INTRODUCTION TO PIPING ENGINEERING

FUNCTION OF PIPING ENGINEERING

PIPING ENGINEERING TEAM

PLANT LAYOUT

- LAYOUT
- PIPE FITTINGS CLASSIFICATION
- VALVE CLASSIFICATION BASED ON FUNCTION
- PIPE ROUTING

STRESS ANALYSIS

- OBJECTIVE
- REQUIREMENTS OF SUPPORTS IN PIPING SYSTEM
- TYPE OF SUPPORTS
- FAMILIARIZATION WITH STRESS SYMBOLS

MATERIAL ENGINEERING

- BASIS FOR MATERIALS SELECTION
- MATERIAL SELECTION DIAGRAM
- MATERIAL SELECTION AS A FUNCTION OF TEMPERATURE

Piping

Project Execution Group

- Project Leading
- Equipment Layout & Pipe Routing
- Material Take Off

Material Engineering Group

- Piping Material Spec
- Requisition
 - Technical Bid Evaluation

Stress Analysis Group

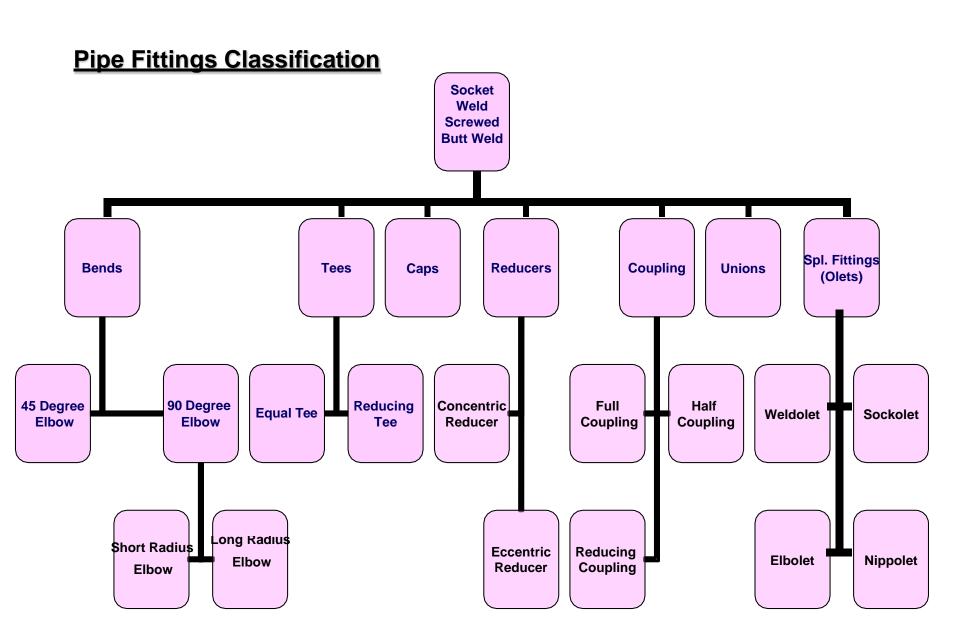
- Static Analysis
- Dynamic Analysis
- Composite Analysis

FUNCTION OF PIPING ENGINEERING

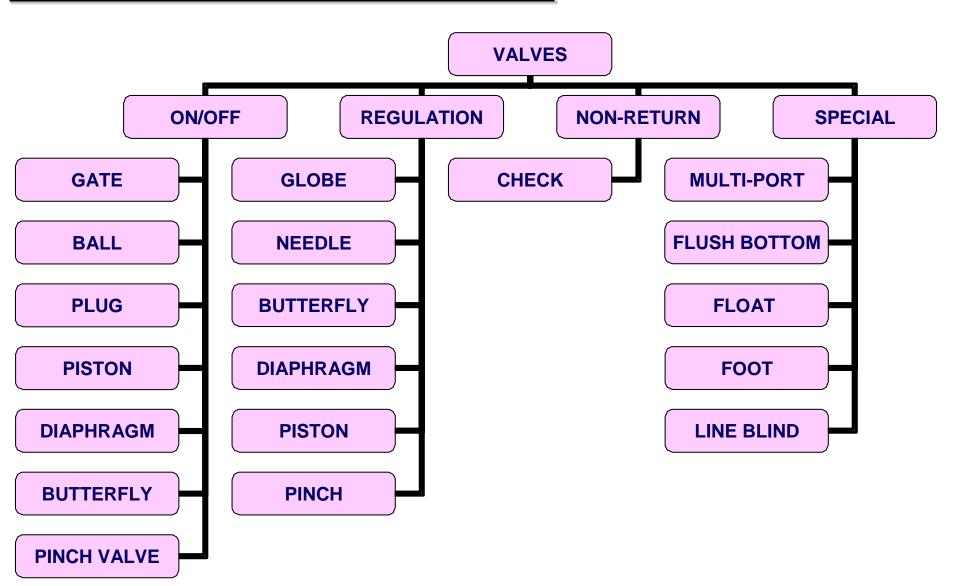
THE FUNCTION OF THE PIPING ENGINEERING IS TO APPLY KNOWLEDGE OF FLUID FLOW, STRESS ANALYSIS, MATERIAL PROPERTIES, ENGINEERING JUDGEMENT AND CONVERT THE PROCESS ENGINEER'S SPECIFICATION_INTO DRAWINGS AND DATA FROM WHICH MATERIALS CAN BE PURCHASED, FABRICATED AND ASSEMBLED INTO PIPING SYSTEMS WHICH FULFIL THE REQUIREMENT OF THE PROCESS.

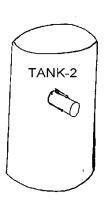
THIS MUST BE FULFILLED AT THE MINIMUM DESIGN COST WITHOUT SACRIFICING THE QUALITY AND DESIRED FUNCTION, THE PIPING SYSTEM MULL OPERATE WITHOUT PHYSICAL FAILURE OR EXCESSIVE PRESSURE LOSSES FOR THE ENTIRE SPAN OF DESIGNED PLANT LIFE.

Plant Layout


Plant Layout

A Process plant, which consist of the various different sections such as raw material storage, intermediate and finished product storage, process units, control rooms, Flare system, Raw material loading and uploading facilities, utilities generation and distribution etc. should be arranged so as to follow the general route of the raw material to process, to Intermediate/Finished product storage, to dispatch.


Generally block concept is prevalent for the plant layout where in the entire plot area is divided into blocks. The size of the blocks depends upon the facilities to be accommodated.


Following points are to be considered while locating the blocks.

- Process unit block shall be centrally located with straight approach from the main gate.
- The blocks shall be so arranged considering the prevalent wind direction that flammable gases should not be carried by the wind on to source of ignition.
- Utility blocks shall be located adjacent to unit blocks.
- Flare shall be located upwind of process units so that the inflammable gas from plant is not carried towards flare.
- Equipment requiring frequent maintenance shall have easy accessibility.

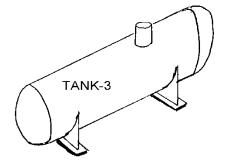
VALVE CLASSIFICATION BASED ON FUNCTION

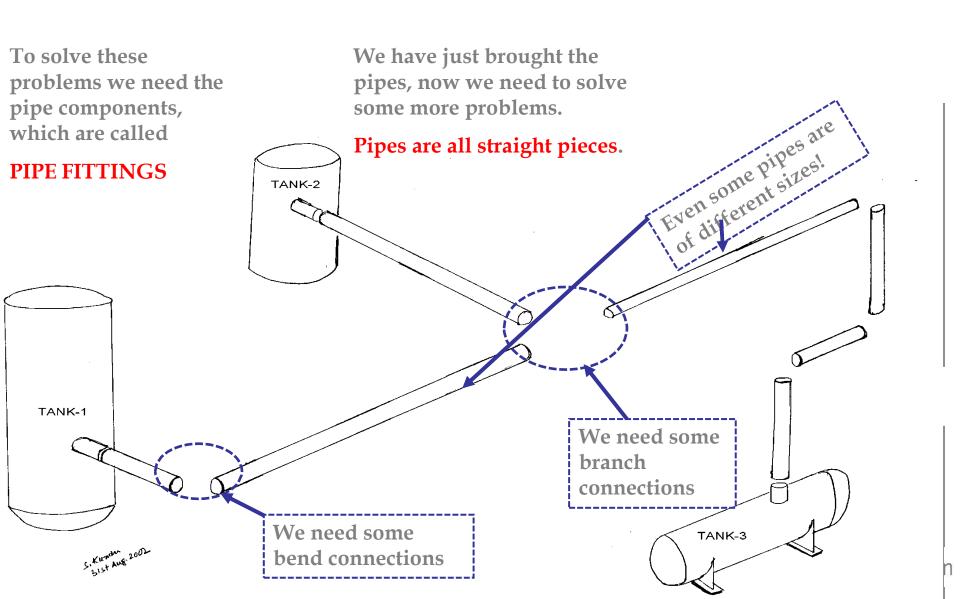
In any plant various fluids flow through pipes from one end to other.

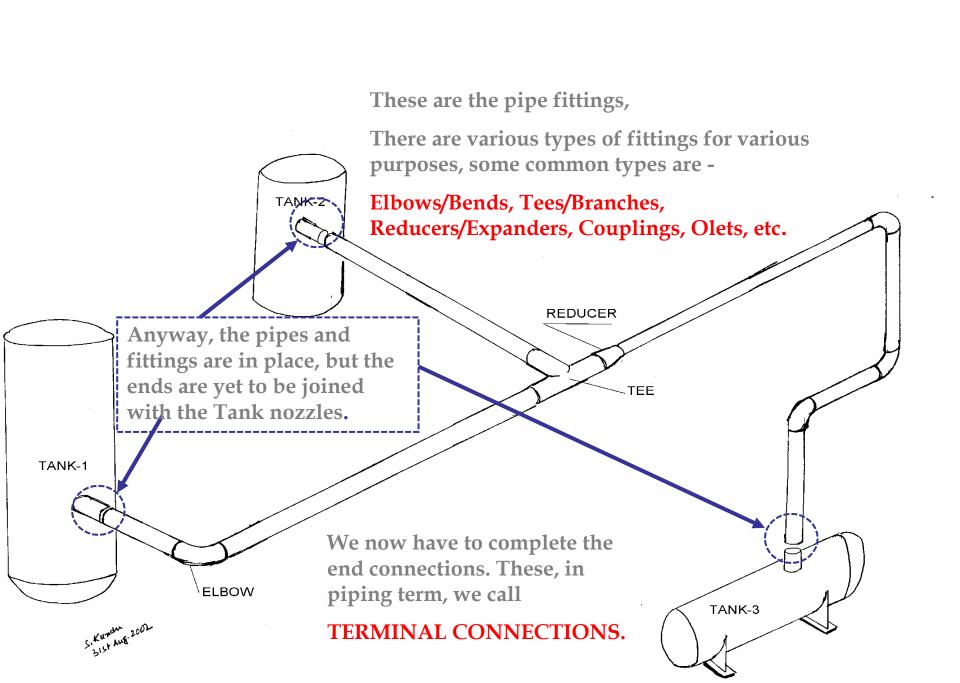
Now let us start with a plant where we see three tanks.

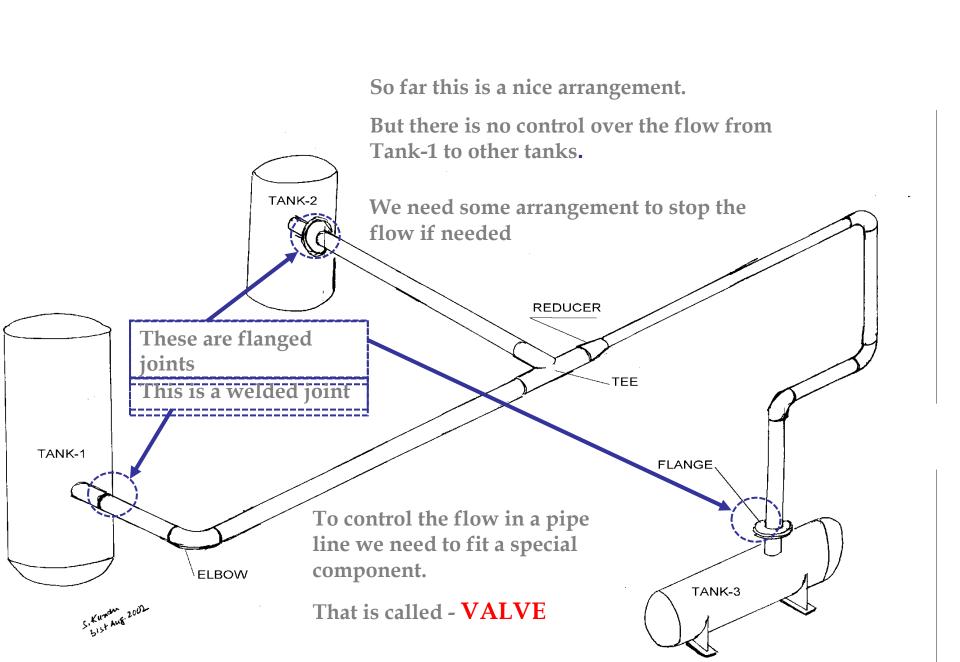
Tank-1, Tank-2 and Tank-3

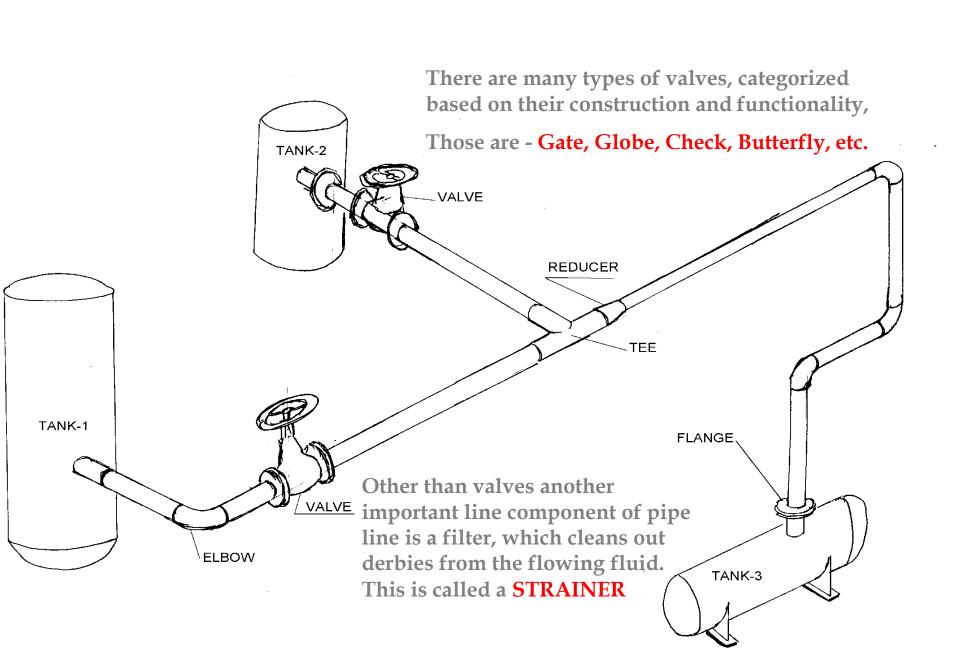
We have to transfer the content of Tank no. 1 to the other two tanks.

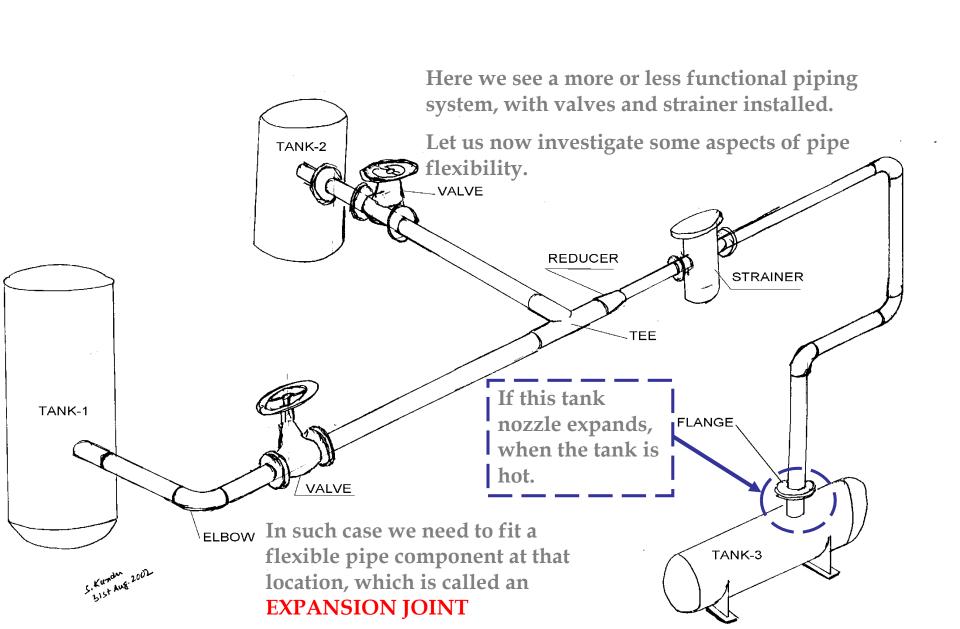

We will need to connect pipes to transfer the fluids from Tank-1 to Tank-2 and Tank-3

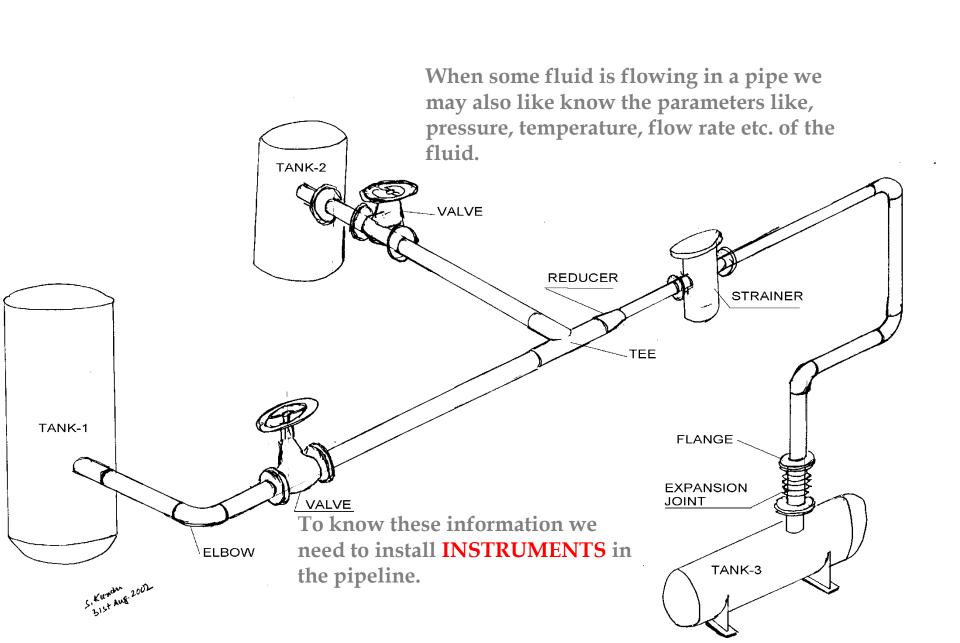

LET US BRING THE PIPES.

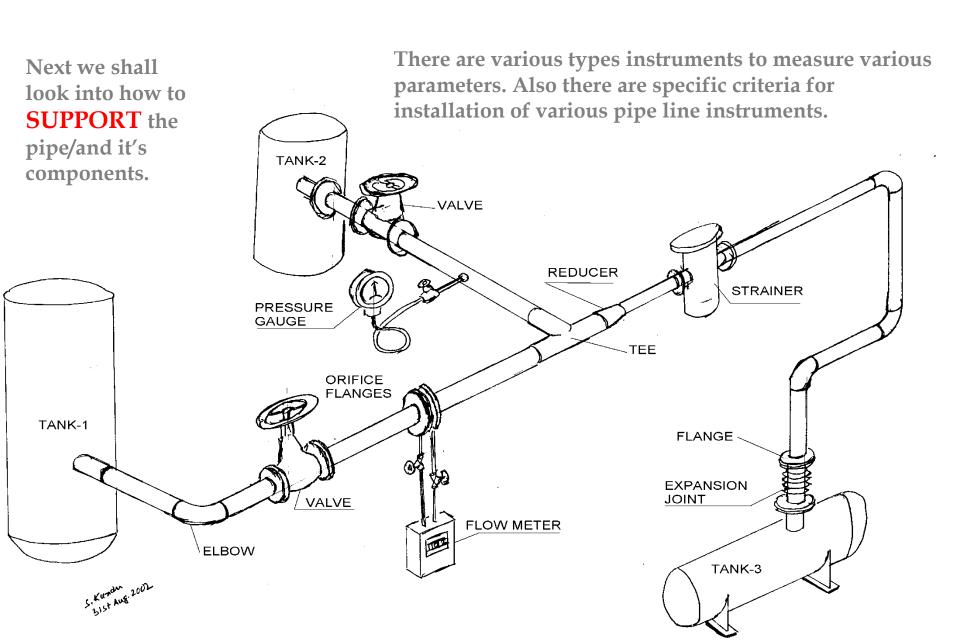

This is the plane white sheet we start with

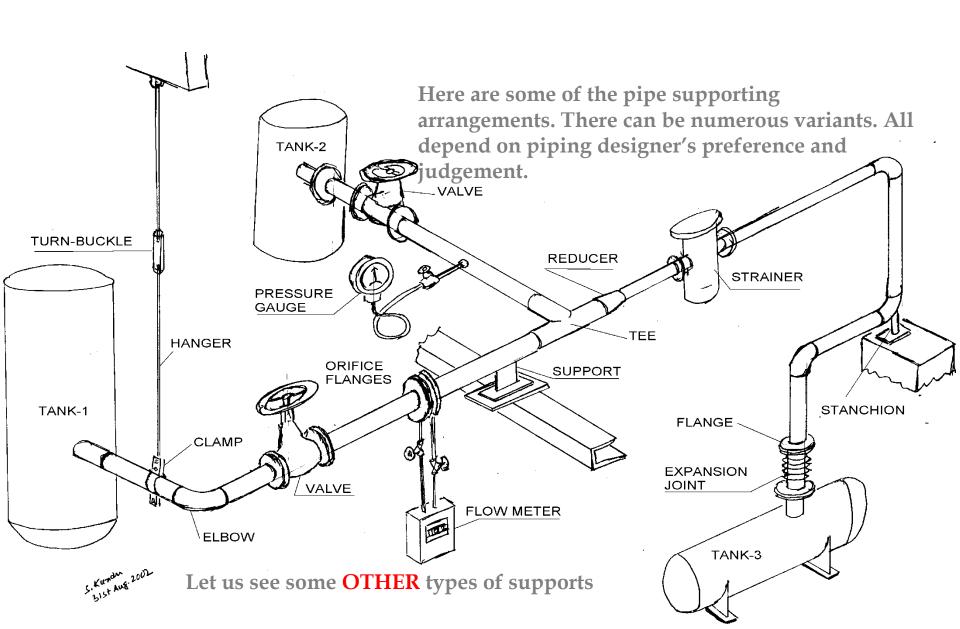

Let us start drawing a simple piping system

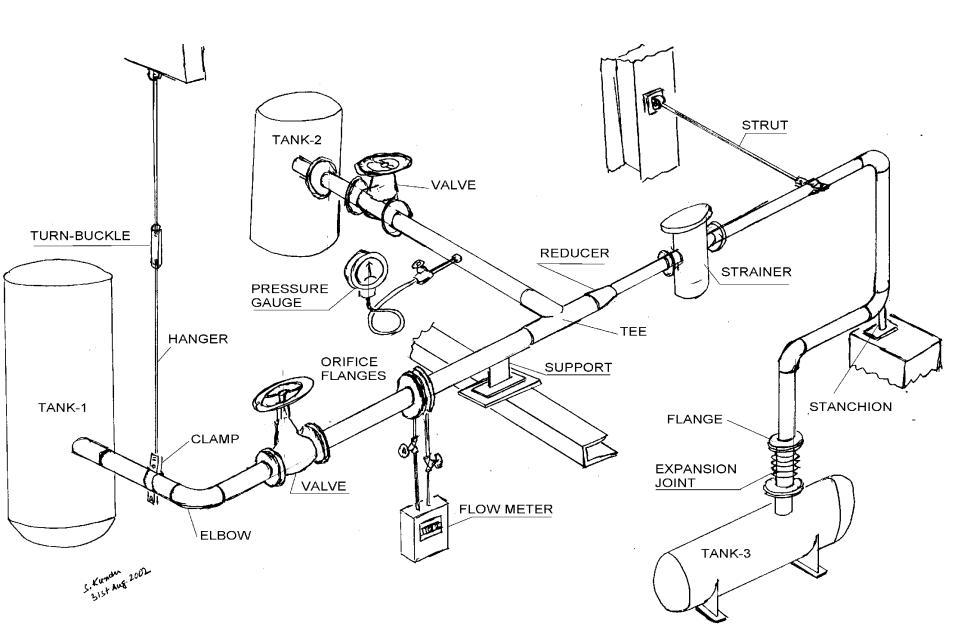


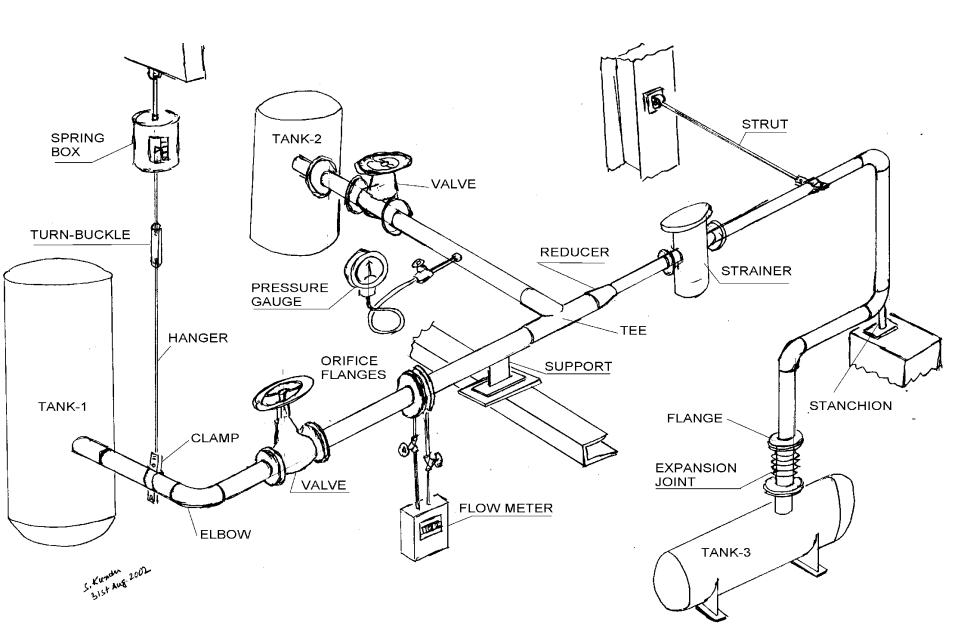








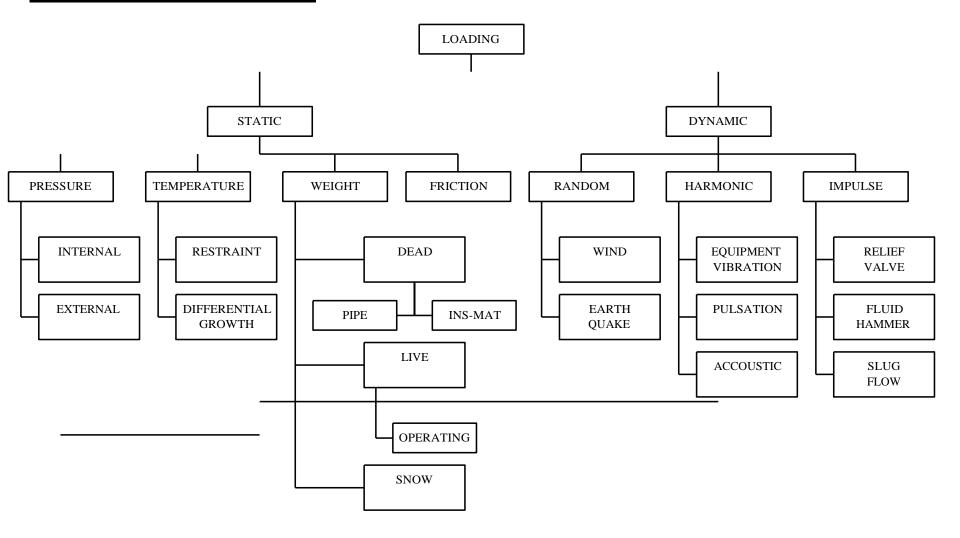




Stress Analysis

Objective

Pipe stress analysis provides the necessary techniques for engineers to design piping systems without overstressing and overloading the piping components & connected equipment.


The objective of stress analysis can be listed as follows:

- A) To limit the stresses in the piping system to the limiting value.
- B) To limit the deflection in the piping system to the limiting value.
- C) To limit the loads on nozzles of connected equipment.
- D) To limit the loads on supports.
- E) To check for leakage at flange joints.
- F) Unintentional disengagement of pipes from supports.
- G) Excessive displacement.

Requirements of supports in piping system are:

- To carry the weight of the pipe, fittings, valves with / without insulation, with operating / test fluid.
- To provide adequate stiffness to the piping against external loads such as wind load, ice, snow, seismic load etc.
- To avoid overstressing of the piping material.
- To avoid of sagging of pipe which creates draining problem.
- To control the thermal expansion / contraction in desired manner
- To withstand and dampen vibration produced by connected equipment such as pump, compressor etc.

LOADS ON PIPING

Selection of Critical Lines **STEPS IN STRESS ANALYSIS** Identification of Loads DW, Pressure, Thermal etc. Evaluate Stress due to DW & pressure Add Support $S_L \leq S_h$ Modify Restraints, Increase flexibility $S_E \leq S$ Anslysis for Dynamic Loads Add Supports,Restrai nts, Snubbers etc. Stresses<Allowa ∕Check for Nozzle Loads Economical Deflections/ OK Routing Displacement, Drain Criteria met? Make Appropriate Layout/Support Changes Support Load OK

ACCEPTED

Type of Supports

Supports

Hanger / Support

To sustain the dead weight of the piping system.

Types

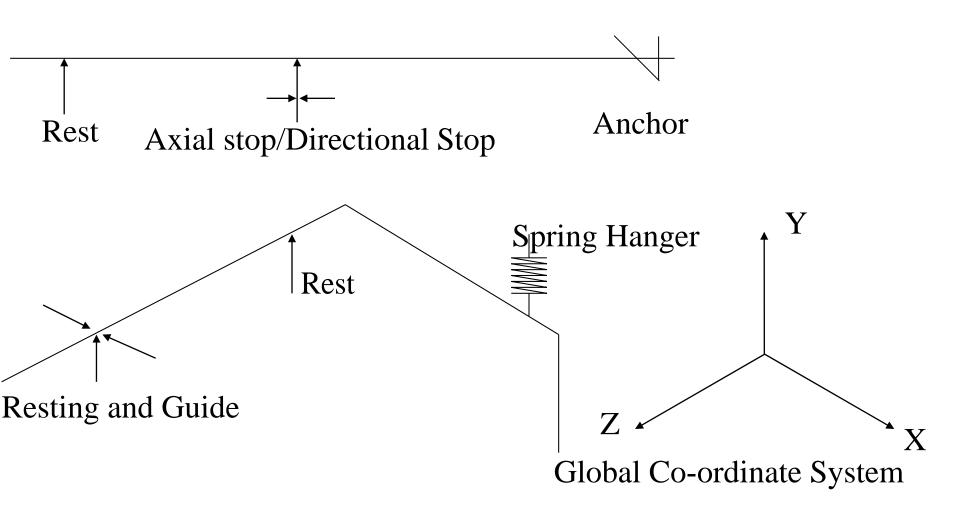
- Rigid Hanger
- Spring Hanger
 - Variable
 - Constant
- Shoes
- Trunnions

Restraint

To restrict the movement due to thermal / dynamic loading

<u>Types</u>

- Anchor
- Guide
- Directional Anchor
- U Clamps
- Struts


Vibration Absorbers

To restrict the movement due to vibration caused by wind, earthquake, fluid flow.

Types

- Snubbers
- Sway Brace
- Hold down

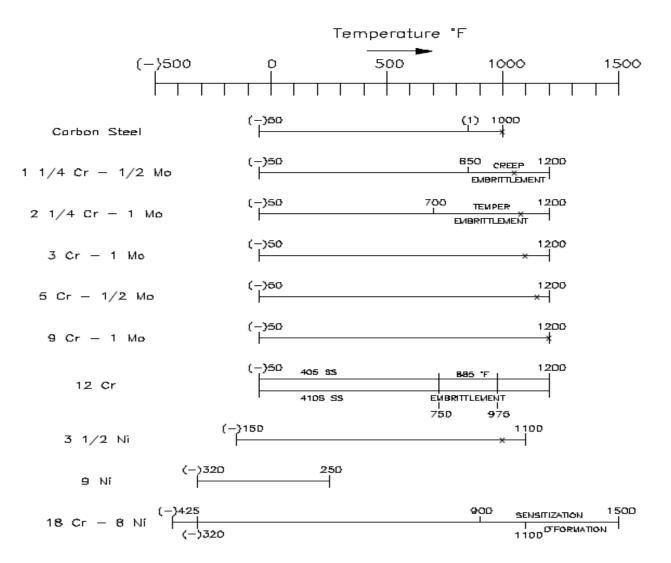
Familiarization with Stress symbols

MATERIAL GROUP

Basis For Materials Selection

Materials of construction are selected and corrosion allowances are determined on the basis of anticipated corrosion or material degradation under the most severe combination of process variables (e.g., stream composition, velocity, temperature and pressure) resulting in sustained maximum normal operating conditions.

Appropriate temperature and pressure margins should be added to the sustained maximum normal operating conditions to determine the design conditions upon which the high temperature mechanical design is based. Typically, these margins are up to +50F (28C) above operating temperature and up to +10% of the operating pressure (up to a maximum of 50 psi (0.35 MPa)).


MATERIALS SELECTION DIAGRAM LEGEND

			TYPICAL CORRESPONDING ASTM MATERIAL SPECIFICATIONS AND GRADES (1)						
LEGEND	COMMON NAME	UNS NUMBER	PLATE	FORGINGS(2)	TUBING	PIPE	FITTINGS	CASTINGS	
CAST IRONS				-			-	-	
a	Cast Iron	F10006						A48, A278	
DI	Ferritic Ductile Iron	F32800				A716, A746		A395	
Ni-Resist	Ni-Resist ⁽⁴⁾ Type 1	F41000						A436 Tp 1 ⁽⁴⁾	
CARBON AND L	OW ALLOY STEELS	•		•		•		•	
cs	Carbon Steel ⁽⁵⁾		A285 A516	A266 Cl 1, 2 or 4	A179 (smls) A214 (wld)	A53 Gr B A106 Gr B, (smls) API 5L ⁽⁶⁾	A105 A234 Gr WPB	A216	
LTCS	Low Temp Carbon Steel ⁽⁷⁾		A516 ⁽⁸⁾	A350 Gr LF1 or 2	A334 Gr 1 or 6	A333 Gr 1 or 6, (smls)	A350 Gr LF1 or 2 A420 Gr WPL 6	A352 Gr LCA, B or C	
1 Cr	1 Cr-1/2 Mo	K11562	A387 Gr 12	A336 CI F12	A213 Gr T12	A335 Gr P12, (smls)	A182 Gr F12	(9)	
1-1/4 Cr	1-1/4Cr-1/2 Mo	K11597	A387 Gr 11	A336 CI F11	A213 Gr T11	A335 Gr P11, (smls)	A182 Gr F11 A334 Gr WP11	A217 Gr WC11	
2-1/4 Cr	2-1/4Cr-1Mo	K21590	A387 Gr 22	A336 CI F22	A213 Gr T22	A335 Gr P22, (smls)	A182 Gr F22 A234 Gr WP 22	A217 Gr WC9	
5 Cr	5Cr-1/2Mo	K41545	A387 Gr 5	A336 CI F5	A213 Gr T5	A335 Gr P5, (smls)	A182 Gr F5 A234 Gr WP5	A217 Gr C5	
9 Cr	9Cr-1Mo		A387 Gr 9	A336 CI F9	A213 Gr T9	A335 Gr P9, (smls)	A182 Gr F9 A234 Gr WP9	A217 Gr C12	
9Cr-V	9Cr-1Mo-V		A387 Gr 91	A336 CI F91	A213 Gr T91	A335 Gr P91, (smls)	A182 Gr F91 A234 Gr WP91		

			TYPICAL CORRESPONDING ASTM MATERIAL SPECIFICATIONS AND GRADES (1)						
LEGEND	COMMON NAME	UNS NUMBER	PLATE	FORGINGS ⁽²⁾	TUBING	PIPE	FITTINGS	CASTINGS	
FERRITIC AND I	MARTENSITIC STAINLESS	STEELS	-	l	1	-	•	1	
12 Cr	Ferritic or Martensitic 12 Cr	\$40500 \$41000 \$41008	A240 ^(10,21) Tp405 410 410S		A268 Gr Tp 405 410			A217 Gr CA15 A487 Gr CA15, CA6NM	
AUSTENITIC ST	AINLESS STEEL	_							
304 SS 304L SS	Type 304 SS Type 304L SS	\$30400 \$30403	A240 ^(11,22)	A336 ⁽¹¹⁾	A213, (smls) ⁽¹¹⁾ A249, (wld) ⁽¹¹⁾	A312, (smls) ⁽¹¹⁾ A358, (wld) ⁽¹¹⁾	A182 ⁽¹¹⁾ A403 ⁽¹¹⁾	A351 ⁽¹²⁾ CF8 GrCF3	
316 SS 316L SS	Type 316 SS Type 316L SS	S31600 S31603	A240 ^(11,22)	A336 ⁽¹¹⁾	A213, (smls) ⁽¹¹⁾ A249, (wld) ⁽¹¹⁾	A312, (smls) ⁽¹¹⁾ A358, (wld) ⁽¹¹⁾	A182 ⁽¹¹⁾ A403 ⁽¹¹⁾	A351 ⁽¹²⁾ CF8M GrCF3M	
321 SS 321H SS	Type 321 SS Type 321H SS	S32100 S32109	A240 ^(11,22)	A336 ⁽¹¹⁾	A213, (smls) ⁽¹¹⁾ A249, (wld) ⁽¹¹⁾	A312, (smls) ⁽¹¹⁾ A358, (wld) ⁽¹¹⁾	A182 ⁽¹¹⁾ A403 ⁽¹¹⁾	(13)	
347 SS 347H SS	Type 347 SS Type 347H SS	\$34700 \$34709	A240 ^(11,22)	A336 ⁽¹¹⁾	A213, (smls) ⁽¹¹⁾ A249, (wld) ⁽¹¹⁾	A312, (smls) ⁽¹¹⁾ A358, (wld) ⁽¹¹⁾	A182 ⁽¹¹⁾ A403 ⁽¹¹⁾	A351 ⁽¹²⁾ Gr CF8C	
DUPLEX STAINL	ESS STEEL								
Alloy 2205	2205 Duplex SS	S31803	A240 ^(16,22)	A182 Gr 51	A789 ⁽¹⁶⁾	A790 ⁽¹⁶⁾	A182 Gr 51		
Ferralium	Ferralium 255	S32550	A240 ^(16,22)		A789 ⁽¹⁶⁾	A790 ⁽¹⁶⁾			
CD-4MCu	CD-4MCu	J93370						A351 ⁽¹²⁾ Gr CD-4MCu	
SUPER STAINLE	SS STEELS AND NICKEL	ALLOYS							
254 SMO ⁽¹⁴⁾	254 SMO SS	S31254	A240 ^(16,22)	A182 Gr F44	A249 ⁽¹⁶⁾	A312 ⁽¹⁶⁾	A403 ⁽¹⁶⁾		
310S SS	Type 310S SS	S31008	A240 ⁽²²⁾ Tp 310S	A182 Gr F310	A249 Gr Tp 310S	A312 Gr Tp 310S	A403 WP 310		
Alloy 20	20 Cb-3	N08020	B463 ^(16,23)	B462	B468 ⁽¹⁶⁾	B464 ⁽¹⁶⁾	B366 WP 20CB	A351 ^(12,20) Gr CN7M	
AL-6XN ⁽¹⁵⁾	AL-6XN	N08367	B688 ^(16,23)	B564 ⁽¹⁶⁾	B676, (wld) ⁽¹⁶⁾ B690, (smls) ⁽¹⁶⁾	B675, (wld) ⁽¹⁶⁾ B690, (smls) ⁽¹⁶⁾	B366 WP6XN		

			TYPICAL CORRESPONDING ASTM MATERIAL SPECIFICATIONS AND GRADES (1)						
LEGEND	COMMON NAME	UNS NUMBER	PLATE	FORGINGS ⁽²⁾	TUBING	PIPE	FITTINGS	CASTINGS	
Sanicro 28 ⁽¹⁷⁾	Sanicro 28	N08028	B709		B668, (smls)				
Alloy 800	Alloy 800	N08800	B409 ^(16,23)	B564 ⁽¹⁶⁾	B163, (smls) ⁽¹⁶⁾	B407, (smls) ⁽¹⁶⁾	B366 WPNIC		
Alloy 825	Alloy 825	N08825	B424 ^(16,23)	B564 ⁽¹⁶⁾	B163, (smls) ⁽¹⁶⁾	B423, (smls) ⁽¹⁶⁾	B366 WPNICMC		
904L SS	904L SS	N08904	B625 ^(16,23)		B677, (smls) ⁽¹⁶⁾ B674, (wld) ⁽¹⁶⁾	B677, (smls) ⁽¹⁶⁾ B673, (wld) ⁽¹⁶⁾			
Alloy 600	Alloy 600	N06600	B168 ^(16,23)	B564 ⁽¹⁶⁾	B163, (smls) ⁽¹⁶⁾ B516, (wld)	B167, (smls) ⁽¹⁶⁾ B517, (wld)	B366 WPNC1	A494 CY-40	
Alloy 625	Alloy 625	N06625	B443 ⁽²³⁾	B564 ⁽¹⁶⁾	B444, (smls)	B444, (smls)	B366 WPNCMC	A494 CW-6MC	
Alloy C276	Alloy 276	N10276	B575 ^(16,23)	B564 ⁽¹⁶⁾	B622, (smls) ⁽¹⁶⁾	B622 (smls) ⁽¹⁶⁾ B619, (wld) ⁽¹⁶⁾	B366 WPHC276	A494 CW-2M	
Alloy C22 ⁽¹⁸⁾	Alloy C22	N06022	B575 ^(16,23)	B564 ⁽¹⁶⁾	B622, (smls) ⁽¹⁶⁾	B622 (smls ⁽¹⁶⁾ B619, (wld) ⁽¹⁶⁾	B366 WPHC22		
Alloy 400	Monel 400	N04400	B127 ⁽²³⁾	B564 ⁽¹⁶⁾	B163, (smls) ⁽¹⁶⁾	B165, (smls) ⁽¹⁶⁾	B366 WPNC	A494 M-35-1	
Alloy 200	Nickel 200	N02200	B162 ^(16,23)		B163, (smls) ⁽¹⁶⁾	B161, (smls) ⁽¹⁶⁾	B366 WPN	A494 CZ100	
COPPER ALLOY	r'S				•			•	
Admiralty	Admiralty Brass	C44300	B171 ^(16,24)		B111, (smls) ⁽¹⁶⁾ B395 (smls) ⁽¹⁶⁾				
Naval Brass	Naval Brass	C46500	B171 ^(16,24)						
70/30 Cu/Ni	70/30 Cu/Ni	C71500	B171 ^(16,24)		B111, (smls) ⁽¹⁶⁾ B395, (smls) ⁽¹⁹⁾	B467, (smls) ⁽¹⁶⁾ B608, (wld) ⁽¹⁶⁾		B369 UNS C96400	
90/10 Cu/Ni	90/10 Cu/Ni	C70600	B171 ^(16,24)		B111, (smls) ⁽¹⁶⁾ B395, (smls) ⁽¹⁹⁾	B467, (smls) ⁽¹⁶⁾ B608, (wld) ⁽¹⁶⁾		B369 UNS C96200	
OTHER ALLOYS	;								
Ti-2	Titanium Grade 2	R50400	B265 Gr 2 ⁽²⁵⁾	B381 Gr F-2	B338 Gr 2	B337 Gr 2		B367	
Ti-12	Titanium Grade 12	R53400	B265 Gr 12 ⁽²⁵⁾	B381 Gr F-12	B338 Gr 12	B337 Gr 12			

MATERIALS SELECTION AS A FUNCTION OF TEMPERATURE

X Forms excessive scale above this temperature it exposed to air or steam. (1) Weakens by graphitization of carbides at prolonged temperature above 850 °F.

