

 Bacteria: living single-celled microscopic organisms having characteristics of both plants and animals; often useful but may also cause disease

 Chloramines: chemical compounds formed from the reaction of chlorine with ammonia (NH₃); also called combined chlorine (NOTE toxicity for dialysis patients)

 Chlorination: application of chlorine to water, generally for the purpose of disinfection, but also for other purposes such as odor control

 Coliform bacteria: bacteria used as an indicator of pollution; divided into two groups - total coliform (TC) and fecal coliform (E. coli. - found in the intestinal track of warm-blooded animals); fecal coliform is an indication of pollution.

• Chlorine demand: the difference between the amount of Cl_2 added to water (Cl_2 dose) and the amount of Cl_2 remaining after a period of contact time (Cl_2 residual)

 Cl_2 demand $(mg/L) = Cl_2$ dose $(mg/L) - Cl_2$ residual (mg/L)

 Disinfection: the addition of chlorine, ozone, UV light, etc. to water in order to kill or inactivate disease causing organisms; effectiveness measured using the coliform test

 Free available Cl₂: portion of total Cl₂ residual not combined with ammonia; free Cl₂ includes hypochlorous acid (HOCL) and hypochlorite ion (OCl⁻)

 Pathogens: disease causing organisms such as bacteria, viruses, protozoa; examples are typhoid, cholera, dysentery, poliomyelitis, giardiosis and cryptosporidiosis

 Sterilization: process that makes water free from all living organisms

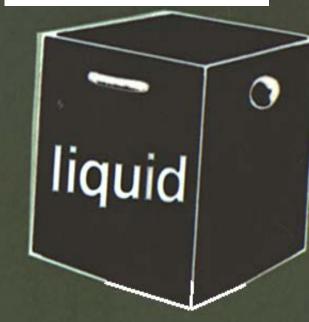
Introduction to Chlorine (Cl₂)

Cl₂, due to it relatively low cost, availability, ease of use and one other important reason, is the most commonly used disinfectant/oxidant for this purpose.

Chlorine is available in 3 forms:

- Chlorine gas
- sodium hypochlorite solution
- Calcium or sodium Hypochlorite powder (HTH)

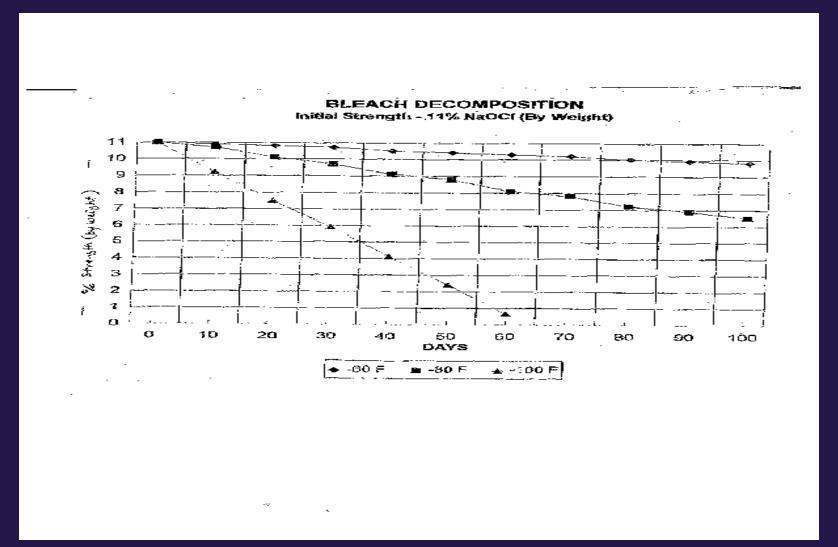
Chlorine


100% available

gas

65 % - 70 % available

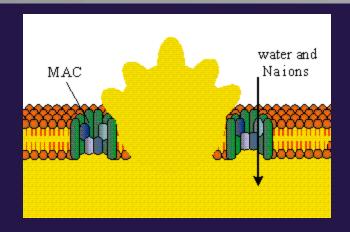
5 % - 12.5 % available

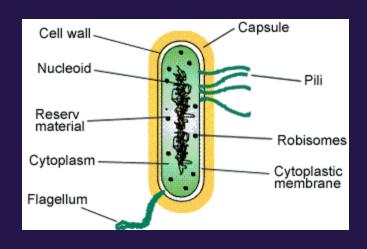

Chlorine Strength, Storage and Aging

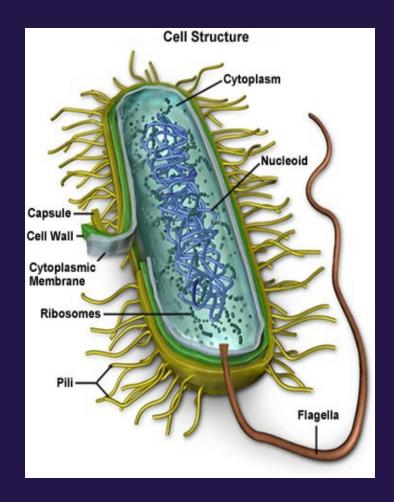
Sodium Hypochlorite Concentrations vs Specific Gravity (USA BlueBook Operator's Companion, 10th ed. page 116)

Trade %	Sp Gr	Trade %	Sp Gr
1.0	1.020	9.0	1.129
2.0	1.034	10.0	1.142
3.0	1.048	11.0	1.155
4.0	1.062	12.0	1.168
5.0	1.076	13.0	1.181
6.0	1.089	14.0	1.193
7.0	1.103	15.0	1.206
8.0	1.116		

Chlorine Strength, Storage, and Aging




Properties of Cl₂


Cl₂ gas

- Amber-yellow in color
- Containing 99.5% pure Cl₂
- Has a penetrating and distinctive odor
- Slightly heavier than water
- 2½ heavier than air
- Has very high coefficient of expansion; i.e., a temperature change from 50°F to 85°F will cause a volume increase from 84% to 89%
- No Cl₂ cylinder should be filled over 85% capacity (see above characteristic)
- One liter of liquid Cl₂ can evaporate to produce 450 liters Cl₂ gas
- Cl₂ is non-flammable & non-explosive but it will support combustion

The Reaction of Chlorine with Water

$$Cl_2 + H_2O \rightarrow HOCI + HCI$$

•Hypochlorous acid, HOCl is one of two free available chlorine residual forms. Due to the ease with which it penetrates into and kills bacteria, it is the most effective form of free residual for disinfection.

However some of the HOCl dissociates to form an acid.

The Reaction of Chlorine with Water

$$HOCI \rightarrow H^+ + OCI^-$$

•Hypochlorite ion is the second type of free available Cl₂ residual and is a relatively poor disinfectant, primarily because of its inability to penetrate into the bacteria.

•In addition to the hypochlorite ion, hypochlorous acid also releases a hydrogen ion, an acid that can lower the pH if insufficient alkalinity is present.

- The effectiveness of Cl₂ is based on
 5 important factors
 - -pH
 - Temperature
 - Concentration
 - Contact time
 - Demand

- pH strongly influences the ratio of HOCl to OCl⁻
 - Low pH values favor the formation of HOCl, the more effective free residual.
 - High pH values favor the formation of OCl⁻, the less effective free residual.
 - As pH increases from 7 to 10, the OCl⁻ begins to predominate and the time required for free residual to effectively disinfect increases.

Temperature

- The higher the temperature, the more effective chlorination.
- Lower temperatures slightly favor the formation of HOCI
- Lower temperatures allow Cl₂ residuals to persist somewhat longer.
- Chemical and biological reaction rates increase as the temperature increases, making Cl₂ more effective at higher temperatures.

- Concentration of Cl₂
 - Time dependent for different organisms.
 - Providing conditions remain constant, as the contact time is increased, less concentration is needed to accomplish the same level of disinfection.
 - As dosage concentration is increased, contact time can be decreased.

- Contact Time
 - The destruction or inactivation of an organism is directly related to the contact time.

- Demand: The inorganic and organic material in raw and finished water take part in the reactions with Cl₂
 - Reaction with ammonia (NH₃) is one of the most common.
 - NH₃ can result from decaying vegetation or from domestic and industrial waste.
 - Cl₂ reacts with NH₃ to form chloramines, or combined chlorine residual.
 - Uses the chlorine that would otherwise be available for disinfection.
 - Other demand-causing reactions include Fe, Mn, S compounds (stoichiometry), turbidity, TOC/DOC, biofilm.

Formation of Chloramines

NH3 + chlorine
$$\rightarrow$$
 NH₂Cl + H₂O

ammonia

monochloramine (pH > 7.5)

$$NH_2Cl + chlorine \rightarrow NHCl_2 + H_2O$$

dichloramine (pH < 7.5)

$$NHCl_2 + chlorine \rightarrow NCl_3 + H_2O$$

trichloramine (pH < 7.4)

Formation of Chloramines

- The formation of chloramine compounds depends on the pH of the water and the presence of ammonia.
 - Chloramines are a combined available chlorine which is a less active oxidizing agent than free available chlorine, but it has a longer lasting residual.
 - 25 times the amount of combined available chlorine is needed to be as effective as free available chlorine.
 - Toxicity for dialysis patients (GAC)

Breakpoint Chlorination

Chlorine Demand

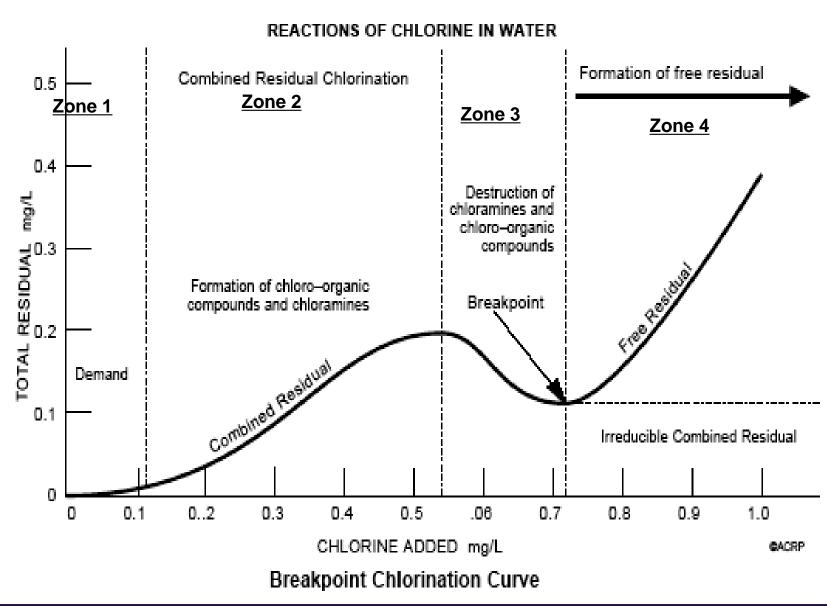
The consumption of chlorine used for disinfection

What is added What is used

What remains

Organics

Microorganisms


Ammonia-Nitrogen

Nitrate

Iron

Silt

Taste and Odor Thresholds

Compound

Taste/Odor Threshold

Free HOCI

20 mg/L

Monochloramine

5 mg/L

Dichloramine

0.8 mg/L

Nitrogen trichloride

0.02 mg/L

Operational Considerations

- There may be times when chlorine taste and odor complaints become a problem in the distribution system.
- This problem is generally related to high combined residuals and inadequate free residual.
- The solution to this problem may be to increase the chlorine dose rate to get past the breakpoint.

Operational Considerations

- As a rule of thumb, the free residual should be at least 85% of the total residual in order to prevent chlorine taste and odor problems and insure an adequate free residual for effective disinfection.
- A sudden increase in combined chlorine may signify the presence of organic contaminants such as dirt and debris.
- The sudden presence of organic material may result from a line break, loss of pressure or unprotected cross connection such as lawn irrigation, etc.

Chlorine Residual Testing DPD Colorimetric

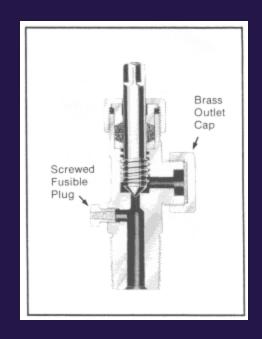


Chlorine Residual Testing

- Determine reagent blank
- Free residual testing contact time 60 seconds 3 minutes
- Total residual testing contact time 3 6 minutes
- Regulatory minimum 0.2 mg/L at EP (SW)
- Looking for residual ≥ 0.2 mg/L after 24 hours (SW)
- DO NOT exceed the MRDL maximum residual disinfectant level
 - 4 mg/L for chlorine, chloramines CWS, NTNCWS
 - 0.8 mg/L for chlorine dioxide TNCWS

Chlorine Operation and Maintenance

70° F

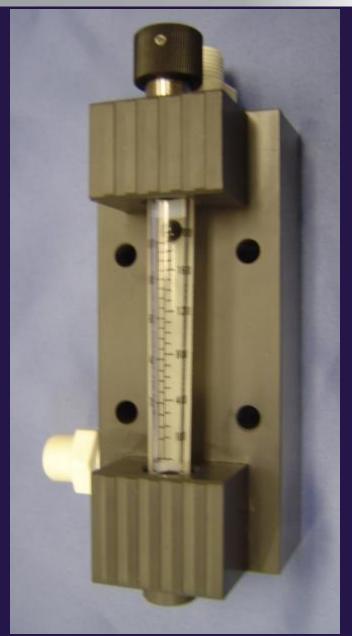


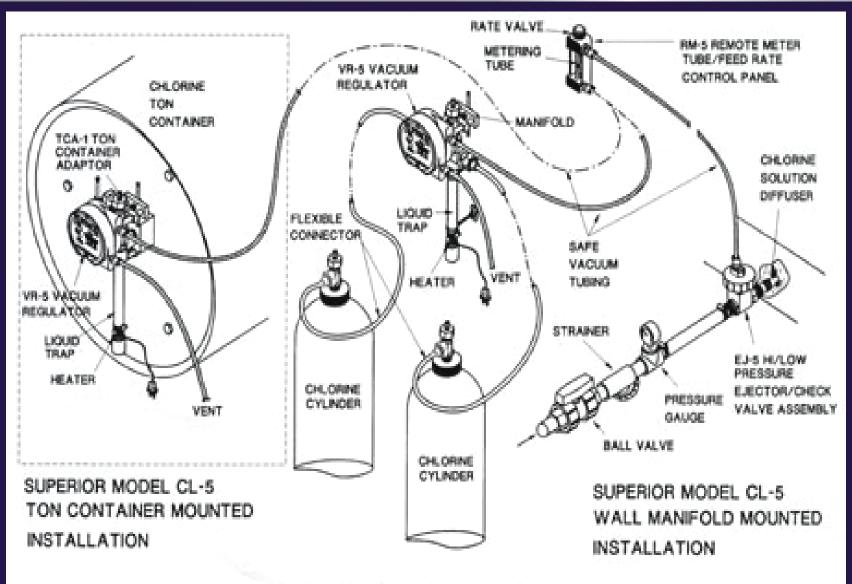
Daily feed rates are not to be exceeded - freezing will occur. Fusible Plug is designed to melt at 158°F to 165°F 150 lb. cylinder 1 ton cylinder

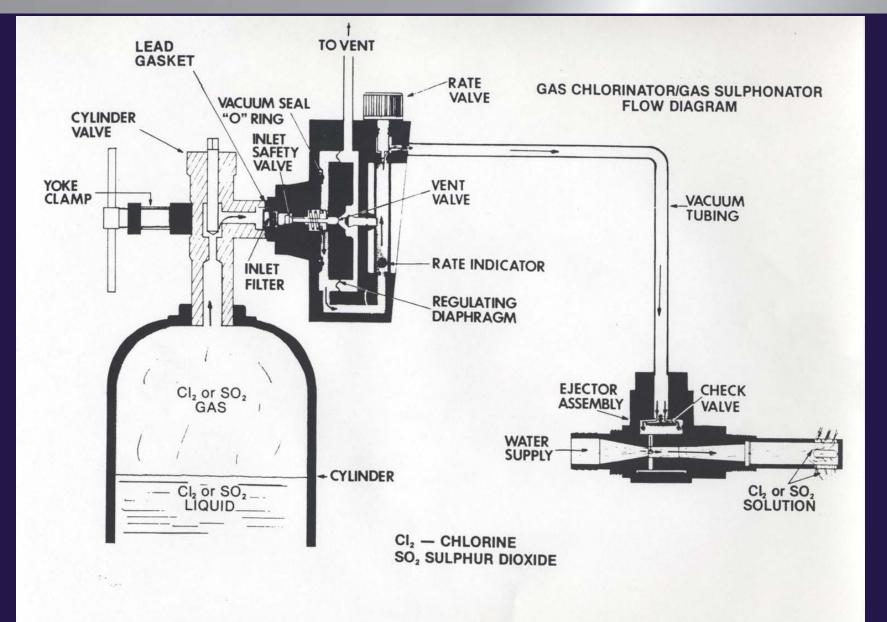
Chlorine/Sulfur Dioxide Leak Indicator Bottles

Chlorine and sulfur dioxide gas leaks can be easily & safely identified with **aqueous ammonia vapor**. Chlorine and sulfur dioxide safely react with **ammonia** to form a visible white cloud that identifies the source of the chemical leak.

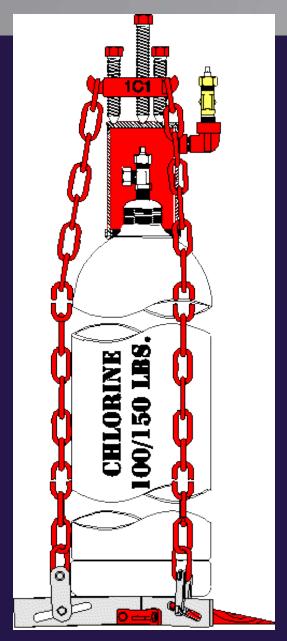
Ammonia may cause problems with metal alloys. Anyone testing for chlorine leaks with ammonia water (ammonia hydroxide solutions) on brass or copper alloys must take care <u>that only the ammonia vapor and not the liquid solution comes into contact with the alloy.</u>





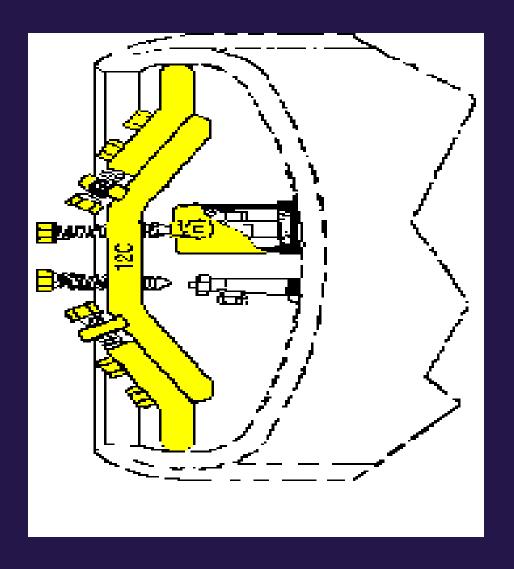


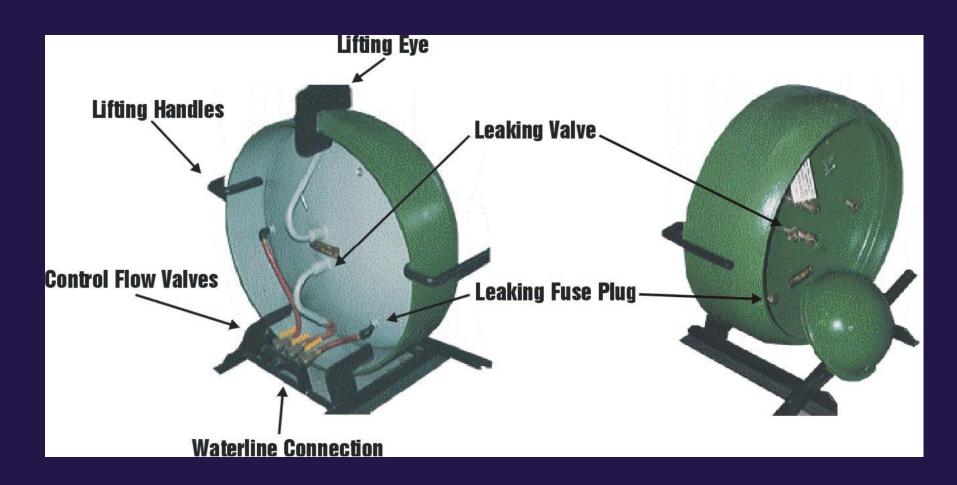
Daniel B. Stephens & Associates, Inc.


Troubleshooting Gas Chlorinators

<u>Symptom</u>	Probable Cause
Low Feed Rate and Low Vacuum	Clogged Injector/Ejector
Low Feed Rate and High Vacuum	Clogged Gas Feed Line Closed Cylinder Valve Empty Cylinder
Feed Rate Jumps	Clogged Flow Controller/Needle Valve
Feed Rate Won't "Zero"	Dirty Flow Indicator/Rotameter
Chlorine Gas at Vent	Dirty Pressure Regulating Valve
No Vacuum	No Supply Water Vacuum Leak

Emergency Kit "A" For 100 lb. and 150 lb. Chlorine Cylinders





Emergency Kit "B" For Chlorine 1-Ton Containers

One Ton Cylinder

Powder Chlorine (Calcium Hypochlorite)

Calcium Hypochlorite Ca(OCI)₂

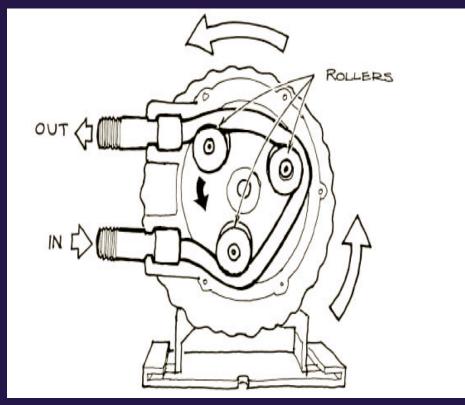
- Dry loose granular material
- Also comes in tablet form
- •White or yellow-white in color
- •Contains 65% 70% available Cl₂ by weight
- Other 35% 30% are binding compounds of lime
- Supports combustion

Liquid Chlorine (Sodium Hypochlorite Solution)

Sodium Hypochlorite (NaOCI)

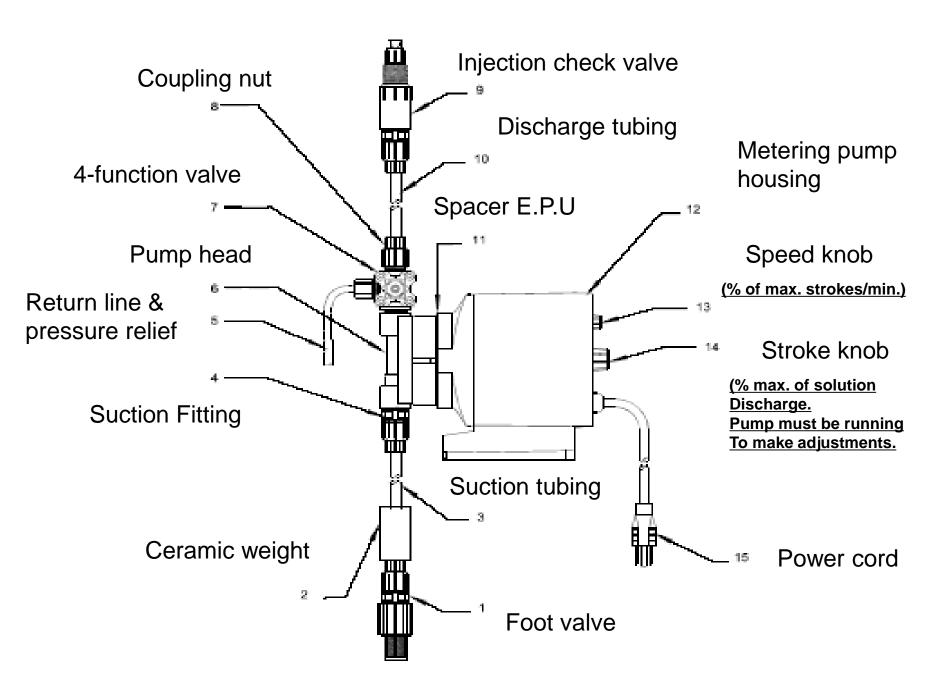
- Clear to greenish-yellow liquid solution
- •9% 15% available Cl₂
- No fire hazards are connected to NaOCI
- quite corrosive
- Reactive with other chemicals

Sodium hypochlorite generating unit, 0.8% available produced "Clor-Tec"



MIOX System

PERISTALTIC TYPE CHEMICAL FEED PUMP


Series	45 N	N – A	۱dius	stabl	e Lo	w Pr	essu	re: () to 2	25 psi	(1.7	2 bar) Ma	ximı	ım Di	ischa	rae F	ress	ure				
Series 45 M – Adjustable Low Pressure: 0 to 25 psi (1.72 bar) Maximum Discharge Pressure MODEL TUBE FEED RATE CONTROL SETTING: Outputs per day in U.S. Gallons @ 60Hz (black, left) & Liters @ 50Hz (green, right)																							
			L		1	2 3			4 5				6 7				8 9			9 10			
45M1	#1		0.6	0.3	•	0.6	1.8	0.9		1.2	•	1.5	4.5	1.8		2.1		2.4	7.3	2.7	8.2		-
45M2	#2		1.5	1.0		2.0	6.1	3.0			12.1	5.0	15.1	6.0		7.0	21.2	8.0	24.2			10.0	30.3
45M3	#3		3.3	2.2	6.6	4.4	13.3	6.6		8.8	26.6	11.0	33.3			15.4	46.6	17.6		19.8		22.0	66.6
45M4		1.7		3.5		7.0			31.8		42.4	17.5		21.0		24.5	74.2	28.0	84.8			35.0	106.0
45M5	#5		7.6	5.0		10.0				20.0	60.6	25.0	75.7	30.0		35.0	106.0	40.0		45.0		50.0	
Series 45 MHP – Adjustable High Pressure: 0 to 100 psi (6.9 bar) Maximum Discharge Pressure																							
MODEL TUBE FEED RATE CONTROL SETTING: Outputs per day in U.S. Gallons @ 60Hz (black, left) & Liters @ 50Hz (green, right)																							
	L 1				2		3	3		4		5		6		7		8		9		10	
45MHP2	#1	0.2	0.6	0.3	0.9	0.6	1.8	0.9	2.7	1.2	3.6	1.5	4.5	1.8	5.5	2.1	6.4	2.4	7.3	2.7	8.2	3.0	9.1
45MHP1	0 #2	0.5	1.5	1.0		2.0	6.1	3.0	9.1	4.0	12.1	5.0	15.1	6.0	18.2	7.0	21.2	8.0	24.2	9.0	7.3	10.0	
45MHP2	2 #7	1.1	3.3	2.2	6.6	4.4	13.3	6.6	20.0	8.8	26.6	11.0	33.3	13.2	40.0	15.4	46.6	17.6	53.3	19.8	60.0	22.0	66.6
			'	'		'				'		'				'		'		'			
Series 45 MP – Fixed Rate Low Pressure: 0 to 25 psi (1.72 bar) Maximum Discharge Pressure																							
MODEL	. Р	UMP	TUBE			FIXE	D OU	TPUT	: U.S.	Gals -	Liters												
45MP1		#	1				3	.0	9.1														
45MP2		#2	2				10	.0															
45MP3		#3	3				22	.0	66.6														
45MP4		#	4				35	.0 1	06.0														
45MP5		#	5				50	.0 1	51.4														
Series	45 N	ЛРИГ) _ F	yed	Rate	Hial	Pre	SSIII	re: O	to 10)() ne	i /6 9	harl	May	eimu.	n Die	schar	ae Di	'essi	ıre			
MODEL			TUBE		Hate	_				Gals –	•	(0.5	, and	wia	amai		Jonai	9011	0330				
45MPHF	2	#	1				3	.0	9.1														
45MPHF		#:					10																
45MPHF		#1					22		66.6														

Diaphragm Chemical Feed Pump Type

LMI Calculating Required Output

Set-up & Installation

Desired mg/L X GPM (Max Flow of Well Pump)

X .006 (Conversion to GPH)

% Concentration of Chemical (Use % as a decimal)

= Required Pump Output in GPH

Calculating output %

Required Pump Output

Maximum Output of Pump

- = % Output Required from Pump
- Calculating % Speed & % Stoke

% Output Required from Pump

(Square Root)

Dechlorination

Physical or chemical removal of all residual chlorine prior to discharge to environment, accomplished using:

- Long detention times / Aeration / Sunlight
- Activated carbon
- Sulfur-based chemicals:
 - Sulfur dioxide SO₂
 - Sodium sulfite Na₂SO₃
 - Sodium bisulfite NaHSO₃
 - Sodium thiosulfate Na₂S₂O₃

Sulfur Chemical Dechlorination

- Sulfur dioxide SO₂: Most common, frequently used
 - Reacts on 1:1 basis 1mg/L SO₂ removes 1 mg/L
 chlorine residual
 - Solids, liquid or gas
 - Uses same type of equipment as gas chlorination; if using chlorine gas rotameter to measure SO₂ flow multiply reading by 0.95 to get pounds per day of SO₂ used (due to slight difference in density of the 2 gases)

Sulfur Dioxide Properties

- Colorless gas, pungent odor
- Chemical in any form is NOT flammable or explosive
- Gas can be cooled and compressed to a colorless liquid
- Under pressure, liquid and gas will stay in equilibrium
- Container pressure function of temperature
- Dry gas is not corrosive; in presence of moisture gas forms sulfuric acid – H₂SO₄ – not a pH factor unless alkalinity is very low
- Excessive dosage can reduce DO (and increase BOD) and decrease pH