Disinfection Practices for Water - Basic

Marvin Gnagy, P.E.

pmg PMG Consulting, Inc.

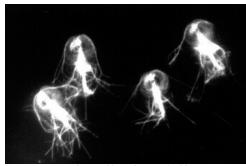
OAWWA-RCAP Workshop

November 2, 2021

Agenda

- General Relationships
 - Physical and chemical interactions
 - Demand substances and byproduct formations
 - Disinfection efficiency (CT)
 - Residual maintenance and decay
- Disinfection Methods
 - Simple chemistry for the most common disinfectants
- Pathogen Destruction Mechanisms
 - Biological destruction pathways

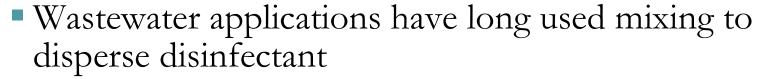
- Chemical and physical relationships govern all disinfection chemistry
 - Knowledge of these relationships increases operator skills and troubleshooting abilities
 - Allows operators to control conditions that optimize disinfection practices
- Treatment processes are managed to disinfect water for consumption and to meet regulatory objectives
 - Minimum disinfectant residuals
 - CT compliance demonstration of efficient disinfection



- Governing factors
 - Water pH
 - Mixing
 - Contact Time
 - Reaction Order
 - Residual concentration
 - Residual decay
 - Disinfecting power
 - Disinfection efficiency

Water pH

- pH alters chemical species in water
- pH affects reaction rates and conversion rates
- Most microorganisms cannot tolerate pH values above about 7.8
 - High pH destroys microbial contaminants
- Lime/soda softening destroys microbes
 - 10.2 84% destruction
 - 10.6 92.4% destruction
 - 11.2 99.9% destruction
 - 11.5 99.99% destruction


Giardia lamblia

Water pH

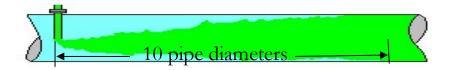
- Chlorine more effective at low pH
 - Hypochlorous acid (HOCl) predominantly at low pH
 - Hypochlorite ion (OCl⁻) predominantly at high pH
- HOCl and OCl⁻ relationship based on pH and temperature (discussed later)
- Monochloramine reaction 5 to 1 Cl₂:NH₃ ratio 25°C:
 - pH 4 147 seconds
 - pH 7 0.2 seconds
 - pH 8.3 0.069 seconds
 - pH 12 33.2 seconds

Mixing

- Disinfectants often neglected with regard to mixing in water treatment
 - Injection into a pipe is most common
 - Some mixing occurs depending on pipe length and flow turbulence
 - Addition to clearwell also common little mixing

 Mechanical mixing prior to contact historically practiced (Recommended Standards for Wastewater Works - "Ten States Standards")

Mixing


 Proper mixing increases disinfectant residual concentration and reduces side reactions

- Chlorine/ammonium hydroxide with mixing led to 85% monochloramine, 15% non-disinfecting chloramine
- Chlorine/ammonium hydroxide with <u>no</u> mixing resulted in 45% monochloramine, 55% non-disinfecting chloramine
- Other byproduct reactions also affected (DBP's, etc.)
- Turbulence needed for chemical dispersion (mixing energy)
- Effective mixing known to reduce byproduct concentrations from side reactions

Mixing

- Pipe mixing optimization
 - Introduction of chemical into middle of pipe flow
 - Turbulent flow conditions
 - At least 10 pipe diameters travel length
 - Produce adequate mixing for chemical dispersion

Example 10" dia. pipe > 100" mixing zone

Contact Time (CT)

- Important for disinfection and microbial destruction
 - Required CT values
 - Demonstrate efficient disinfection practices
- Critical factors
 - Contact chamber design
 - Baffling factors
 - Short-circuiting affects
 - Reaction rates
 - Competing reactions

Contact Time (CT)

- Other important factors
 - Water temperature
 - Water pH
 - Disinfectant residual
 - Type of disinfectant
 - Production rate
 - Microbial inactivation requirements
 - Giardia
 - Viruses
 - Cryptosporidium

Contact Time (CT)

- Disinfectant application does little for disinfection
 - Demand reactions compete for disinfectant
- Persistent residuals needed for microbial destruction
 - Residuals are function of pH, demand, contact time, water temperature
 - Residuals responsible for pathogen destruction
 - Required CT values must be met
 - Large CT values often increase DBPs

Reaction Order

- Disinfectants work in specific order of reaction
 - Chemical interactions based on preference
- Inorganics react first and consume oxidation potential
 - Iron, manganese, NH₃, and other cationic metals

Iron Manganese

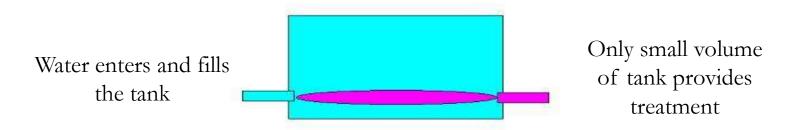
Reaction Order

- Organics react next and consume oxidation potential and disinfectant
 - Taste and odor compounds and DBP precursors
 - Precursor reactions create DBPs
- Microbials react last and consume very little disinfectant
 - Destruction mechanisms presented later

Poll Question

Disinfecting Power

- Type of disinfectant impacts residual development and disinfection process
 - Combined chlorine -1.0 mg/L requires 60 minutes contact
 - Free chlorine 0.2 mg/L requires 10 minutes contact
 - Chlorine dioxide 0.25 mg/L requires 2 minutes contact
 - Ozone 0.07 mg/L requires 0.08 minutes contact


(Based on reactions with E. Coli for 99.9% inactivation)

Disinfecting Power

OH· (OH radical)	24,400,000
Ozone	18,000,000
HCO ₃ · (HCO ₃ radical)	351,000
Hydrogen peroxide	347,000
Chlorine dioxide	263,000
Hypochlorous acid	10,000
Hypochlorite ion	100
Monochloramine	1.0
Fluorine	0.90
Bromine	0.63
Iodine	0.56

Short-circuiting

- Single most detrimental affect
 - Describes general flow path in basin
 - Defines stagnant areas where no disinfection occurs
 - Increases volume needed to demonstrate effective disinfection
 - Reduces process efficiency
 - Increases residuals needed for CT compliance

Disinfection Byproducts

- Side reactions during disinfection create byproducts
- Byproducts have no disinfecting power
 - Organo-chloramines
 - Hydrochloric acid (HCl)
 - Hypochlorite ion (OCl-)
 - Iron and manganese precipitates
 - Trihalomethanes (THMs)
 - Haloacetic acids (HAA5s)
 - Other DBPs

Disinfectant Demand

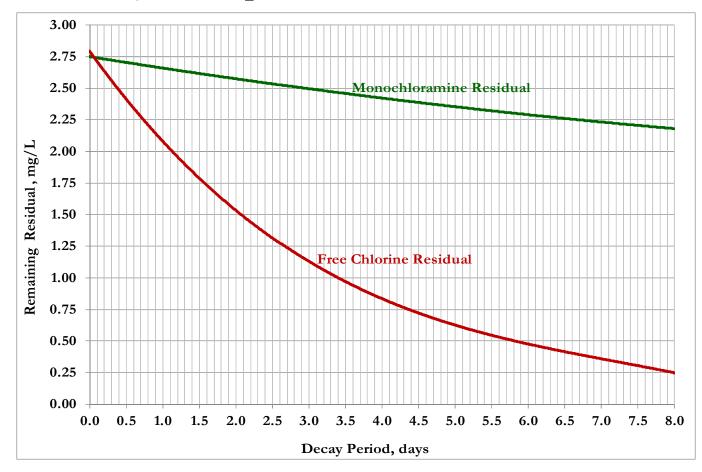
- Demand = Dosage Residual
 - Dissolved gases
 - Chemical substances (ammonia, others)
 - Organic matter
 - Biological organisms
 - Inorganic matter
 - Iron, manganese, ammonia, other cationic metals

- Organic precursors + chlorine disinfection byproducts
- Disinfection byproducts + time → more disinfection byproducts

Disinfectant Demand

- Ammonia and nitrogen compounds
 - Direct reaction with many chlorine forms
- Pathogenic microorganisms
 - Most removed by coagulation and filtration processes
 - Some destroyed by chemical softening and high pH
 - Small remaining populations inactivated by disinfection

Residual Maintenance

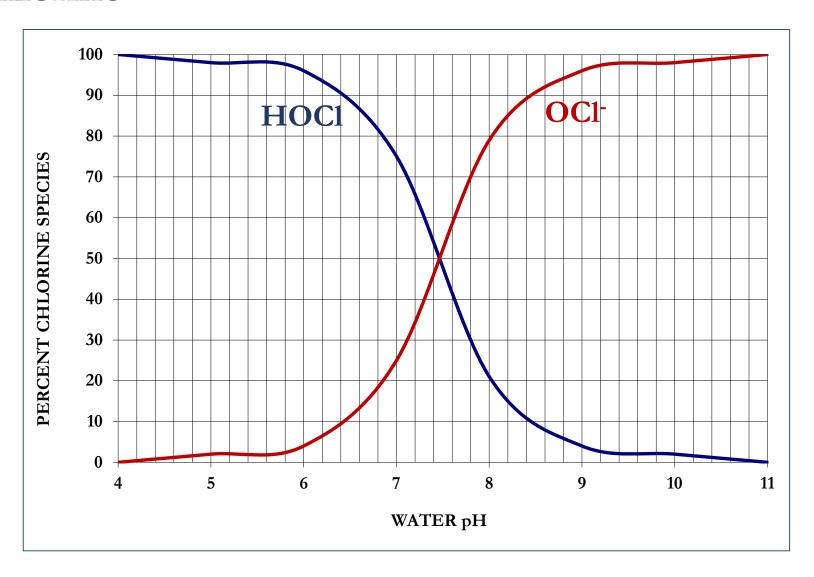

- Essential for effective disinfection
 - Minimum residual levels regulated
 - Protection against regrowth in distribution system
 - Storage tank mixing
 - Unidirectional flushing

Residual decay

- Time (water age in system)
- Temperature (especially storage tanks)
- Introduction of demand causing substances backpressure
- Slime growths and/or nitrification (chloramines)
- Backflow occurrences

Residual Decay Examples

Footer | Date 23


Chlorine

 Addition of chlorine to water produces hypochlorous acid (HOCl) and hydrochloric acid (HCl)

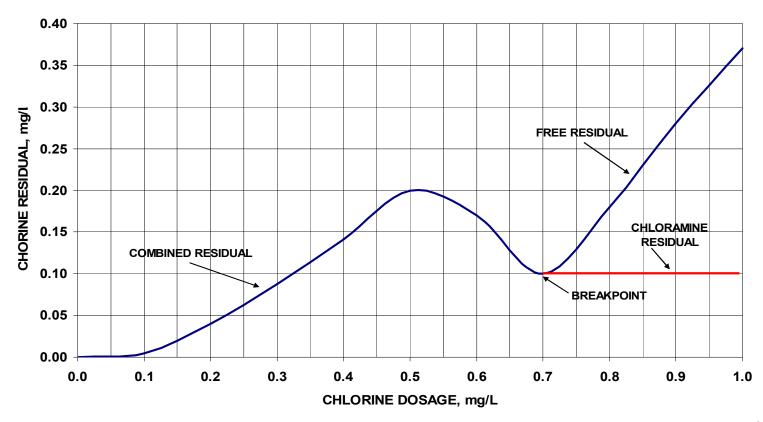
$$Cl_2 + H_2O \rightarrow HOCl + HCl$$

 $HOCl \Leftrightarrow OCl^- + H^+$

- HCl has no disinfecting power just consumes chlorine during reaction
- HOCl in water decomposes at high pH to hypochlorite ion (OCl⁻)
- Hypochlorite ion is less powerful disinfectant
- HOCl and OCl⁻ relationship is pH and temperature dependent

Chlorine

Chlorine

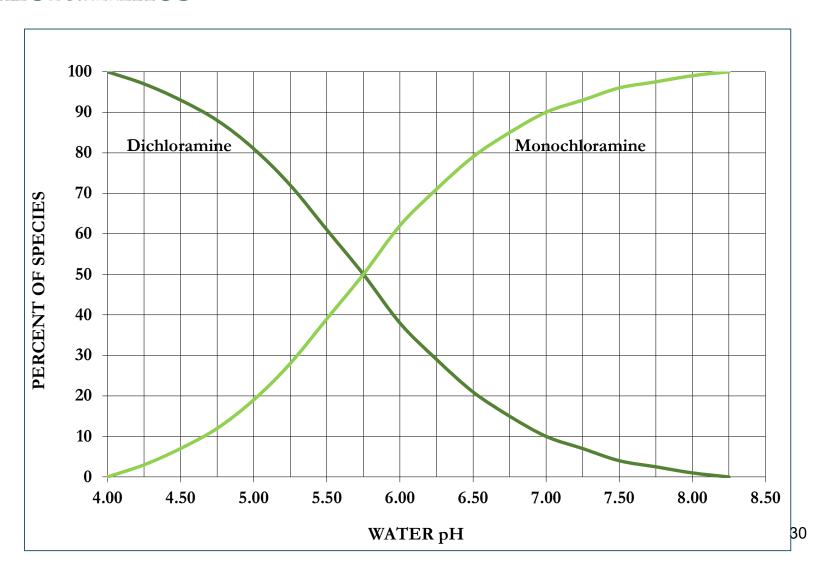

- Free chlorine
 - HOCl
 - OC1-
- Combined chlorine
 - Monochloramine
 - Other chloramine species
 - Other non-disinfecting species

$$Cl_2 + H_2O \Rightarrow \underline{HOCl} + HCl$$

 $HOCl \Leftrightarrow OCl^- + H^+$

$$NH_4^+ \Leftrightarrow NH_3 + H^+$$
 $HOCl + NH_3 \Rightarrow NH_2Cl + H_2O$

Breakpoint Curve


Free chlorine is usually the preferred disinfectant for water treatment. To produce free chlorine, the <u>chlorine demand</u> must be satisfied. Once the demand is satisfied, further chlorine addition results in a free chlorine residual. <u>Combined chlorine</u> also is present beyond the breakpoint.

Poll Question

- Addition of ammonia to quench free chlorine creating monochloramine (odorless residual)
 - Free chlorine achieved commonly to meet CT, then add ammonia for conversion to chloramine
- Ammonia-containing compounds add ammonium ion (NH₄⁺)

$$HOCl + NH_3 \Rightarrow NH_2Cl + H_2O$$

- Chlorine/ammonia ratio is important for monochloramine development
 - 3 to 5 typical, 4 maximizes monochloramine conversion
 - Chlorine/ammonia ratios greater than 7.6 to 1 can develop dichloramine residuals (odors)

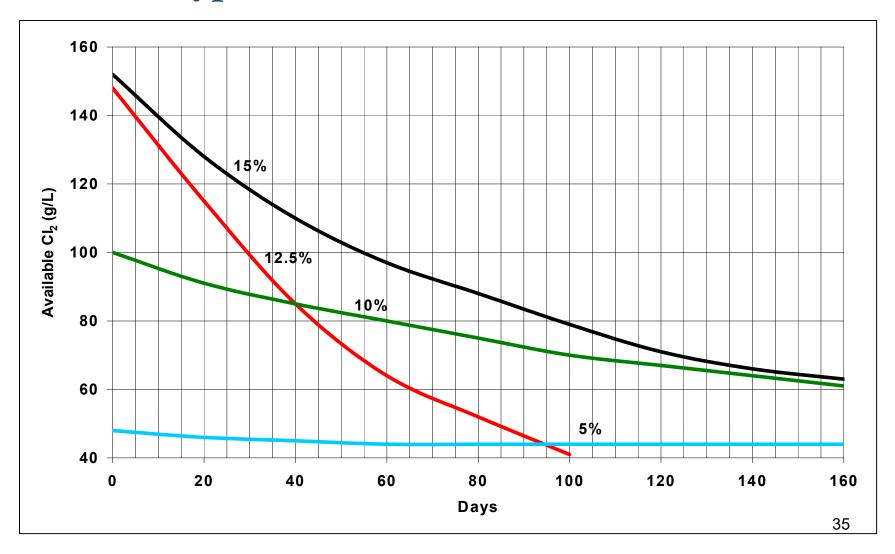
Monochloramine reverse reaction can lead to nitrification

$$NH_2Cl + H_2O \Leftrightarrow HOCl + NH_3$$

- Nitrite development from nitrifying bacteria
- Accompanied by increase in HPC bacteria counts and loss of residual concentrations
 - HPC counts often increases above 500 per mL

- High water age depletes monochloramine residual
 - Residual decay increases with organic content
 - Frequent unidirectional flushing needed
 - Storage tank turnover at least 25%
 - Storage tank mixing increases residuals
 - Booster disinfection may be needed

- High pH converts monochloramine to non-disinfecting compounds at pH greater than 9.5
 - Proposed hydroxylamine formation


$$NH_2Cl + OH^- \Rightarrow NH_2OH + Cl^-$$

Sodium Hypochlorite

- 1.0 pound Cl₂ plus 1.13 pounds NaOH makes 1.05 pounds NaOCl
- 12.5% commercial strength most common
- NaOH added to maintain pH>12, reduce off gassing
- On-site generation also available
 - 0.8 % and 12.5% strength
- Chlorine decay influenced by:
 - Chemical concentration
 - Heat
 - UV light
 - pH (<11 rapid decomposition)
 - Heavy metal cations

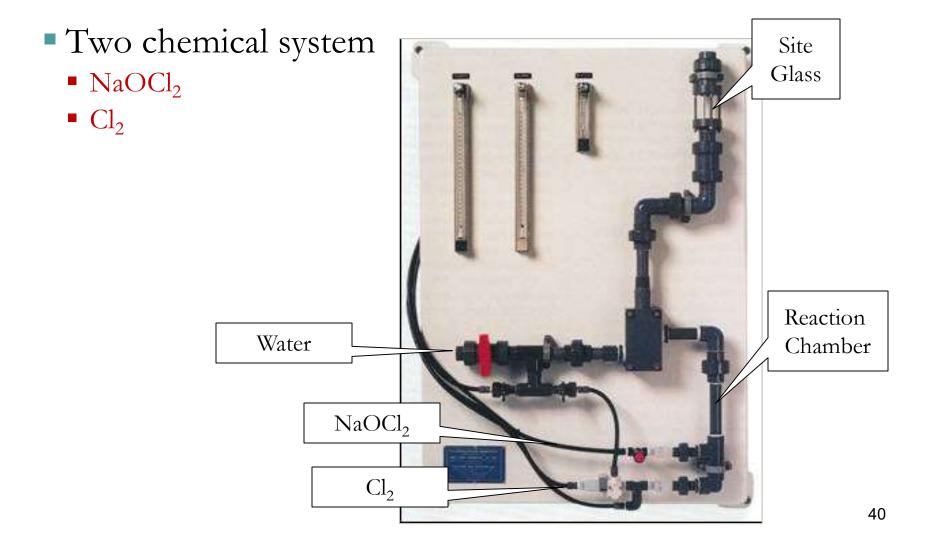
Sodium Hypochlorite

Sodium Hypochlorite

- Sodium (Na⁺) does not disinfect
- Hypochlorite ion (OCl⁻) is the disinfectant
 - 12.5% NaOCl solution
 - About 8.6% OCl⁻
 - About 1.04 lbs/gal
- Check strength and adjust feed rate as solution decays
- NaOCl added to water reacts to make hypochlorite ion (OCl-)
 - Reacts like chlorine gas and water
 - HOCl and OCl⁻ are influenced by pH and temperature (shown earlier)

$$NaOCl + H_2O \Rightarrow HOCl + OH^- + Na^+$$

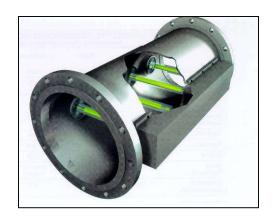
 $HOCl \Leftrightarrow OCl^- + H^+$


Sodium Hypochlorite

- Decomposition off gases oxygen and increases chlorite ion (ClO₂⁻) concentration
- Off gas creates operating problems
 - Pumps
 - Valves
 - Piping
- Peristaltic pumps (hose pumps) commonly used
- Degassing pump heads strongly recommended

- Chlorine gas and liquid sodium chlorite in special generator $2NaClO_2 + Cl_2 \Rightarrow 2ClO_2 + 2NaCl$
- ClO₂ concentrations 200 mg/L to 5,000 mg/L
- 95% or greater conversion common
- Sight glass confirms ClO₂ generation <u>neon green color</u>

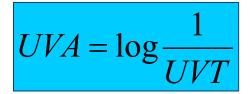
- 1 lb. Cl₂ gas plus 1.68 lbs NaOCl₂ makes 1 lb. ClO₂
- Byproducts from generation
 - Chlorite ClO₂-
 - Chlorate ClO₃-
 - Chloride Cl⁻
 - NaCl (can clog generator column)

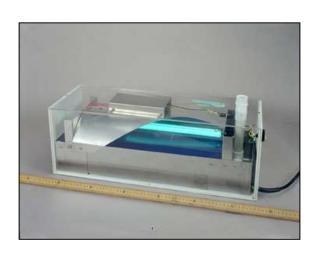


- Chlorite regulated in drinking water 1.0 mg/L
- ClO₂ and OH⁻ decomposes to byproducts

$$ClO_2 + 2OH^- \Rightarrow ClO_3^- + ClO_2^- + H_2O$$

Poll Question


- More common in wastewater
 - Fecal coliform reductions
 - No residual destruction
- Cryptosporidium inactivation requirements show need for UV in drinking water
 - Crypto cannot be inactivated by free chlorine



- UV-C light 100 nm to 280 nm likely has germicidal properties
- Transmittance dependent on
 - Turbidity
 - Suspended solids
 - Iron, manganese
 - Hardness
 - Hydrogen sulfide (H₂S)

LP	LPHO	MP

Spectra	mono	mono	poly
Power (W)	70-90	200-250	1,300- 5,000
Temp, °C	40-60	100-200	600-900
Life, hours	8K-10K	8K-10K	3K-5K
No. lamps	10-15	4-8	1-6

- UV dose related to contact time and UV intensity
- Dosing is complex
 - Water quality
 - Lamp type
 - UV intensity
 - Reactor design
 - Hydraulic flow
 - Sensor performance

- No residual concentration
 - No residual destruction in wastewater
 - Post disinfectant needed for residual maintenance in water
- Critical UV design parameters
 - Field validation of reactor dosing
 - Sleeve degradation due to fouling
 - Gradual decline of lamp output with age
 - 8% reduction in output decreases UV dose 38%

上. (الاOر
------	-------

Hepatitis A

Salmonella typhi

Poliovirus

Rotavirus

Cryptosporidium parvum

Giardia lamblia

$$9.6 \text{ mJ/cm}^2$$

$$10.2 \text{ mJ/cm}^2$$

$$8.2 \,\mathrm{mJ/cm^2}$$

$$30 \text{ mJ/cm}^2$$

$$36 \text{ mJ/cm}^2$$

$$10 \text{ mJ/cm}^2$$

$$10 \text{ mJ/cm}^2$$

Reactor dosing much higher

Destruction Mechanisms

Free Chlorine

- HOCl penetrates cell wall
- HOCl reacts with enzymes used for glucose production
- OCl⁻ will not penetrate cell wall (negative charges repel)
- Reacts with nucleic acid effecting respiration in viruses leading to mortality

Chloramines

- Electrochemical reaction with enzymes within microbial cell
- Disruption of enzyme system fails to repair/grow cells
- HOCl presence in NH₂Cl may increase disinfection capability

Destruction Mechanisms

- Disruption of protein synthesis
- Breakdown ability to maintain/repair cells
- pH 6.5, ClO₂ kills 99% E. coli in 60 minutes
- pH 8.5, ClO₂ kill 99% E. coli in 15 minutes
- Virus kill similar to E. coli

Destruction Mechanisms

<u>Ozone</u>

- Attack at bacterial cell membrane leading to rupture
- Attack of proteins in viral cell wall leading to mortality

- UV irradiation alters DNA
- Organism cannot reproduce, cannot infect

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931