




# Introduction to Piping Design

Ahmad Haidar Akileh

30/09/2017

# Introduction to Piping Design

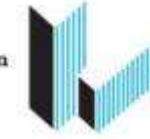
- Ahmad Haidar Akila
- Started His Career as Mechanical Design Engineer in Jopetrol.
- Working as Sr. Piping Design Engineer at Black Cat Consulting and Engineering Services (BCCES).
- Holds PE in Mechanical Systems and Materials -NCEES # 14-942-32
- Holds PMP, PMP # 1478283.



# What is the pipe

- As per Merriam Webster dictionary , the pipe is a long tube or hollow body for conducting a liquid, gas, or finely divided solid.
- Technically : The pipe Is a **beam** , which acts as pressure vessel and transfer fluids.




# Piping System

- The piping system is group of pipes , fittings and flanges which connects equipment and pipelines inside stations



# Piping System

- Piping systems includes :
  1. The pipes , fittings and flanges .
  2. Valves.
  3. Gaskets and bolts
  4. Special Piping Components ( Insulation Gaskets, Special Valves, Filters and strainers, Corrosion Protection Fittings, etc).
  5. Pipe Supports



# Difference Between Piping pipelines

| Piping                                                                                  | Pipelines                                                                                   |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Transfer fluids between equipment's and from the pipeline boundaries to inside stations | Transfer fluid between stations                                                             |
| Design Factor of Safety is higher than pipelines                                        | Design Factor of Safety is lower than piping                                                |
| Has complex shapes                                                                      | Straight shapes                                                                             |
| Mostly above ground                                                                     | Can be above ground or under ground.                                                        |
| Less allowable operating displacement (typically between 25mm to 75mm)                  | Higher allowable operating displacement                                                     |
| Design Temperature can be as high as 650 °C                                             | Maximum Design Temperature is 232°C for the gas pipeline, and 120°C for the liquid pipeline |
|                                                                                         |                                                                                             |

# International Standards of Design

- ASME B31.3 : Process Piping
- This piping is typically found in petroleum refineries, chemical and pharmaceutical plants, and many other process plants and terminals. It has a high-pressure section. It recognizes different degrees of fluids safety concerns and imposes different rules on each. It has a nonmetallic section. It is generally considered the most broadly applicable code



# International Standards in Design

- ASME B31.3 : Process Piping
  - A. Normal Service
  - B. Category D : IA and FW
  - C. Category M: Lethal Service
  - D. High Pressure service
  - E. High temperature service
  - F. High purity service

# ASME B31.3 Fluid Service

**fluid service:** a general term concerning the application of a piping system, considering the combination of fluid properties, operating conditions, and other factors that establish the basis for design of the piping system. See Appendix M.

(a) *Category D Fluid Service:* a fluid service in which all of the following apply:

(1) the fluid handled is nonflammable, nontoxic, and not damaging to human tissues as defined in para. 300.2

(2) the design gage pressure does not exceed 1 035 kPa (150 psi)

(3) the design temperature is not greater than 186°C (366°F)

(4) the fluid temperature caused by anything other than atmospheric conditions is not less than -29°C (-20°F)

(b) *Category M Fluid Service:* a fluid service in which the potential for personnel exposure is judged to be significant and in which a single exposure to a very small quantity of a toxic fluid, caused by leakage, can produce serious irreversible harm to persons on breathing or bodily contact, even when prompt restorative measures are taken.

# ASME B31.3 Fluid Service

*(d) High Pressure Fluid Service:* a fluid service for which the owner specifies the use of Chapter IX for piping design and construction; see also para. K300.

*(e) High Purity Fluid Service:* a fluid service that requires alternative methods of fabrication, inspection, examination, and testing not covered elsewhere in the Code, with the intent to produce a controlled level of cleanliness. The term thus applies to piping systems defined for other purposes as high purity, ultra high purity, hygienic, or aseptic.

*(f) Normal Fluid Service:* a fluid service pertaining to most piping covered by this Code, i.e., not subject to the rules for Category D, Category M, Elevated Temperature, High Pressure, or High Purity Fluid Service.

# International Standards of Design

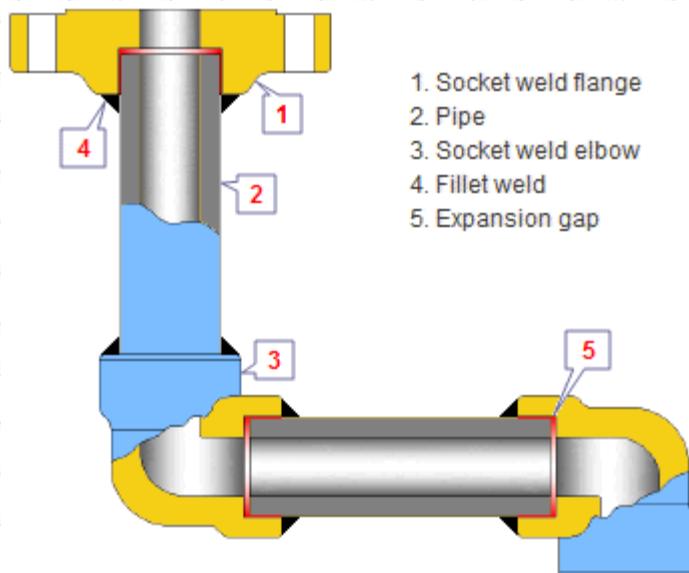
- ASME B31.1 : Power Piping

This code is the original code and was a direct development out of the *Boiler* and subsequent codes. A boiler needs pipe, both internally and externally. The internal pipe would come under the rules of ASME Section I and the external piping would come under ASME B31.1. This piping is generally found in electric power generating stations. It is typically transporting steam or water under elevated temperatures and pressures. It may be used in other heating and steam uses.



## Other International Standards of Design

- ASME B31.5 :Refrigeration piping and heat transfer components.
- ASME B31.8 :Gas transmission and distribution piping systems.
- ASME B31.9: Building services piping


# Piping Discipline and Process Discipline Relation

- Process Discipline provides all the process calculations (**Pipe sizing** , hydraulic Calculations, etc).
- Process Discipline Provides the P&ID's.
- Piping Disciplines provides the piping material classes in order for the process to select the appropriate material and thickness for the piping lines.
- Process Discipline provides the piping with the design conditions of the piping systems (Design Pressure, Design Temperature , fluid services).

# Piping System Configuration

## Welded Configuration .

### A. Socket Welded.



For Further reading visit:

[http://www.werma.org/fittings/socket\\_weld\\_general.html](http://www.werma.org/fittings/socket_weld_general.html)

# Piping System Configuration

## Welded Configuration .

### A. Butt Welded /

- Contributes of Most of the piping configurations .
- Zero Leakage .
- Welding Strength is higher than pipe material strength.

# Piping System Configuration

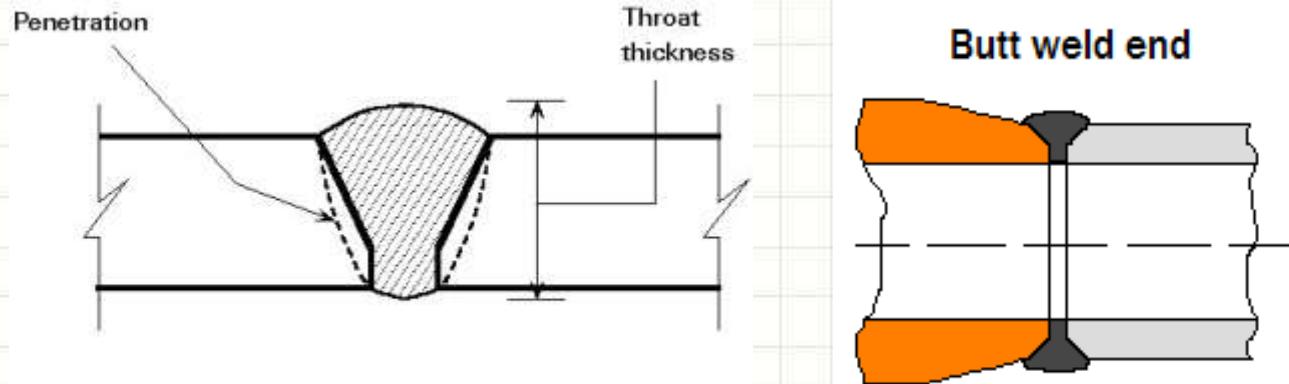
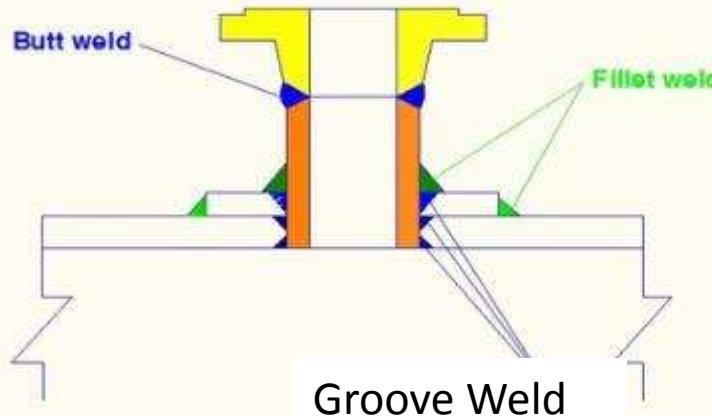




Figure 1 Butt weld with full penetration



# Piping System Configuration

Fig. 328.4.2 Typical Butt Weld End Preparation

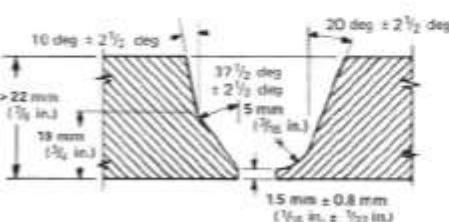
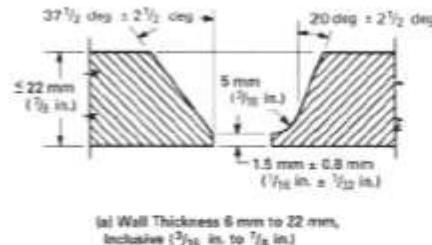
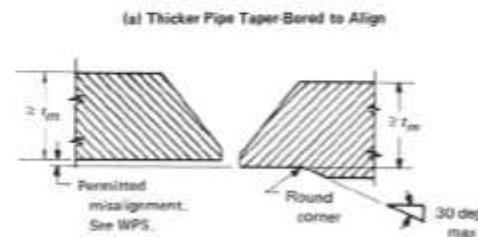
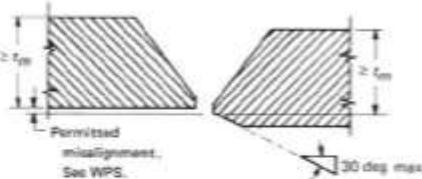
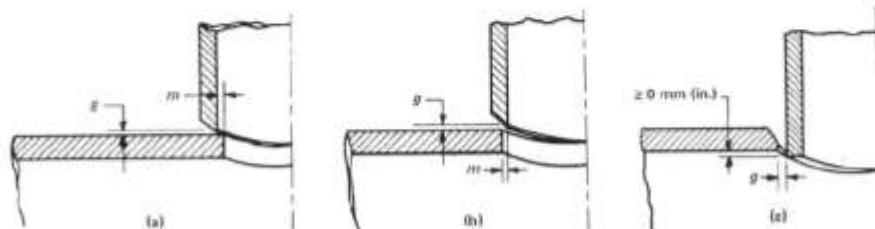
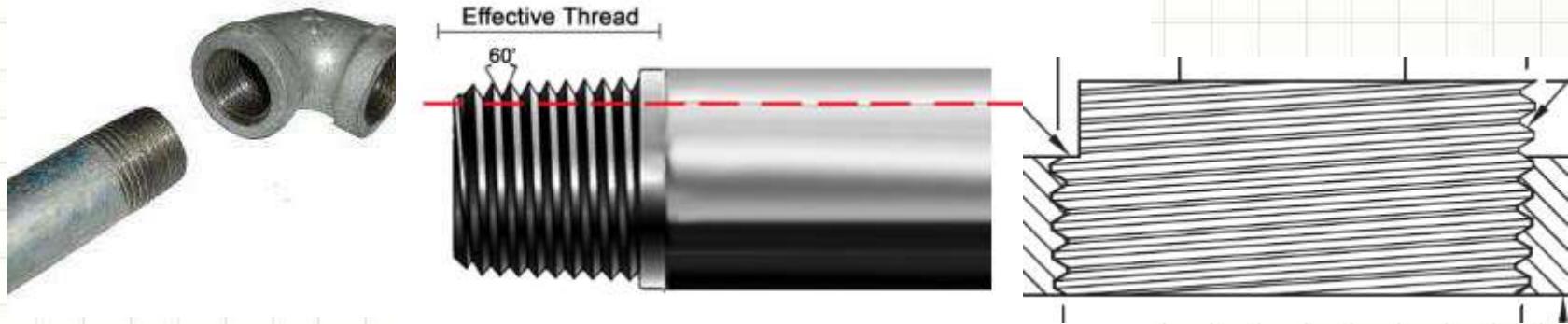







Fig. 328.4.3 Trimming and Permitted Misalignment



ASME B31.3-2012

Fig. 328.4.4 Preparation for Branch Connections



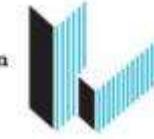

$g$  = root gap per welding specification  
 $m$  = the lesser of 3.2 mm (1/8 in.) or 0.5  $T_D$

# Piping System Configuration


## 1. Threaded Configuration .

- Used for the utilities (IA and utility water) .
- End Connections are Threaded (Male or Female).
- NPT (National Pipe Threads ) is the common types of threads – ASME B1.20.1.
- Sealant like Teflon or Loctite® shall be used.




# Other Configurations

- Groove End Piping

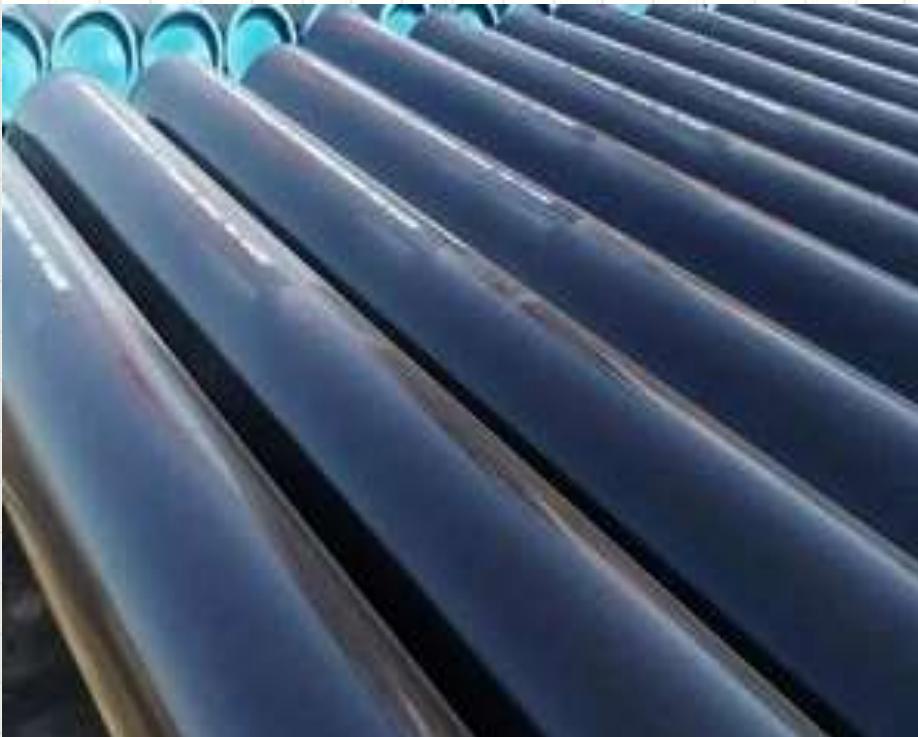




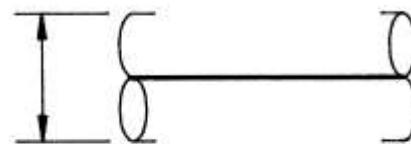
# Piping Components



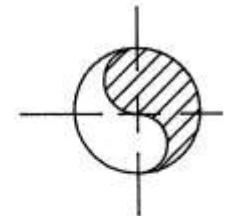
# Pipe


- The main component of the piping system.
- Sizes can be prescribed in :
  - A. NPS (Nominal Pipe Size –Inch System ).
  - B. DN ( Diameter Nominal – mm System)
- For the NPS system , 2 dimensional standards can be used :
  - A. ASME B36.10 (CS dimensions)
  - B. ASME B36.19 (SS dimensions)
- For NPS thickness described in Schedule (Schedule 10, 20, 30,40 , STD, XS,XXS ,etc).
- In NPS system, Outside Diameter of the pipe is higher than the  $NPS * 25.4$  for small sizes up to 12", for the 14" and above , Pipe OD is equal to  $NPS * 25.4$ .
- Can be supplied in Single Length (6 Mtr), Random Single Length (4,88-6,86 Mtr), Double Length (12 Mtr) and Random Double Length (11-12 Mtr) and some times in higher lengths

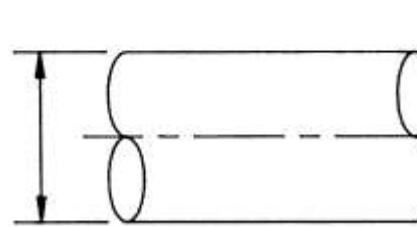
# Pipe


Table 12 — Tolerances for random length pipe

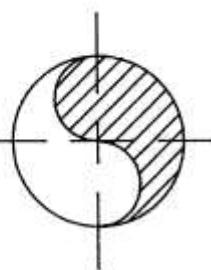
| Random length designation<br>m (ft) | Minimum length<br>m (ft) | Minimum average length<br>for each order item<br>m (ft) | Maximum length<br>m (ft) |
|-------------------------------------|--------------------------|---------------------------------------------------------|--------------------------|
| Threaded-and-coupled pipe           |                          |                                                         |                          |
| 6 (20)                              | 4,88 (16.0)              | 5,33 (17.5)                                             | 6,86 (22.5)              |
| 9 (30)                              | 4,11 (13.5)              | 8,00 (26.2)                                             | 10,29 (33.8)             |
| 12 (40)                             | 6,71 (22.0)              | 10,67 (35.0)                                            | 13,72 (45.0)             |
| Plain-end pipe                      |                          |                                                         |                          |
| 6 (20)                              | 2,74 (9.0)               | 5,33 (17.5)                                             | 6,86 (22.5)              |
| 9 (30)                              | 4,11 (13.5)              | 8,00 (26.2)                                             | 10,29 (33.8)             |
| 12 (40)                             | 4,27 (14.0)              | 10,67 (35.0)                                            | 13,72 (45.0)             |
| 15 (50)                             | 5,33 (17.5)              | 13,35 (43.8)                                            | 16,76 (55.0)             |
| 18 (60)                             | 6,40 (21.0)              | 16,00 (52.5)                                            | 19,81 (65.0)             |
| 24 (80)                             | 8,53 (28.0)              | 21,34 (70.0)                                            | 25,91 (85.0)             |


# Pipes




## DRAWING SYMBOLS FOR PIPE

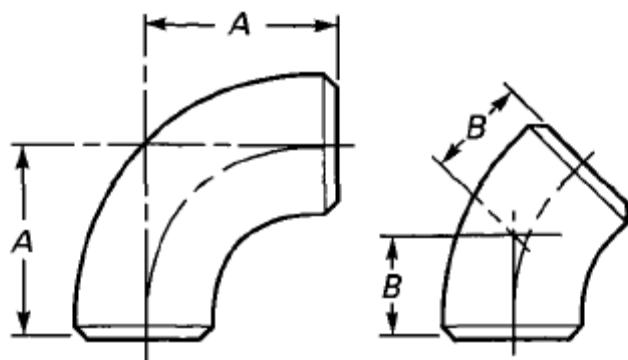



SINGLE LINE PIPE  
12" AND SMALLER

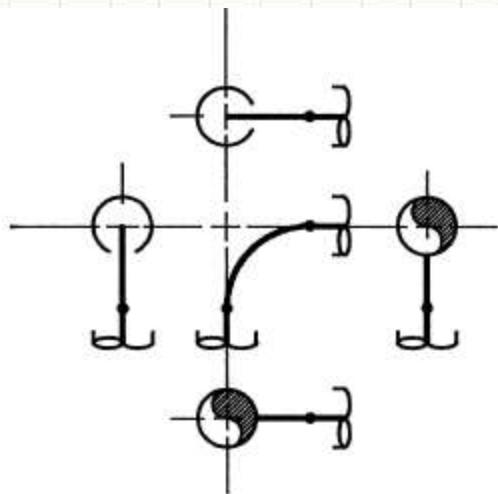


END  
VIEW

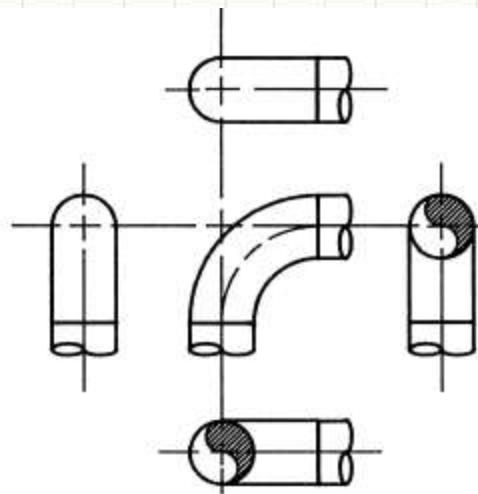



DOUBLE LINE PIPE  
14" AND LARGER




# Elbows

- Used for any change in direction .
- Long Radius ( 1.5D) or Short Radius.
- Dimensional Standards (ASME B16.9).
- Sizes and thickness designation same as pipe.


# Elbows



# Elbows Draughting

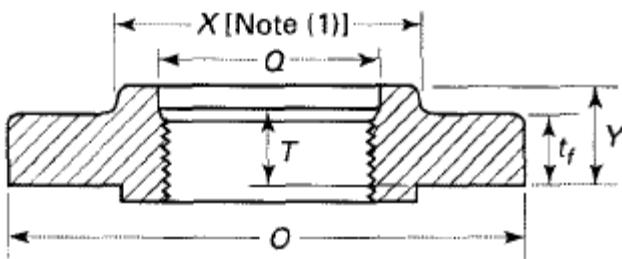


Single line: 12" and smaller

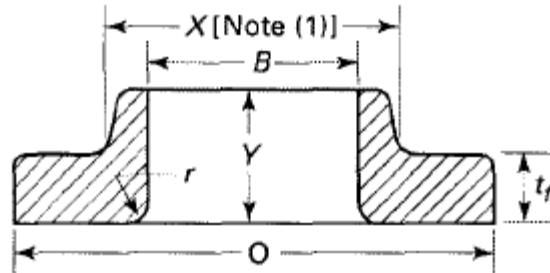


Double line: 14" and larger

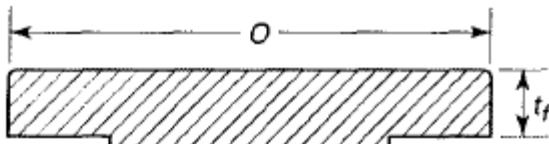



# Flanges

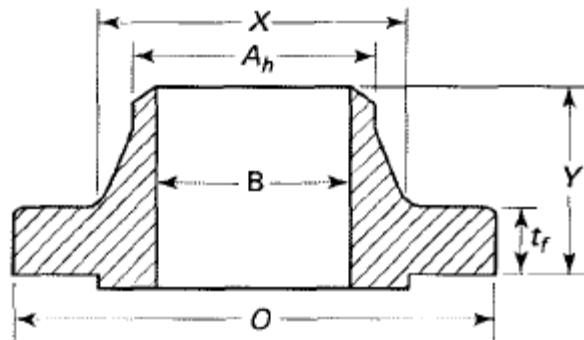
- Used in the places in which the pipe shall be easily dismantled for Maintenance.
- Used to attach piping system to equipment's.
- Source of leakage in the piping system.
- Pressure rating is defined by the symbol # ,which means PSI.
- Pressure rating is defined by the Manufacturing Standard (Not by pipe thickness).
- ASME Pressure Rating :150#,300#,400#,600#,900#,1500# and 2500#.
- API Pressure Rating : 2000#, 3000#, 5000#, 10000#, 15000#, 20000#
- Dimensional and Pressure Rating Standard is ASME B16.5 .ASME B16.47,API 6A).




# Flanges Ends


- Weld neck
- Threaded
- Socket weld
- Slip-on
- lap-joint
- Blind




**Threaded**  
(NPS  $1/2$  to  $2\frac{1}{2}$  Only)



**Lapped**



**Blind**



**Welding Neck**

# Flanges Ends

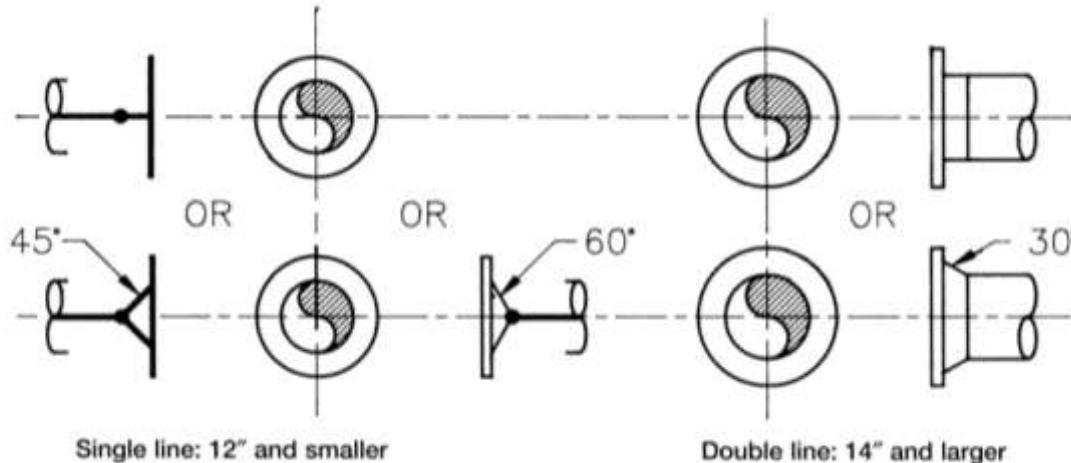



Figure 4-18. Single-line threaded flange drawing symbol.

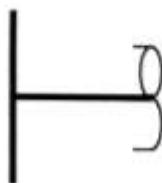
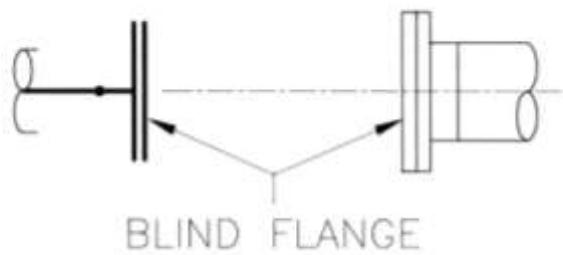



Figure 4-20. Single-line socket-weld drawing symbol.


# Flange Facing

- Raised Face (RF)
- Flat Face (FF)
- Ring Type Joint (RTJ)

# Flanges Ends



Figure 4-23. Blind flange.



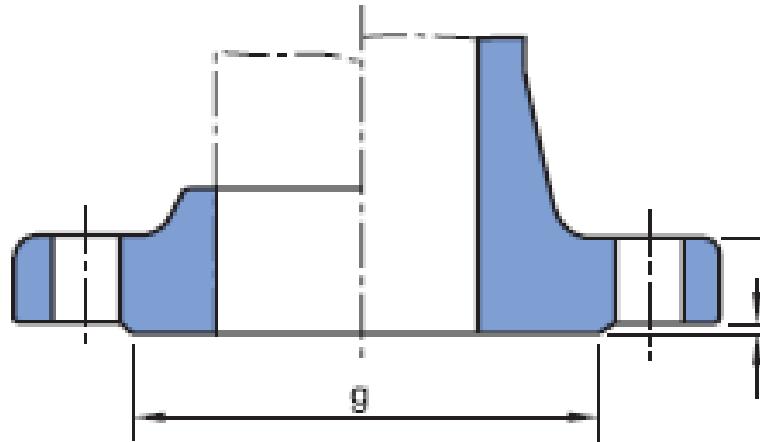
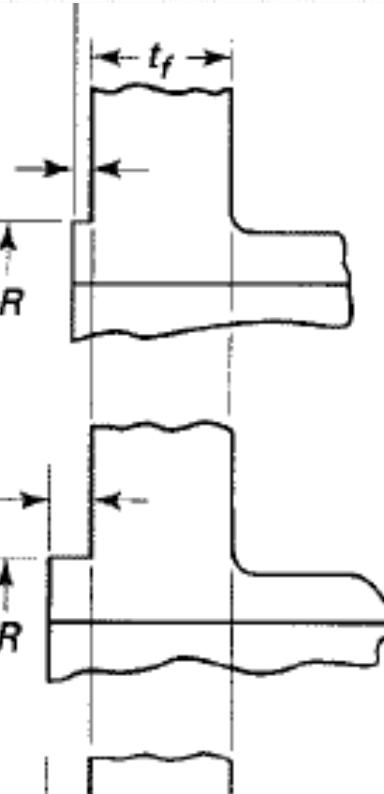

Single line: 12" and smaller Double line: 14" and larger

Figure 4-24. Blind flange drawing symbols.

# Flange Facing

- Raised Face
- Used for optimum gasket seating.
- RF thickness is 2 mm (150#-300#)
- RF thickness is 7 mm (600#-1500#)
- Used in General up to 900#.


# Flange Facing



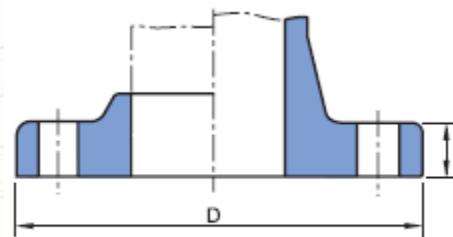
RAISED FACE (LARGE)

# Raised Face

2-mm raised face  
regularly furnished  
on Classes 150 and  
300, unless otherwise  
ordered



7-mm raised face  
regularly furnished  
on Classes 400 and  
higher, unless  
otherwise ordered


L  
f fitting



# Flat Face

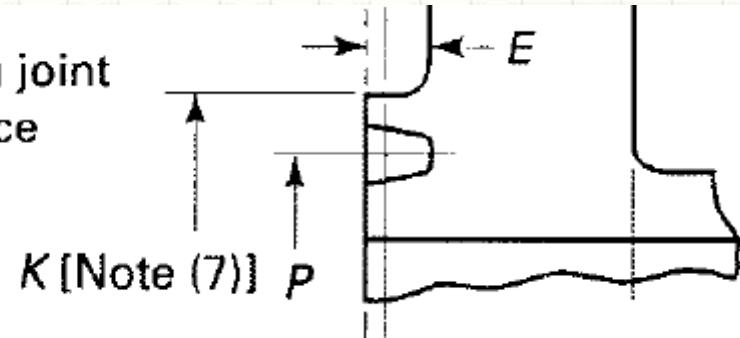
- Used for low pressure .
- Used when mating between CS flanges and Cast Iron is required or when CS flanges and Plastic flanges mating is required.

# Flat Face

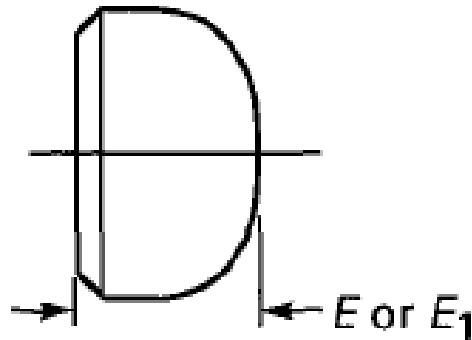


FLAT FACE



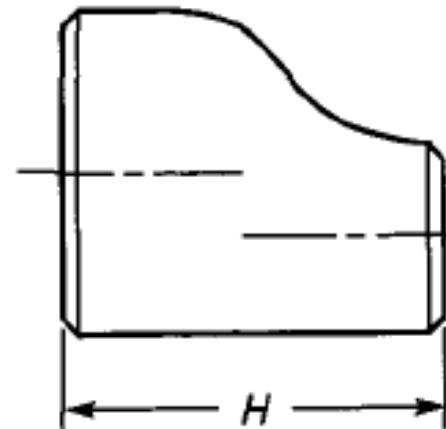
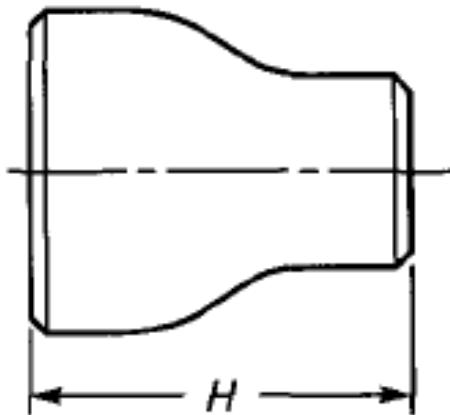

# Ring Type Joint

- Used in Higher Pressure application 900# and above

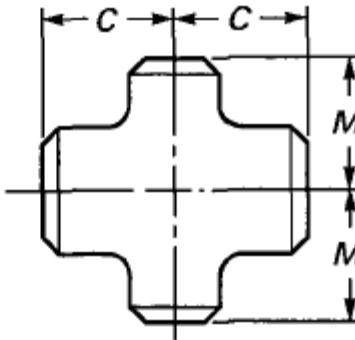
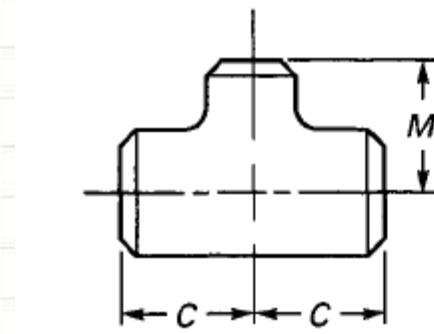
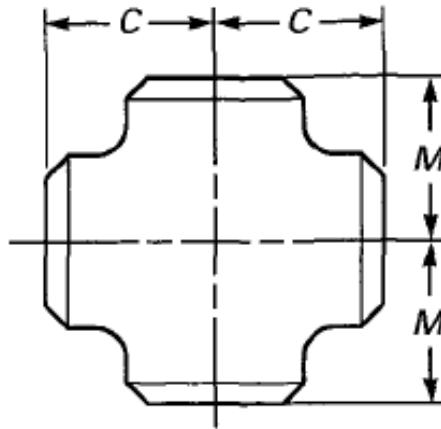
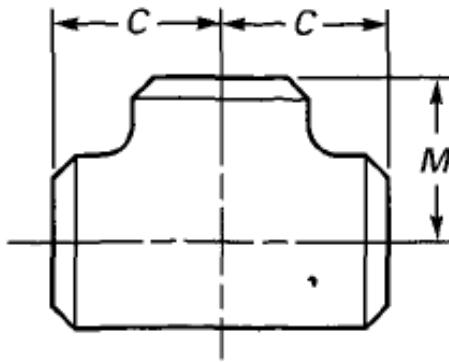

# Ring Type Joint



Ring joint  
face


# Caps


**Table 11 Dimensions of Caps**

# Reducers

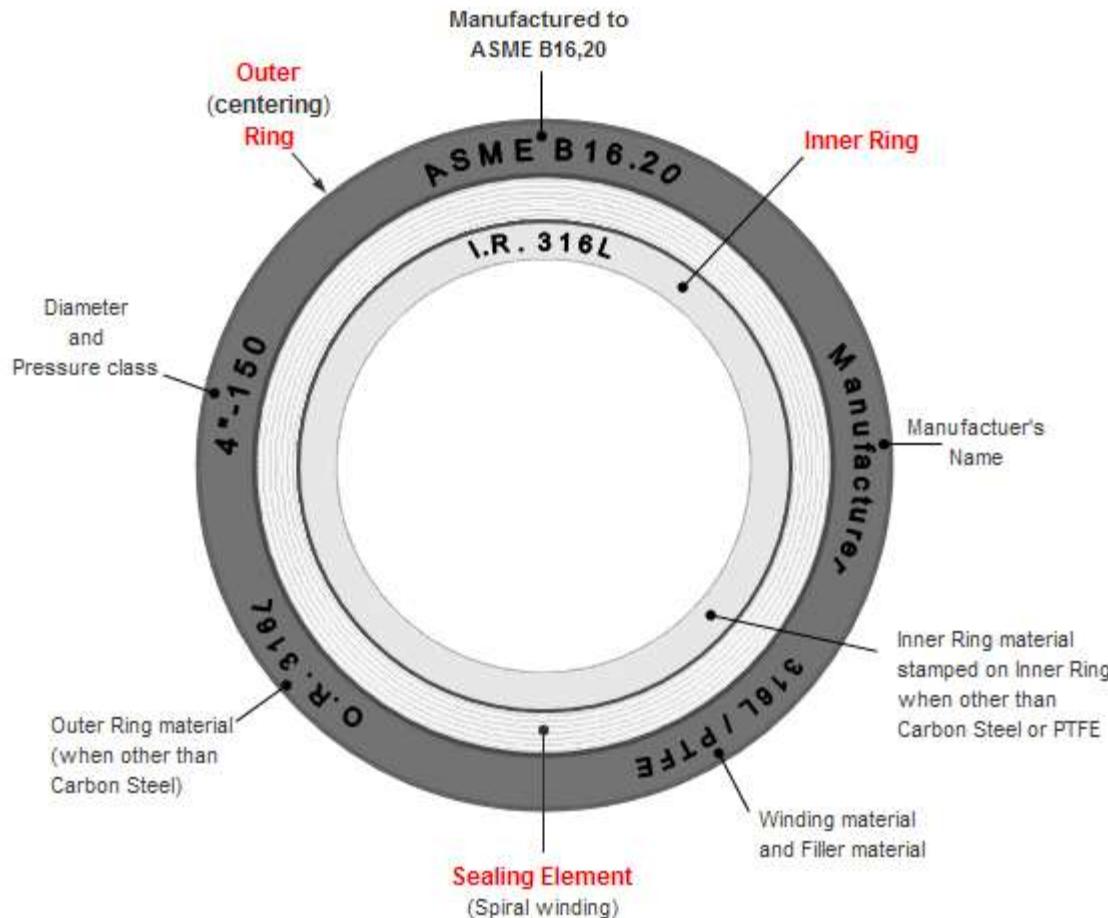


# Tees and Crosses





# Gaskets


- Spiral Wound
- Flat Ring
- Ring Gasket

# Spiral Wound



- The most common used gasket component.
- Can seal under heavy operating conditions .
- Manufactured as per ASME B16.20
- Easy installation due the robust shape of the gasket.
- Relatively higher torque value is required for gasket seating.
- Filler ring can be graphite, PTFE , Vermiculite, Phlogopite (magnesium mica), Flexible graphite, Ceramic.
- Major component : Spiral Wound with the filler material (Sealing Element), Inner ring and Outer(Centering) ring.

# Spiral Wound



# Flat Ring Gasket



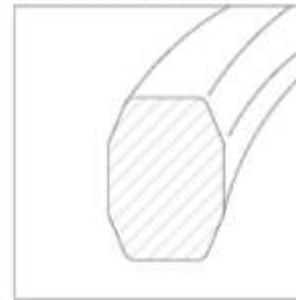
- Used usually for lower pressure rating 150#-300# and lower temperature.
- Less torqueing value in compare with the same rating of SW gaskets.
- Manufactured from elastomer material.
- Less cost.

# Flat Ring Gasket

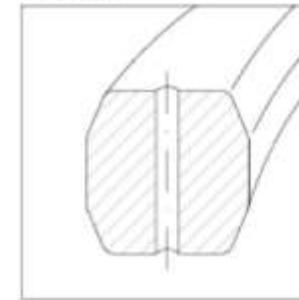




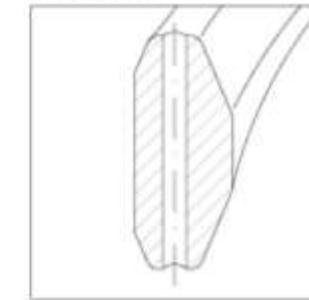
# Ring Gaskets


- Used for high pressure rating 900# and above.
- Manufactured from metals such as soft iron.
- Oval shape, Octagonal shape .
- Can be also pressure energized type (RX/BX)

# Ring Gaskets

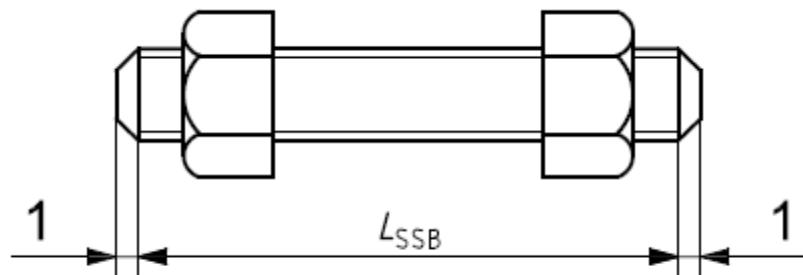

R Type




R Octagonal Type



RX Type




BX Type



# Stud Bolts

- Bolts are used to connect the flange joints.
- Bolt length shall be calculated to satisfy the client requirements such as exposed threads.



c) Stud bolt with nuts



# Valves

- Gate Valves
- Ball Valves
- Globe Valves
- Butterfly valves
- Check Valves : Piston , Swing type , Single plate, Dual Plate.
- Choke Valves .
- Plug Valves
- Safety Relief valves.

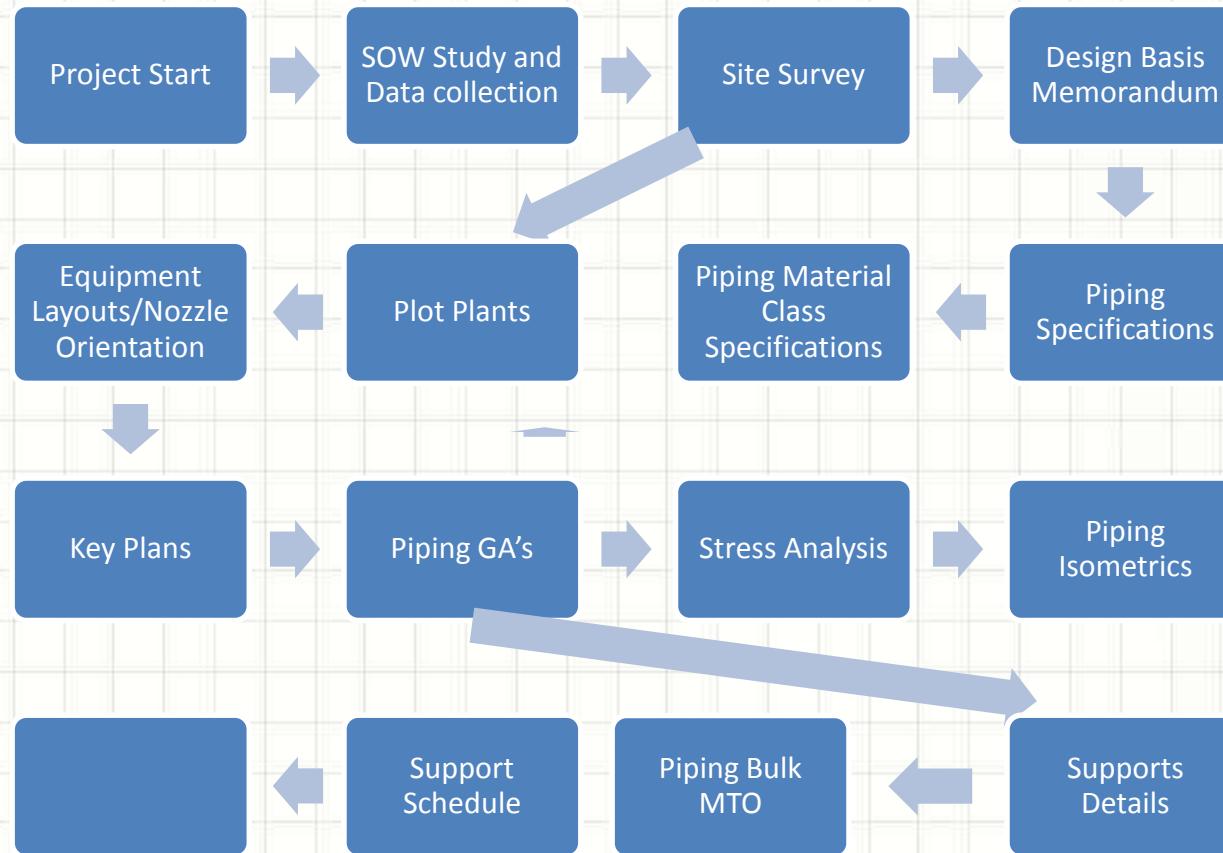
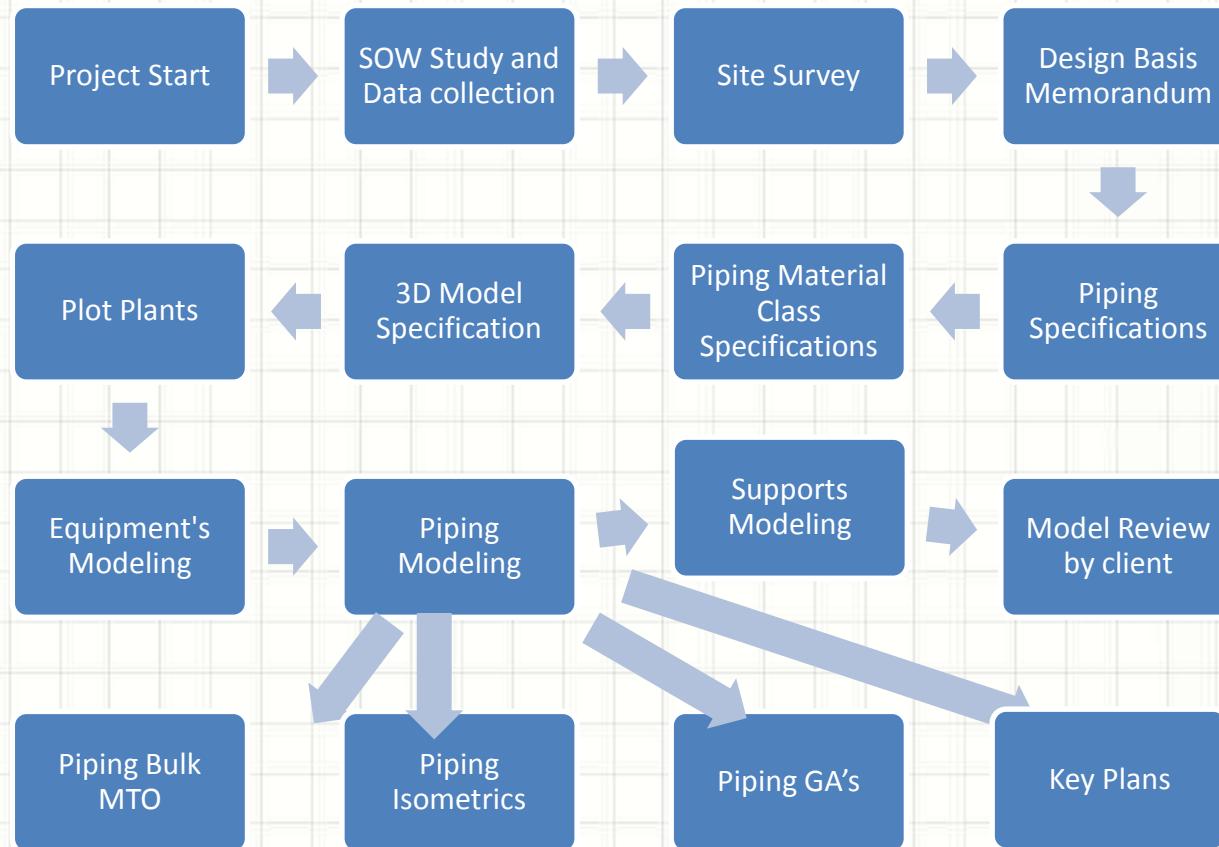

# Valves uses

Table 12.2.4 Applications of isolating valve types

| Valve type      | General applications                                                                                                                                      | Actuation                                                                            | Remarks                                                                                                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Globe valve     | Shut-off/regulation of liquid/gas flow.<br>Steam and condensate applications.                                                                             | Usually manual, but may be:<br>- Electric<br>- Manual<br>- Hydraulic<br>- Pneumatic  | Usually applied to higher pressure or high volume systems, due to cost.<br>Less suitable for viscous or contaminated fluids.                                  |
| Piston valve    | Used fully open or fully closed for on/off regulation on steam, gas and other fluid services.<br>Typically used on fluids that cause excessive seat wear. | Usually manual, but may be:<br>- Electric<br>- Manual<br>- Hydraulic                 | Usually used where the valve body is to be permanently installed and maintenance needs to be minimised.                                                       |
| Gate valve      | Normally used fully open or fully closed for on/off regulation on water, oil, gas, steam and other fluid services.                                        | Usually manual, but may be:<br>- Electric<br>- Manual<br>- Hydraulic                 | Not recommended as a throttling valve.<br>Solid wedge gate is free from chatter and jamming.<br>Parallel slide valve used in steam systems.                   |
| Butterfly valve | Shut-off and regulation in larger pipelines in waterworks, process industries, HPI, power generation.                                                     | Handwheel<br>Electric motor<br>Pneumatic actuator<br>Hydraulic actuator<br>Air motor | Relatively simple construction.<br>Can be produced in very large sizes.<br>Eccentric design essential for steam systems.<br>Typically used on liquid systems. |
| Ball valve      | Wide range of applications in all sizes, including HPI.<br>Steam and condensate applications.                                                             | Handwheel<br>Electric motor<br>Pneumatic actuator<br>Hydraulic actuator              | Can handle all fluid types.<br>Limited maximum pressure.                                                                                                      |


# Stages of piping Design from Start to the project End

## • Manual Draughting



# Stages of piping Design from Start to the project End

## • 3d Modeling





# Design Basis

- This document includes the following :
  - A. The scope of the design .
  - B. The Design approach (Which documents will be submitted , the international codes and standards to be used, client standards to be used , the material selection criteria, the design assumptions ,etc).
- This documents defines how the design shall be done, and shall be submitted and approved in the beginning of the project to avoid rework.



# Piping Material Class Specifications

- Include grouping of pipes , fitting, flanges, gaskets, etc which can be used for certain pressure ranges, temperature ranges and services ranges.
- Usually includes single nominal material designation (Eg. CS A106 Gr.B ) .
- Has coding system which explains the class uses :  
Example:
  - 150-C-1 : 150 : Flange Ratings .
    - C: CS steel
    - 1: Corrosion Allowance .



# Plot Plans

- Scale between 1:200 up to 1:2000.
- Defines the scope of the project .
- The main purpose of this drawing is the area allocation and the overall plant design.
- Area allocation includes required areas and coordinates.
- Plot plans show the location of all the buildings, equipment, pipe racks, and other items of importance in the unit.
- True north and plant north are also shown.
- Includes the Road/Access outlines
- Shows sometimes the coordinates of the major equipment.
- Sometimes the plant Coordinate System is defined on the plot plan




- Go to PDF



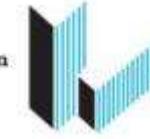
# Equipment Layout

- Developed after the plot plant .
- Shows the equipment's arrangement , locations, spacing and maintenance spacing.



# Equipment Layout

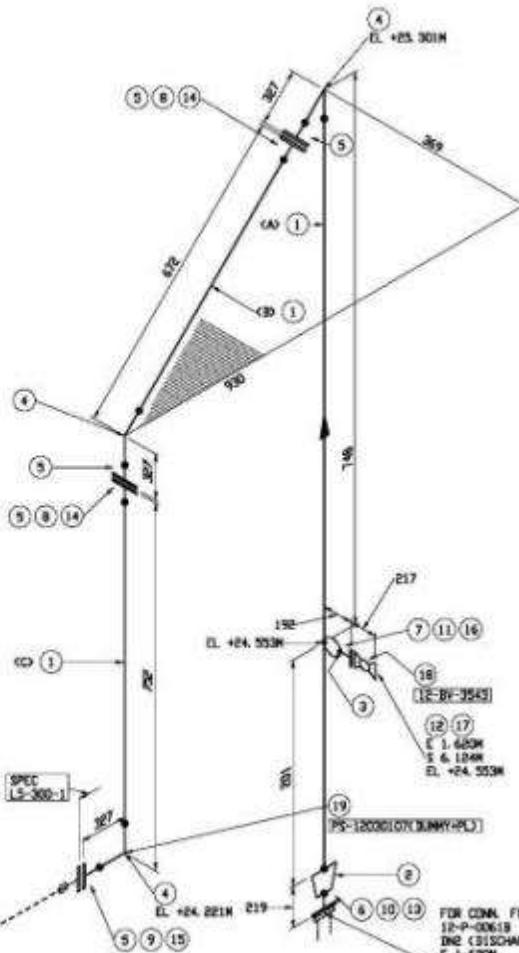
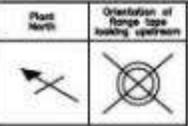
- Go to PDF


# Piping General Arrangement /Layout

- The most important Drawing in for the piping engineer.
- Developed from the plot plan and Equipment layout, or directly from the 3D Model.
- Shows the pipes routing and supports locations, access platforms, etc .
- Shows also all the valves operation requirements.
- Fully developed piping GA shall provide full information for piping Fabrications.
- The piping GA used for piping erection.



# Piping General Arrangement /Layout



- Go to PDF



# Piping Isometrics

- An isometric is a type of three-dimensional drawing known as a pictorial.
- Isometrics, or *Iso*'s as they are commonly called, are developed using the three primary dimensions of an object: height, width, and depth.
- the isometric combines the three dimensions of the object into a single view to provide a pictorial representation.
- Includes all the material Call Out and the Material Take Off.
- Used for Fabrication Purposes, and some times for Erection.

# Piping Isometrics



STRESS CRITICAL LINE : YES  
SYSTEM NO : 12-3

| LIST OF MATERIAL |          |         |                                                                                                                                                                       |       |
|------------------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SR NO.           | CLASS    | SIZE    | DESCRIPTION                                                                                                                                                           | QTY.  |
| 1                | LS-300-1 | 6       | PIPE-SCH. 40-3E-ASTM A106 Gr. B-ASME B36.10-F-FB COATED                                                                                                               | 1.5 M |
| 2                | LS-300-1 | 6X3     | REDUCER CONE -SCH. 40-3E-ASTM A234 W.P. 3000 LBS. 150# ASME B16.11                                                                                                    | 1     |
| 3                | LS-300-1 | 6X2     | REDUCER CONE -SCH. 40-3E-ASTM A234 W.P. 3000 LBS. 150# ASME B16.11                                                                                                    | 1     |
| 4                | LS-300-1 | 6       | ELBOW-90°-LR-SCH. 40-3E-ASTM A234 W.P. 3000 LBS. 9-FB COATED                                                                                                          | 3     |
| 5                | LS-300-1 | 6       | WELDNECK FLANGE-300#-SCH. 40-3E-ASTM A182-FM5-F-FB COATED                                                                                                             | 5     |
| 6                | LS-300-1 | 3       | WELDNECK FLANGE-300#-SCH. 40-3E-ASTM A182-FM5-F-FB COATED                                                                                                             | 1     |
| 7                | LS-300-1 | 2       | WELDNECK FLANGE-300#-SCH. 40-3E-ASTM A182-FM5-F-FB COATED                                                                                                             | 1     |
| 8                | LS-300-1 | 6       | GASKET-300#-1.5#-TBL-COMPRESSED NON ASBESTOS FIBER-TBL RESISTANT-FLAT RING-ASME B16.20                                                                                | 2     |
| 9                | LS-300-1 | 6       | INSULATION KIT-300#                                                                                                                                                   | 1     |
| 10               | LS-300-1 | 3       | INSULATION KIT-300#                                                                                                                                                   | 1     |
| 11               | LS-300-1 | 2       | GASKET-300#-1.5#-TBL-COMPRESSED NON ASBESTOS FIBER-TBL RESISTANT-FLAT RING-ASME B16.20                                                                                | 1     |
| 12               | LS-300-1 | 2       | INSULATION KIT-300#                                                                                                                                                   | 1     |
| 13               | LS-300-1 | 3/4X115 | STUD BOLTS WITH 2 HEAVY HEX NUTS-ASTM A193 Gr. B7/ASTM A194 Gr. B4-ASME B18.2.1/18.2.2 (FOR INSULATION SLEEVES) (TBL INSULATION KIT-300#)                             | 8     |
| 14               | LS-300-1 | 3/4X120 | STUD BOLTS WITH 2 HEAVY HEX NUTS-ASTM A193 Gr. B7/ASTM A194 Gr. B4-ASME B18.2.1/18.2.2 (FOR INSULATION SLEEVES) (TBL INSULATION KIT-300#)                             | 24    |
| 15               | LS-300-1 | 3/4X125 | STUD BOLTS WITH 2 HEAVY HEX NUTS-ASTM A193 Gr. B7/ASTM A194 Gr. B4-ASME B18.2.1/18.2.2 (FOR INSULATION SLEEVES) (TBL INSULATION KIT-300#)                             | 12    |
| 16               | LS-300-1 | 5/8X90  | STUD BOLTS WITH 2 HEAVY HEX NUTS-ASTM A193 Gr. B7/ASTM A194 Gr. B4-ASME B18.2.1/18.2.2 (FOR INSULATION SLEEVES) (TBL INSULATION KIT-300#)                             | 8     |
| 17               | LS-300-1 | 5/8X95  | STUD BOLTS WITH 2 HEAVY HEX NUTS-ASTM A193 Gr. B7/ASTM A194 Gr. B4-ASME B18.2.1/18.2.2 (FOR INSULATION SLEEVES) (TBL INSULATION KIT-300#)                             | 8     |
| 18               | LS-300-1 | 2       | BALL VALVE FLANGED-REDUCED 300#-300#-90°-TRIUNION MOUNTED 3/4"-LONG PATTERN-GLASS FILLED PTFE SEATS-ASTM A182 Gr. WCB/CGCB/CGCB/CP COATING-TRIM SS316L 60#-CODE 30-17 | 1     |

|                        |          |        |                           |   |
|------------------------|----------|--------|---------------------------|---|
| 19                     | LT-300-1 | 6      | PS-12030307X (SUMMARY+PL) | 1 |
| <b>CUT PIPE LENGTH</b> |          |        |                           |   |
| PIECE                  | LENGTH   | SIZE   |                           |   |
| NUM                    | (MM)     | (INCH) |                           |   |
| CA                     | 700      | 6      |                           |   |
| CB                     | 345      | 6      |                           |   |
| CD                     | 494      | 6      |                           |   |



# Piping Bulk MTO

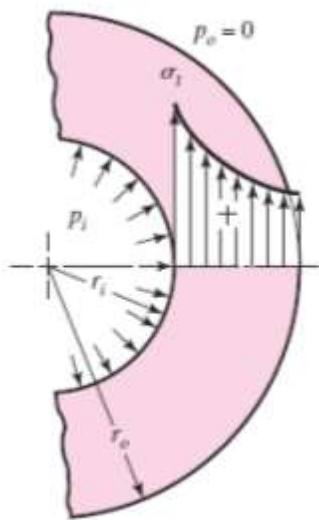
- List Type Document .
- Includes all the piping material (Non consumables) which shall be installed in the project.
- Includes Items Description, Quantity and special requirement for the items to be procured.
- Input to the procurement
- Done in stages:
  - A. 70% (In the beginning of the project)
  - B. 80% (After issuing 50% of the Iso's)
  - C. 90% (After issuing 100% of the Iso's)
  - D. 100%. (After issuing all the ISO's for Construction)



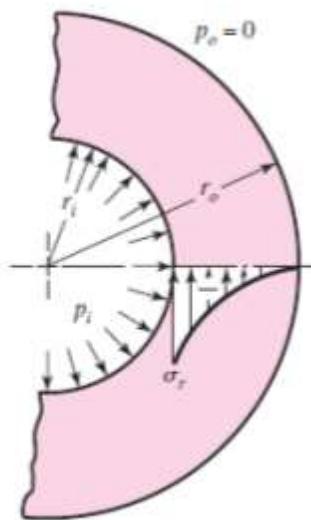
## Other Drawings and documents

- Stress Analysis Reports
- Piping Key Plans.
- Nozzle orientations




# Piping Calculations

- Piping Wall Thickness Calculations .
- Pipe Supports Span Calculations


# Pipe Wall Thickness Calculations

- Used to check the adequacy of pipe thickness for internal pressure.
- Uses the formula of Thin-Walled Vessels:  
$$S=PD/2t.$$
- D/T shall be always checked before use (D/T shall be  $<6$ )

Every code has some correction factors included



(a) Tangential stress distribution



(b) Radial stress distribution

TABLE 5.4 Required Thickness in Inches for Each Code

| Code               | Formula                                                                             | Calculated $t$ | Comment                                |
|--------------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------|
| B31.1              | $t_m = \frac{PD_o}{2(SE + Py)} + A$                                                 | 0.094          | 6 std = 0.245 min                      |
| B31.3              | $t_m = \frac{PD_o}{2(SE + Py)} + A$                                                 | 0.070          | 6 std = 0.245 min                      |
| B31.3 (chapter IX) | $t = \frac{D_o - 2c_o}{2} \left[ 1 - \exp \left( \frac{-1.155P}{S} \right) \right]$ | 0.080          | See discussion for comments            |
| B31.4              | $t = \frac{PD_o}{2SE(0.72)}$                                                        | 0.057          | 6 std = 0.245 min                      |
| B31.5              | $t_m = \frac{PD_o}{2(S + Py)} + A$                                                  | 0.094          | 6 std = 0.245 min                      |
| B31.8              | $t = \frac{PD_o}{2SFET}$                                                            | 0.082          | 6 std = 0.245 min                      |
| B31.9              | $t = \frac{PD_o}{2SE} + A$                                                          | 0.109          | 6 std = 0.245 min<br>actual is A-106 B |
| B31.11             | $t = \frac{PD_o}{2SE(0.80)}$                                                        | 0.051          | 6 std = 0.245                          |

In this table,

$P$  = pressure

$D_o$  = outside diameter

$F$  = B31.8 design factor (used compressor station = 0.5)

$T$  = temperature derating factor of 1

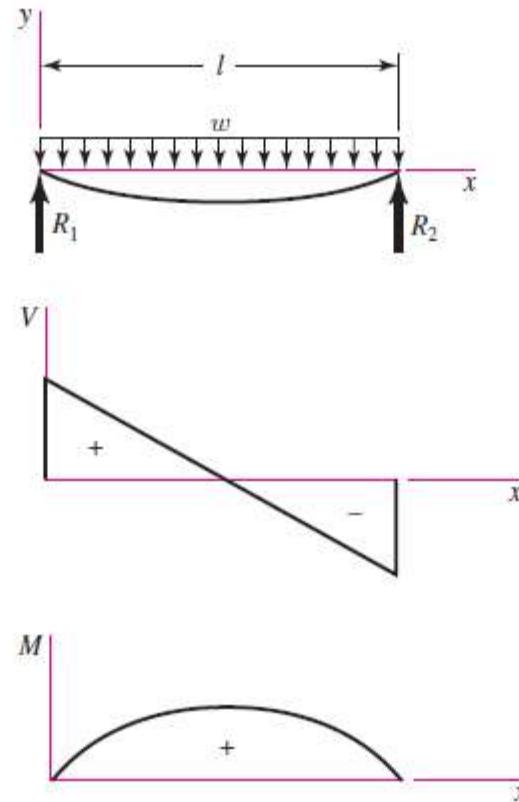
$A$  = corrosion/mechanical factor



- As mentioned before , the pipe is beam , acting as pressure vessel .
- Since it is beam , beam formulas govern the stress calculations for supporting purpose.
- The pipe is neither simple supported beam , nor Fixed end , it is something in between.
- The following formulas governs the support span calculations.

# Pipe Support Span Calculations

**Table A-9**


Shear, Moment, and

Deflection of Beams

(Continued)

(Note: Force and moment reactions are positive in the directions shown; equations for shear force  $V$  and bending moment  $M$  follow the sign conventions given in Sec. 3-2.)

7 Simple supports—uniform load

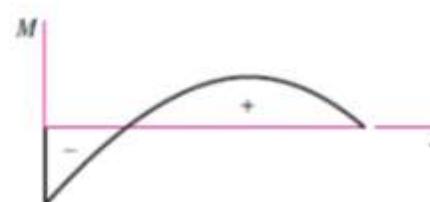
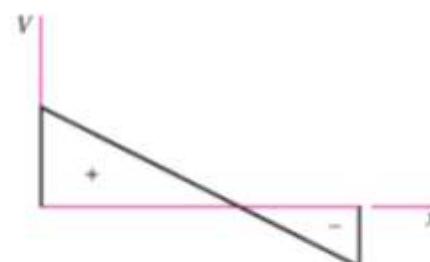
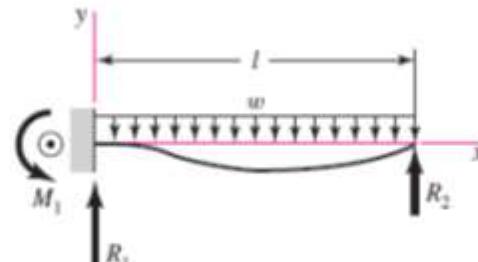


$$R_1 = R_2 = \frac{wl}{2} \quad V = \frac{wl}{2} - wx$$

$$M = \frac{wx}{2}(l - x)$$

$$y = \frac{wx}{24EI}(2lx^2 - x^3 - l^3)$$

$$y_{\max} = -\frac{5wl^4}{384EI}$$




# Pipe Support Span Calculations

**Table A-9**

Shear, Moment, and Deflection of Beams  
(Continued)

(Note: Force and moment reactions are positive in the directions shown; equations for shear force  $V$  and bending moment  $M$  follow the sign conventions given in Sec. 3-2.)

13 One fixed and one simple support—uniform load



$$R_1 = \frac{5wl}{8} \quad R_2 = \frac{3wl}{8} \quad M_1 = \frac{wl^2}{8}$$

$$V = \frac{5wl}{8} - wx$$

$$M = -\frac{w}{8}(4x^2 - 5lx + l^2)$$

$$y = \frac{wx^2}{48EI}(l - x)(2x - 3l)$$



# Pipe Support Span Calculations

- 2 factors effects the span , the Mid Span Deflection and the Stresses .
- For stresses purposed , the governing formula is  $M/Z$  :  
M : Bending Moment.  
Z : Section Modulus ( $I/c$ ) .
- Solving for simple supported beam will lead to the following formula :

$$M_A = \frac{wl^2}{12}$$

- The Longitudinal Stress due to pipe weight + Longitudinal Stress due to pressure shall be added together and the results shall be compared with the Allowable stress as per the design code , see example below



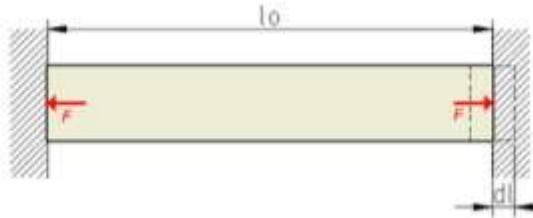
# Pipe Support Span Calculations

$$l_{\max} \leq \sqrt{\left( S_h - \frac{PD_o}{4t_n} \right) \frac{12}{w} \left( \frac{\pi(D^4 - (D - 2t_n)^4)}{32D} \right)} \quad (4)$$



# Pipe Support Span Calculations

- For the mid span deflection (Sagging) , the beam deflection formulas can be used.




# Piping Stress Analysis

- The process of calculation stresses on pipe , to ensure piping flexibility, structural integrity and to ensure system operability.
- The main purpose of stress analysis is to ensure that piping system has sufficient flexibility / rigidity to prevent any of the followings,:
  - A. Failure of piping from overstress or fatigue.
  - B. Leakage at joints (Especially the Flanged Joints).
  - C. Detrimental stress or distortion in piping or connected mechanical equipment such as Pig launcher/receiver, KO Drum and gas filters and metering skid, pumps, etc. resulting from excessive thrust and moments in piping.
  - D. Undesired displacement of the pipes.
  - E. Excessive loads and moments on connected equipment, anchor points, flanged connections, etc.

# Pipe Stress

- If the pipe is free to move and expand, no stress will occur.
- In the moment we put restraints on the pipe, stress occur -> Thermal Strains Will convert to stresses .



- The stress can be simplified in the following formula:



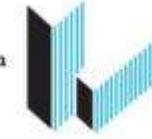
# Pipe Stress

$$\bullet \quad S = E a (DT)$$

Where

- $S$  : Expansion Stress (N/mm<sup>2</sup>).
- $E$  : Young Modulus (N/mm<sup>2</sup>).
- $a$  : The Material coefficient of thermal expansion (mm/mm/<sup>0</sup>C)
- $DT$  : Temperature Difference (Installation to Design /Operating) (<sup>0</sup>C)

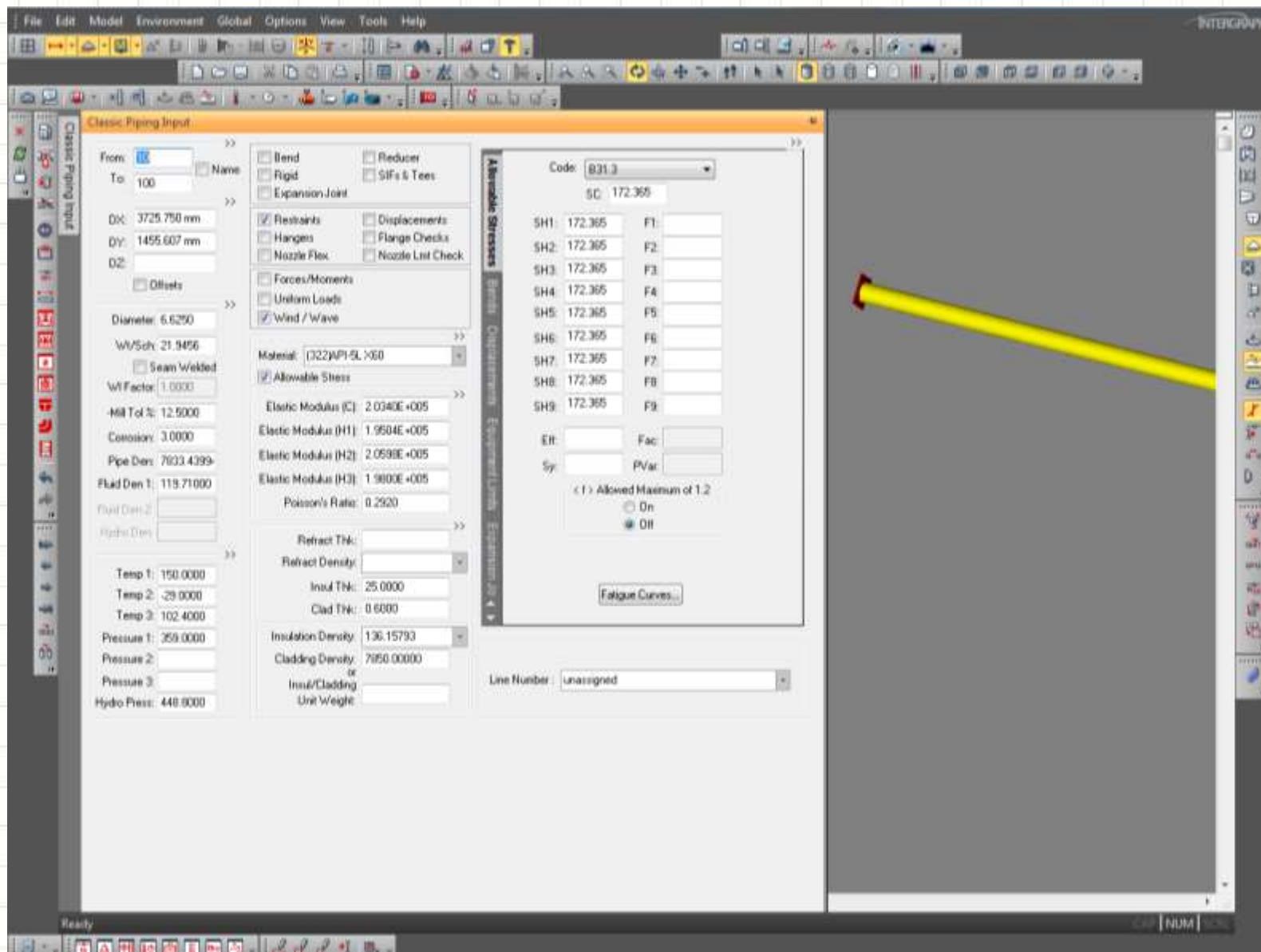



# Method of stress analysis

- Visual Method : For non critical lines .
- Approximate Method :Using Manual calculations.
- Formal computer stress analysis : Using Stress Analysis Program such as CAESAR II and AutoPIPE.



# Stress Analysis Programs


- Many programs are available in the market for stress analysis.
- The most dominant programs are CAESAR II- from Intergraph , and Auto pipe from Bentley.
- The most used program which is widely acceptable program is CAESAR II.



# How these programs works

- The programs deal with the pipe as a beam .
- After Modelling ,program calculates the stiffness of every element (  $K = F/Dx$ ).
- The stiffness of the elements then inserted on the overall Stiffness matrix .
- By solving the stiffness matrix, the program to calculates element forces, moments and displacements, and convert it to stresses.

# CAESAR II Input screen



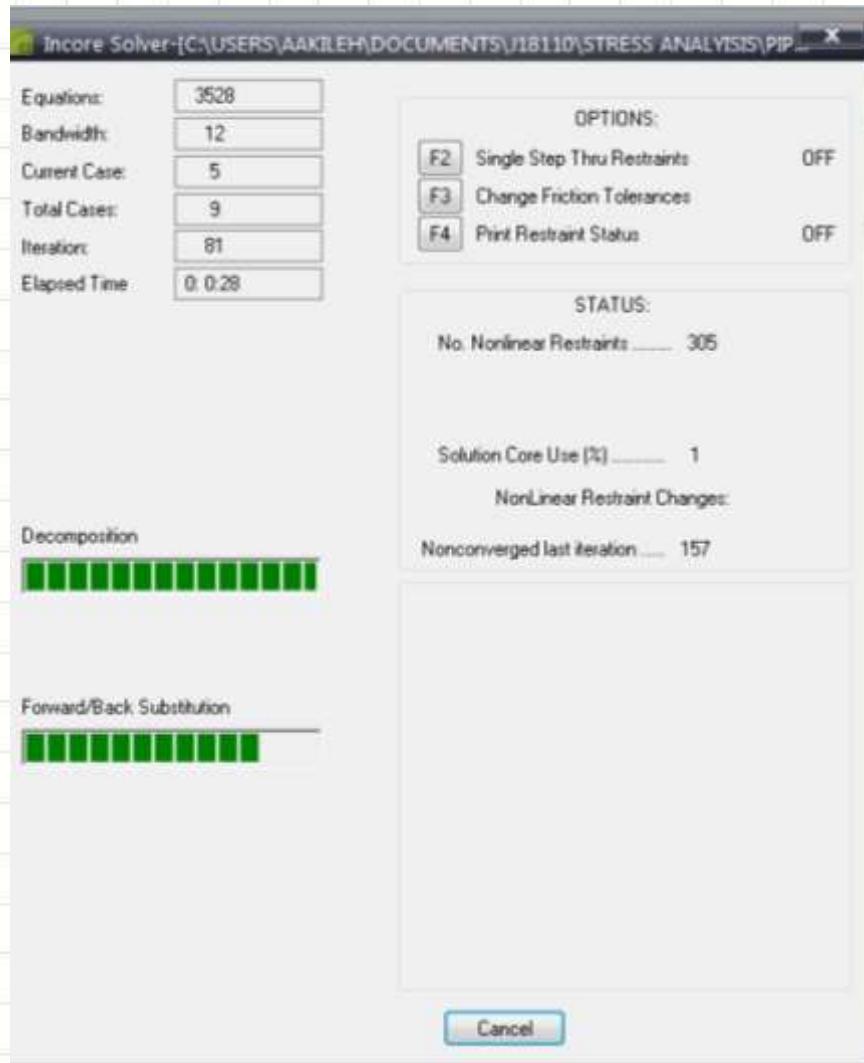


# CAESAR II Load Cases Screen

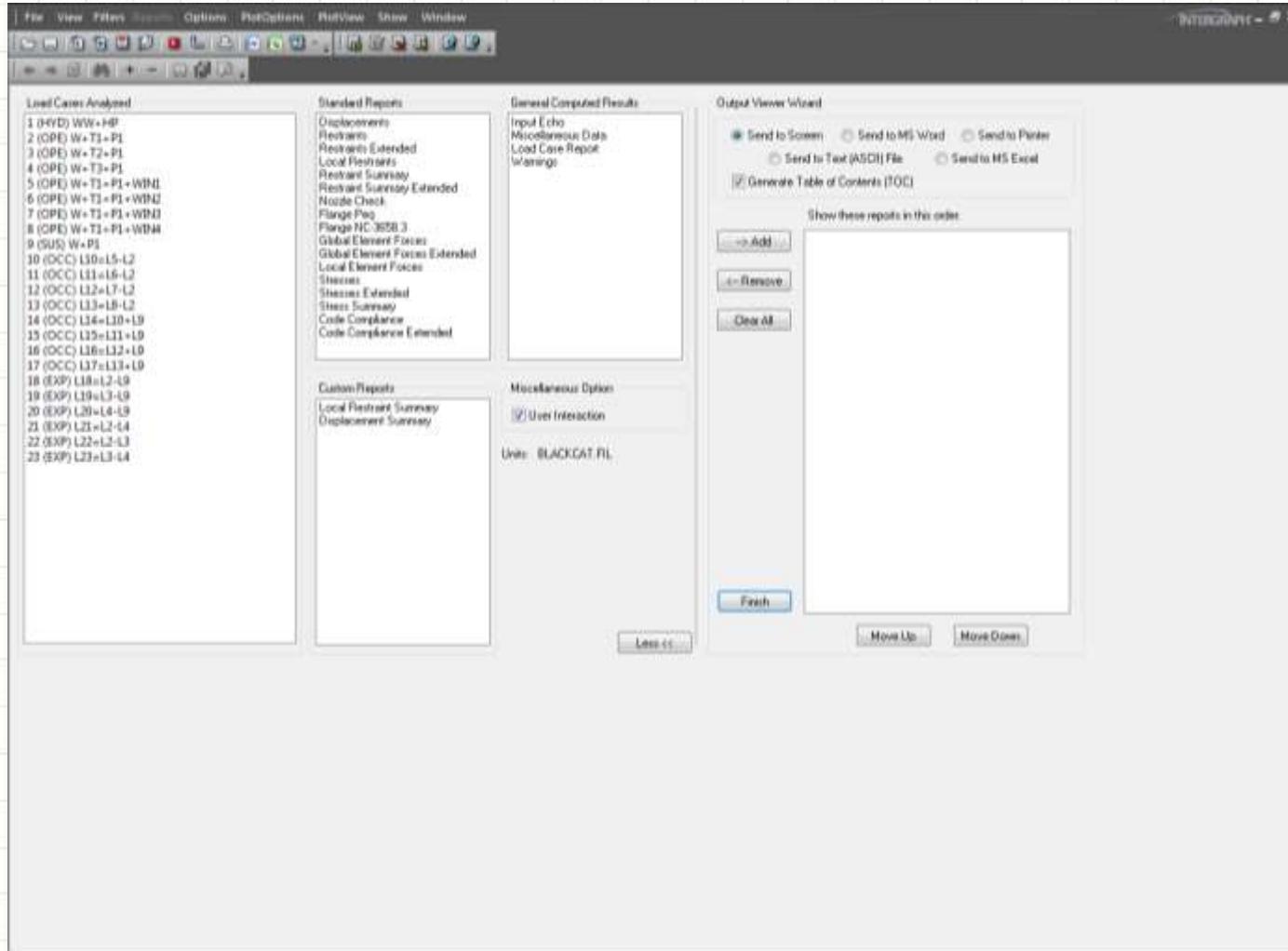
Load Cases   Wind Loads   Wave Loads   Group Edit

**Loads Defined in Input**

- W - Weight
- T1 - Thermal Case #1
- T2 - Thermal Case #2
- T3 - Thermal Case #3
- P1 - Pressure Case #1
- HP - Hydro. Pressure
- WLN1 - Wind Load Case #1
- WLN2 - Wind Load Case #2
- WLN3 - Wind Load Case #3
- WLN4 - Wind Load Case #4
- WW - Water Filled Weight
- WNC - Weight No Contents


Drag a column header and drop it here to group by that column

|            | Definition   | Name                     | Stress Type | Alternate SUS/OCC        | Load Cycles | Output Status     | Output Type              | Combination Method | Snubbers Active |
|------------|--------------|--------------------------|-------------|--------------------------|-------------|-------------------|--------------------------|--------------------|-----------------|
| L1         | WW+HP        | OPERATING CASE CONDITION | HYD         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L2         | W+T1+P1      | OPERATING CASE CONDITION | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L3         | W+T2+P1      | OPERATING CASE CONDITION | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L4         | W+T3+P1      | OPERATING CASE CONDITION | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L5         | W+T1+P1+WLN1 | W+T1+P1+WLN1 (OPE)       | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L6         | W+T1+P1+WLN2 | W+T1+P1+WLN2 (OPE)       | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L7         | W+T1+P1+WLN3 | W+T1+P1+WLN3 (OPE)       | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L8         | W+T1+P1+WLN4 | W+T1+P1+WLN4 (OPE)       | OPE         |                          |             | Keep              | Disp/Force/Stress        |                    |                 |
| L9         | W+P1         | SUSTAINED CASE CONDITION | SUS         | <input type="checkbox"/> |             | Keep              | Disp/Force/Stress        |                    |                 |
| L10        | L5-L2        | L5-L2 (OCC)              | OCC         |                          |             | Keep              | Disp/Force/Stress        | Algebraic          |                 |
| L11        | L6-L2        | L6-L2 (OCC)              | OCC         |                          |             | Keep              | Disp/Force/Stress        | Algebraic          |                 |
| <b>L12</b> | <b>L7-L2</b> | <b>L7-L2 (OCC)</b>       | <b>OCC</b>  |                          |             | <b>Keep</b>       | <b>Disp/Force/Stress</b> | <b>Algebraic</b>   |                 |
| L13        | L8-L2        | L8-L2 (OCC)              | OCC         |                          |             | Keep              | Disp/Force/Stress        | Algebraic          |                 |
| L14        | L10+L9       | L10+L9 (OCC)             | OCC         |                          |             | Keep              | Disp/Force/Stress        | Scalar             |                 |
| L15        | L11+L9       | L11+L9 (OCC)             | OCC         |                          |             | Keep              | Disp/Force/Stress        | Scalar             |                 |
| L16        | L12+L9       | L12+L9 (OCC)             | OCC         |                          |             | Keep              | Disp/Force/Stress        | Scalar             |                 |
| L17        | L13+L9       | L13+L9 (OCC)             | OCC         |                          |             | Keep              | Disp/Force/Stress        | Scalar             |                 |
| L18        | L2-L9        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |
| L19        | L3-L9        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |
| L20        | L4-L9        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |
| L21        | L2-L4        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |
| L22        | L2-L3        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |
| L23        | L3-L4        | EXPANSION CASE CONDITION | EXP         | 10950                    | Keep        | Disp/Force/Stress | Algebraic                |                    |                 |


Cancel   Save   Analyze



# CAESAR II Iteration Screen



# CAESAR II Output Screen



## Difference between the programs (CAESAR II vs. Auto pipe)

| CAESAR II                                                     | AutoPIPE                                                         |
|---------------------------------------------------------------|------------------------------------------------------------------|
| Less user Friendly                                            | More User friendly                                               |
| Comprehensive technical guide and technical reference guide   | Less Comprehensive technical guide and technical reference guide |
| Has connectivity to CADWORX® and SP3D 3d modelling software's | Has connectivity to AutoPlant 3d modelling software              |
| Different in combining the load cases                         |                                                                  |
| Different in dealing with the non linear restraints           |                                                                  |



# Piping Testing Requirements

- Piping Design Engineer Decides the testing requirements of piping system based on the codes and standards.
- Testing requirements includes but not limited to :
  - A. Visual testing .
  - B. Non Destructive Test : Extents and percentage of radiography of welds, Extent and percentage of MPI/LPT of welds.
  - C. Leak test of the piping system : Service Test/ Hydrostatic test /Pneumatic Test /Sensitive leak test.

# Hydrostat Pressure/Leak test

- Used to check the system integrity ,and the leakage which may occur on the joints.
- Water is used as testing medium , some times other medium are used .
- As per ASME B31.3 , systems shall be pressurized to 1.5 Design pressure.
- For the piping system dealing with gasses , additional temporary supports may need to be considered.
- Holding Time depends on the time the inspector needs to check all the joints (Minimum 10 Minutes for ASME B31.3 and B31.1).



# Pneumatic Pressure/Leak test

- Used to check the system integrity ,and the leakage which may occur on the joints.
- Air , Nitrogen , Argon , Helium are used as testing media.
- Usually used for small bore piping system.
- More safety consideration shall be taken for such test .



- Thank You