid salt like AgCl (Ag-108; Cl-35.5).

```
(a) 1000 cm<sup>3</sup> - (b) 1 M ("solution") - (c) 143.5g AgCl (always!)
(d) 1000 cm<sup>3</sup> - (e) x M - (f) 5560g AgCl (always!)
```

as at pH of water calculations remember that "always": a·b·f=d·e·c *

therefore, $x = (1000 \cdot 1.5560)/(1000.143.5) = const \approx 39$

Conclusion: $[AgCl_s] \approx (always) 39 [mol \cdot dm^{-3}]$ and is... **const!!**

let consider the easiest case: $L=[Ag^+]\cdot[Cl^-]$

$$AgCl_s \leftrightarrow Ag^+_{aq} + Cl^-_{aq}$$

$$1 \text{mol} = 1 \text{mol} + 1 \text{mol}$$

Let the solubility (remaining: means molar conc. of the saturated solution) is ,,x", therefore

$$[AgCl_{aq}] = [Ag^+] = [Cl^-] = \mathbf{x}$$

and
$$L = \mathbf{x} \cdot \mathbf{x} = \mathbf{x}^2$$
, hence $\mathbf{x} = \sqrt{L}$

AgBr; AgJ; AgCN; CaCO₃; AlPO₄ etc.*

$$Ag_2CrO_{4s} \leftrightarrow 2Ag^+ + CrO_4^{2-}$$

1 mol = 2 mol + 1 mol, and then

$$[Ag_{2}CrO_{4aq}] = [CrO_{4}^{2-}] = x$$
, but $[Ag^{+}] = 2x$

therefore
$$L = [Ag^+]^2 \cdot [CrO_4^{2-}] = (2x)^2 \cdot x = 4x^3$$

PbCl₂

$$Ag_3PO_4$$
: $L = (3x)^3 \cdot x = 27x^4$

$$Ca_3(PO_4)_2$$
: $L = (3x)^3 \cdot (2x)^2 = 108x^5$

Fe₂S₃:
$$L = (2x)^2 \cdot (3x)^3 = 108x^5$$

Some selected Solubility Constants (Solubility products)

AgCl	$1,1\cdot 10^{-10}$
CaCO ₃	4,7·10-9
CaC_2O_4	$2,1\cdot 10^{-9}$
$AlPO_4$	$5,8\cdot 10^{-19}$

$$Ag_2CrO_4$$
 2,4·10⁻¹² PbCl₂ 1,6·10⁻⁵

Fe(OH)₃
$$6,0.10^{-38}$$

Ag₃PO₄ $1,0.10^{-21}$

$$Ca_3(PO_4)_2$$
 1,3·10⁻³²
 Fe_2S_3 1,0·10⁻⁸⁸

Example 1: Will be any precipitate (like stone or "sand") formed when 50 cm³ 0.001M $C_2O_4^{2-}$ (oxalate) comes to the human kidney containing 100 cm³ 0.001M Ca^{2+} (L for $CaC_2O_4 = 2.1 \cdot 10^{-9}$)?

In the kidney:

$$[C_2O_4^{2-}] = 0.001 \cdot (50/150) = 3,33 \cdot 10^{-4}$$

$$[Ca^{2+}] = 0.001 \cdot (100/150) = 6.66 \cdot 10^{-4}$$

$$[C_2O_4^{2-}]\cdot[Ca^{2+}] = 3.33\cdot10^{-4}\cdot6.66\cdot10^{-4} = 22.18\cdot10^{-8} = 2.2\cdot10^{-7}$$

$$2.2 \cdot 10^{-7} > (100 \text{-times})$$
 2.1·10-9

therefore "unfortunately" the **stone will be formed** in the kidney

Example 2: Calculate the solubility of AgCl (L=1·10⁻¹⁰): a) in water, b) in 0,1M HCl.

a) L=[Ag⁺]·[Cl⁻]=x², hence (,,regular") x = [AgCl] =
= [Ag⁺] = [Cl⁻] =
$$\sqrt{L} = \sqrt{10^{-10}} = 10^{-5}$$
 [mol·dm⁻³]

b) in HCl solution $[Ag^+] \neq [Cl^-]$

L = [Ag⁺]·[Cl⁻], and hence (,,irregular")
$$x' = [AgCl] = [Ag^+] = L/[Cl^-] = 10^{-10}/10^{-1} = 10^{-9}$$
 [mol·dm⁻³]

Finally: x in water (regular): x' in 0,1M HCl (,,irregular'') = $= \frac{10^{-5}}{10^{-9}} = 10^4 = 10000 \text{-fold better....in water!*}$

Alfred Werner Nobel's experiment

heat up such a system gradually and keep control of [Cl-]

hexaamminecobalt(III) chloride

$$[Co(NH_3)_6]Cl_3 \rightarrow [Co(NH_3)_5H_2O]Cl_3 \rightarrow$$

$$\rightarrow ...[Co(H_2O)_6]Cl_3 \rightarrow$$

$$\rightarrow ...[Co(H_2O)_5Cl]Cl_2$$

Important Assumptions are:

Na⁺, K⁺, Ca²⁺, Mg²⁺ exist in water solution

but "Fe²⁺, Fe³⁺, Co³⁺, Cu²⁺,, **do not exists** (are not available in water solution)*

because the aquacomplexes like:

$$Co(H_2O)_6^{3+}$$
, $Fe(H_2O)_6^{2+}$, $Fe(H_2O)_6^{3+}$

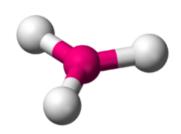
 $Cu(H_2O)_4^{2+}$ exist and they

are the only available in water solution

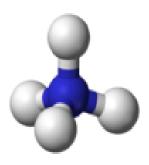
Configuration of electrons for coordination number 6

Atom (Element)	Ion (Cation)	Complex Ion
Cobalt Co (27)	Co ³⁺	Co(NH ₃) ₆ ³⁺
		Krypton structure
$1s^2$	$1s^2$	$1s^2$
$2s^2 2p^6$	$2s^2 2p^6$	$2s^2 2p^6$
$3s^2 3p^6 3d^7$	$3s^2 3p^6 3d^6$	$3s^2 3p^6 3d^{10}$
4s ²	and	$4s^2 4p^6$
no octet here	no octet here either	

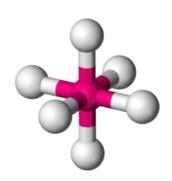
$$\Delta = (d^{10} - d^6) + 4S^2 + 4p^6 = 4 + 8 = 12 = 6$$
 pairs of electrons = $6NH_3$


Public Domain,

https://commons.wikimedia.org/w/index.php?curid=14 54714


Coordination number	Angle	Shape
2	180°	linear

Ligand----- Metal Ion----- Ligand


Coordination number	Angle	Shape
3	120°	trigonal planar

Coordination number	Angle	Shape
4	109° 28′	tetrahedron

Coordination number	Angle	Shape
6	90°	Octahedron

Coordination Number

- a) 4: Cu, Zn, Ag, Cd, Sn, Hg, Pb
- b) 6: very easy coordinating and forming the lasting complexes both simples and chelates

Ligands

- a) containing oxygen (less selective): H₂O, OH⁻, O²⁻, CO₃²⁻, SO₄²⁻, RCOO⁻, NO⁻ etc.
- b) containing N and/or S (more selective and more common): NH₃, NH₂-, H₂S, S²-, S₂O₃²-, SCN⁻, RS⁻

Typical complexes (also aqua complexes):

$$[Cu(H_2O)_4]^{2+}$$
; $[Cu(NH_3)_4]^{2+}$; $[Zn(NH_3)_4]^{2+}$; $[Ag(NH_3)_2]^{+}$;

$$[Fe(H_2O)_6]^{2+}$$
; $[Fe(CN)_6]^{4-}$; $[Fe(CN)_6]^{3-}$; $[Ag(S_2O_3)_2]^{3-}$

$$[Al(OH)_4(H_2O)_2]^-$$
; $[Pb(OH)_3]^-$

<u>Labile</u> complexes (like aqua complex) use to exchange easy to <u>stable</u> complexes:

$$[Ni(H_2O)_4]^{2+} + 4CN^- \rightarrow [Ni(CN)_4]^{2-} + 4H_2O$$

Some selected complexing reactions

$$Au + 4HCl + 3HNO_3 \rightarrow HAuCl_4 + 3NO_2 + 3H_2O$$

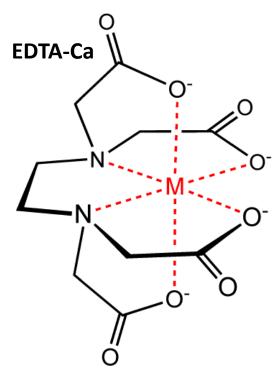
$$[CuCl_2(H_2O)_2] + Cl^- \rightarrow [CuCl_3(H_2O)]^- + H_2O$$

$$Zn(OH)_2 + 2OH^- \rightarrow [Zn(OH)_4]^{2-}$$

$$HgS + S^{2-} \rightarrow [HgS_2]^{2-}$$
; $As_2S_3 + 3S^{2-} \rightarrow 2[AsS_3]^{3-}$

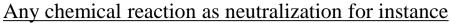
Significance of complexing in nature

- 1. Transportation of cations (Fe³⁺ for instance) from soil to a plant by so-called chelates.
- 2. Carrying Ni²⁺, Co²⁺, czy Ca²⁺ in the organisms by amino acids as ligands.
- 3. Dissolving of some poorly soluble precipitates:
 - a) $Cu(OH)_2 \downarrow + 4NH_3 \cdot H_2O \rightarrow [Cu(NH_3)_4](OH)_2$
 - b) vitamin C as a ligand protects silting (clogging) of the organism (human body for instance) and also is able to transform some precipitates into "assimilable" forms.



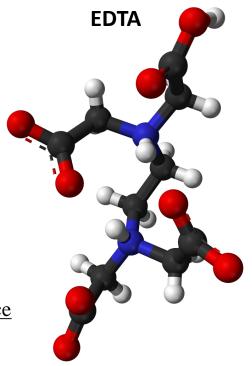
- 4. Bioligands improve assimilability of some fertilizers as $Ca_3(PO_4)_2$ for instance. Chelates (so-called multi-pincers chelates particularly) like chlorophyll, hemoglobin or vitamin C make the system acid and then are increasing a solubility of many precipitates.
- 5. Nature prefers labile systems. Cis-isomers use to complex strongly, that's why in nature trans-maleic acid is common, opposite to cis-maleic one.
- 6. Chelatotheraphy is a significant medical branch:
 - a) cis-platinium inhibits a development of some cancer tissue
 - b) excess of Cu²⁺ in food, so-called Wilsona disease use to be treated with a commonly known bioligand EDTA,
 - c) BAL (2,3-ditio-1-propanol) is an antidote at poisoning with haevy metals

multi-pincers chelate



EDTA complexing reactions*:

$$1EDTA + 1Na^{+} = (EDTA-Na)^{+}$$


$$1EDTA + 1Ca^{2+} = (ADTA-Ca)^{2+}$$

$$1EDTA + 1Fe^{3+} = (EDTA-Fe)^{3+}$$

$$H_2SO_4 + 2NaOH = Na_2SO_4 + H_2O$$

$$Na_2CO_3 + 2HNO_3 = 2NaNO_3 + H_2O + CO_2$$

hardness forming: (rock) $CaCO_3\downarrow + (rain) CO_2 + H_2O \rightarrow Ca(HCO_3)_{2(aq)}$

Carbonate Hardness $(T_c)^*$ + Permanent Hardness (T_p) = Total Hardness (T_t)

$$Ca^{2+} + 2HCO_3^- \rightarrow CaCO_3 \downarrow + CO_2 \uparrow + H_2O$$

$$Mg^{2+} + 2HCO_3^- \rightarrow Mg(OH)_2 \downarrow + 2CO_2 \uparrow$$

1ºN is an equivalent of 10 mg CaO** per 1L of water

Water hardness removal

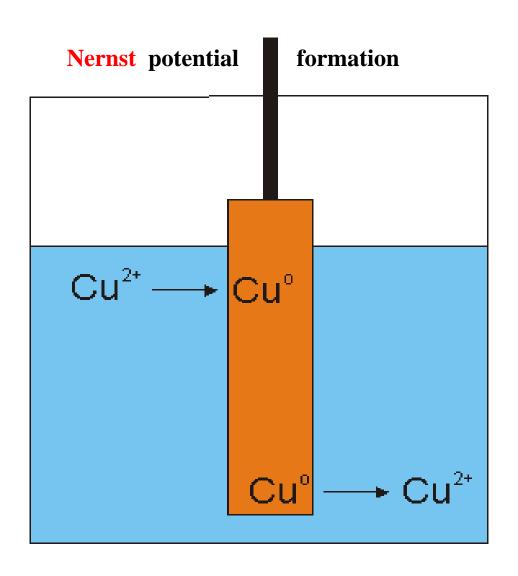
$$Ca^{2+} + CO_3^{2-} \{ from Na_2CO_3 \} \rightleftharpoons CaCO_3 \downarrow$$

 $Mg^{2+} + 2OH^- \{ from \underline{Ca(OH)_2} \} \rightleftharpoons Mg(OH)_2 \downarrow$

Na - Kt - Na + Ca²⁺ {from
$$Ca(HCO_3)_2$$
}* \Longrightarrow (\rightarrow) Kt = Ca + 2Na⁺
Na - Kt - Na + Mg²⁺ {from MgCl₂} \Longrightarrow (\rightarrow) Kt = Mg + 2Na⁺

$$Kt = Ca + 2Na^+ \rightleftharpoons (\rightarrow) Na - Kt - Na + Ca^{2+}$$
 regeneration $Kt = Mg + 2Na^+ \rightleftharpoons (\rightarrow) Na - Kt - Na + Mg^{2+}$ regeneration

Analytical Example: The water hardness is **18**°N. How many cm³ of 0.02M **EDTA** is needed for complexing all Ca²⁺ and Mg²⁺ cations being responsible for that hardness in 1 dm³ of that water. [Ca-40]


$$1^{\circ}N - 10 \text{ mg of CaO in } 1\text{dm}^3 \text{ (as a definition says)}$$

 $18^{\circ}N - x$ and $x = 180 \text{ mg CaO per } 1 \text{ dm}^3$

1 mol of EDTA \equiv (complexing) \equiv 1 mol Ca²⁺ \equiv 1 mol CaO

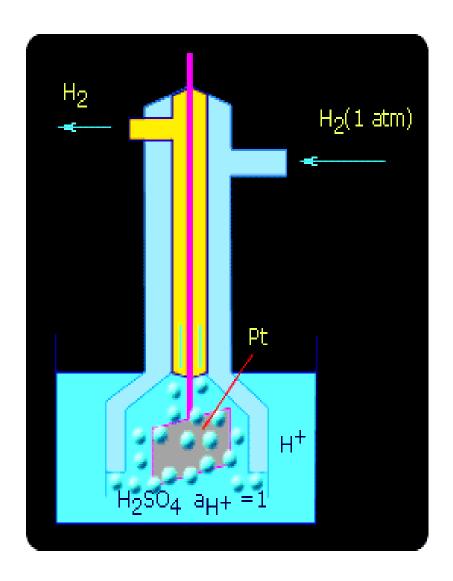
$$y = \frac{1000 \cdot 1 \cdot 180}{0.02 \cdot 56000} = 161 \ cm^3$$

50

$$\mathbf{E} = \mathbf{E}_{o}' + \frac{\mathbf{R} \cdot \mathbf{T}}{\mathbf{z} \cdot \mathbf{F}} \ln \mathbf{K}, \text{ but } \mathbf{K} = \frac{[\mathbf{C}\mathbf{u}^{2+}]}{[\mathbf{C}\mathbf{u}]},$$
or exactly * $\mathbf{K} = \frac{\mathbf{a}_{\mathbf{C}\mathbf{u}^{2+}}}{\mathbf{a}_{\mathbf{C}\mathbf{u}}}$

so in standard conditions for Cu **

and at T = 298 K (Europe):


$$\frac{R \cdot T}{z \cdot F} \ln K = 0.0295 \cdot \log K$$

therefore $\mathbf{E} = \mathbf{E_o} + 0.0295 \cdot \log a_{Cu^{2+}}$

where
$$E_o = E_o' - \log a_{Cu}$$

notice: $E = E_0$ when $a_{Cu^{2+}} = 1$ (!) ***

For such an electrode

a standard potential is **0***

$\mathbf{A}\mathbf{u}^{3+} + 2\mathbf{e} = \mathbf{A}\mathbf{u}^{+}$	1,29
$Cl_2 + 2e = 2Cl^-$	1,385
$Cr_2O_7^{2-} + 14H^+ + 6e = 2Cr^{3+} + 7H_2O$	1,36
$BrO_3^- + 6H^+ + 6e = Br^- + 3H_2O$	1,44
$ClO_3^- + 6H^+ + 6e = Cl^- + 3H_2O$	1,45
$PbO_2 + 4H^+ + 2e = Pb^{2+} + 3H_2O$	1,456
$HClO + H^+ + 2e = Cl^- + H_2O$	1,49
$MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2O$	1,52
$Ce^{4+} + e = Ce^{3+}$	1,61
$\mathbf{P}\mathbf{b}^{4+} + 2\mathbf{e} = \mathbf{P}\mathbf{b}^{2+}$	1,69
$\mathbf{H_2O_2} + 2\mathbf{H}^+ + 2\boldsymbol{e} = 2\mathbf{H_2O}$	1,77
$\mathbf{Co^{3+}} + \boldsymbol{e} = \mathbf{Co^{2+}}$	1,84
$\mathbf{O}_3 + 2\mathbf{H}^+ + 2\mathbf{e} = \mathbf{H}_2\mathbf{O} + \mathbf{O}_2$	2,07
$\mathbf{F}_2 + 2\boldsymbol{e} = 2\mathbf{F}^-$	2,85

Mn redox reactions*

$$MnO_4^- + 8H + 5e = Mn^{2+} + 4H_2O$$
 (acid H_2SO_4)

Examples

$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 = 2MnSO_4 + 10CO_2 + K_2SO_4 + 8H_2O_4$$

$$Mn^{7+} + 5e = Mn^{2+}$$

$$2C^{3+} - 2e = 2C^{4+}$$

$$MnO_4^- + 5Fe^{2+} + 8H^+ = Mn^{2+} + 5Fe^{3+} + 4H_2O$$

$$2MnO_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2+} + 5O_2 + 8H_2O$$

Example. 1,003 g H₂O₂ solution was diluted to 250 cm³. Titrating 25 cm³ of the diluted solution 17,4 cm³ 0,02 m KMnO₄ was used*. Calculate % concentration of the primary H₂O₂ solution.

$$2MnO_4^{-} + 5H_2O_2 + 6H^{+} = 2Mn^{2+} + 5O_2 + 8H_2O$$

 $2 \cdot 1000 \text{ cm}^3 - 1 \text{ M} - 5 \cdot 34 \text{ g} \frac{\text{H}_2\text{O}_2}{2}$ $17,85 \text{ cm}^3 - 0,02 \text{ M} - \text{x} \text{ and then } \text{x} = 0,0303 \text{ g} \frac{\text{H}_2\text{O}_2}{2} \text{ (in 25 cm}^3)$

1,003 g of the solution $-10.0,0303 \text{ g } \text{H}_2\text{O}_2 \text{ (in 250 cm}^3\text{)}$ therefore 100 g of the solution -y

then $y = 30,2 \% \text{ H}_2\text{O}_2$

55

Redox reactions running in wastewater (another lecture)*

Aerobic conditions

organic matter + O_2 + aerobic bacteria $\rightarrow CO_2 + H_2O$

Anoxic conditions

organic matter + NO_3 + denitrification bacteria $\rightarrow CO_2 + N_2$

Anaerobic conditions

organic matter + fermentation bacteria \rightarrow CO₂ + SO₄² + acetic anions + hydrogen + organic acids + alcohols + sulphate reducing bacteria \rightarrow CO₂ + H₂S**