Bacteriological Examination of Water

Sedky Hassan Aly Hassan

Botany Dept.
Faculty of Science
Assiut University
71516, Assiut
Egypt

Water examination

Physical examination

Chemical examination

Microbiological examination

Each gram of human feces contains approximately 10 billion of pathogenic bacteria, such as *Salmonella*, associated with gastroenteritis.

In addition, feces may contain pathogenic viruses, protozoa and parasites, these organisms could cause disease. When testing drinking water for contamination,

Health authorities therefore use the presence of more easily detected fecal bacteria as indicators of the presence of fecal contamination

Indicator Bacteria

Group of microorganisms use to reflect the quality and safety of water.

- Coliform and Fecal coliform bacteria
- Enterococcus and Streptococcus faecalis
- Pseudomonas aeruginosa
- Staphylococcus spp
- Clostridium
- Other bacteria (Salmonella & Shigella)

Criteria for selecting an indicator of fecal contamination in water

- (1) They are normally not present in water or soil
- (2) They are relatively easy to identify,
- (3) They survive a *little* longer in water than enteric pathogens
- (4) Must be associated with feces
- (5) Test should be less complex than test for pathogen

Table 7.1 Waterborne pathogens and their significance in water supplies

Pathogen	Health significance	Persistence in water supplies ^a	Resistance to chlorine ^b	Relative infectivity ^c	Important animal source
Bacteria					
Burkholderia pseudomallei	Low	May multiply	Low	Low	No
Campylobacter jejuni, C. coli	High	Moderate	Low	Moderate	Yes
Escherichia coli – Pathogenic ^d	High	Moderate	Low	Low	Yes
E. coli – Enterohaemorrhagic	High	Moderate	Low	High	Yes
Legionella spp.	High	Multiply	Low	Moderate	No
Non-tuberculous mycobacteria	Low	Multiply	High	Low	No
Pseudomonas aeruginosa ^e	Moderate	May multiply	Moderate	Low	No
Salmonella typhi	High	Moderate	Low	Low	No
Other salmonellae	High	May multiply	Low	Low	Yes
Shigella spp.	High	Short	Low	Moderate	No
Vibrio cholerae	High	Short	Low	Low	No
Yersinia enterocolitica	High	Long	Low	Low	Yes

The presences of these microorganisms in water implies that water may contain pathogen or un safe for drinking

- The presence *E. coli*, in water and often Enterococci, is direct evidence of fecal contamination from warm-blooded organisms.
- Their presence indicates the possible presence of pathogens

A few strains of *E. coli* are pathogenic, such as *E. coli* O157:H7, but most strains are not.

Total Coliforms

The total coliform group

Belongs to the family Enterobacteriaceae and includes the aerobic and facultative anaerobic, gram-negative, non-spore-forming, rod-shaped bacteria that ferment lactose with gas production within 48 hours at 35oC (APHA, 1998).

Total coliforms include *Escherichia coli, Enterobacter, Klebsiella*, and *Citrobacter*.

Fecal coliforms

■ Fecal coliforms are thermotolerant bacteria that include all coliforms that can ferment lactose at 44.5 °C.

■ The fecal coliform group comprises bacteria such as *Escherichia coli* or *Klebsiella pneumonae*.

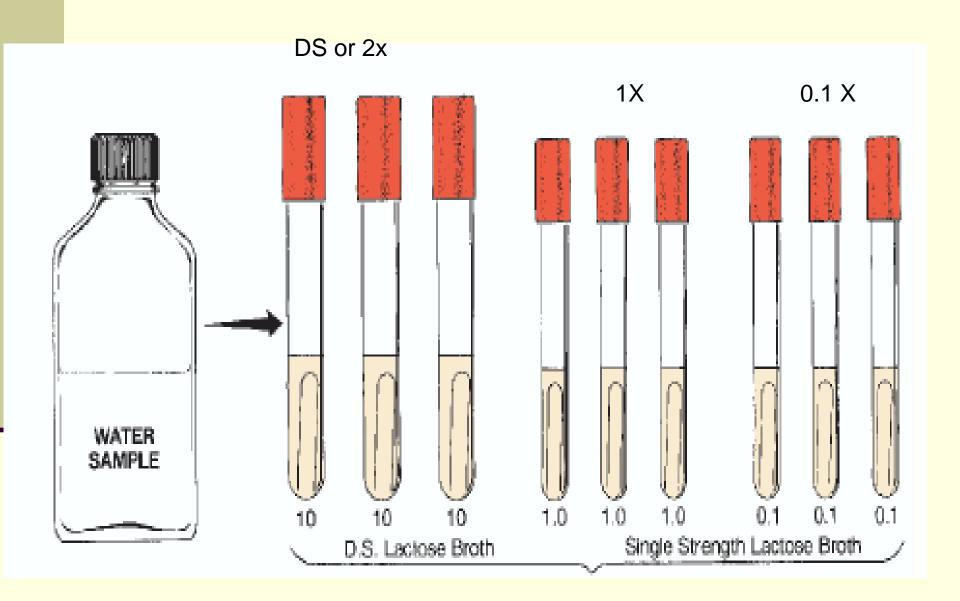
■ The presence of fecal coliforms indicates the presence of fecal material from warm-blooded.

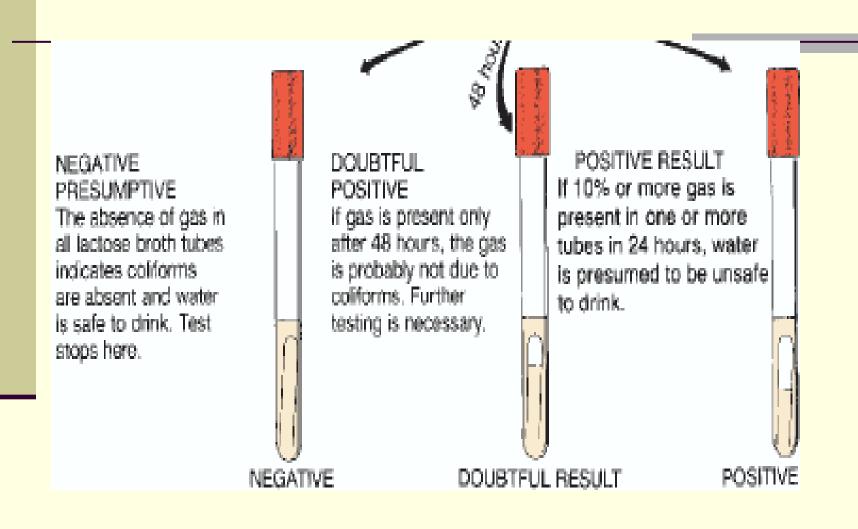
Examination test

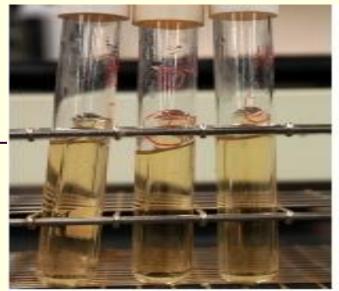
- Qualitative test
- Determination the presence or absence of coliforms, By Most Probable Number (MPN) of coliforms present in 100 ml of water

Examination test

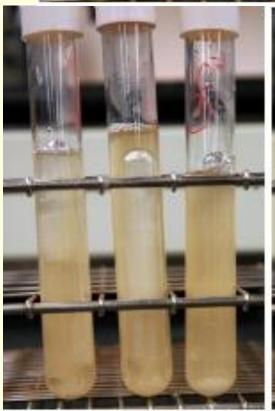
- **Presumptive Test**
- Confirmed Test
- **Completed Test**


Presumptive Test

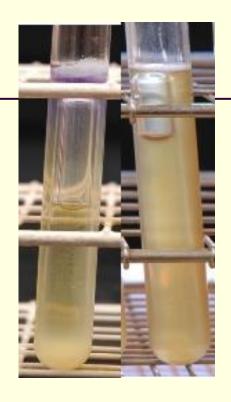

In the presumptive test a series of 9 or 15 tubes of Medium are inoculated with measured amounts of water to see if the water contains any lactose-fermenting bacteria that produce gas.

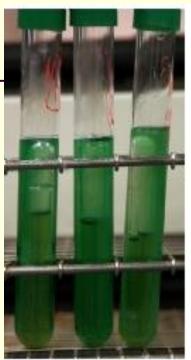

Media used

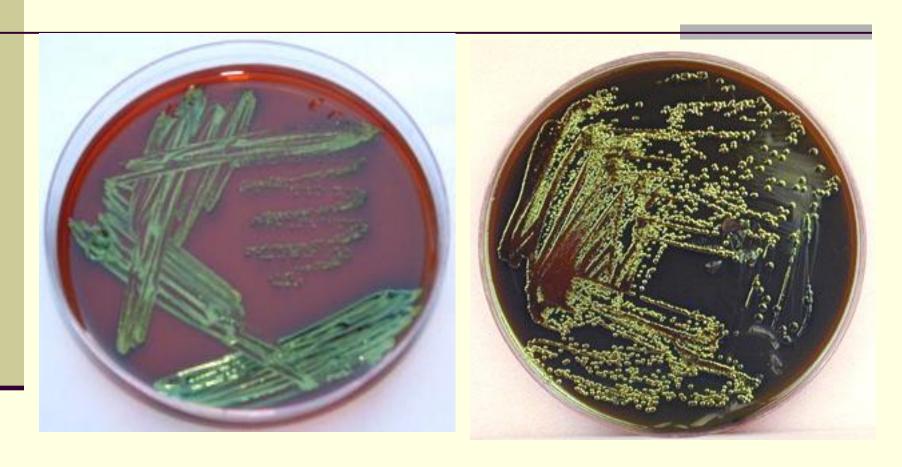
- E. coli broth
- Lactose broth
- MacConky broth
- Brilliant Green Bile Broth


Presumptive test

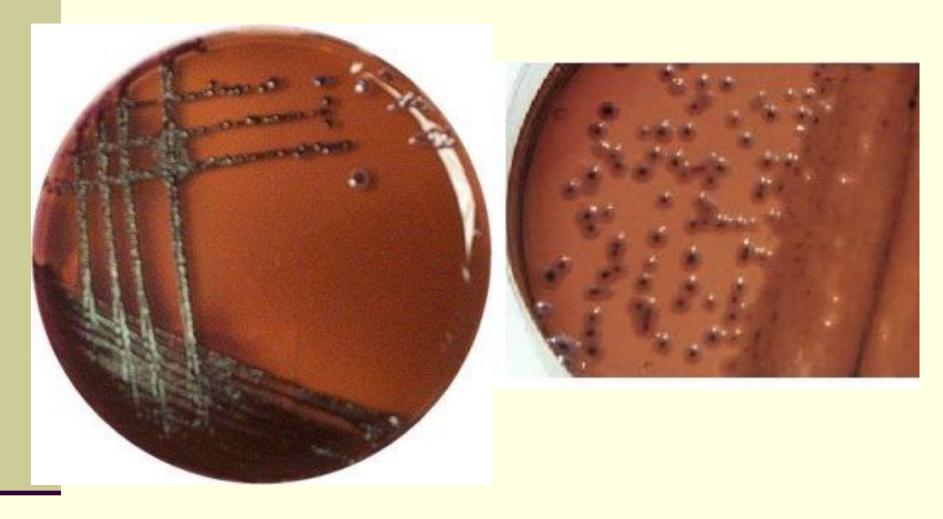




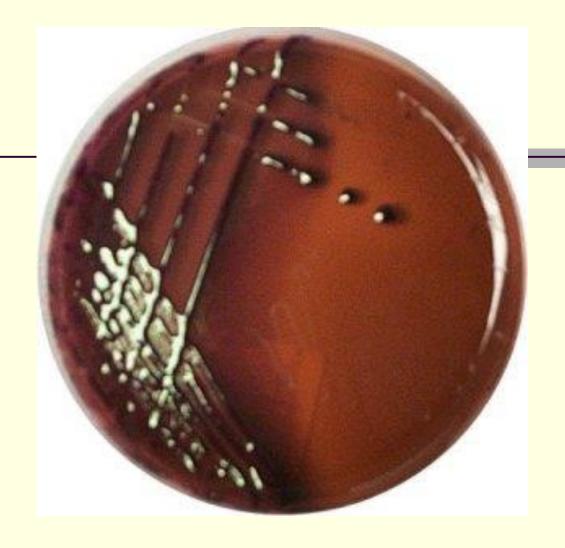




Lactose broth

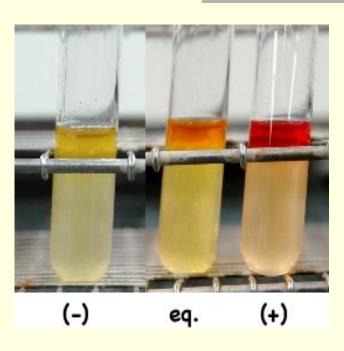

BGBB

	ER OF TUBI VE REACTI	ES GIVING ON OUT OF	MPN INDEX	RCENT NCE LIMITS	
3 of 10 ml each	3 of 1 ml each	3 of 0 .1 ml each	per 100 ml	LOWER	UPPER
001111100000000000000000000000000000000	010011200112200011112223333	1001010101012012012012	3 4 7 7 11 11 9 14 15 21 23 39 64 43 75 120 93 150 240 460 1100	<pre><0.5 <0.5 <0.5 <0.5 13313374047574305361710 150 150</pre>	9 13 20 21 23 36 36 36 37 44 47 130 230 380 210 230 380 440 470 1300 2400 4800


Confirmatory test

E. coli on EMB

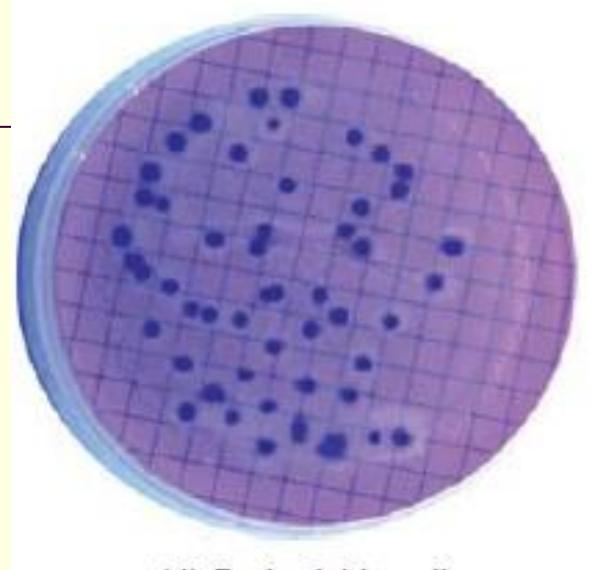
Enterobacter aerogenes Growing on EMB, colonies are less darksurrounded by a wide, light mucoid



Klebsiella which ferment lactose but accumulate less acid, with dark colonies

Complete test

Fecal Coliforms that produce acid and gas from lactose at 44.5± 0.2°C within 24±2h, also known as faecal coliforms due to their role as faecal indicators.


Some Rapid Methods for Coliform Detection

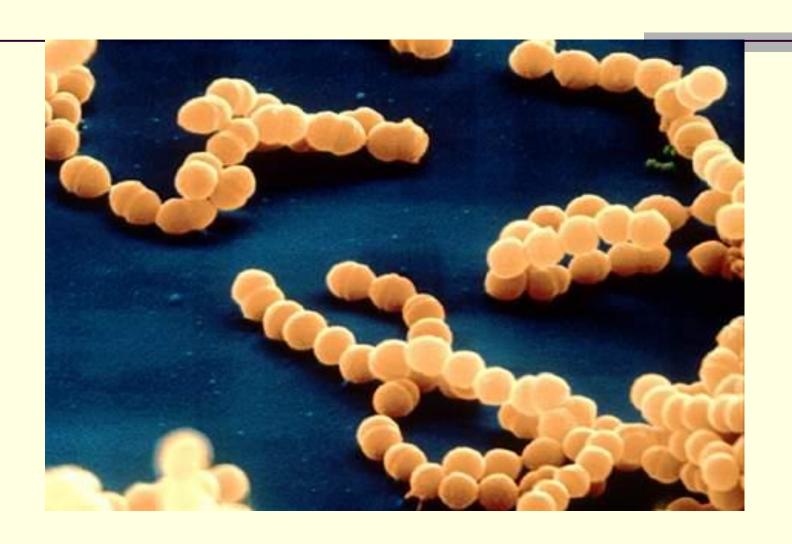
Enzymatic assays provide an alternative approach for rapid and sensitive detection of total coliforms

In most tests, the detection of total coliforms is based on the \(\beta \)-galactosidase activity.

The enzyme substrates used are chromogenic substrates such as **ONPG** (o-nitrophenyl-b-D-galactopyranoside), **CPRG** (chlorophenol red-b-D galactopyranoside), **X-GAL** (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside).

Fluorogenic substrates are also used and include 4-methylumbelliferone-D-galactoside (MUGA) or fluorescein-di—D-galactopyranoside (FDG)

(d) Escherichia coli on NA-MUG medium


Faecal streptococci (FS):

Gram-positive, catalase-negative cocci from selective media

(e.g. azide dextrose broth or m Enterococcus agar)

- S. faecalis
- S. faecium
- S. durans
- S. bovis
- S.equinus

Streptococcus faecalis

Fecal streptococci

Azide Dextrose Broth	
Approximate Formula* Per Liter	
Beef Extract	4.5 g
Pancreatic Digest of Casein	7.5 g
Proteose Peptone No. 3	7.5 g
Dextrose	7.5 g
Sodium Chloride	7.5 g
Sodium Azide	0.2 g
Bromo cresol purple	. 0.032g

Presumptive test

Staphylococcs aureus

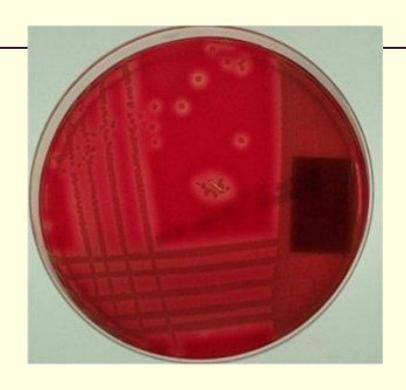
Media Used

- TSA with Pyruvic acid and NaCl
- MSA Mannitol Salt Agar
- BAIRD-PARKER AGAR BASE

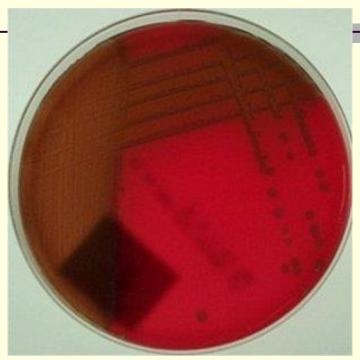
Mannitol Salt Agar

Proteose Peptone	. 10.0 g
■ Beef Extract	1.0 g
■ D-Mannitol	10.0 g
Sodium Chloride	. 75.0 g
Agar	15.0 g
■ Phenol Red	25.0 mg

Staphylococcs aureus on MSA



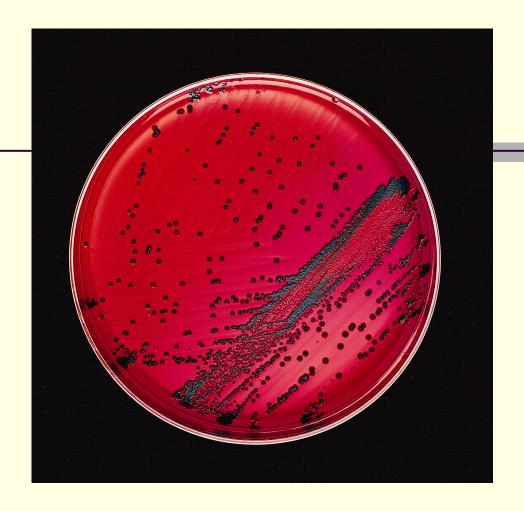
Staphylococcs spp on MSA


Confirmed test

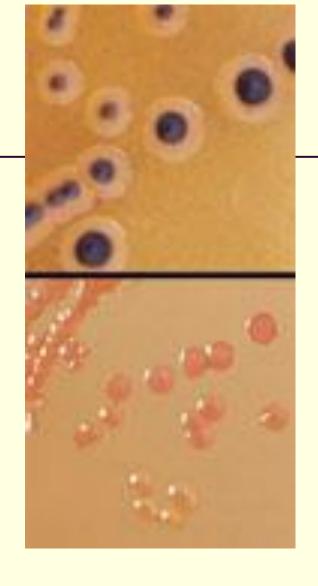
Complete test

Staphylococcs aureus

S. epidermises


S. saprophitics

Salmonella spp.


belong to the family Enterobacteriaceae. They are motile, Gram negative bacilli that do not ferment lactose, but most produce hydrogen sulfide or gas from carbohydrate fermentation.

Media Used

- XLD
- SS Agar
- Selenite F Broth
- Bismuth Sulfite Agar

Salmonella on XLD Agar

Salmonella and Shigella on SS Agar

Clostridium perfringens

- Clostridium perfringens is an obligate anaerobic enteric bacterium.
- Its spores are generally more tolerant to environmental effects than other traditional entericindicators.
- *C. perfringens* has been suggested as an alternative bacterial indicator of fecal pollution because it is primarily associated with human wastes, and it is widely distributed in feces, sewage, and polluted waters.

Media Used

- Fluid Thioglycollate Medium
- Typical Composition (g/litre)

Peptone from casein 15.0; yeast extract 5.0; D(+) glucose 5.5; L-cystine 0.5; sodium chloride 2.5; sodium thioglycollate 0.5;

نتائج التحليل الميكربيولوجى لعينات مياه الشرب بشبكة مياه جامعة أسيوط

التحليل البكتريولوجي						AND THE PERSON NAMED IN		
الهوائي اللاهوائي					مصدر المياه	م		
Colysirs	E.M.B	.Mac Agar	Mac D.S	broth S.S	Viable Count			
-ve	-ve	-ve	-ve	-ve	-ve	بئر ١ المساكن الغربية	1	
-ve	-ve	-ve	-ve	-ve	+ve nonPath	بئر ٢ المساكن الغربية	۲	
-ve	-ve	-ve	-ve	-ve	-ve	الخزان العالى - المساكن الغربية	٣	
-ve	-ve	-ve	-ve	-ve	-ve	بيارة السحب للمحطة النقابي	£	
-ve	-ve	-ve	-ve	-ve	-ve	مخرج المحطة النقالى الغربية	٥	
-ve	-ve	-ve	-ve	-ve	+venon Path	بئر الهندسة	٦	
-ve	-ve	-ve	-ve	-ve	-ve	بئر البوابة البحرية	٧	
-ve	+ve	+ve	+ve	+ve	+vePath	بئر الاستاد الرياضي	٨	
+ve	+ve	+ve	+ve	+ve	+vepath	بئر مزرعة الانتاج الحيواني	٩	
+ve	+ve	+ve	+ve	+ve	+vePath	صنبور مزرعة الانتاج الحيواني	1.	
-ve	-ve	-ve	-ve	-ve	-ve	كلية العلوم	11	
-ve	-ve	-ve	-ve	-ve	-ve	كلية الزراعة	17	
-ve	-ve	-ve	-ve	-ve	-ve	كلية الطب البيطرى	17	
-ve	-ve	-ve	-ve	-ve	-ve	كلية الهندسة	1 5	
+ve	-ve	-ve	-ve	-ve	-ve	المستشفى الجامعي	10	
-ve	-ve	-ve	-ve	-ve	-ve	المدينة طلاب	17	
-ve	-ve	-ve	-ve	-ve	-ve	المدينة طالبات	1 1	
-ve	-ve	-ve	-ve	-ve	-ve	المسكن الشرقية	1 /	
-ve	-ve	-ve	-ve	-ve	-ve	المساكن الغربية	19	
-ve	-ve	-ve	-ve	-ve	-ve	المستشفى البيطرى	۲.	
-ve	-ve	-ve	-ve	-ve	-ve	استراحة أعضاء هيئة التدريس	11	
-ve	-ve	-ve	-ve	-ve	-ve	المسموح به عالمياً		

نتائج الفحص البكتريولوجي لمصادر المياه المختلفة بمنطقة عرب المدابغ

E.M.B Mac Conkey		Mac.Conkey broth		العدد الكلي	أسم الموقع	
-	Agar	D.S	S.S	Viable Count		
+Ve	+Ve	+Ve	+Ve	Path ++	مدخل محطة المعالجة	
+Ve	. +Ve	+Ve	+Ve	Path ++	مدخل محطة المعالجة مختلط	
+Ve	+Ve	+Ve	+Ve	Path ++	مفرج المحطة المعالجة قبل الكلور	
+Ve .'	+Ve	+Ve	+Ve	Path ++	الترعة المجاورة لمحطة المعالجة ٥,١٥م	
egellen	سالي	maller	سالب	grouth	طلمية خاصة بقرية (أبو القاسم)	
+Ve	+Ve	+Ve	+Ve	Path ++	ترعة الصرف المدابغ عند منقباد	
+Ve	+Ve	+Ve	+Ve	Path ++	ترعة نجع حمادى (الزنار)	
+Ve	+Ve	+Ve	+Ve	Path +	مدخل محطة تنقية مياه الشرب (على ترعة الزنار)	
سالب	willow	سالب	سالب	سالب	مياه خارجية من المحطة السابقة	
+Ve	+Ve	+Ve	+Ve	Path ++	بداية ترعة المدابغ	
+Ve	+Ve	+Ve	+Ve	Path ++	ترعة المدابغ على بعد عكم	
سالب	سالب	سالب	سالب	سائب		
سمالعب	سالب	معاليه	ممالب	سالب	ستشفى علوان بئر رقم (٢)	
سالب	سالب	سالب	سائب	سائب	مستشفى علوان بئر رقم (٣)	
+Ve	+Ve	+Ve	+Ve	Path ++	مستشفى علوان (مياه المخرج)	
+Ve	+Ve	+Ve	+Ve	Path ++	علصوان ترعة نجع حمادی (علوان)	

و الحمد لله رب العالمين