# Design of Sewage Treatment Plants

Dr. E. Venkata Rathnam

Associate Professor in Civil Engineering

National Institute of Technology Warangal

# Acknowledgements

#### References:

- <a href="http://cpheeo.nic.in/Sewerage.aspx">http://cpheeo.nic.in/Sewerage.aspx</a>
- CPHEEO=Central Public Health and Environmental Engineering Organisation

### Contents

- Wastewater quality parameters
- Wastewater treatment procedure
- Design of wastewater treatment
- Operation and maintenance

## Sanitation

- Sanitary engineering starts at the point where water supply engineering ends.
- All the taps, fixtures and appurtenances that receive water for use, discharge into the waste-water systems.
- Sanitary engineering starts with the collecting system and ends after the streams or other bodies of receiving water have been returned to the condition of relative purity desired for them.

# Sanitary works

- Collection works,
- Treatment works, and
- Disposal works

## Philosophy of Wastewater treatment

• To remove various contaminants present in sewage so as to produce an effluent and sludge which can be disposed off in the environment without causing health hazards or nuisance.

### Introduction

- The main contaminants in the domestic sewage that are to be removed are:
  - Biodegradable organics
  - Suspended solids
  - Pathogens and
  - Nutrients

## **Domestic Sewage**

- The contaminants in the domestic sewage are present in the form of Suspended (settleable, Non-settelable); Colloidal and Dissolved solids.
- The objective of the treatment process involving various
   (i) operations/processes or (ii) combination of operations and processes; by which the contaminants are stabilised and removed.

## Operations in Sewage Treatment

- Physical Unit Operations
  - Change is brought about by means of or through the application of physical forces
- Chemical Unit Processes
  - Change is brought about by means of or through chemical activities
- Biological Unit Processes
  - Change is brought about by means of or through biological activities

# **Physical Unit Operations**

#### Applications of Physical Unit Operations in Sewage Treatment

| Operation                 | Application                                                                                                                                                                                          |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Screening     Comminution | Removal of coarse and settleable solids by surface straining Grinding of coarse solids to a more or less uniform size                                                                                |
| 3. Flow equalization      | Equalization of flow and mass loadings of BOD and suspended solids                                                                                                                                   |
| 4. Mixing 5. Flocculation | Mixing of chemicals and gases with sewage; and maintaining solids in suspension  Promotes the aggregation of small particles into larger particles to enhance their removal by gravity sedimentation |
| 6. Sedimentation          | Removal of settleable solids and thickening of sludges                                                                                                                                               |
| 7. Floatation             | Removal of finely divided suspended solids and particles with densities close to that of water. Also thickens biological sludges                                                                     |
| 8. Filtration             | Removal of fine residual suspended solids remaining after biological or chemical treatment                                                                                                           |
| 9. Microscreening         | Same as filtration. Also rémoval of algae from stabilization-pond effluents                                                                                                                          |

## **Chemical Unit Processes**

#### Applications of Chemical Unit Processes in Sewage Treatment

| Process                                               | Application                                                                                                                                                                   |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical precipitation     Gas transfer               | Removal of phosphorus and enhancement of suspended solids removal in primary sedimentation facilities used for physical-chemical treatment.  Addition and removal of gases.   |
| 3. Adsorption                                         | Removal of organics not removed by conventional chemical and biological treatment methods; also used for dechlorination of sewage before final discharge of treated effluent. |
| 4. Disinfection                                       | Selective destruction of disease-causing organisms, usually with chlorine or ozone.                                                                                           |
| <ul><li>5. Dechlorination</li><li>6. Others</li></ul> | Removal of chlorine residual that exists after chlorination.  Various other chemicals can be used to achieve specific objectives in sewage treatment.                         |

## **Biological Unit Processes**

### Major Biological Unit Processes used for Sewage Treatment

| Туре                                | Common name                                                                                  | Use*                                                              |
|-------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Aerobic processes: Suspended growth | Activated-sludge process Conventional (plug flow) Continuous-flow stirred-tank Step aeration |                                                                   |
|                                     | Pure oxygen  Modified aeration  Contact stabilization                                        | Carbonaceous BOD removal (nitrification)                          |
|                                     | Suspended-growth nitrification Aerated lagoons                                               | Nitrification Carbonaceous BOD removal (nitrification)            |
|                                     | Aerobic digestion  Conventional air  Pure oxygen  High-rate aerobic algal ponds              | Stabilization, carbonaceous BOD removal  Carbonaceous BOD removal |

## **Biological Unit Processes**

Attached growth

Major Biological Unit Processes used for Sewage Treatment

Trickling filters

Low-rate

High-rate

Roughing filters

Rotating biological contacters

Packed-bed reactors

Trickling filter, activated sludge

Activated sludge, trickling filter

Suspended-growth denitrification

Fixed-film denitrification

Anoxic processes:

Suspended growth

Combined processes

Attached growth

Carbonaceous BOD removal (nitrification)

Carbonaceous BOD removal Carbonaceous BOD removal (nitrification)

Nitrification

Carbonaceous BOD removal (nitrification)

Denitrification

# **Biological Unit Processes**

Anaerobic processes: Suspended growth

Attached growth

Aerobic/anoxic or anaerobic processes: Suspended growth

Attached growth Combined process

Major Biological Unit Processes used for Sewage Treatment

Anaerobic digestion
Standard-rate, single-stage
High-rate, single-stage
Two-stage

Anaerobic contact process

Anaerobic filter

Anaerobic lagoons (ponds)

Single-stage
nitrification-denitrification
Nitrification-denitrification
Facultative lagoons (ponds)
Maturation or tertiary ponds

Anaerobic-facultative lagoons

Anaerobic -facultative-aerobic lagoons

Stabilization, carbonaceous BOD removal

Carbonaceous BOD removal Carbonaceous BOD removal, stabilization (denitrification) Carbonaceous BOD removal (stabilization)

Carbonaceous BOD removal, nitrification, denitrification
Nitrification, denitrification
Carbonaceous BOD removal
Carbonaceous BOD removal (nitrification)

Carbonaceous BOD removal

## Reactors for Sewage Treatment

- Batch
- Plug flow
- CSTR (Continuous flow stirred tank)
- Arbitrary flow
- Fluidised bed
- Membrane bio reactor

## Classification of Sewage Treatment

- Preliminary
  - To remove floating materials such as dead animals, wood pieces, tree branches, papers, heavy settleable inorganic solids, fats, oil, grease etc.
- Primary
  - To remove large suspended organic solids
- Secondary
  - Removal of residual organic matter and suspended material.
- Tertiary
  - To remove the contaminants that are not removed in conventional treatment

- Screens
- Grit chambers
- Comminutors
- Skimming tanks
- Floatation units
- Flow measuring units

# Preliminary Treatment of Sewage Preliminary Treatment Units, their Functions and Expected Efficiencies

| Purification Effected                                                                                                                                     | Process or unit employed                              | BOD5<br>removal<br>(% of<br>original) | Removal of suspended solids (% of original) | Removal of<br>Total<br>coliforms<br>(% of<br>original) | Disposal of Residuals                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Removal of floating     materials such as dead     animals, wood pieces, tree     branches, rags, papers and     other large sized floating     materials | Coarse and<br>fine screens of<br>different<br>designs | 5-10                                  | 2-10                                        | 10-20                                                  | Screenings disposed of by burials or burnings                                                                                   |
| 2. Removal of heavy settleable inorganic solids                                                                                                           | Grit chambers<br>or Detritus<br>tanks.                | 10-20                                 | 20-40                                       | 10-20                                                  | Grits disposed of by burials<br>or burnings or raising low<br>lying area                                                        |
| 3. Removal of fats and greases                                                                                                                            | Floatation<br>units and<br>skimming<br>tanks          | 20-30                                 | 20-40                                       | 10-20                                                  | Skimmings being unstable volatile materials, are disposed of by first stabilizing them in digestion tanks by anaerobic process. |

#### TABLE 10.5. Primary Treatment Units, their Functions and Expected Efficiencies

| Purification<br>Effected         | Process or unit<br>employed             | BOD <sub>5</sub> removal (% of original) | Removal of<br>suspended<br>solids<br>(% of<br>original) | Removal of Total coliforms (% of original) | Disposal of Residuals                                                                                                                                                     |
|----------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Removal<br>of large<br>suspended | (i) Plain<br>sedimentation tanks<br>OR  | 30-35                                    | 60-65                                                   | 25-75                                      | Sludge, after stabilization in digestion tanks, is used as a manure or soil builder.                                                                                      |
| organic<br>solids                | (ii) Septic tanks OR (iii) Imhoff Tanks | 20-30                                    | 40-60                                                   | 25-75                                      | These units combine sedimentation and sludge digestion. Sludge used as manure while effluents is either treated for secondary treatment or disposed of by land treatment. |

## Secondary Treatment of Sewage

## TABLE 10.6. Secondary Treatment Units, their Functions and Expected Efficiencies

| Purification<br>Effected               | Process or unit employed                                                                | BODs<br>removal<br>(% of<br>original) | Removal of<br>suspended<br>solids<br>(% of<br>original) | Removal of<br>Total<br>coliforms<br>(% of<br>original) | Disposal of Residuals                                                                                                  |
|----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Removal<br>of fine<br>suspended<br>and | (i) Chemical flocculation<br>and sedimentation<br>OR                                    | 50-85                                 | 70-90                                                   | 40-80                                                  | Sludge containing organic<br>matter has to be stabilized in<br>digestion tanks before use as<br>manure or soil builder |
| dissolved<br>organic<br>matter         | (ii) Intermittent sand filters<br>followed and preceded<br>by plain sedimentation<br>OR | 90-95                                 | 85-95                                                   | 95-98                                                  | Same as above                                                                                                          |
|                                        | (iii) High rate trickling<br>filters followed and<br>preceded by plain<br>sedimentation | 60-95                                 | 65-92                                                   | 80-85                                                  | Same as above                                                                                                          |

## Secondary Treatment of Sewage

### TABLE 10.6. Secondary Treatment Units, their Functions and Expected Efficiencies

| Purification<br>Effected | Process or unit employed                                             | BOD <sub>5</sub><br>removal<br>(% of<br>original) | Removal of<br>suspended<br>solids<br>(% of<br>original) | Removal of<br>Total<br>coliforms<br>(% of<br>original)<br>90-95 | Disposal of Residuals  Same as above                             |
|--------------------------|----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
|                          | (iv) Low rate trickling<br>filters followed and<br>preceded by plain | 90-95                                             | 70-92                                                   | 90-93                                                           | Same as doore                                                    |
|                          | sedimentation OR (v) Activated sludge                                | 75-95                                             | 85-90                                                   | 90-98                                                           | Same as above                                                    |
|                          | treatment process and secondary settling tanks OR                    |                                                   |                                                         |                                                                 |                                                                  |
|                          | (vi) Oxidation ponds                                                 | 85-90                                             | 85-90                                                   | 90-98                                                           | Effluents are generally disposed of by using them for irrigation |

## **Tertiary Treatment of Sewage**

- Various processes that are used in the tertiary treatment of sewage are
  - Chemical clarification
  - Recarbonation
  - Filtration
  - Activated carbon adsorption
  - Disinfection
  - Nitrogen removal
  - Phosphorous removal
  - Demineralisation

# Summary

### Unit Operations, Unit Processes and Treatment Systems used to Remove Major Contaminants found in Sewage

| Contaminant            | Unit operation, unit process, or treatment system                                                     |
|------------------------|-------------------------------------------------------------------------------------------------------|
| Suspended solids       | Sedimentation Screening and comminution Filtration (various types)                                    |
|                        | Floatation Chemical-polymer addition Coagulation/sedimentation Land treatment systems                 |
| Biodegradable organics | Activated-sludge processes Fixed-film: trickling filters Fixed-film: rotating biological contactors   |
|                        | Lagoon (various types) Intermittent sand filtration Land treatment systems  Physical chemical systems |
| Pathogens              | Physical-chemical systems Chlorination Hypochlorination Ozonation                                     |
|                        | Land treatment systems                                                                                |

# Summarv

Nitrogen

Duralini dispessi nalah dan

化海线设置 经海损外租赁 化有压压器

Reversional by 100 on the

वर अने भारता से स्टब्स स्टास्ट

erack reff. Norther time fi

Phosphorus

Refractory organics

Heavy metals

Dissolved inorganic solids

alla de Albada de en la

Regardo (1866), Careco (um

Suspended-growth nitrification and denitrification (various types)

Fixed-film nitrification and denitrification (various types)

Ammonia stripping

Ion exchange

Breakpoint chlorination

Land treatment systems

Metal-salt addition

Lime coagulation/sedimentation

Biological-chemical phosphorus removal

Land treatment systems

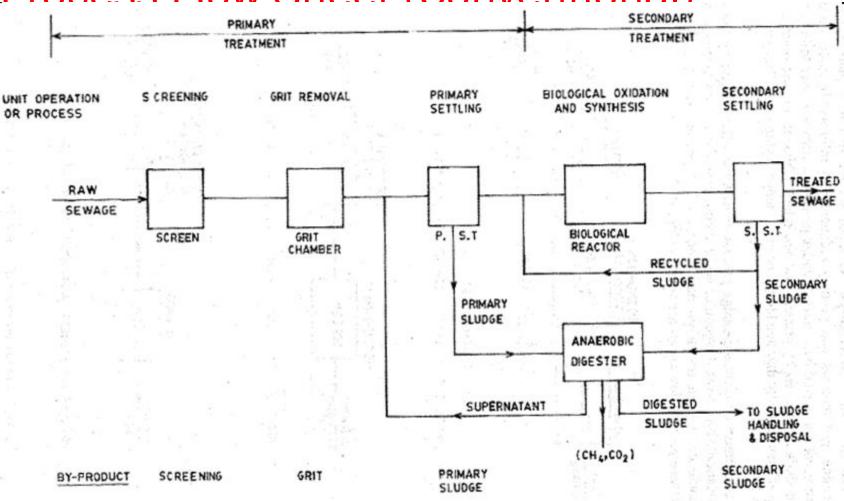
Carbon adsorption

Tertiary ozonation

Land treatment systems

Chemical precipitation

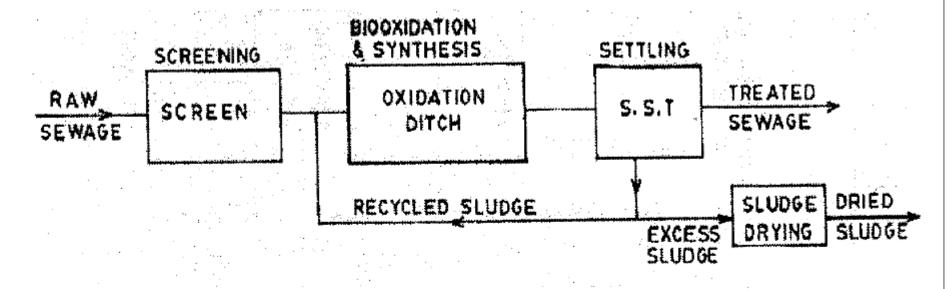
Ion exchange


Land treatment systems

Ion exchange

Reverse osmosis

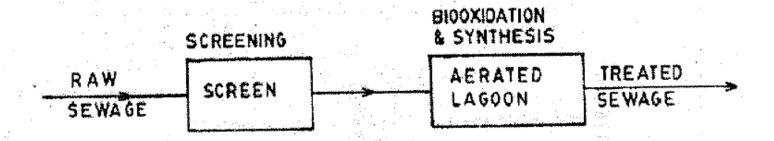
Electrodialysis


### Process Flow Sheet (Conventional)

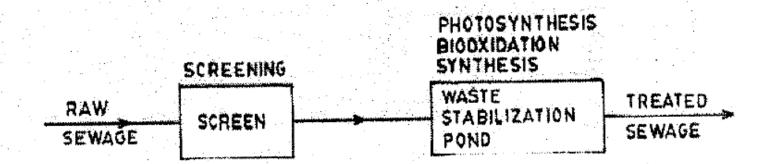


P. S. I = PRIMARY SETTLING TANK S.S. J = SECONDARY SETTLING TANK

Fig. 10.1 Process flow sheet of conventional Domestic sewage treatment.


## Process Flow Sheet (low cost)




S.S. T= SECONDARY SETTLING TANK

(a) PROCESS FLOW SHEET INCORPORATING OXIDATION DITCH.

## Process Flow Sheet (low cost)



(b) PROCESS FLOW SHEET EMPLOYING AERATED LAGOON.



(c) PROCESS FLOW SHEET USING WASTE STABILIZATION POND.

## Process Flow Sheet (Anaerobic)

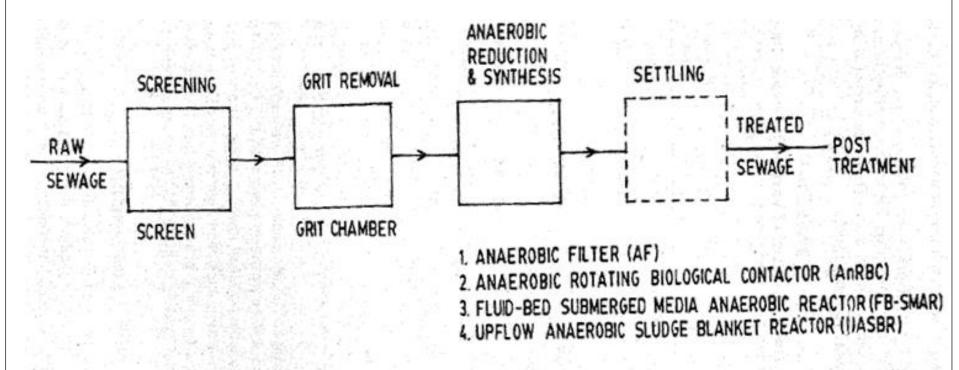



Fig. 10.3 Process flow sheet employing anaerobic treatment devices.

### **Expected Efficiencies of Various Treatment Units**

|                                   | Pe      | Percentage reduction |                   |  |  |  |
|-----------------------------------|---------|----------------------|-------------------|--|--|--|
| Process                           | $BOD_5$ | Suspended<br>solids  | Total<br>coliform |  |  |  |
| Primary Treatment (sedimentation) | 30-45   | 45-60                | 40-60             |  |  |  |
| 2. Chemical Treatment             | 45-65   | 60-80                | 60-90             |  |  |  |
| 3. Secondary Treatment            |         |                      |                   |  |  |  |
| (i) Standard trickling filters    | 70-90   | 75-85                | 80-90             |  |  |  |
| (ii) High rate trickling filters  |         |                      |                   |  |  |  |
| (a) Single stage                  | 75-80   | 75-85                | 80-90             |  |  |  |
| (b) Two stage                     | 90-95   | 90-95                | 90-95             |  |  |  |
| (iii) Activated sludge plants     | 85-95   | 85-90                | 90-96             |  |  |  |
| (iv) Stabilization Ponds          |         |                      |                   |  |  |  |
| (a) Single cell                   | 90-95   | 80-90                | 90-95             |  |  |  |
| (b) Two cells                     | 95-97   | 90-95                | 95-98             |  |  |  |

## Design and Construction of S.T.Ps

#### Contribution of human wastes in grams per capita per day

|    | Parameters                       |                                   |         |                     |              |                                  |  |
|----|----------------------------------|-----------------------------------|---------|---------------------|--------------|----------------------------------|--|
| 1  | 1 Biochemical oxygen demand, BOD |                                   |         |                     |              |                                  |  |
| 2  |                                  |                                   |         |                     |              | nes BOD                          |  |
| 3  | Total organic carbon,            | тос                               |         |                     | 0.6-1.0 tin  | nes BOD                          |  |
| 4  | Total solids, TS                 |                                   |         |                     | 170-220      |                                  |  |
| 5  | Suspended solids, SS             |                                   |         |                     | 70-145       |                                  |  |
| 6  | Grit (inorganic,0.2 mm           | and above                         | e)      |                     | 5-15         |                                  |  |
| 7  | Grease                           |                                   |         |                     | 10-30        |                                  |  |
| 8  | Alkalinity as calcium o          | arbonate (0                       | CaCO₃)  |                     | 20-30        |                                  |  |
| 9  | 9 Chlorides                      |                                   |         |                     | 4-8          |                                  |  |
| 10 | Total nitrogen N                 |                                   |         |                     | 6-12         |                                  |  |
| 11 | Organic nitrogen                 |                                   |         |                     | ~0.4 total N |                                  |  |
| 12 | Free ammonia                     |                                   |         |                     | ~0.6 total N |                                  |  |
| 13 | Nitrate                          |                                   |         |                     | ~0.0-0.5 t   | otal N                           |  |
| 14 | Total phosphorus                 |                                   |         |                     | ~0.6-4.5     |                                  |  |
| 15 | Organic phosphorus               |                                   |         |                     | ~0.3 total P |                                  |  |
| 16 | Inorganic(ortho- and p           | oly-phosph                        | ates)   |                     | ~0.7 total   | Р                                |  |
| 17 | Potassium(as potassium)          | um oxide K <sub>2</sub>           | 2O)     |                     | 2.0-6.0      |                                  |  |
|    | Mi                               | croorganisn                       | ns in 1 | 00 ml of sewage     |              |                                  |  |
| 18 | Total bacteria                   | 10 <sup>9</sup> -10 <sup>10</sup> | 22      | Protozoan cysts     |              | Up to 10 <sup>3</sup>            |  |
| 19 | Coliforms                        | 10 <sup>9</sup> -10 <sup>10</sup> | 23      | Helminthic eggs     |              | Up to 10 <sup>3</sup>            |  |
| 20 | Faecal streptococci              | 10 <sup>5</sup> -10 <sup>6</sup>  | 24      | Virus (plaque formi | ng units)    | 10 <sup>2</sup> -10 <sup>4</sup> |  |
| 21 | Salmonella Typhosa               | 10 <sup>1</sup> -10 <sup>4</sup>  |         |                     |              |                                  |  |

### Typical composition of Sewage (Concentration of various parameters)

| Item              | Per capita contribution (g / c /d) | water<br>supply<br>(L / c / d) | Sewage<br>Generation<br>80 % of (3) | Concen-<br>tration<br>(mg/L) |
|-------------------|------------------------------------|--------------------------------|-------------------------------------|------------------------------|
| (1)               | (2)                                | (3)                            | (4)                                 | (5)                          |
| BOD               | 27.0                               | 135                            | 108                                 | 250.0                        |
| COD               | 45.9                               | 135                            | 108                                 | 425.0                        |
| TSS               | 40.5                               | 135                            | 108                                 | 375.0                        |
| VSS               | 28.4                               | 135                            | 108                                 | 262.5                        |
| Total Nitrogen    | 5.4                                | 135                            | 108                                 | 50.0                         |
| Organic Nitrogen  | 1.4                                | 135                            | 108                                 | 12.5                         |
| Ammonia Nitrogen  | 3.5                                | 135                            | 108                                 | 32.5                         |
| Nitrate Nitrogen  | 0.5                                | 135                            | 108                                 | 5.0                          |
| Total Phosphorus  | 0.8                                | 135                            | 108                                 | 7.1                          |
| Ortho Phosphorous | 0.5                                | 135                            | 108                                 | 5.0                          |

Illustration BOD = 27 \*1000 (mg) / 135 X 0.8 (litres) = 250 mg/L

#### General standards for Discharge of Environmental Pollutants

|     |                                       |            | Standar | ds         |          |
|-----|---------------------------------------|------------|---------|------------|----------|
| No  | Characteristics                       | Inland     | Public  | Land       | Marine   |
| 110 | Gridiadoriolog                        | Surface    | Sewers, | for        | Coastal  |
|     |                                       | Water      | (A)     | Irrigation | Areas    |
| 1   | Colour and odour                      | (B)        |         | (B)        | (B)      |
| 2   | SS                                    | 100        | 600     | 200        | (C), (D) |
| 3   | Particle size of SS                   | (E)        | -       | -          | (F), (G) |
| 4   | pH value                              | 5.5 to 9.0 |         |            |          |
| 5   | Temperature                           | (H)        | -       | -          | (H)      |
| 6   | Oil and grease                        | 10         | 20      | 10         | 10       |
| 7   | Total residual chlorine               | 1.0        | -       | -          | 1.0      |
| 8   | Ammoniacal nitrogen (as N)            | 50         | 50      | -          | 50       |
| 9   | Total Kjeldahl Nitrogen, (TKN) (as N) | 100        | -       | -          | 100      |
| 10  | Free ammonia (as NH <sub>3</sub> )    | 5.0        | -       | -          | 5.0      |
| 11  | Biochemical Oxygen Demand             | 30         | 350     | 100        | 100      |
| 12  | Chemical Oxygen Demand                | 250        | -       | -          | 250      |

### General standards for Discharge of Environmental Pollutants

|     | Contract Clarina and Ton Dicona                          | 900. —           |                  | 110116           |                  |
|-----|----------------------------------------------------------|------------------|------------------|------------------|------------------|
| 13  | Arsenic (as As)                                          | 0.2              |                  |                  |                  |
| 14  | Mercury (as Hg)                                          | 0.01             | 0.01             | -                | 0.01             |
| 15  | Lead (as Pb)                                             | 0.1              | 1.0              | -                | 2.0              |
| 16  | Cadmium (as Cd)                                          | 2.0              | 1.0              | -                | 2.0              |
| 17  | Hexavalent Chromium (as Cr 6+)                           | 0.1              | 2.0              | -                | 1.0              |
| 18  | Total Chromium (as Cr)                                   | 2.0              | 2.0              | -                | 2.0              |
| 19  | Copper (as Cu)                                           | 3.0              | 3.0              | -                | 3.0              |
| 20  | Zinc (as Zn)                                             | 5.0              | 15.0             | -                | 15.0             |
| 21  | Selenium (as Se)                                         | 0.05             | 0.05             | -                | 0.05             |
| 22  | Nickel (as Ni)                                           | 3.0              | 3.0              | -                | 5.0              |
| 23  | Cyanide (as CN)                                          | 0.2              | 2.0              | 0.2              | 0.2              |
| 24  | Fluoride (as F)                                          | 2.0              | 15.0             | -                | 15.0             |
| 25  | Dissolved phosphates (as P)                              | 5.0              | -                | -                | -                |
| 26  | Sulphide (as S)                                          | 2.0              | -                | -                | 5.0              |
| 27  | Phenolic compounds (as C <sub>6</sub> H <sub>5</sub> OH) | 1.0              | 5.0              | -                | 5.0              |
|     | Radioactive materials                                    |                  |                  |                  |                  |
| 28  | Alpha emitters, micro curie/L                            | 10 <sup>-7</sup> | 10 <sup>-7</sup> | 10 <sup>-8</sup> | 10 <sup>-7</sup> |
|     | Beta emitters, micro curie/L                             | 10⁻6             | 10 <sup>-6</sup> | 10 <sup>-7</sup> | 10 <sup>-6</sup> |
| 29  | Bio-assay test                                           | (1)              |                  |                  |                  |
| 30  | Manganese (as Mn),                                       | 2.0              | 2.0              | -                | 2.0              |
| 31  | Iron (as Fe),                                            | 3.0              | 3.0              | -                | 3.0              |
| 32  | Vanadium (as V),                                         | 0.2              | 0.2              | -                | 0.2              |
| 33  | Nitrate Nitrogen (as N),                                 | 10.0             | -                | -                | 20.0             |
| 34. | Faecal Coliform, MPN/100 ml for discharge                | onto land        |                  | into water       |                  |
|     |                                                          | (J)              | (K)              | (J)              | (K)              |
|     |                                                          | 1,000            | 10,000           | 1,000            | 10,000           |
|     |                                                          |                  |                  |                  |                  |

- Screening
- Screening is essential for removal of floating materials which are mainly sachets, plastic sheet bits, leaves, fibres, rags, etc.
- If these are not removed, they will get into the pumps and entangle in the impellers.
- They can also be drawn into suction pipes and choke them and it is difficult to locate their position in the pipeline.
- They can cause objectionable shoreline conditions where disposal into sea is practiced.
- Screens are used ahead of pumping stations, meters and as a first step in all STPs.
- A screen is a device with openings generally of uniform size.

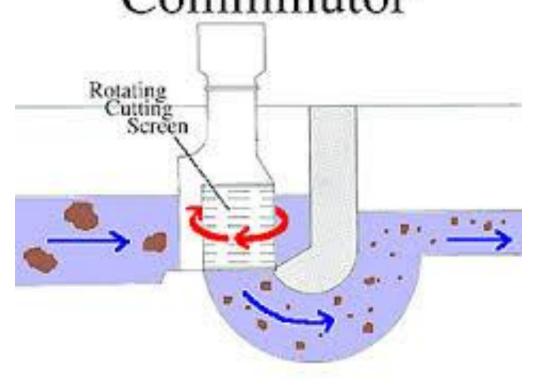
- Screening
- Types of Screens
  - Coarse Screens (with openings >25 mm)
  - Medium Screens (with openings of ≈ 12 mm)
  - Fine Screens (with openings of ≈ 5 mm)

Screening





Screening




- Screening
- Design Considerations
  - Velocity of flow
    - 0.6-1.2 m/s
  - Loss of head
    - Normally 0.15 m, should not exceed 0.3 m
  - Materials
    - Coarse screens
      - Steel bars
    - Fine screens
      - o Steel bars, Bronze plates or wire mesh
  - Angle of inclination
    - 45-60 with horizontal for manually cleaned and 60-90 for mechanically cleaned
  - Free board
    - 0.3 m
  - Max width
    - 1.5 m

- Screening
- Design Procedure for Screens
  - Calculate the projected area of screens using the peak sewage flow
  - Calculate the number of bars
  - Calculate the width and length of screen channel
  - Calculate the height of screen
  - Calculate the velocity of flow in screen channel
  - Calculate the head loss through the screens
  - Calculate the hydraulic loading for peak flow

- Comminuting Devices
- a mechanically cleaned screen which incorporates a cutting mechanism that shreds the retained material and enabling it to pass along with the sewage
- recommended for smaller sized STPs of up to 1 MLD.

# Preliminary Treatment of Sewage Comminutor



- Grit Removal
- Grit removal is necessary to protect the moving mechanical equipment and pump elements from abrasion and accompanying abnormal wear and tear.
- Removal of grit also reduces the frequency of cleaning of digesters and settling tanks.

- Grit Removal
- Design considerations
  - Settling velocity
  - Surface overflow rate
  - Detention period
    - 45 to 90 sec
  - Bottom scour velocity
  - Velocity control device
    - Proportional flow weir
    - Parshall flume
  - Number of units
  - Loss of Head

- Grit Removal
- Design Procedure for GRIT chamber
  - Compute the settling velocity
  - Compute the surface overflow rate
  - Determine the dimensions of the chamber
  - Design the velocity control facility

### Preliminary Treatment of Sewage • Velocity control devices





Proportional flow weir

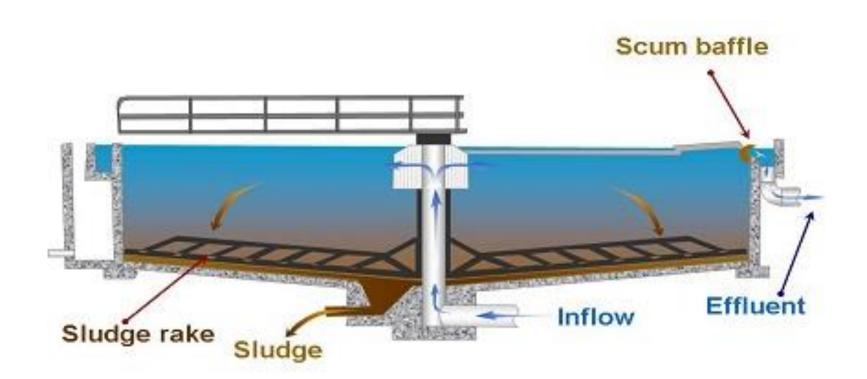
## Preliminary Treatment of Sewage • Velocity control devices



Parshall Flume

- Flow Equalization
- when the peak factor exceeds 3 by a wide margin, it is advisable to equalize the sewage flow before feeding to the STP units.

- SETTLING
- The primary clarifier is located after screens and grit chambers and reduces the organic load on secondary treatment units.


- SETTLING
- Design considerations
  - Velocity of flow
  - Surface overflow rate
  - Detention period
    - 2-2.5 hours
  - Tank dimensions
    - Rectangular or circular
  - Inlet and outlet
  - Weir loading

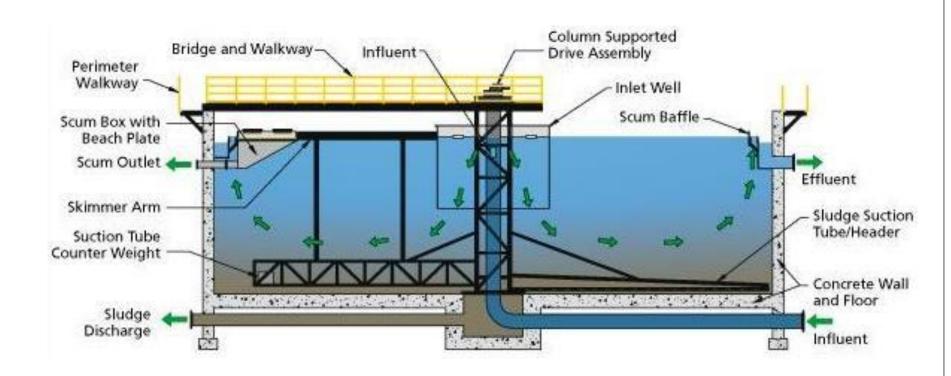

• SETTLING

Table 5.8 Design Parameters for Clarifiers

| Type of Settling                         | Overflow rate,<br>cum/sqm/day |          | Solid loading,<br>kg/day/sqm |      | Side Water<br>Depth, m | Weir loading,<br>cum/m/day |  |  |  |
|------------------------------------------|-------------------------------|----------|------------------------------|------|------------------------|----------------------------|--|--|--|
|                                          | Average                       | Peak     | Average                      | Peak | Average                | Average                    |  |  |  |
| Primary Clarifiers                       |                               |          |                              |      |                        |                            |  |  |  |
| Primary Settling only                    | 25 - 30                       | 50 - 60  | Not applicable               |      | ≥ 2.5 - 3.5            | 125                        |  |  |  |
| Followed by secondary treatment          | 35 - 50                       | 80 - 120 | Not applicable               |      | ≥ 2.5 - 3.5            | 125                        |  |  |  |
| With excess sludge return                | 25 - 35                       | 50 - 60  | Not applicable               |      | ≥ 3.5 - 4.5            | 125                        |  |  |  |
| Secondary Clarifiers                     |                               |          |                              |      |                        |                            |  |  |  |
| Secondary settling for activated sludge  | 15 - 35                       | 40 - 50  | 70 - 140                     | 210  | ≥ 3.0 - 3.5            | 185                        |  |  |  |
| Secondary settling for extended aeration | 8 - 15                        | 25 - 35  | 25 - 120                     | 170  | ≥ 3.0 - 4.0            | 185                        |  |  |  |

- SETTLING
- Design procedure
  - Compute the capacity of the tank by assuming the detention period.
  - Adopt the required depth of the tank
  - Calculate the surface area required
  - Perform cross check for the dimensions obtained





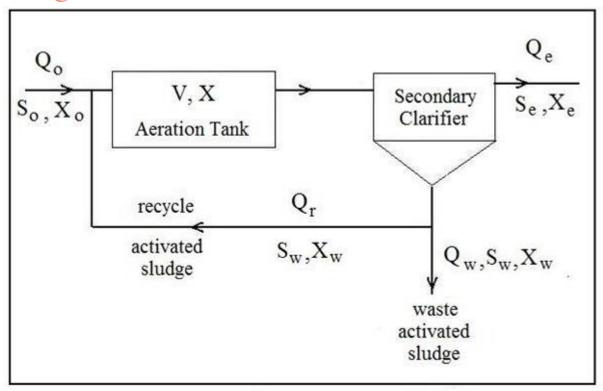
Activities in Aerobic Digestion

Oxidation

 $Organic matter + O_2 + bacteria \rightarrow CO_2 + H_2O + NH_3 + other$ end products + energy

**Synthesis** 

Organic matter +  $O_2$  + bacteria+ energy  $\rightarrow$  New microbial cell tisue


Endogeneous respiration

New microbial cell tissue  $+5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O + energy$ 

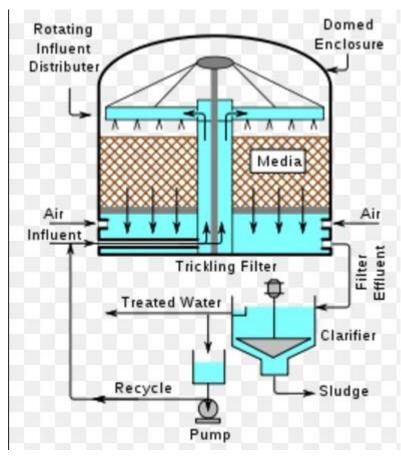
• Activated Sludge Process



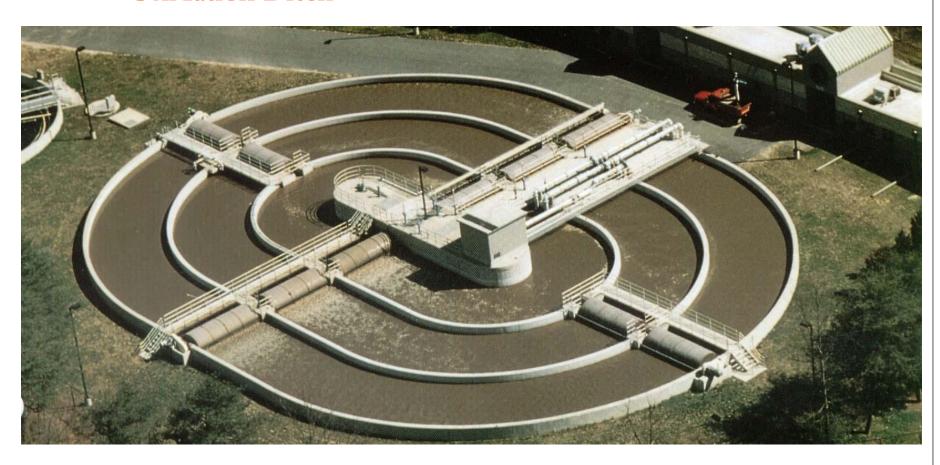
Activated Sludge Process



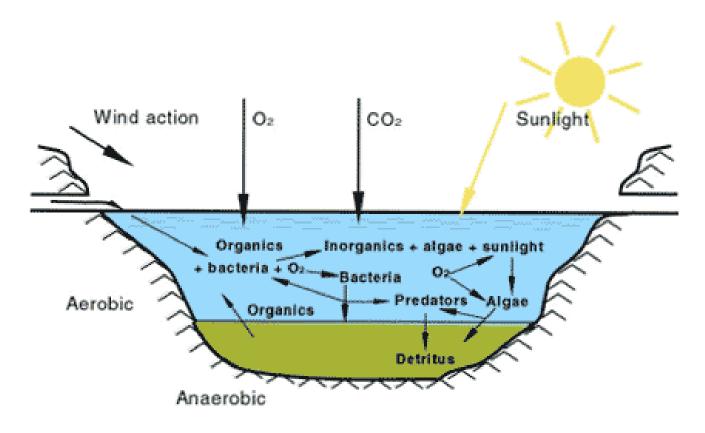
Activated Sludge Flow Diagram & Parameters


- Activated Sludge Process
- Activated sludge plant involves:
  - wastewater aeration in the presence of a microbial suspension,
  - solid-liquid separation following aeration,
  - discharge of clarified effluent,
  - wasting of excess biomass, and
  - return of remaining biomass to the aeration tank.

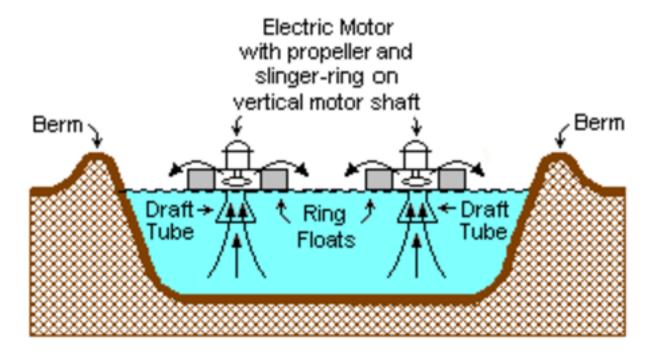
- Activated Sludge Process
- Design elements:
  - Design of Aeration tank
  - Design of clarifier
  - Return sludge rate
  - Sludge wasting


- Activated Sludge Process
- Key considerations in ASP design:
  - MLSS (mixed liquor suspended solids)
  - F/M Ratio
  - Oxygen transfer rate
  - Rate of sludge production
  - Aeration tank volume
  - Sludge recycle rate

- Activated Sludge Process
- Modifications to the conventional ASP
  - Tapered aeration
  - Step aeration
  - Contact stabilisation
  - Extended aeration
  - Complete mix


• Trickling filters




• Oxidation Ditch



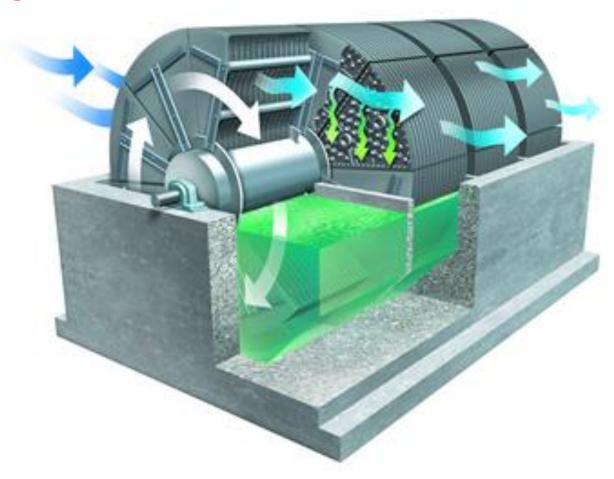
• Oxidation Ponds (Stabilisation Ponds)



Aerated Lagoons



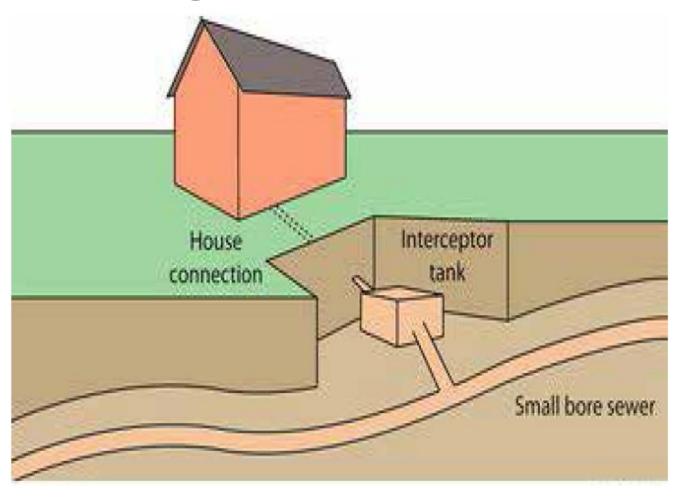
#### A TYPICAL SURFACE – AERATED BASIN


Note: The ring floats are tethered to posts on the berms.

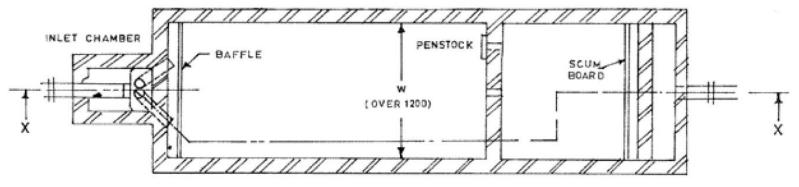
Aerated lagoons

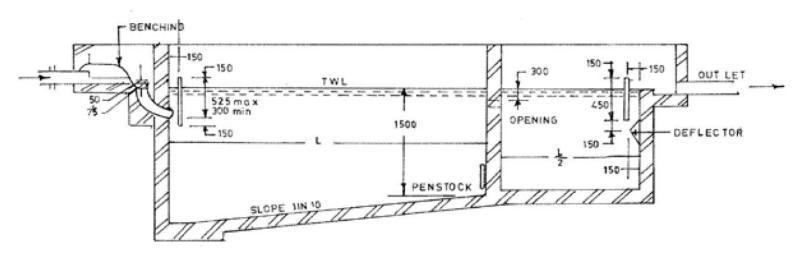
Table 5.12 Some Characteristics of Aerated Lagoons

| No. | Characteristics                    | Facultative<br>Aerated<br>Lagoons | Fully<br>Aerobic | Extended<br>Aeration System<br>(for comparison) |
|-----|------------------------------------|-----------------------------------|------------------|-------------------------------------------------|
| 1.  | Detention time, days               | 3 - 5                             | 2 - 3            | 0.5 - 1.0                                       |
| 2.  | Depth, m                           | 2.5 – 5.0                         | 2.5 - 4.0        | 2.5 - 4.0                                       |
| 3.  | Land required, m²/person           | 0.15 - 0.30                       | 0.10 - 0.20      |                                                 |
| 4.  | BOO removal efficiency %           | 80 - 90                           | 50 - 60          | 95 - 98                                         |
| 5.  | Overall BOD removal rate, K (A)    | 0.6 – 0.8                         | 1-1.5            | 20 - 30                                         |
| 6.  | Suspended solids in lagoon, mg/l   | 40 - 150                          | 150 - 350        | 3,000 - 5,000                                   |
| 7.  | VSS/SS                             | 0.6                               | 0.8              | 0.6                                             |
| 8.  | Desirable power level (B)          | 0.75                              | 2.75 - 6.0       | 15 - 18                                         |
| 9   | Power requirement, kWh/person/year | 12 - 15                           | 12 - 14          | 16 - 20                                         |


• Rotating biological Contactors

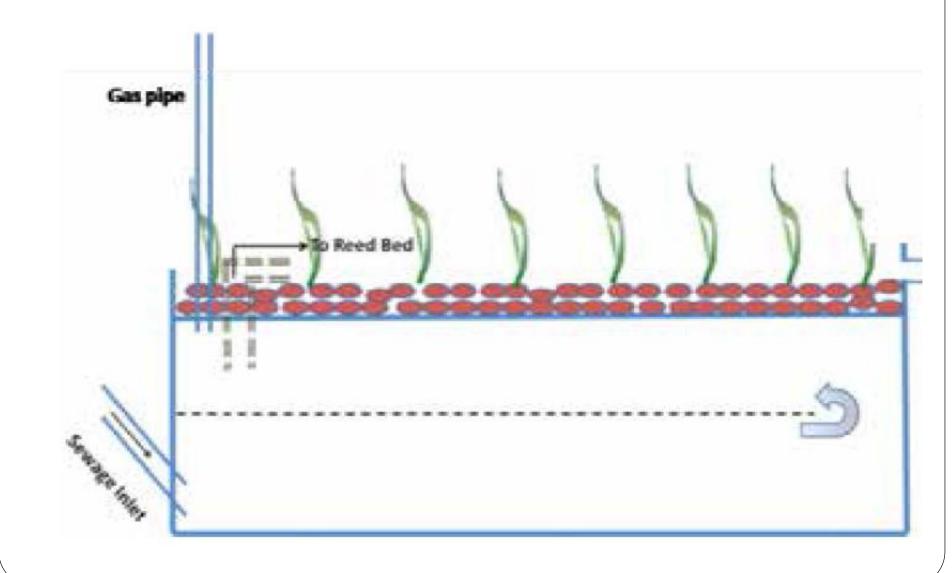



#### Rural Wastewater treatment systems


- Septic tank
- Constructed wetlands
- Lagoons
- Waste stabilisation ponds

#### A schematic diagram of Small bore sewer




#### Septic Tank





SECTION XX

#### Wetland/Reed bed systems



Wasta stabilisation nond



Thank you