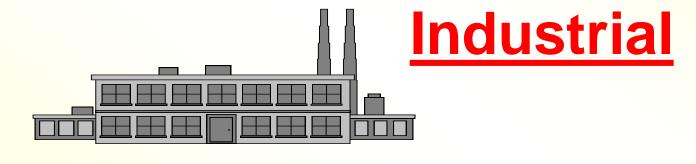
Anaerobic Sludge Digestion Process

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit


WASTEWATER

Water used to carry waste products away from homes, schools, commercial establishments, and industrial enterprises.

Sources of Wastewater

CHARACTERISTICS OF WASTEWATER

Materials Toxic to Biota

Metals

Ammonia

Pesticides

Herbicides

Chlorine

Acids/Bases

Human Health Hazards

Pathogens Nitroto

Nitrate

Toxic Materials

GOAL – PURPOSE – RESPONSIBILITY Of "Treating" or Stabilizing Wastewater

PROTECTION OF NATURAL RESOURCES

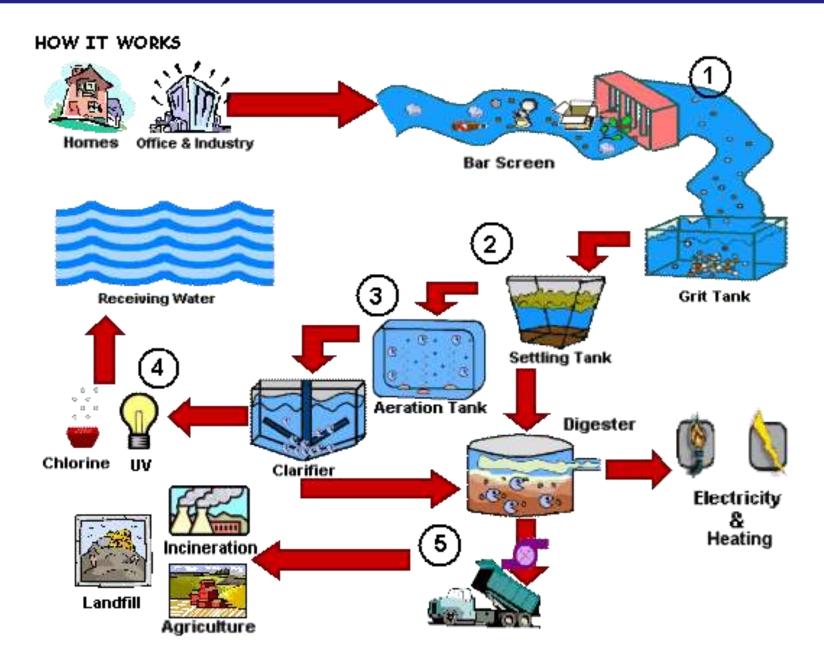
PROTECTION OF PUBLIC HEALTH

CHARACTERISTICS OF WASTEWATER

Treatment Concerns

Solids ...

Oxygen Demand


Nutrients

Microorganisms

Wastewater "Treatment" Removes These "Pollutants"

Wastewater Treatment Processes

Physical / Chemical

- screening
- sedimentation
- filtration
- precipitation
- chemical destruct

Biological

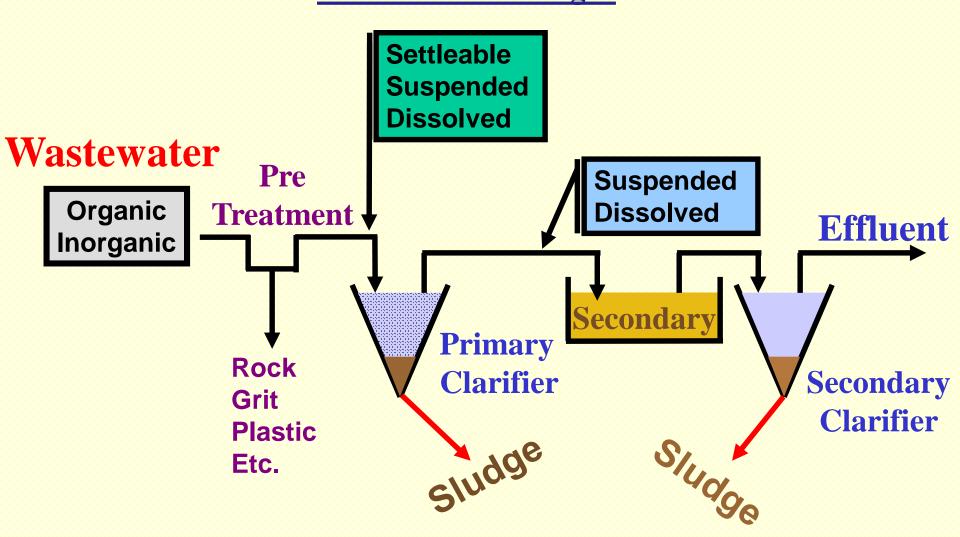
- waste stabilization lagoon
- trickling filter
- rotating biological contactor
- activated sludge

<u>Treatment Efficiencies</u>

Primary (Physical) Treatment

40 - 60 % Suspended Solids

30 - 40 % BOD


Secondary (Biological) Treatment

90+ % Suspended Solids

90+ % BOD

Removal of These "Pollutants" Produces "Residuals" Often called "Sludge"

Note: These residuals are sometimes called "Biosolids", however that term is usually reserved for sludge that has been "stabilized" and meets specific requirements (pathogen reduction, vector attractions, metals concentration)

SLUDGE

The SETTLEABLE solids separated from liquids during processing.

SLUDGE CHARACTERISTICS

- Organic /Inorganic
 - Oxygen Demand
 - Odors
 - Nutrients
 - Pathogens
 - Mostly Water

Purpose of 'Treatment'

- Stabilize Organics
- •Eliminate Odors
- Destroy Pathogens
- Reduce Amount of Solids
- Enhance De-watering

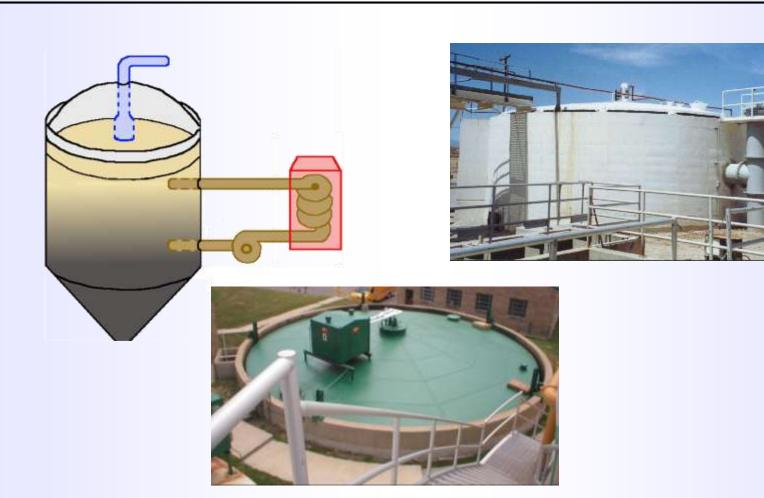
TYPES of "TREATMENT"

- > Heat and Pressure
- > Heat and Chemical
- > Lime Stabilization
- > Biological Digestion

Types of Digestion

AEROBIC DIGESTION

AEROBIC DIGESTION


Advantages

Effective for "secondary" sludge Simple operation No hazardous gas production

Disadvantages

Higher operating costs
High energy demands
No burnable gas
Higher organic content

ANAEROBIC DIGESTION

ANAEROBIC DIGESTION

Advantages

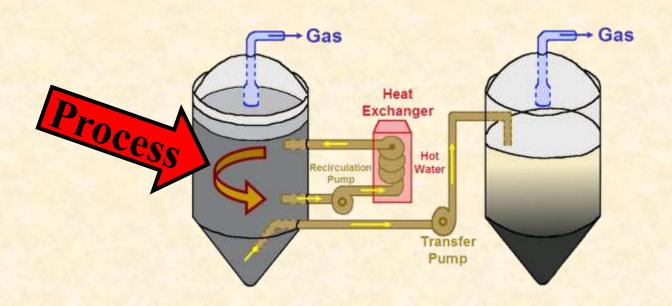
Low operating costs
Proven effectiveness
Burnable gas produced

Disadvantages

Long start-up time
Affected by changes in
loading and conditions
Explosive gas produced

ANAEROBIC SLUDGE DIGESTION

DIGESTION PROCESS

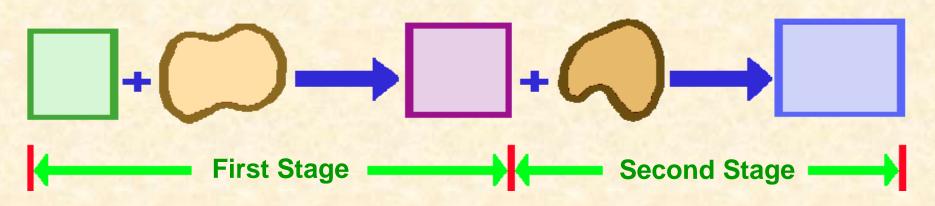

Anaerobic Digestion Process "TWO-STAGE" Process OR "Two Phase" Process

Anaerobic Digestion

Process

"TWO-STAGE" Process

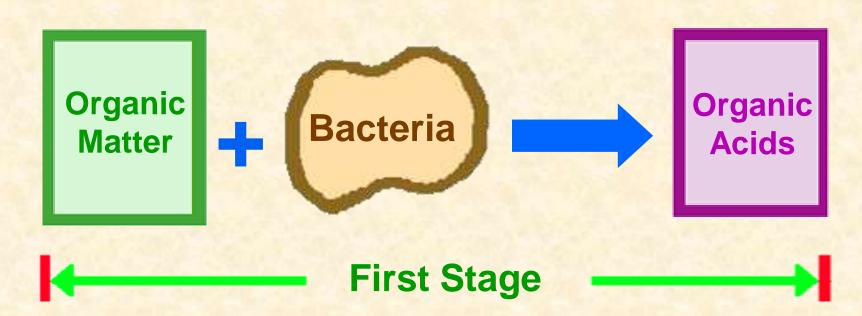
This Does Not Mean Two Tanks


Anaerobic Digestion

Process

"TWO-STAGE" Process
OR

"Two Phase" Process


Two Types of Bacteria
Each Relying On The Other

First

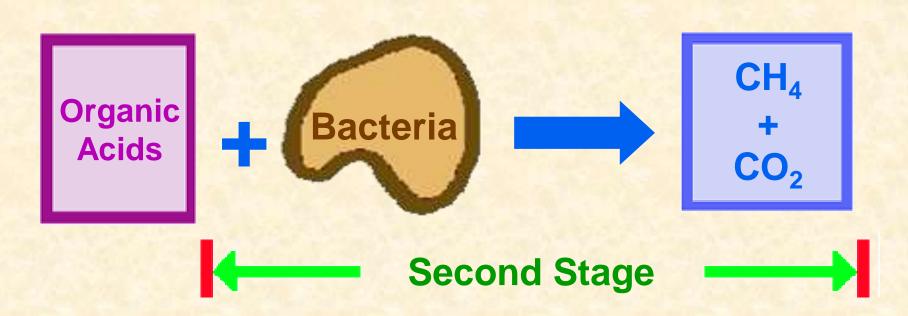
Organic Material Changed
By Acid Forming Bacteria

To Simple Organic Material

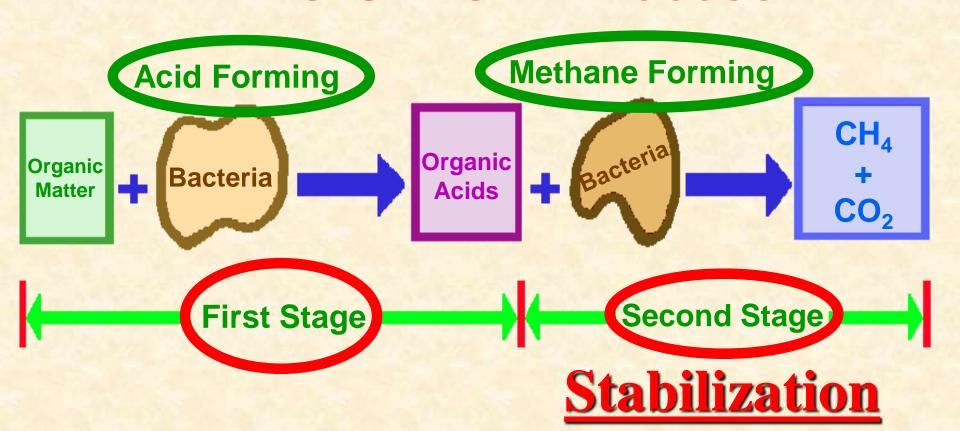
First

Organic Material Changed

By Acid Forming Bacteria


To Simple Organic Material

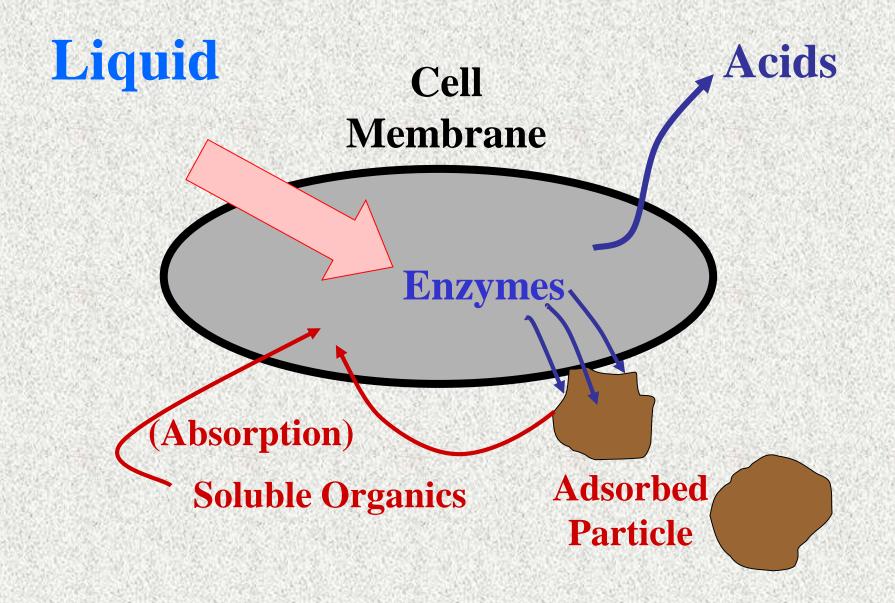
Also Called Volations Acids


Second

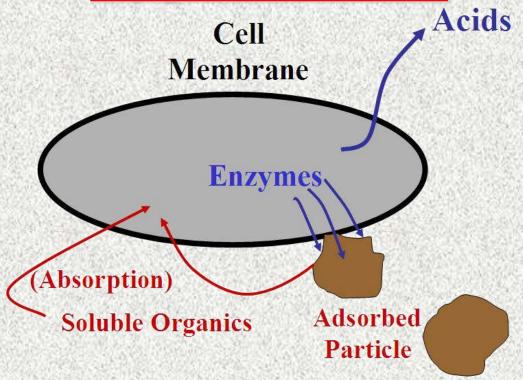
Methane-Forming Bacteria
Use Organic Acids

Produce Carbon Dioxide and Methane

Continuous Process "TWO-STAGE" Process


Type of Food

Organic


Inorganic

Soluble

Insoluble

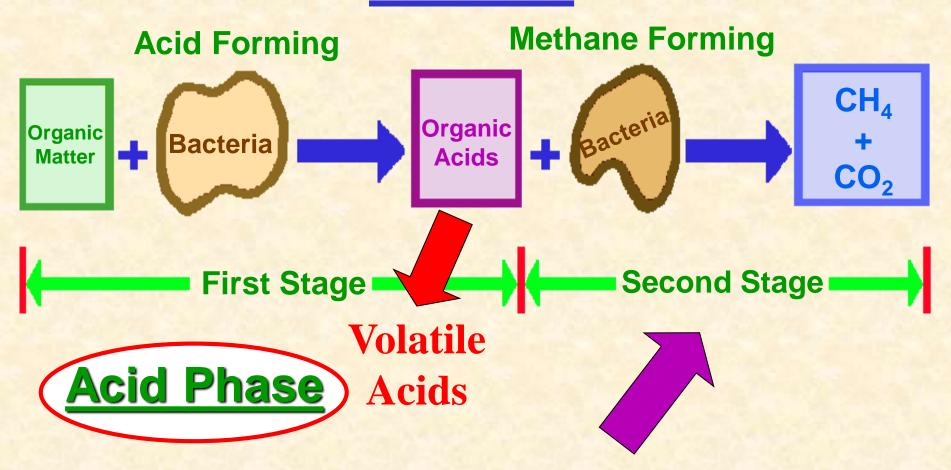
Type of Food

Not All Organic Material Broken Down

Poor Food - Not Readily Degradable Inert Solids - Plastics, etc.

40 to 60 % of Organics are Reduced

Anaerobic Digestion


Process

"TWO-STAGE" Process
OR

"Two Phase" Process

Two Types of Bacteria
Each Relying On The Other

Must Be In
Balance!

Acids Used at Rate Produced

Acids Used at Rate Produced

```
If Not Used - Drop in pH
```

Start-up

Upset

"Sour"

"Stuck"

Methane Formers Must Be Active

Methane Formers:

Slow Growers

Very Sensitive to Changes

Loading

pH

Temperature

Digester Operation Depends On Maintaining Proper Environment for

METHANE FORMERS

BALANCE!

Products of Digestion

1. Gases

7 to 12 cubic feet per pound of volatile destroyed

Methane (CH₄)

65 to 70 %

Carbon Dioxide (CO₂) 30 to 35 %

500 to 600 BTU per cubic foot

Can Be Utilized:

Heating Digester

Heating Buildings

Running Engines

Electrical Power

Anaerobic Digestion Process

Products of Digestion

2. Scum

Lighter Solids

Floating from Gas Entrapment
Builds Up If MIXING Is Inadequate

Not Digested (Separated from Bacteria) Reduces Digester Capacity Plugs Piping Plugs Vents and Flame Traps

Anaerobic Digestion Process Products of Digestion

3. Supernatant

Liquid That Leaves Digester

Two Sources of Water In Digester:

Water Pumped In

Water Formed During Digestion

Recycled Through Treatment Plant

High In:

Solids

BOD

Ammonia

Anaerobic Digestion Process Products of Digestion

3. Supernatant Liquid That Leaves Digester

Should Be Removed
Frequently
in
Small Quantities

Anaerobic Digestion Process

Products of Digestion

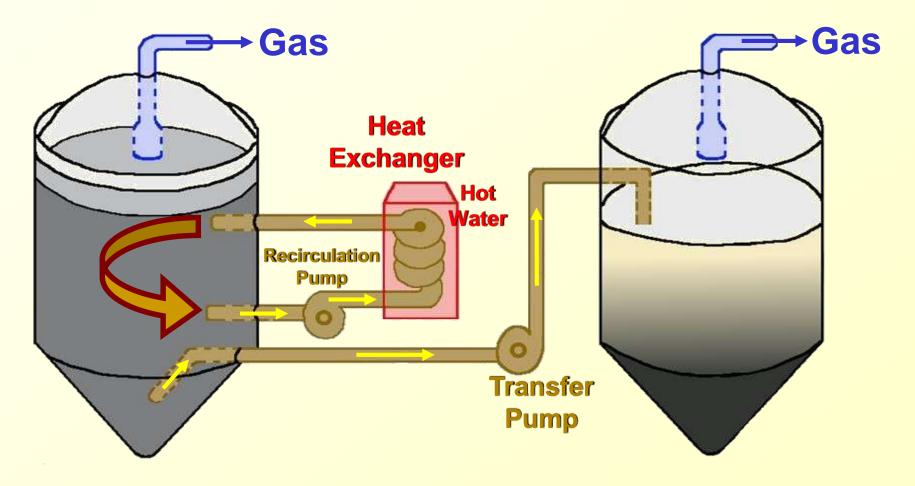
4. Digested Sludge

Final Product

Inorganic Solids
Volatile (Organic) Solids - Not Easily Digested

"Stabilized"

Well Digested Sludge Characteristics


- 1. Less Solids
- 2. Lumpy Appearance
 - 3. Black
- 4. Less Objectionable Odor
- 5. Volatile Content Reduced

Anaerobic Digestion Process

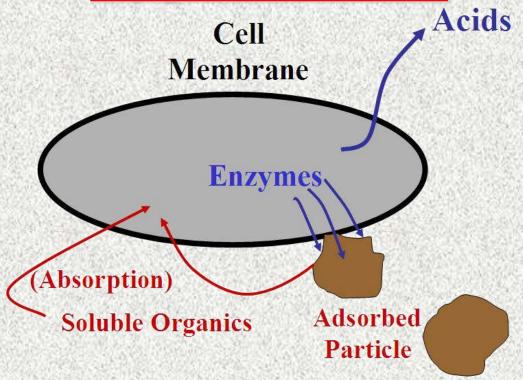
Products of Digestion

- 1. Gases
 Methane (CH₄)
 Carbon Dioxide (CO₂)
- 2. Scum Lighter Solids
- 3. Supernatant Liquid Removed
 - 4. Digested Sludge "Stabilized"

TYPICAL "Two-Stage" ANAEROBIC DIGESTER SYSTEM

Note: Two-Stage System here refers to two separate tanks (One for the treatment process and one for water-solids separation)

- 1.Bacteria
- 2. Food
- 3. Loading
- 4. Contact
- 5. Environment


1. BACTERIA

Naturally Occurring
Must Have Enough
Living Organisms
Two Different Types
BALANCE

The Other Factors –Important Because They Affect the Bacteria

- 1. BACTERIA Balance
- 2. FOOD Volatile Solids

Type of Food

Not All Organic Material Broken Down

Poor Food - Not Readily Degradable Inert Solids - Plastics, etc.

40 to 60 % of Organics are Reduced

- 1. BACTERIA Balance
- 2. FOOD

Volatile Solids
Not All Volatile Material
None of the Inorganic

- 1. BACTERIA Balance
- 2. FOOD Volatile Solids
- 3. LOADING

3. LOADING

AMOUNT

Applied to the Treatment Process

Related to the SIZE of the System

- 1. BACTERIA Balance
- 2. FOOD Volatile Solids
- 3. LOADING

Amount and Type

Concentration of Sludge (% Total Solids)

Amount Usable in Sludge (%Volatile)

Amount (pounds) of Volatile per Volume Available

Volume (gallons) of Sludge per Volume Available

- 1. BACTERIA Balance
- 2. FOOD Volatile Solids
- 3. LOADING Amount and Type
- 4. CONTACT Mixing

<u>MIXING</u>

- 1. CONTACT
 Bacteria and Food
- 2. HEAT DISTRIBUTION Even Throughout
- 3. MINIMIZE SETTLING
 Reduces Available Volume
- 4. MINIMIZE SCUM
 Operational Problems

Digestion Factors MIXING

- 1. CONTACT
- 2. HEAT DISTRIBUTION
- 3. MINIMIZE SETTLING
- 4. MINIMIZE SCUM

Maximize Digestion Efficiency

- 1. BACTERIA Balance
- 2. FOOD Volatile Solids
- 3. LOADING Amount and Type
- 4. CONTACT Mixing
- 5. ENVIRONMENT Happy Bugs

Methane Forming Bacteria Are Very Sensitive to Conditions In the Digester

- 1. ANAEROBIC No Oxygen
- 2. TEMPERTURE

TEMPERATURE

Temperature controls activity of bacteria.

Psychrophilic

50° F to 68° F

Mesophilic

68° F to 113° F

Best 85° F to 100° F

Thermophilic

Above 113° F

Best 120° F to 135° F

TEMPERATURE

Temperature controls activity of bacteria.

Mesophilic

Most Anaerobic Digesters Are Operated in the Best 85° F to 100° F to 100°

Within the Range, the Bacteria are Very Sensitive to Temperature CHANGE

TEMPERATURE

Temperature controls activity of bacteria.

Mesophilic 68° F to 113° F Best 85° F to 100° F

Temperature Should Not Be Allowed to CHANGE

by More Than 1 Degree per Day

(After Start-up)

- 1. ANAEROBIC No Oxygen
- 2. TEMPERTURE

Mesophilic - Constant

3. pH

Best - 6.8 to 7.2

4. VOLATILE ACIDS

Not Excessive

5. BUFFERS (Alkalinity)

Incoming Sludge and Created

- 1. ANAEROBIC No Oxygen
- 2. TEMPERTURE

ACID Production INCREASED

3. pH OR

ALKALINITY DECREASED

- 4. VOLATILE ACIDS
 Sudden Changes
 Not Excessive
 Toxic Materials
- 5. BUFF 只是 (Alkalinity)

Incoming Sludge and Created

- 1. ANAEROBIC No Oxygen
- 2. TEMPERTURE

 Mesophilic Constant
- 3. pH
 Best 6.8 to 7.2
- 4. VOLATILE ACIDS

Not Excessive

- 5. BUFFERS (Alkalinity)
 Incoming Sludge and Created
- 6. TOXIC MATERIALS

Inhibit Biological Activity

OPERATION AND CONTROL BALANCE!

Maintaining Suitable Conditions

Maintaining Definite Ranges and Ratios

Organic (Solids) Loading
Alkalinity
Volatile Acids
Temperature
Mixing

- 1. BACTERIA
- 2. FOOD
- 3. LOADING
- 4. CONTACT
- 5. ENVIRONMENT

OPERATION AND CONTROL

1. BACTERIA

Maintain Adequate Quantity

Don't Remove Too Much Don't Displace Too Much Plan For Re-Start

OPERATION AND CONTROL

2. FOOD

Minimize Amount of Inorganics Entering

Industrial Discharges Grit Systems

Eliminate Toxic Material

<u>OPERATION AND CONTROL</u>

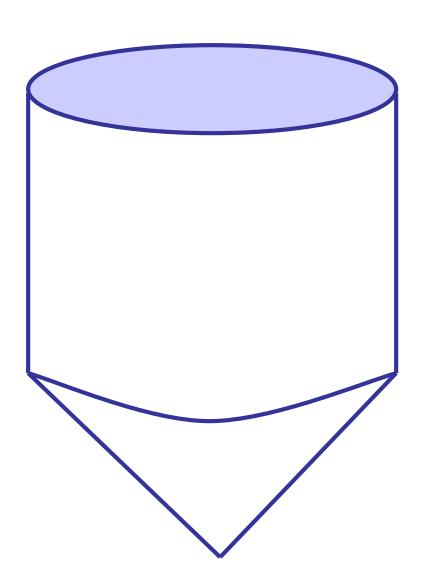
3. LOADING

AMOUNT

Applied to the Treatment Process

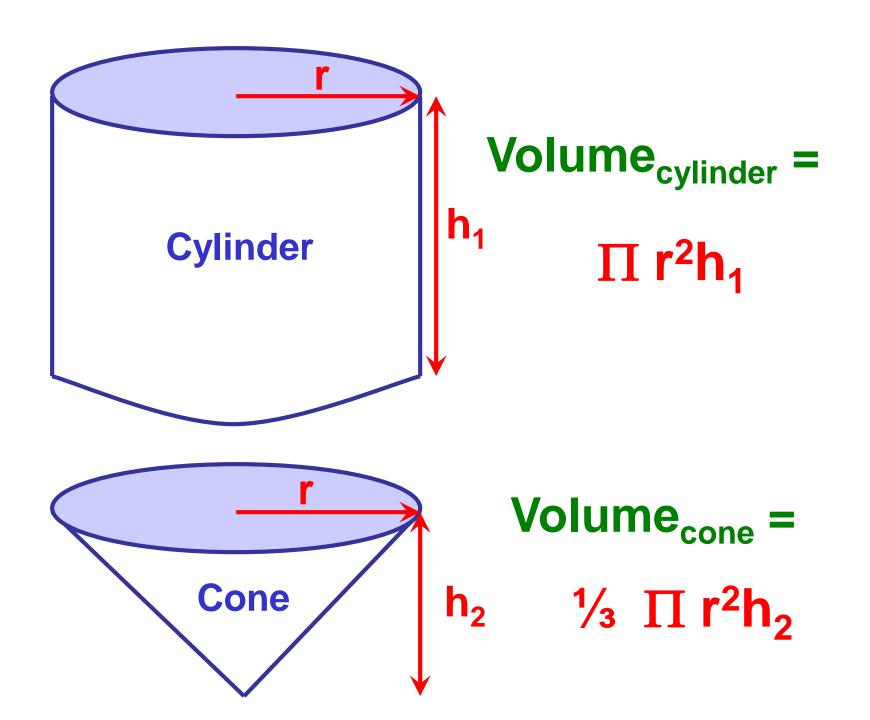
Related to the SIZE of the System

3. LOADING


AMOUNT

Applied to the Treatment Process

Related to the SIZE of the System


For An Anaerobic Digestion System –
The SIZE Is The VOLUME
Available for Digestion

(Volume - Cubic Feet OR Gallons)

Calculation of Digester Volume

?

Digester Volume Example Problem

The diameter of a digester is 54 feet.
The side water depth (SWD) is 22 feet.
The cone depth is 12 feet.
Calculate the volume in cubic feet and gallons.

Volume_{cylinder} =
$$\Pi r^2h_1$$

= 3.14 X 27 ft X 27 ft X 22 ft
= 50,360 ft³
Volume_{cone} = $\frac{1}{3}\Pi r^2h_2$
= $\frac{1}{3}X$ 3.14 X 27 ft X 27 ft X 12 ft
= 9,156 ft³

Digester Volume Example Problem

Total Volume = Volume_{cylinder} + Volume_{cone}

 $= 50,360 \text{ ft}^3 + 9,156 \text{ ft}^3$

 $= 59,516 \text{ ft}^3$

Total Volume (gallons) = cubic feet X 7.48 gal/ft³

 $= 59,516 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3$

= 445,180 gallons

The diameter of a digester is 50 feet.
 The side water depth (SWD) is 20 feet.
 The cone depth is 10 feet.
 Calculate the volume in cubic feet and gallons.

2. Calculate the volume in gallons of a digester 35 feet in diameter, 12 feet SWD and a cone depth of 6 feet.

Work Calculations on Separate Paper Answers Given on Next Slides

The diameter of a digester is 50 feet.
 The side water depth (SWD) is 20 feet.
 The cone depth is 10 feet.
 Calculate the volume in cubic feet and gallons.

Volume_{cylinder} =
$$\Pi r^2h_1$$

= 3.14 X 25 ft X 25 ft X 20 ft
= 39,250 ft³
Volume_{cone} = $\frac{1}{3}\Pi r^2h_2$
= $\frac{1}{3}X$ 3.14 X 25 ft X 25 ft X 10 ft
= 6,542 ft³

The diameter of a digester is 50 feet.
 The side water depth (SWD) is 20 feet.
 The cone depth is 10 feet.
 Calculate the volume in cubic feet and gallons.

Total Volume = Volume_{cylinder} + Volume_{cone}
=
$$39,250 \text{ ft}^3 + 6,542 \text{ ft}^3$$

= $45,792 \text{ ft}^3$

Total Volume (gallons) = cubic feet X 7.48 gal/ft³

$$= 45,792 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3$$

2. Calculate the volume in gallons of a digester 35 feet in diameter, 12 feet SWD and a cone depth of 6 feet.

Volume_{cylinder} =
$$\Pi r^2 h_1$$

= 3.14 X 17.5 ft X 17.5 ft X 12 ft
= $11,539.5$ ft³
Volume_{cone} = $1/3$ $\Pi r^2 h_2$
= $1/3$ X 3.14 X 17.5 ft X 17.5 ft X 6 ft
= $1,923$ ft³

2. Calculate the volume in gallons of a digester 35 feet in diameter, 12 feet SWD and a cone depth of 6 feet.

Total Volume = Volume_{cyl} + Volume_{cone}
=
$$11,539.5 \text{ ft}^3 + 1,923 \text{ ft}^3$$

= $13,462.5 \text{ ft}^3$

Total Volume (gallons) = cubic feet X 7.48 gal/ft³

 $= 13,462.5 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3$

= 100,700 gallons

"LOADING"

Amount Applied to the Treatment Process

Related to the SIZE of the System

Hydraulic Loading

Amount of Sludge Added Volume (gallons)

Organic Loading
Amount of VOLATILE Solids added
Weight (pounds)

Digester Hydraulic Loading

AVERAGE TIME

(in Days)

that the liquid stays in the digester

Digester Hydraulic Loading

AVERAGE TIME (in Days) that the <u>liquid</u> stays in the digester

Minimum Time Required: Proper Digestion

Convert Solids Acids to Gas

Varies

Digester Efficiency
Type of Waste

Holding Time Increased by Thickening

Digester Hydraulic Loading

AVERAGE TIME

(in Days)

that the liquid stays in the digester

Hydraulic Loading = Digester Volume Feed Volume

Hydraulic Loading =

Gallons/Day

Detention Time

EXAMPLE

At an average pumping rate of 4,000 gallons per day into a 140,000 gallon digester, the detention time would be:

Detention Time =

140,000 gallons 4,000 gallons/day

= 35 Days

- 1. Calculate the Detention Time for a 120,000 gallon digester that receives 3,200 gallons of sludge per day.
- 2. Calculate the **Detention Time** for a 260,000 gallon digester that receives 7,200 gallons of sludge per day.

3. Calculate the Detention Time for a 12,000 cubic foot digester that receives 2,500 gallons of sludge per day.

Work Calculations on Separate Paper Answers Given on Next Slides

1. Calculate the **Detention Time** for a 120,000 gallon digester that receives 3,200 gallons of sludge per day.

2. Calculate the **Detention Time** for a 260,000 gallon digester that receives 7,200 gallons of sludge per day.

3. Calculate the Detention Time for a 12,000 cubic foot digester that receives 2,500 gallons of sludge per day.

"LOADING"

Amount Applied to the Treatment Process

Related to the SIZE of the System

Hydraulic Loading

Amount of Sludge Added Volume (gallons)

Detention Time

Digester Volume
Feed Volume

OR

Gallons/Day

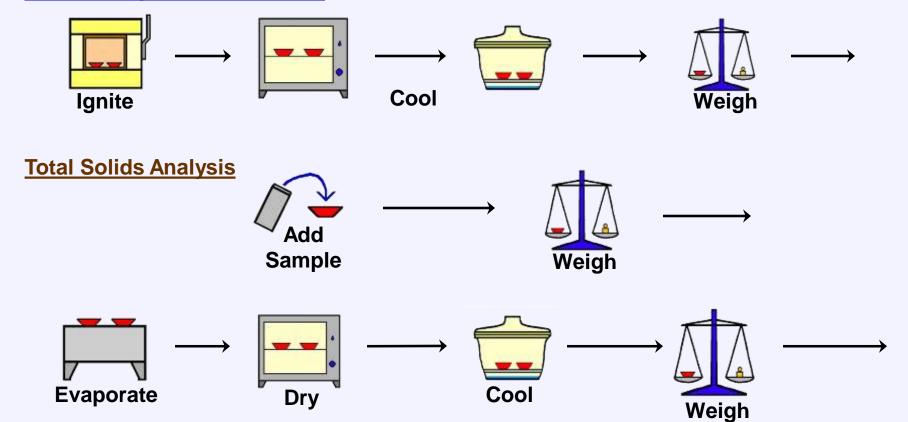
"LOADING"

Amount Applied to the Treatment Process

Related to the SIZE of the System

Hydraulic Loading

Amount of Sludge Added Volume (gallons)

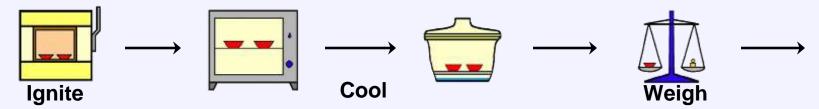

Organic Loading
Amount of VOLATILE Solids added
Weight (pounds)

PERCENT TOTAL SOLIDS

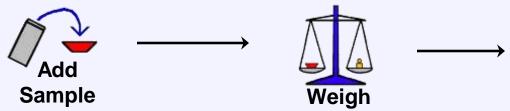
Outline of Solids Analysis Procedure

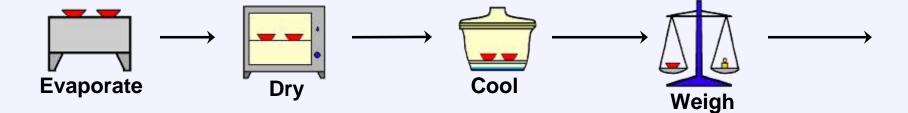
SLUDGE SOLIDS PROCEDURE

Evaporating Dish Preparation

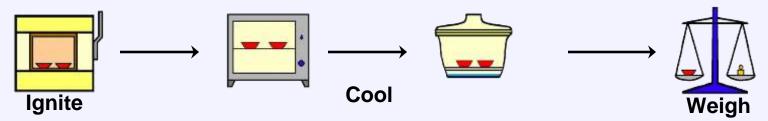

Percent Total Solids

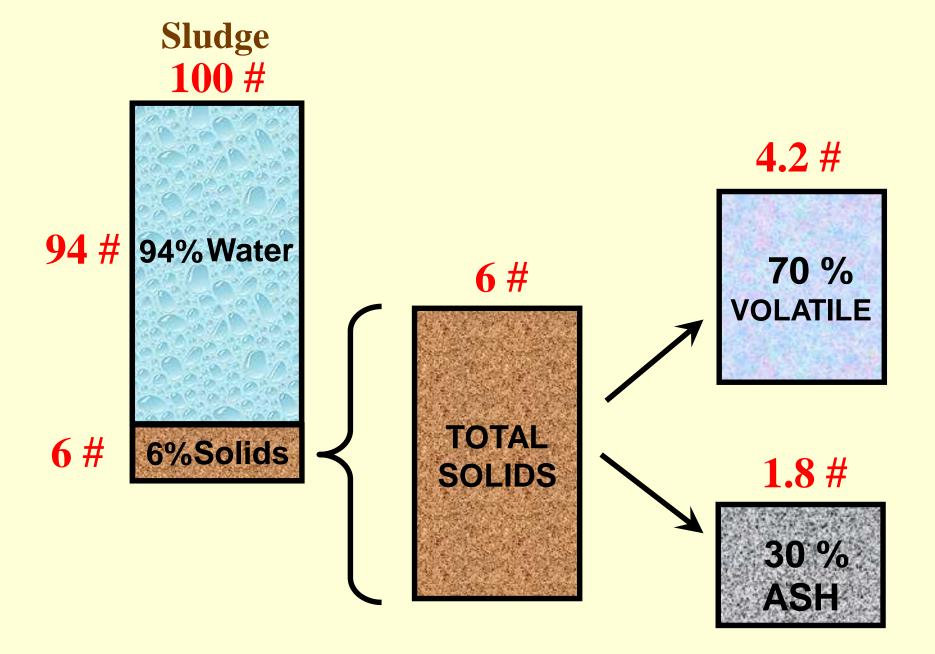
% Total Solids =
$$\frac{\text{Wt. Of (Dry) Solids}}{\text{Wt. Of (Wet) Sample}}$$
 X 100%


% Total Solids =
$$\frac{Dry}{Wet}$$
 X 100%


SLUDGE SOLIDS PROCEDURE

Evaporating Dish Preparation

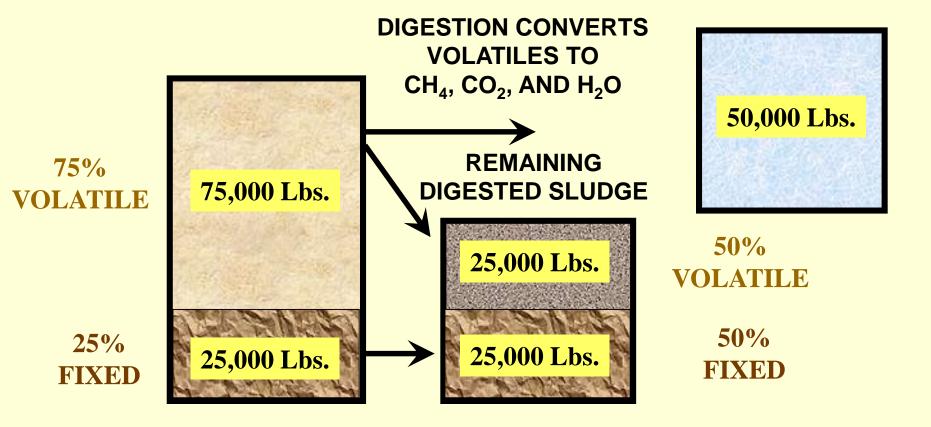




Volatile Solids Analysis

Percent Volatile Solids

% Volatile Solids =
$$\frac{Dry - Ash}{Dry}$$
 X 100%



SLUDGE SOLIDS DIAGRAM

BEFORE DIGESTION

100,000 Lbs. RAW SLUDGE (Dry Weight)

AFTER DIGESTION CH₄, CO₂, H₂O

TYPICAL RESULTS OF THE DIGESTION PROCESS

"LOADING"

Amount Applied to the Treatment Process

Related to the SIZE of the System

Organic Loading

Amount of VOLATILE Solids added Weight (pounds)

Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 8,000 GALLONS SOLIDS CONCENTRATION 4.2% VOLATILE SOLIDS 82%

LBS DRY SOLIDS =

$$= 8,000 \frac{\text{GAL}}{\text{GAL}} \times 8.34 \frac{\text{LBS}}{\text{GAL}} \times \frac{4.2}{100}$$

$$= 8,000 \times 8.34 \times 0.042$$

= 2,802 POUNDS DRY SOLIDS

Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 8,000 GALLONS

SOLIDS CONCENTRATION 4.2%

VOLATILE SOLIDS 82%

LBS VOLATILE SOLIDS =

LBS DRY SOLIDS X % VOLATILE SOLIDS

 $= 2,802 LBS DRY SOLIDS X \frac{82}{100}$

 $= 2,802 \times 0.82$

= 2,298 POUNDS VOLATILE SOLIDS

1. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 7,500 GALLONS

SOLIDS CONCENTRATION 3.6%

VOLATILE SOLIDS 78%

2. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 6,000 GALLONS

SOLIDS CONCENTRATION 3.0%

VOLATILE SOLIDS 73%

Work Calculations on Separate Paper Answers Given on Next Slides

1. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 7,500 GALLONS

SOLIDS CONCENTRATION 3.6%

VOLATILE SOLIDS 78%

LBS DRY SOLIDS =

$$= 7,500 \frac{\text{GAL}}{\text{GAL}} \times 8.34 \frac{\text{LBS}}{\text{GAL}} \times \frac{3.6}{100}$$

$$= 7,500 \times 8.34 \times 0.036$$

= 2,252 POUNDS DRY SOLIDS

1. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 7,500 GALLONS

SOLIDS CONCENTRATION 3.6%

VOLATILE SOLIDS 78%

LBS VOLATILE SOLIDS =

LBS DRY SOLIDS X % VOLATILE SOLIDS

$$= 2,252 LBS DRY SOLIDS X \frac{78}{100}$$

 $= 2,252 \times 0.78$

= 1,756.6 POUNDS VOLATILE SOLIDS

2. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 6,000 GALLONS SOLIDS CONCENTRATION 3.0% VOLATILE SOLIDS 73%

LBS DRY SOLIDS =

$$= 6,000 \frac{\text{GAL}}{\text{GAL}} \times 8.34 \frac{\text{LBS}}{\text{GAL}} \times \frac{3.0}{100}$$

$$= 6,000 X 8.34 X 0.030$$

= 1501 POUNDS DRY SOLIDS

2. Given the following information, calculate the pounds of dry solids and the pounds of volatile solids:

VOLUME OF SLUDGE 6,000 GALLONS SOLIDS CONCENTRATION 3.0% VOLATILE SOLIDS 73%

LBS VOLATILE SOLIDS =

LBS DRY SOLIDS X % VOLATILE SOLIDS

$$= 1,501 LBS DRY SOLIDS X \frac{73}{100}$$

 $= 1,501 \times 0.73$

= 1,095.7 POUNDS VOLATILE SOLIDS

ORGANIC LOADING CALCULATIONS

Organic (Solids) Loading Rate

Amount of <u>Volatile</u> Solids Added per Day Compared to the Size (volume) of the Digester

Organic Loading Rate = Amount of V.S. Volume of Digester

Pounds of Volatile Solids per Day per <u>Cubic Foot</u> 0.02 to 0.10 # Vol. Solids/Day/Ft³

Sometimes as
Pounds of Volatile Solids per Day per 1000 Cubic Feet
20 to 100 # Vol. Solids/Day/1000Ft³

Digester Organic Loading

AMOUNT

of Organic Solids added to a digester related to the

SIZE

of the digester.

O.L. = Amount of Organic Solids
Digester Volume

O.L. = Volatile Solids, pounds /day

Digester Volume, cubic feet

Digester Organic Loading

Data:

Digester Volume = $30,000 \text{ ft}^3$

Raw sludge pumped = 9,000 gal/day

Raw sludge solids concentration = 4.0 %

Raw sludge volatile solids = 70.0 %

Calculate the organic loading into the digester in Ibs of volatile solids per day per ft²

LBS VOLATILE SOLIDS =

GAL PUMPED X 8.34 lbs/gal X % Solids (decimal) X % Volatile (decimal)

 $= 9,000 \text{ gal/day} \times 8.34 \text{ lbs/gal} \times 0.04 \times 0.70$

= 2,102 lbs/day

ORGANIC LOADING =
$$\frac{2,102 \text{ lbs/day}}{30,000 \text{ ft}^3}$$

 $= 0.07 lbs/day/ft^3$

Digester Organic Loading

Practice Problems

1. Data:

Digester Volume = $21,500 \text{ ft}^3$

Raw sludge pumped = 5,500 gal/day

Raw sludge solids concentration = 3.1 %
Raw sludge volatile solids = 76 %

Calculate the organic loading into the digester in lbs of volatile solid per day per ft³.

2. Data:

Digester Volume = $11,000 \text{ ft}^3$

Raw sludge pumped = 4,600 gal/day

Raw sludge solids concentration = 3.5 % Raw sludge volatile solids = 74 %

Calculate the organic loading into the digester in lbs of volatile solid per day per ft³.

Work Calculations on Separate Paper Answers Given on Next Slides

Digester Organic Loading Practice Problems

1. Data:

Digester Volume = $21,500 \text{ ft}^3$

Raw sludge pumped = 5,500 gal/day

Raw sludge solids concentration = 3.1 % Raw sludge volatile solids = 76 %

Calculate the organic loading into the digester in lbs of volatile solid per day per ft³.

LBS VOLATILE SOLIDS =

GAL PUMPED X 8.34 lbs/gal X % Solids (decimal) X % Volatile (decimal)

 $= 5,500 \text{ gal/day} \times 8.34 \text{ lbs/gal} \times 0.031 \times 0.76$

= 1,080.7 lbs/day

ORGANIC LOADING =
$$\frac{1,080.7 \text{ lbs/day}}{21,500 \text{ ft}^3}$$

 $= 0.050 lbs/day/ft^3$

Digester Organic Loading Practice Problems

2. Data:

Digester Volume = $11,000 \text{ ft}^3$

Raw sludge pumped = 4,600 gal/day

Raw sludge solids concentration = 3.5 % Raw sludge volatile solids = 74 %

Calculate the organic loading into the digester in lbs of volatile solid per day per ft³.

LBS VOLATILE SOLIDS =

GAL PUMPED X 8.34 lbs/gal X % Solids (decimal) X % Volatile (decimal)

 $= 4,600 \text{ gal/day} \times 8.34 \text{ lbs/gal} \times 0.035 \times 0.74$

= 993.6 lbs/day

ORGANIC LOADING =
$$\frac{993.6 \text{ lbs/day}}{11,000 \text{ ft}^3}$$

 $= 0.090 lbs/day/ft^3$

Organic (Solids) Loading Rate

(page 28)

Amount of <u>Volatile</u> Solids Added per Day Compared to the Size (volume) of the Digester

Organic Loading Rate = Amount of V.S. Volume of Digester

Pounds of Volatile Solids per Day per Cubic Foot

0.02 to 0.10 # Vol. Solids/Day/Ft³

Sometimes as
Pounds of Volatile Solids per Day per 1000 Cubic Feet
20 to 100 # Vol. Solids/Day/1000Ft³

3. LOADING Pump Thick Sludge

(High % Total Solids)

Excess Water Requires More Heat
Excess Water Reduces Holding Time

Excess Water Removes Bacteria and Buffers

Pump Several Times per Day

Uniform Digester Loading Uniform Plant Operations

3. LOADING

% Total Solids
% Total Volatile Solids
Organic (Solids) Loading
Hydraulic Loading

- 1. BACTERIA
 2. FOOD
 - 3. LOADING
 - 4. CONTACT

CONTACT (MIXING)

- 1. CONTACT
 Bacteria and Food
- 2. HEAT DISTRIBUTION Even Throughout
- 3. MINIMIZE SETTLING
 Reduces Available Volume
- 4. MINIMIZE SCUM
 Operational Problems

- 1. BACTERIA
 - 2. FOOD
 - 3. LOADING
 - 4. CONTACT
- 5. ENVIRONMENT

TEMPERATURE

Temperature controls activity of bacteria.

Psychrophilic

50° F to 68° F

Mesophilic

68° F to 113° F

Best 85° F to 100° F

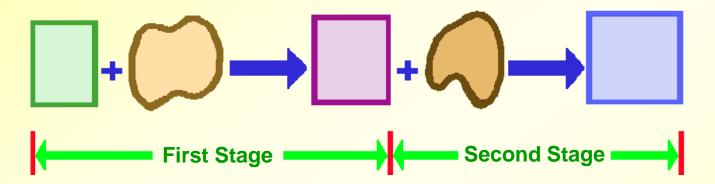
Thermophilic

Above 113° F

Best 120° F to 135° F

ENVIRONMENT

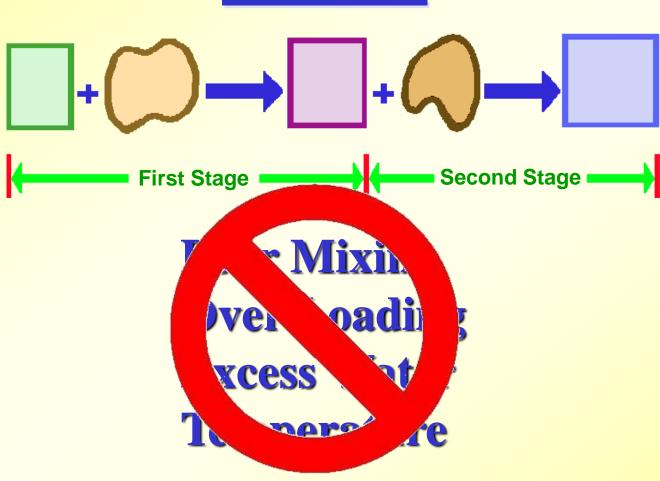
Temperature Control


90 to 95° F

Methane Formers Very Sensitive to **Changes**

Good Mixing Essential

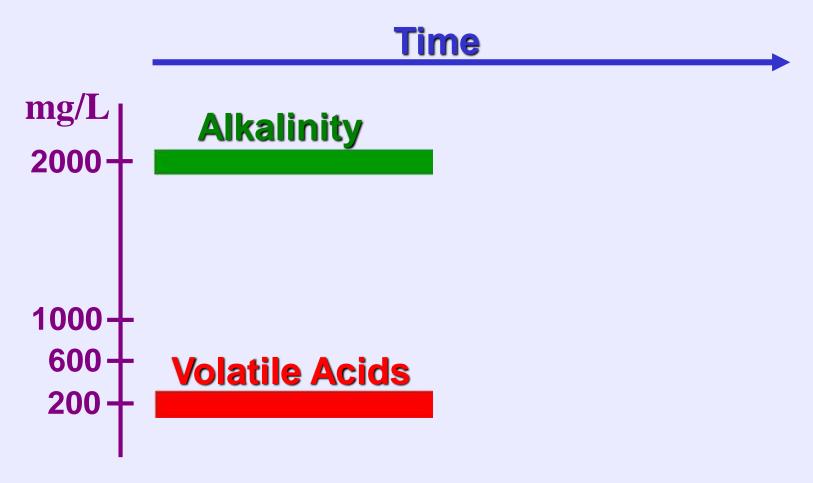
SUMMARY


Balance

Poor Mixing
Over Loading
Excess Water
Temperature

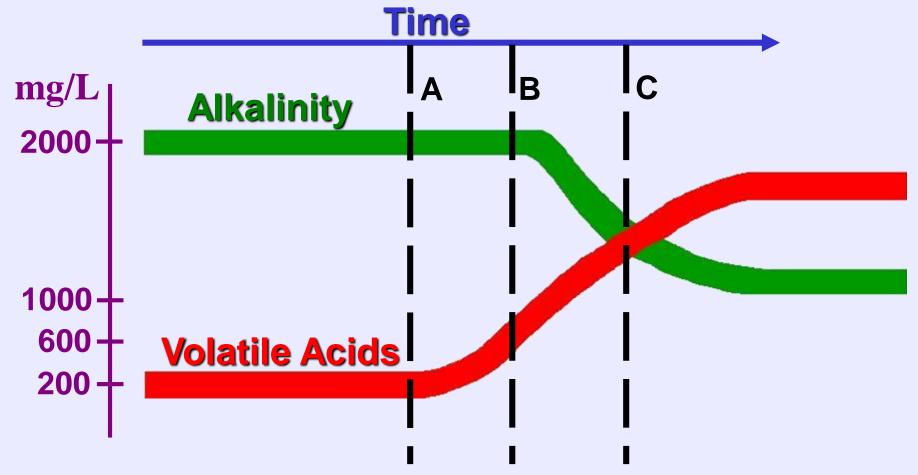
SUMMARY

Balance


ENVIRONMENT

Volatile Acid/Alkalinity Relationship Ratio

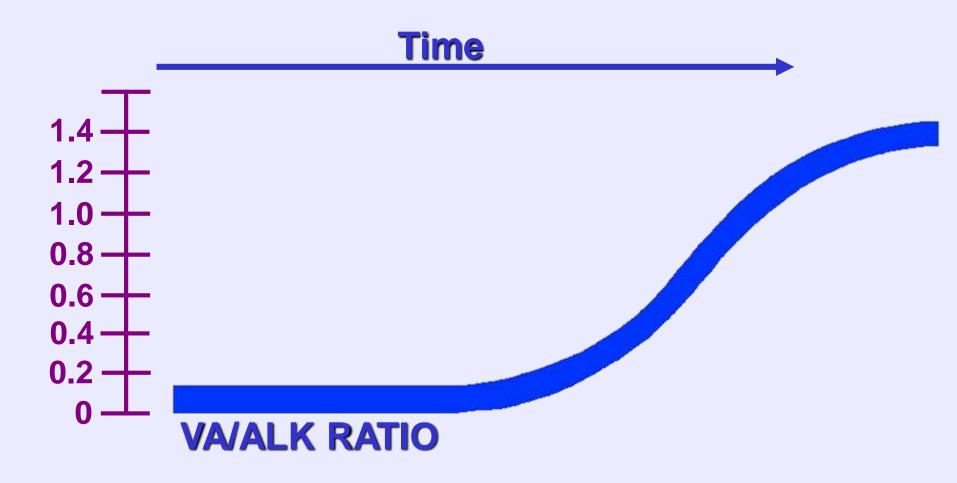
Volatile Acids, mg/L
Alkalinity, mg/L


 $\frac{140 \text{ mg/L}}{2,800 \text{ mg/L}} = 0.05$

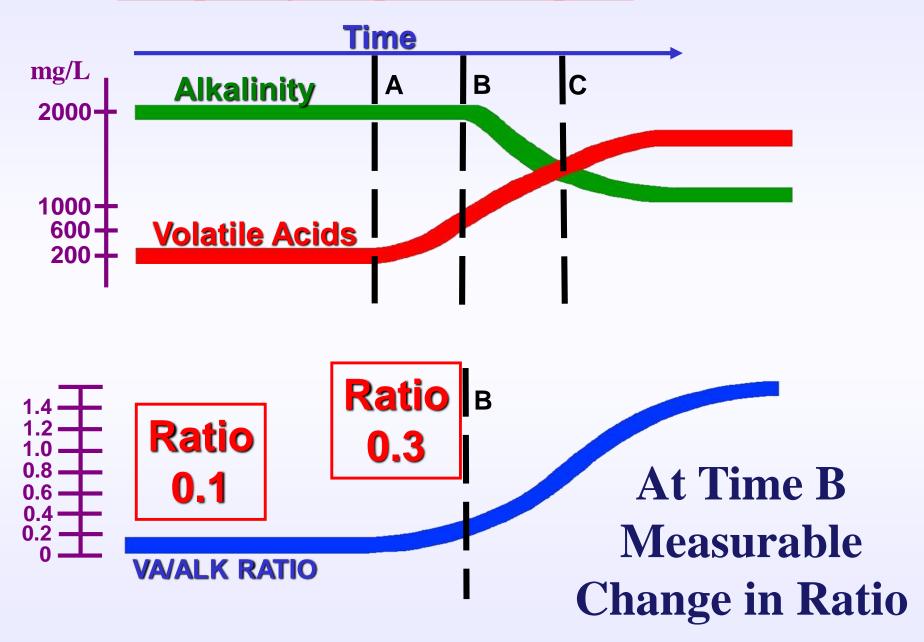
I. Relationship of Volatile Acids to Alkalinity

Graph of Digester With Good Buffering Capacity (Low V.A. at 200 mg/L Compared to Alk. of 2000 mg/L)

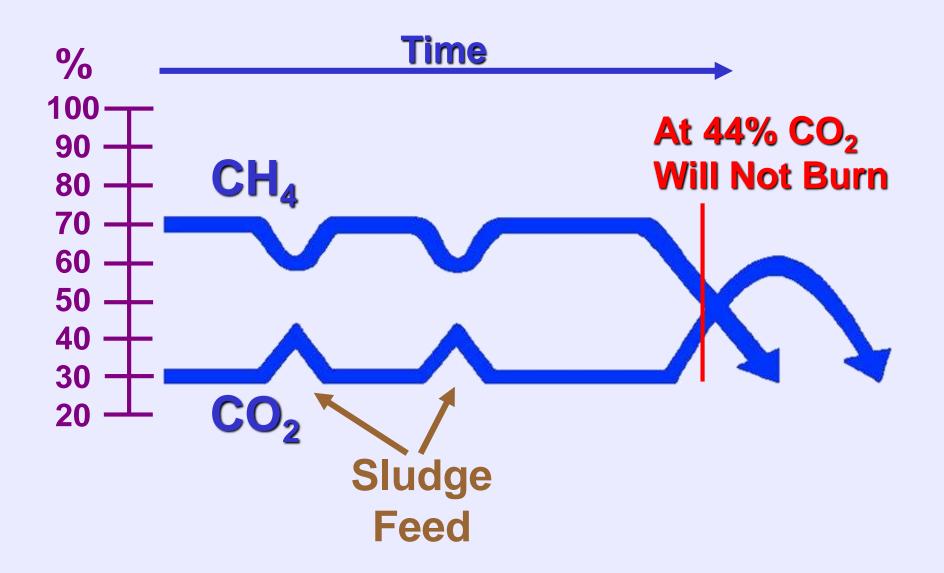
I. Relationship of Volatile Acids to Alkalinity

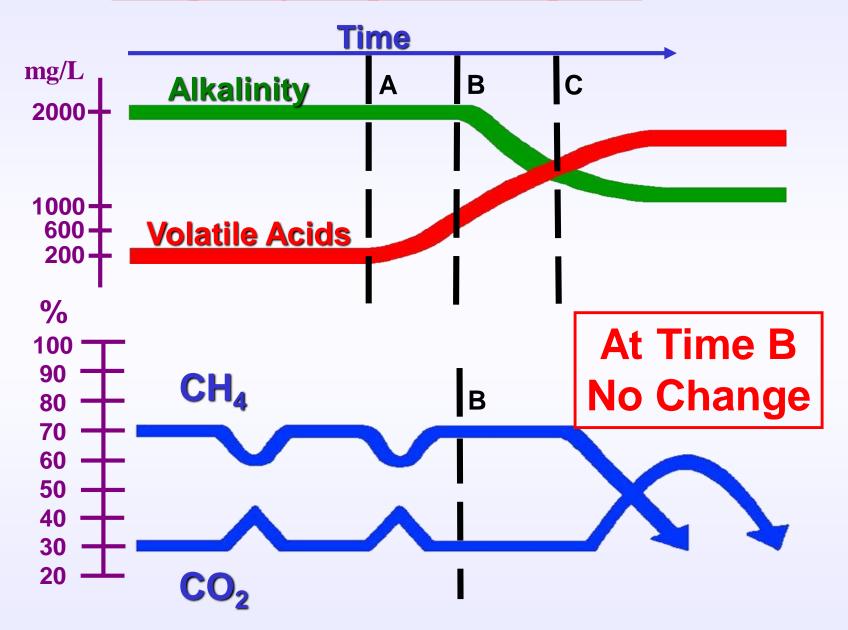


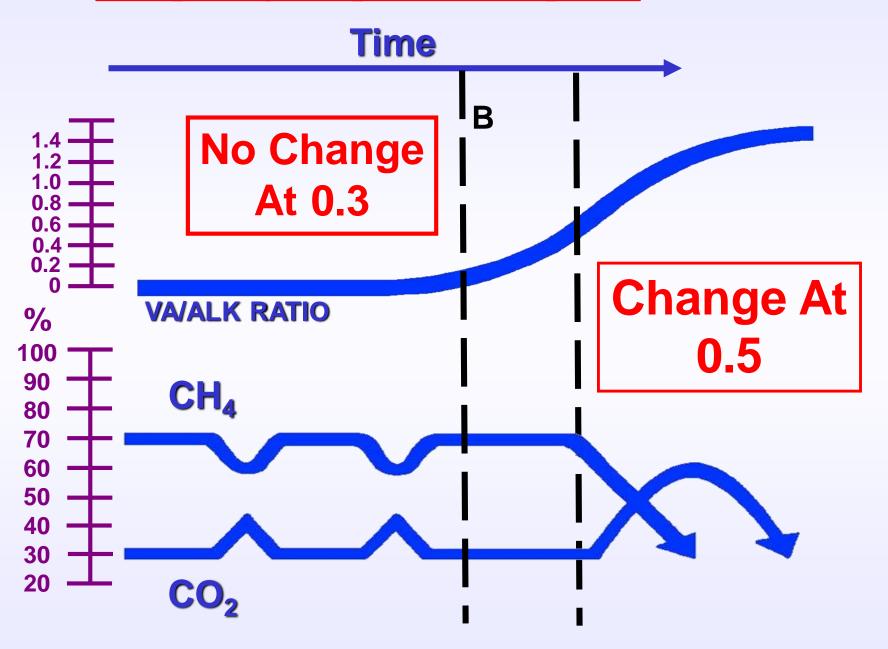
At Time A Something has Happened to Cause the Volatile Acids to Increase


Followed by a Decrease in Alkalinity at Time B

At Time C the Digester has Become Sour

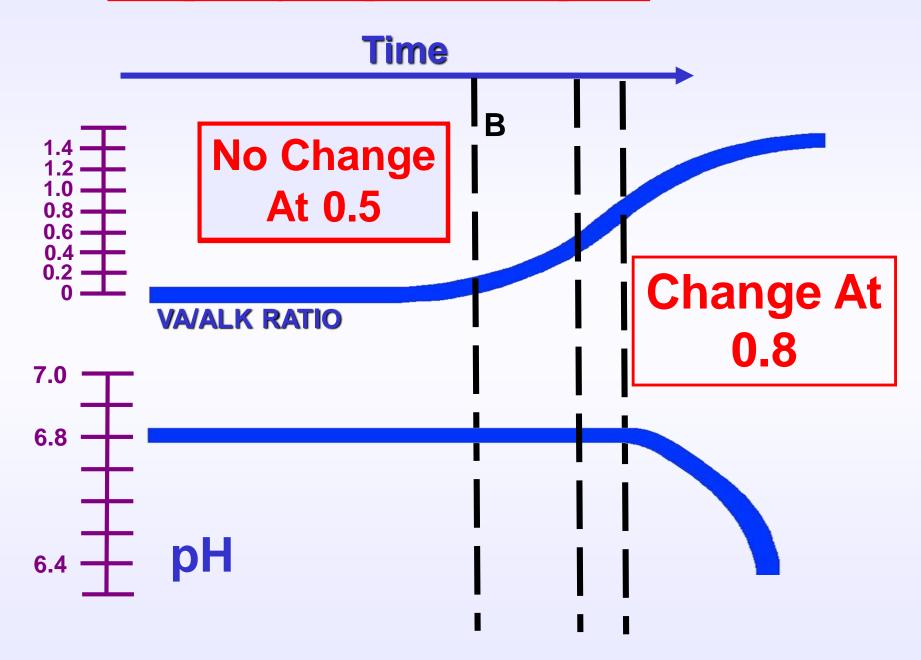

II. Volatile Acids / Alkalinity Ratio


Comparing Graph I to Graph II


III. Relationship of Methane and Carbon Dioxide

Comparing Graph I to Graph III

Comparing Graph II to Graph III


IV. Relationship of pH Change

Comparing Graph I to Graph IV

Comparing Graph II to Graph IV

OPERATION AND CONTROL ENVIRONMENT

Order of Measurable Changes When A Digester is <u>BECOMING</u> Upset

- 1. An Increase in VA/Alk. Ratio
 - 2. An Increase in % CO₂
- 3. Inability of Digester Gas to Burn
 - 4. A Decrease in pH

OPERATION AND CONTROL ENVIRONMENT

Volatile Acid/Alkalinity Ratio

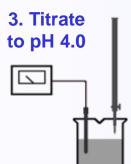
Volatile Acids - Low Compared to Alkalinity

Best Operation - Ratio Below 0.4

OPERATION AND CONTROL ENVIRONMENT

Volatile Acid/Alkalinity Ratio

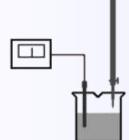
Response To Increase


Extend Mixing Time
Heat More Evenly
Decrease Sludge Withdrawal Rate
Return Sludge From Secondary Digester
*Add Alkalinity (Bicarbonate)

VOLATILE ACIDS AND TOTAL ALKALINITY

Outline of Procedure

4. Record mL used, Then Titrate to pH 3.3


5. Lightly Boil Sample 3 Min.

6. Cool in Water Bath

7. Titrate from pH 4.0 to 7.0

Digester Efficiency

Reduction Of Volatile Solids

% Reduction of Volatile Solids

% Reduction of Volatile Solids =

NOTE: % Must be as Decimals

$$72\% = 72/100 = .72$$

% Reduction of Volatile Solids

% Reduction of Volatile Solids =

%Volatiles In - % Volatiles Out

X 100%

% Volatile In - (% Volatile In X % Volatile Out)

EXAMPLE:

Volatile Solids in Raw Sludge = 68% Volatile Solids in Digested Sludge = 45%

% Reduction of Volatile Solids =

$$\frac{0.68 - 0.45}{0.68 - (0.68 \times 0.45)} \times 100\%$$

$$\frac{0.68 - 0.45}{0.68 - 0.31} \times 100\% = \frac{0.23}{0.37} \times 100\%$$

$$= 62\%$$

% Reduction of Volatile Solids

1. Calculate the percent reduction of volatile solids in a digester with the following data:

73%Vol. Solids in the raw sludge 51%Vol. Solids in the digested sludge

2. Calculate the percent reduction of volatile solids in a digester with the following data:

73.4%Vol. Solids in the raw sludge 50.5%Vol. Solids in the digested sludge

Work Calculations on Separate Paper Answers Given on Next Slides

1. Calculate the percent reduction of volatile solids in a digester with the following data:

73%Vol. Solids in the raw sludge 51%Vol. Solids in the digested sludge

% Reduction of Volatile Solids =

$$\frac{\ln - \text{Out}}{\ln - (\ln X \text{ Out})} \times 100 \%$$

$$= \frac{.73 - .51}{.73 - (.73 \times .51)} \times 100 \%$$

$$= \frac{.73 - .51}{.73 - .372} \times 100 \%$$

=
$$\frac{.22}{.358}$$
 X 100 % = 61.5 %

2. Calculate the percent reduction of volatile solids in a digester with the following data:

73.4%Vol. Solids in the raw sludge 50.5%Vol. Solids in the digested sludge

% Reduction of Volatile Solids =

$$= \frac{.734 - .505}{.734 - (.734 \times .505)} \times 100 \%$$

$$= \frac{.734 - .505}{.734 - .371} \times 100 \%$$

=
$$\frac{.229}{.363}$$
 X 100 % = 63.1 %

Gas Production

Digesters Produce Methane and Carbon Dioxide

Normal: 25% to 35% CO₂ by Volume

As the Bacteria Break Down the Volatile Organics

CHANGE - Indicator of Conditions

Gas Production

Digesters Produce Methane and Carbon Dioxide

Normal: 65% to 70% Methane by Volume

Burns: > 56% Methane

Usable as Fuel: > 62% Methane

Can Be Used To:

Heat the Digester Power Engines Heat Buildings

Gas Production

Digesters Produce Methane and Carbon Dioxide

Normal: 65% to 70% Methane by Volume

Burns: > 56% Methane

Usable as Fuel: > 62% Methane

Healthy Digester Should Produce: 7 to 12 cubic feet/pound vol. solids Destroyed

GAS PRODUCTION CALCULATION

Data:

Raw sludge pumped in per day = 9,000 gallons

Raw sludge solids concentration = 4%

Raw sludge volatile solids = 65%

% Volatile Solids Reduction = 48%

Gas production per day $= 8,000 \text{ ft}^3$

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

LBS VOLATILE SOLIDS =

GAL PUMPED X 8.34 lbs/gal X % Solids (decimal) X % Volatile (decimal)

 $= 9,000 \text{ gal/day} \times 8.34 \text{ lbs/gal} \times 0.04 \times 0.65$

= 1,951.6 lbs/day

48% of the Volatile Solids were Destroyed

1,951.6 lbs X .48 = 937 lbs Vol. Solids Destroyed

GAS PRODUCTION CALCULATION

Data:

Raw sludge pumped in per day = 9,000 gallons

Raw sludge solids concentration = 4%

Raw sludge volatile solids = 65%

% Volatile Solids Reduction = 48%

Gas production per day $= 8,000 \text{ ft}^3$

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

Gas Production, cu.ft. / lb vol. solids Destroyed =

8,000 cu. ft.

937 lbs Vol. Solids Destroyed

= 8.5 cu ft / lb vol. solids destroyed

GAS PRODUCTION

1. Data:

Raw sludge pumped in per day = 7,200 gallons

Raw sludge solids concentration = 4%
Raw sludge volatile solids = 67%
% Volatile Solids Reduction = 53%

Gas production per day = $7,850 \text{ ft}^3$

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

2. Data:

Raw sludge pumped in per day = 2,300 gallons

Raw sludge solids concentration = 3.4%
Raw sludge volatile solids = 72.6%
% Volatile Solids Reduction = 49.3%
Gas production per day = 2,800 ft³

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

Work Calculations on Separate Paper Answers Given on Next Slides

GAS PRODUCTION

1. Data:

Raw sludge pumped in per day = 7,200 gallons

Raw sludge solids concentration = 4%

Raw sludge volatile solids = 67%

% Volatile Solids Reduction = 53%

Gas production per day $= 7,850 \text{ ft}^3$

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

Gas Production, cu.ft. / lb vol. solids Destroyed =

Cubic Feet Gas

% Vol. Slasbee Woly Solder in Dest Koyled. Vol. Slds. In

$$7,850 \text{ ft}^3$$

.53 X 7,200 bg / Vely. Stolk 34 bs/gal X 0.04 x 0.67

GAS PRODUCTION

2. Data:

Raw sludge pumped in per day = 2,300 gallons
Raw sludge solids concentration = 3.4%
Raw sludge volatile solids = 72.6%
% Volatile Solids Reduction = 49.3%
Gas production per day = 2,800 ft³

What is the gas production in terms of cubic feet per pound of volatile solids destroyed?

Gas Production, cu.ft. / lb vol. solids Destroyed =

Cubic Feet Gas

% Vol. Slds. Destroyed (decimal) X Lbs. Vol. Slds. In

.493 X 2,300 gal/day X 8.34 lbs/gal X 0.034 x 0.726

$$= \frac{2,800 \text{ ft}^3}{233.4 \text{ # Vol. Slds. Destroyed}} = \frac{12.0 \text{ ft}^3/\text{Lb. Vol. Slds. Destroyed}}{1200 \text{ ft}^3/\text{Lb. Vol. Slds. Destroyed}}$$

Anaerobic Digestion Process

Methane Formers:

Slow Growers

Very Sensitive to Changes

Loading

pН

Temperature

Digester Operation Depends On Maintaining

Proper Environment for

METHANE FORMERS

BALANCE!

ANAEROBIC SLUDGE DIGESTION PROCESS

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit