



# **Membrane Bioreactors for Industrial Applications**



Hiroki TOYOHARA, Junichi BABA, and Makoto ICHINOSE
Water Treatment Division
Toray Industries, Inc.

#### **Contents**

- 1. Introduction (Saudi Vision 2030 and Toray)
- 2. Flat Sheet MBR Membrane module
- 3. History of MBR
- 4. Case Studies in Industrial Applications
- Consideration for Industrial Applications in future

#### 1. Introduction



Signing of Shareholders' Agreement on February 19, 2014 in Tokyo in the presence of Saudi Arabia's King Salman bin Abdulaziz Al Saud

and
Japanese Prime Minister Shinzo Abe

# **Toray's Activities toward Saudi Vision 2030**

#### 1. Local Production



Toray Membrane Middle East LLC (TMME) in Dammam, started production of RO Membrane Elements in June 2015

#### 3. Saudization



RO Membrane Elements made in Saudi Arabia, made by Saudi Arabian

#### 2. Exporting of High Quality Products



Exporting High Quality RO Membrane Elements to MENA Region

#### 4. Supplying Water in Saudi Arabia



Many of desalination plants in Saudi Arabia started water production by using TMME RO Membrane Elements.

#### **Toray Group Business Overview**

As a Japanese leading chemical company founded in 1926, Toray group has been globally expanding variety of businesses, including Environmental Engineering.

- Founded: April, 1926, Shiga, Japan

Operation: 23 countries (sales offices & production plants)

- Employee: 42,584 (as of March, 2013)

**Business** 

- Net Sales: 1,589 billion JPY (Fiscal Year Ended Mar 31, 2013)



**Business** 

Fibers, Textiles
& Apparel

Plastics & Carbon Fibers Composite
Chemicals

Chemicals

IT-Related Products

Carbon Fibers Composite
Materials

Life Science, Others

Materials

Strategically Expanding

Strategically Developing

**Business** 

#### **Membrane Design Concepts**

 Advanced PVDF Membrane for a good operation of MBR

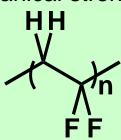
# Requirements

- 1. Chemical and physical durability
- 2. High water permeability and high permeate quality
- 3. Prevention from clogging

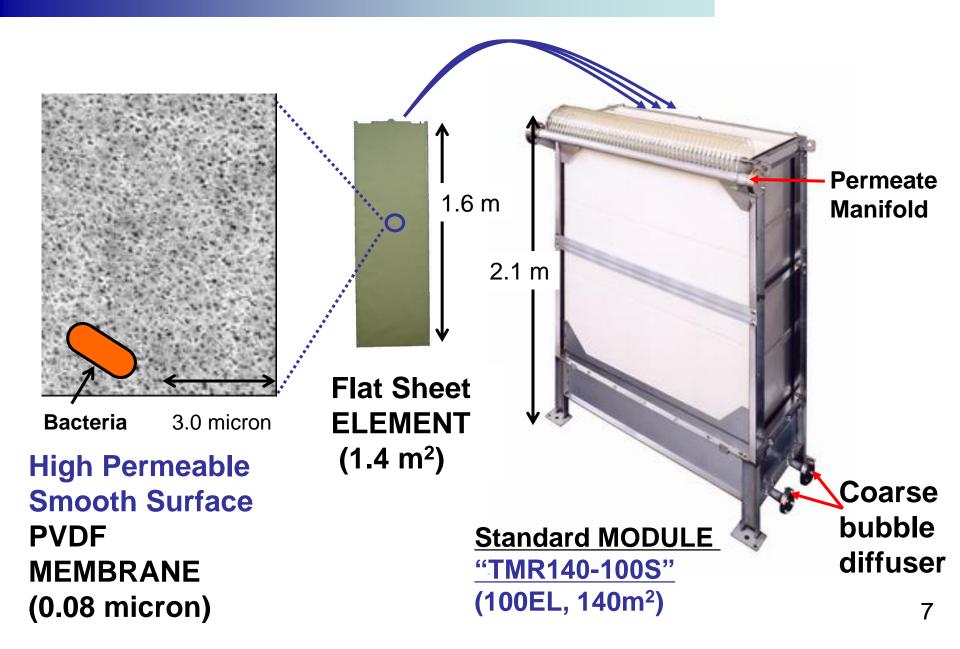
# **Design Concepts**



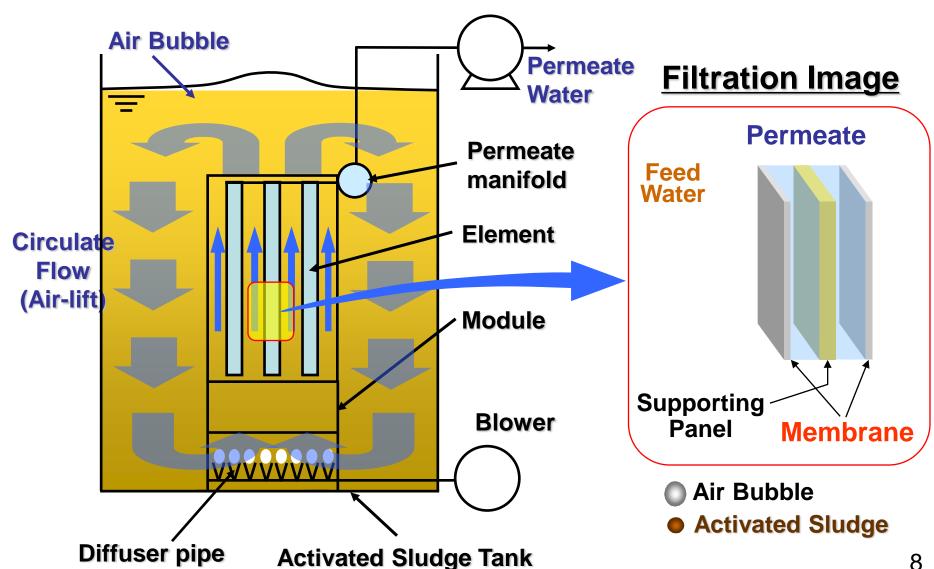
#### 1. Material


- PVDF (poly (vinylidene fluoride))
  - > good chemical resistance and high mechanical strength

#### 2. Pore


- Numerous number
  - > high filterability
- Small size and narrow distribution
  - > prevent from pore clogging

#### 3. Surface morphology


- Smooth surface
  - > prevent from the sludge accumulation onto the membrane surface



#### Toray's Submerged Membrane Module "MEMBRAY"



### How submerged membrane module works



#### **MBR History**

#### AQUA RENAISSANCE '90

- 1986-1990, Japan
- 20 private companies and AIST National Labs.
- MBR, Anaerobic reactor, Membranes evaluation

# Sewage Applications

- 1995-2000: R&D in Europe
- 1995 First sewage application in Japan

#### MBR Boom

- 2005-2010: Europe
- 2005-2010: Middle East
- 2010- : China

#### Lessons Learned

- Sewage: Limited new installation (Energy consumption / Cost / Treated Water Quality)
- Successful Industrial Applications

#### **Recent Findings**

| Category                                                | Sub-<br>category                           | Elementary attribute                                         | CAS Sub-category or Elementary attribute score | Category<br>score | MBR Sub-category or Elementary attribute score | Category<br>score |
|---------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------|------------------------------------------------|-------------------|
| TECHNICAL<br>ASPECTS                                    | Reliability<br>Flexibility /<br>Modularity |                                                              | 1.67 (GREEN)                                   | 1.54<br>(GREEN)   | 1.67 (GREEN)                                   | 1.41<br>(GREEN)   |
|                                                         |                                            |                                                              | 1.75 (GREEN)                                   |                   | 1.75 (GREEN)                                   |                   |
|                                                         | Complexity                                 |                                                              | 1.20 (YELLOW)                                  |                   | 0.80 (YELLOW)                                  |                   |
| ADMINISTRATIVE<br>ASPECTS -<br>NORMATIVE<br>CONSTRAINTS |                                            | Complexity of the<br>authorization/administrative<br>process | 2.00 (GREEN)                                   | 2.00<br>(GREEN)   | 2.00<br>(GREEN)                                | 2.00<br>(GREEN)   |
|                                                         |                                            | Economic Impact                                              | 2.00 (GREEN)                                   |                   | 1.00 (YELLOW)                                  | _                 |
|                                                         |                                            | Effluent quality                                             | 0.00 (RED)                                     | 0.67<br>(YELLOW)  | 1.00 (YELLOW)                                  | 1.00<br>(YELLOW)  |
| SOCIAL ASPECTS                                          |                                            | Odour emissions                                              | 0.00 (RED)                                     |                   | .0.00 (RED)                                    |                   |
| OCCIAL ACI LOTO                                         |                                            | Skyline modification                                         | 0.00 (RED)                                     |                   | 1.00 (YELLOW)                                  |                   |
|                                                         |                                            | Soil consumption                                             | 0.00 (RED)                                     |                   | 1.00 (YELLOW)                                  |                   |
|                                                         |                                            | Others                                                       | 2.00 (GREEN)                                   |                   | 2.00 (GREEN)                                   |                   |
| ECONOMIC<br>ASPECTS                                     |                                            | Total cost under the most<br>favourable conditions           | 2.00 (GREEN)                                   | 2.00              | 0.00 (RED)                                     | 0.50 (RED)        |
|                                                         |                                            | Total cost under the worst conditions                        | 2.00 (GREEN) (GREEN)                           |                   | 1.00 (YELLOW)                                  | 0.50 (KED)        |
|                                                         |                                            | Global warming potential                                     | 2.00 (GREEN)                                   |                   | 2.00 (GREEN)                                   |                   |
| ENVIRONMENTAL<br>ASPECTS                                |                                            | Acidification potential                                      | 2.00 (GREEN)                                   | 1.67              | 2.00 (GREEN)                                   | 1.67              |
|                                                         |                                            | Eutrophication, fresh water                                  | 2.00 (GREEN)                                   |                   | 0.00 (RED)                                     |                   |
|                                                         |                                            | Eutrophication, marine                                       | 1.00 (YELLOW)<br>2.00 (GREEN)                  |                   | 2.00 (GREEN)                                   | (GREEN)           |
| AUI EUTU                                                |                                            | Eutrophication, terrestrial                                  |                                                |                   | 2.00 (GREEN)                                   |                   |
|                                                         |                                            | Photochemical oxidant formation potential                    | 1.00 (YELLOW)                                  |                   | 2.00 (GREEN)                                   |                   |
| Final score                                             |                                            |                                                              | 1.58                                           |                   | 1.32                                           |                   |

Table 2. Results of the techno-economic-environmental assessment of the CAS and MBR plants: scores are obtained by attributing the same weight (1) to all categories. Scores range from 0 (worst ranking) to 2 (best ranking) (Bertanza et al, 2017)

http://www.thembrsite.com/features/a-comparative-techno-economic-environmental-assessment-of-full-scale-cas-vs-mbr-technologies/

#### **Experiences in Industrial MBR**

#### > Food

- Cake
- Ice Cream
- Olive Oil
- Milk Processing
- Dairy
- Protein
- Potato
- Vinegar

#### Meat Processing

- Beef
- Chicken
- Fish
- Squid

#### **≻**Beverage

- Juice
- Cola

#### > Chemical

- Chemical factory (PTA, DMSO, etc)
- Cosmetic
- Dyeing, Textile
- Electronics
- Liquid Crystal
- Paper Mill
- Petrochemical
- Pharmaceutical
- Photo Film

#### > Others

- Automotive
- Landfill Leachate
- Laundry
- Marine

### **Applications Consideration**

|                         | SS                                                      | Oil                        | Inorganic<br>Ion | Toxic<br>Substances    | Salinity | High BOD | Nutrient<br>balance |
|-------------------------|---------------------------------------------------------|----------------------------|------------------|------------------------|----------|----------|---------------------|
| Food                    | Seed, Coat                                              | Cake,<br>Dairy             | Ca               |                        |          |          |                     |
| Meat<br>Process-<br>ing | Bone, Pelage,<br>Fish scale,                            | Fish oil become solidified |                  |                        |          |          |                     |
| Beverage                | Coat                                                    |                            |                  |                        |          |          |                     |
| Alcohol<br>Drinks       | Chaff                                                   |                            |                  |                        |          |          |                     |
| Chemical                | Fiber, polymer, dispersed material, polyvinyl - alcohol | Mineral<br>Oil             | Si, Mn,<br>Ca    | Disinfecti<br>on agent |          |          |                     |
| Marine                  | Toilet Paper                                            |                            |                  | НСНО                   |          |          |                     |

To be removed by **Pretreatment** 

Special attention required.
(Tolerance limit, separate treatment, anaerobic treatment, etc.)

**√** 

To be added

**12** 

# **Guidelines on MBR Operation**

| Substance                         |                                     | Guideline on biological treatment                                | Guideline on membrane module                                               |  |
|-----------------------------------|-------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Oil                               | Biodegradable                       |                                                                  | <50mg/L at MBR inlet                                                       |  |
|                                   | Non-Biodegradable                   | <~10mg/L                                                         | Trace (zero)                                                               |  |
| Alkali , Acid                     |                                     | 5 <ph<9, change<="" no="" ph="" rapid="" th=""><th></th></ph<9,> |                                                                            |  |
| Salts                             |                                     | <1%<br>No rapid conc. change                                     | Cl >100mg/L: SS316L is recommended for anti-corrosion                      |  |
| Organic solvent, Toxic Substances | Biodegradable                       | Acclimated                                                       |                                                                            |  |
|                                   | Non-Biodegradable                   | Within the range not toxic to microorganisms.                    | Within the range not harmful to materials (ABS, EPDM rubber, membrane, SS) |  |
| Inorganic Ion (Ca, Si, Mn etc)    |                                     |                                                                  |                                                                            |  |
| Anti-                             | Alcohol based                       |                                                                  |                                                                            |  |
| foam                              | Silicone based                      |                                                                  | Prohibited                                                                 |  |
| Coagulant                         | Al, Fe                              |                                                                  |                                                                            |  |
|                                   | Cationic high-<br>polymer coagulant |                                                                  | Inject and agitate well prior to MBR tank                                  |  |

#### 4. Industrial Applications

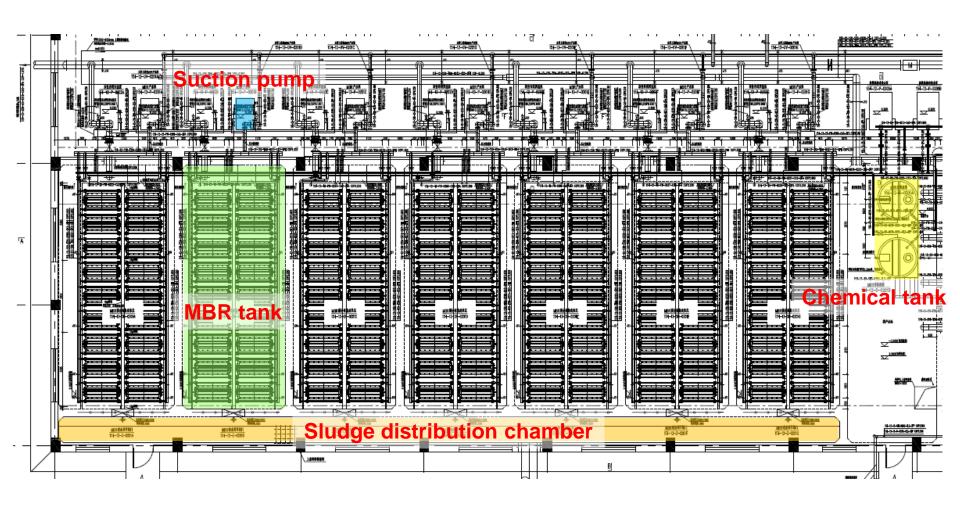
- 4-1 Chemical Factory
- 4-2 Liquid Crystal Factory
- 4-3 Food Processing Factory
- 4-4 Edible Oil Factory

#### **4-1 Chemical Factory in China**

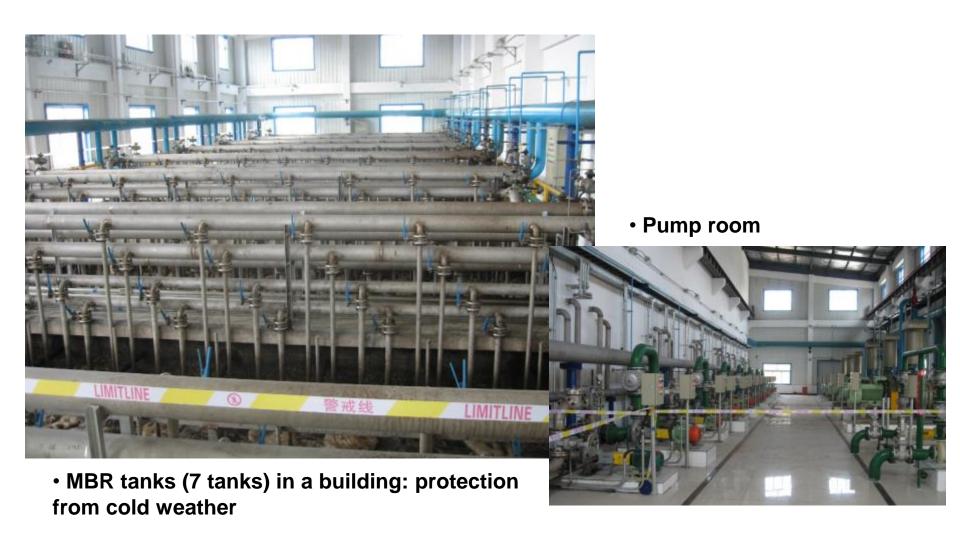
Place of Installation: Northern China

Application: MBR Coal Chemical Factory WW

Design Capacity: 9840 m³/day ("N-1 design" adopted)


Installed Modules: 126 x TMR140-200D

In operation since: June 2013


Remark: Pilot test was conducted to assess the

applicability of MBR

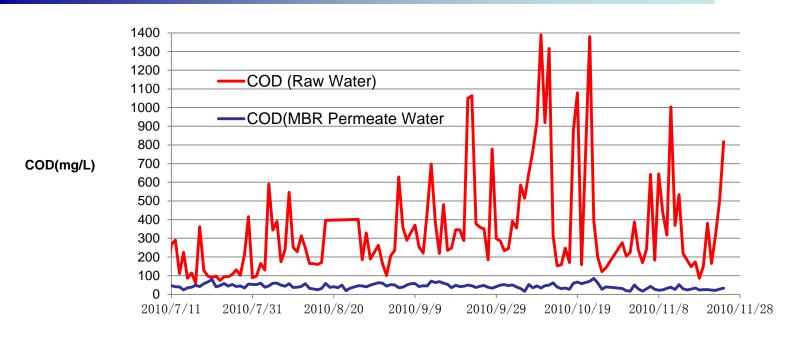
### 4-1 Chemical Factory in China - Layout

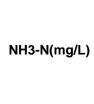


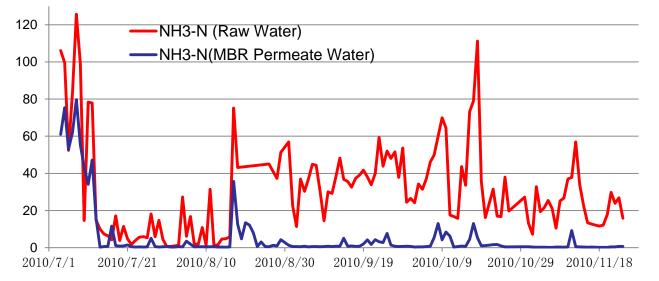
#### 4-1 Chemical Factory in China - MBR Tank



### 4-1 Chemical Factory in China - MBR Tank





- Combined permeate header (upper & lower)
- Auto diffuser cleaning & guide rail system installed



#### 4-1 Chemical Factory in China - COD and NH3-N







#### 4-1 Chemical Factory in China - COD and NH3-N

# 5 months pilot study

|                                   | 1 <sup>st</sup> month<br>(July) | 5 <sup>th</sup> month<br>(November) |
|-----------------------------------|---------------------------------|-------------------------------------|
| Treated Water COD                 | 46 mg/L                         | 29 mg/L                             |
| Treated Water NH <sub>4</sub> +-N | 20 mg/L                         | < 1 mg/L                            |

Activated Sludge was well acclimatized in 5 months.

#### **4-2 Liquid Crystal Factory**

Place of Installation: China

Application: MBR Liquid Crystal Factory WW

Design Capacity: 11000 m<sup>3</sup>/day

(Phase I 6500 / II 4500)

Installed Modules: 100 x TMR140-200W

(Phase I 60 / II 40)

In operation since: November 2008 (I)

**March 2012 (II)** 

# **4-2 Liquid Crystal Factory**



- Chemical pre-treatment (coagulation/precipitation/neutralization)
- High salinity WW SS316L membrane module equipped with plastic manifold & diffuser

#### **4-2 Liquid Crystal Factory – MBR Tank**











- 10 trains of 10 x TMR140-200W
- Common air diffuser cleaning
- Separated chemical piping for injection height control
- -COD in Raw Water: 1,750 to 2,296 mg/L
- -COD in MBR Treated Water: < 90 mg/L

#### **4-3 Food Processing Factory**

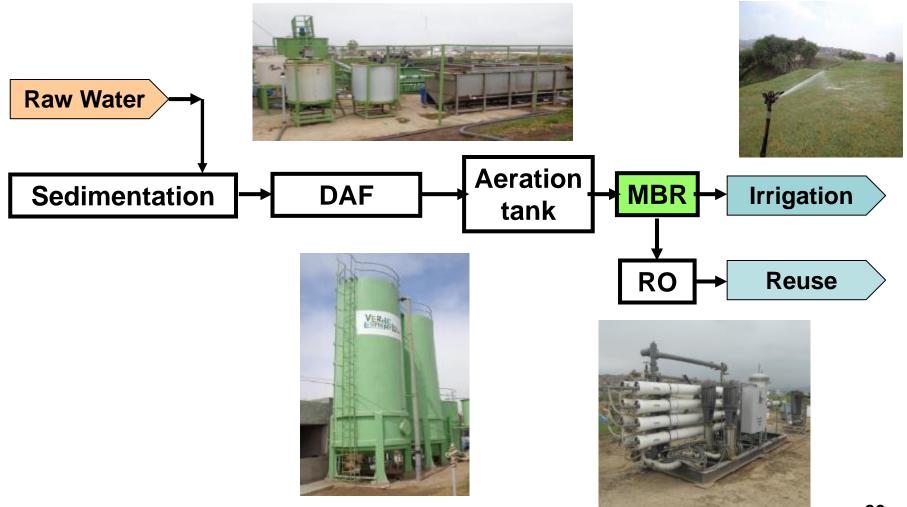
**Place of Installation: Peru** 

Application: MBR Food Processing WW

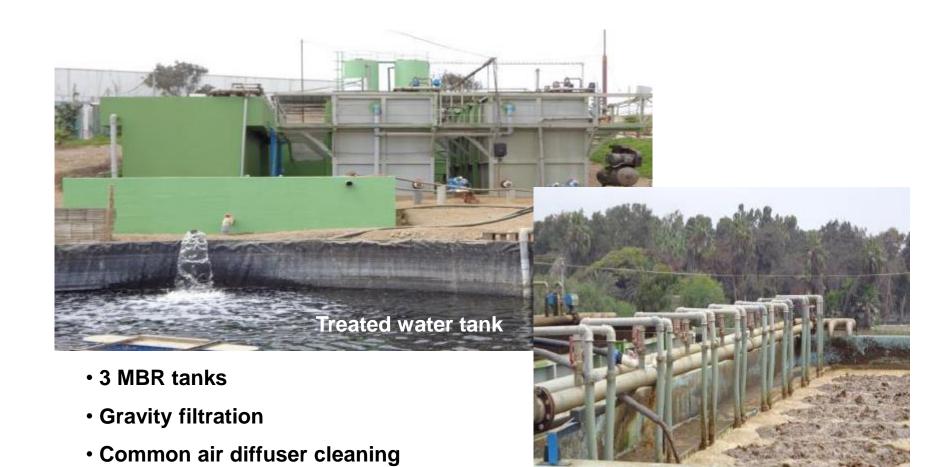
**Design Capacity:** 850 m<sup>3</sup>/day

Installed Modules: 18 x TMR140-100S

In operation since: October 2011


Remark: Wastewater from livestock and seafood

processing factory and restaurant


# **4-3 Food Processing Factory**



### 4-3 Food Processing Factory – Process Flow Scheme

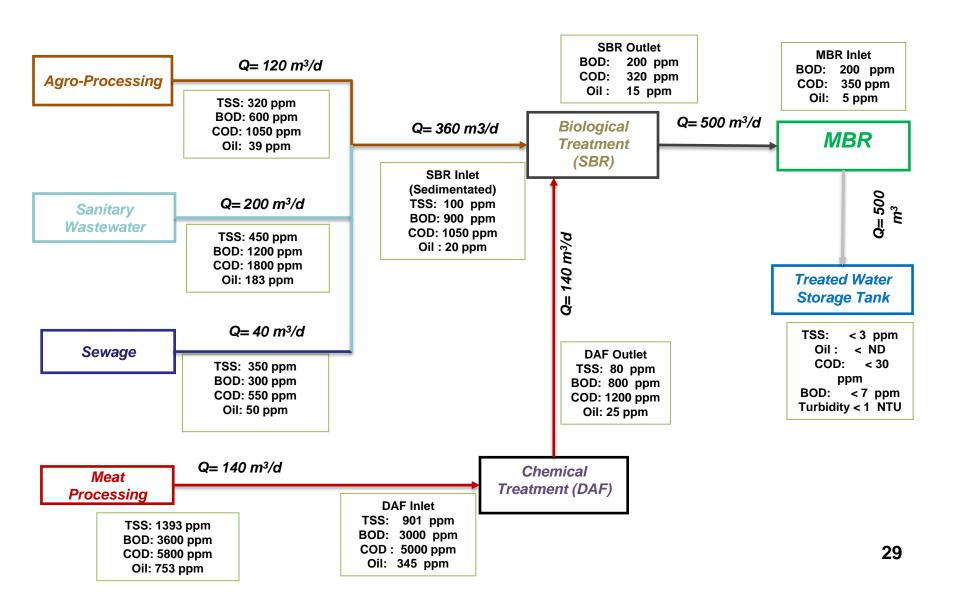


### 4-3 Food Processing Factory – MBR Tank



# 4-3 Food Processing Factory – MBR Treated water for Irrigation






• MBR permeate: Irrigation of neighboring wildlife refuge





#### 4-3 Food Processing Factory – Overall Flow Scheme



#### 4-4 Edible Oil Factory

Place of Installation: Singapore

**Application:** Edible Oil Production Wastewater

Design Capacity: 170 m<sup>3</sup>/day

Installed Module: 8 x TMR090-100S

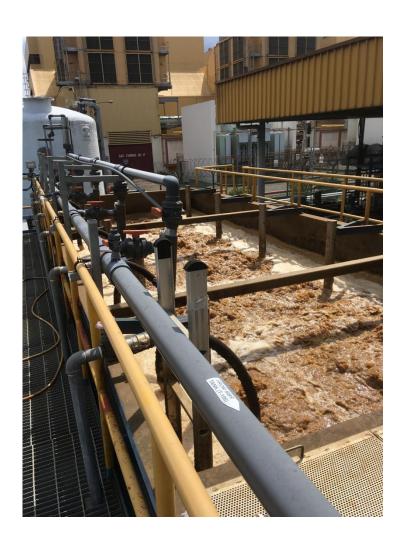
In operation since: July, 2014

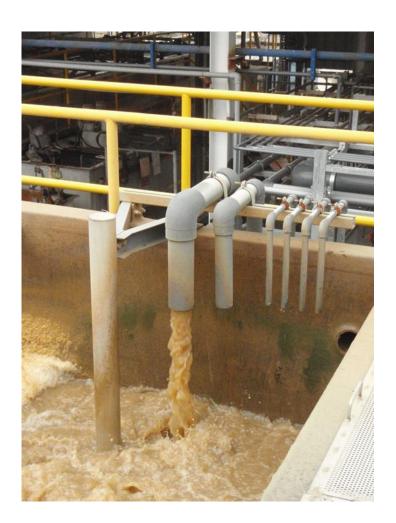
Remarks: Treated water for Cooling Water (Mixed with NEWater)

### 4-4 Edible Oil Factory Plant Overview

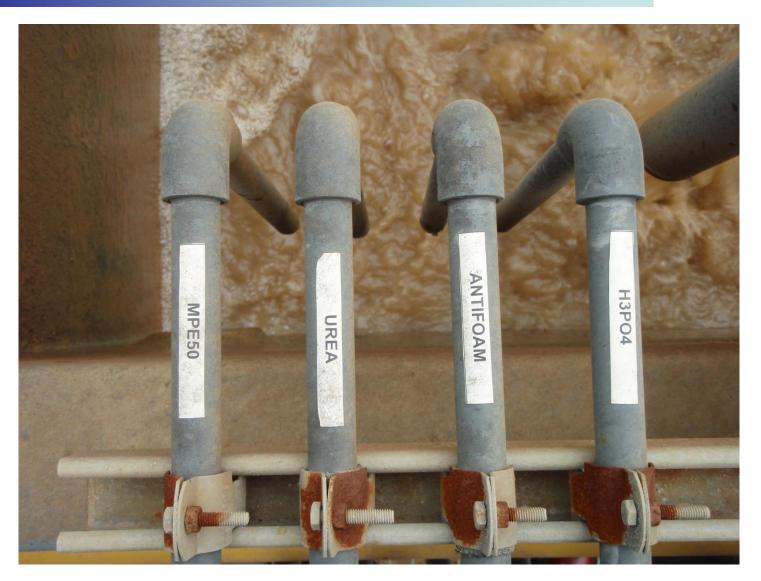


 Process Flow: DAF → MBR → UV Mix with NEWater, and use for


# 4-4 Edible Oil Factory - Pretreatment (DAF) and Post treatment (UV)



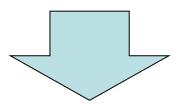




DAF UV

# 4-4 Edible Oil Factory – MBR Tank






# 4-4 Edible Oil Factory - Flux Enhancer



MPE50: Nalco's Flux Enhancer

#### 5. MBR's Key Advantage

- Good Water Quality
- Applicable to hard degradable substrate by retention of microorganisms and diversified microbial ecosystem in MBR



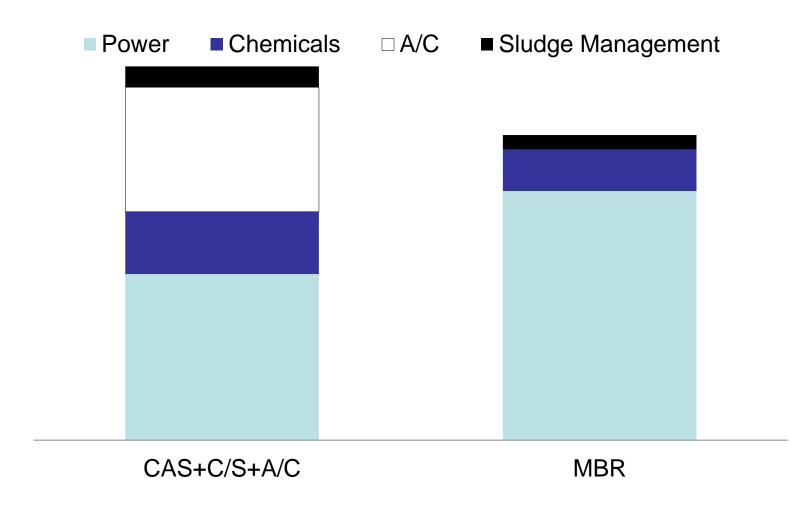
- NO downstream coagulation / sedimentation?
- NO Activated Carbon?

#### 5. MBR Key Advantages

 Very good treated water quality by a long SRT and existence of highly acclimatized microorganisms to treat hard-degradable components in the wastewater.

Only MBR can do this.

 $D > \mu$ 


D: Dilution Rate (m³/m³/Day)

μ: Specific Growth Rate (g/g/Day)

 Less excess sludge production due to a long SRT.

#### **MBR Key Advantages**

# Wastewater Treatment Cost Breakdown (Conceptual)



#### **Good collection system**

- Microorganisms which treat hard degradable substrate have very low specific growth rate and yield.
- Substrate inhibition
- Treatability study of each stream and determination of buffer tank size.

#### Conclusion

# **Great Potential of MBR for Industrial Application**

- Cost Saving
- ➤ Less Water Consumption by Reuse: MBR+RO

# Sharing MBR Experience with You

- Good Engineering for Collection System
- Consideration on Turn Down / Shut Down
- ➤ Pilot Study



# Thank you very much.

www.toraywater.com