

Industrial wastewater

Prof. Joachim Fettig
University of Applied Sciences OWL, Campus Hoexter
An der Wilhelmshoehe 44,
D-37671 Hoexter

Phone: +495271-6877851; Email: joachim.fettig@hs-owl.de

Outline

- Wastewater generated in industries
- Treatment concepts general remarks
- Overview of treatment processes
- Solid-liquid separation
- Removal of dissolved inorganic substances
- Removal of dissolved organic substances
- Final remarks

Wastewater generated in industries

Important types of industrial wastewater:

- Process water
- Water from rinsing and cleaning processes
- Scrubber and vacuum pump water
- Water from hydraulic transport processes
- Blow-down water from cooling systems
- Concentrates from water treatment processes
- Sanitary water
- Polluted rain water

Treatment concepts – general remarks

Development

In the past: Treatment in a central mechanical-biological plant onsite or together with domestic wastewater (end-of-pipe)

Now: Decentralized (pre-)treatment of separate wastewater streams (point-of-source), followed by a central plant if needed

Challenges with separate wastewater streams

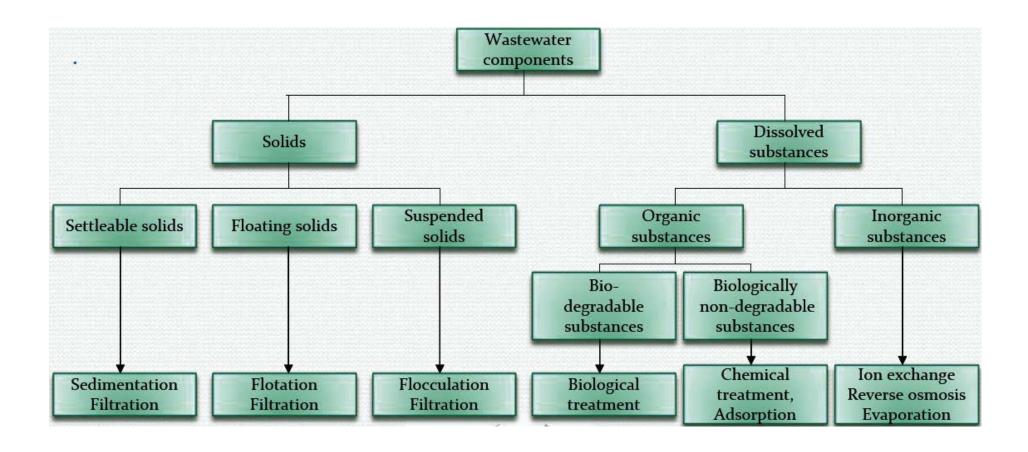
- 1. small volumetric flow rates
- 2. high concentrations of pollutants
- 3. often discontinuous flow

Treatment concepts – general remarks

Conclusions

For pre-treatment purposes, biological processes are suited if

- the substances to be removed are degradable,
- the process is not affected by other toxic substances, and
- adequate adaptability to the fluctuating conditions is possible.


Therefore, physical-chemical or chemical processes must often be applied for the (pre-)treatment of separate streams.

These processes are also important as process-related measures for emission reduction.

Overview of treatment processes

Sedimentation in inclined-plate settlers

<u>Idea</u>: Enlargement of the effective settling area


Important aspect: Up-flow operation

Typical design parameters:

- distance between plates: 20 -100 mm

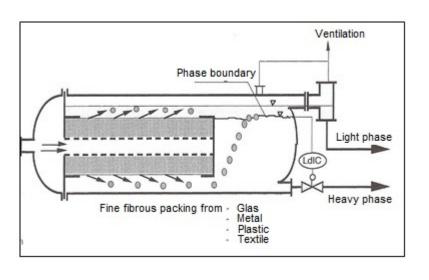
- angle of inclination: 55 - 60°

Manufactured sizes: Q = 1 - 300 m³/h

Inclined-plate settler (Courtesy Vereinigte Kesselwerke)

Oil removal by coalescence separators

Operating principle:


Formation of larger oil drops from fine oil droplets (5 - 20 µm) by hydrodynamic effects

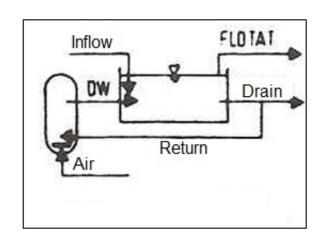
General requirements in Germany:

Effluent concentrations < 5 mg/L HC when tested with a water/oil mixture according to DIN 1999

<u>Limitation of mechanical oil separation</u>:

Removal of stable emulsified oil droplets

Coalescence separator


Dissolved air flotation (DAF)

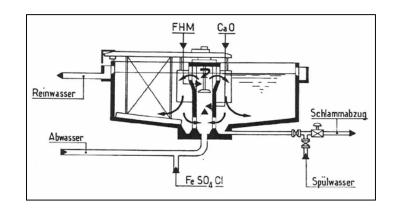
Operating principle:

- saturation of recycled effluent with pressurized air
- formation of air bubbles in the flotation basin
- attachment of particles on air bubbles
- floating of the air-solid aggregates to the surface

Typical design parameters:

- hydraulic surface loading: 2 15 m³/(m² * h)
- operating pressure: 2 6 bar
- recycle ratio: 0.1 0.5 (except sludge thickening)
- air:solids ratio: 3 100 L_N/kg TSS

Principle of DAF


Flocculation in circular reactors

Principle:

- dosing of metal coagulants (iron or aluminium salts) into the inflow
- floc formation in the central part of the reactor, supported by polymer addition
- floc separation by settling in the outer volume of the reactor

Operating parameters:

- hydraulic surface loading: 2 6 m³/(m² * h)
- coagulant dosages: 5 50 mg/L Me
- pH adjustment: pH = 5.5 7.5

Turbo-Circulator (Courtesy Ph. Müller)

Micro- and Ultrafiltration

Operating principle:

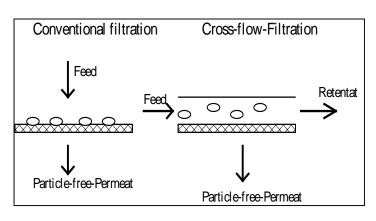
Separation of an inflow (feed) stream into a filtrate (permeate) stream and a concentrate (retentate) stream by organic or inorganic membranes with well-defined pore sizes

Differentiation:

Microfiltration → separation size 50 - 10,000 nm operating pressure 0.5 - 5 bar

Ultrafiltration → separation size 5 - 50 nm operating pressure 1 - 10 bar

Principle of membrane filtration


Micro- and Ultrafiltration

<u>Design selection criteria</u>:

- TSS feed concentration
- recovery
- operating mode
- energy demand
- residuals and their disposal
- fouling potential of the membrane
- rinsing and cleaning procedures

Operating mode:

- → cross-flow (applied in wastewater treatment)
- → dead-end (used for process water treatment)

Operating modes of membrane filtration

Typical applications in industries

Inclined-plate settlers: Removal of particles and chemical flocs,

e.g. after precipitation of heavy metals from metal-

plating wastewater streams

Coalescence separators: Pre-treatment of wastewater containing oil droplets,

e.g. effluents from machine shops

Dissolved air flotation: Removal of hydrophobic solids with low density,

e.g. from wastewater streams generated in food

industries and slaughterhouses

Compact flocculation: Coagulation of fine particle and colloids,

e.g. for producing process water from river water

Typical applications in industries

Microfiltration: Removal of fine particles and oil droplets from all kinds of

small wastewater streams

Ultrafiltration: Separation of emulsions (e.g. drilling oils, compressor

condensates) with cross-flow inorganic membranes

Separation of proteins from whey, soya extracts etc.

Recovery of dyes and sizing agents from dying of textiles

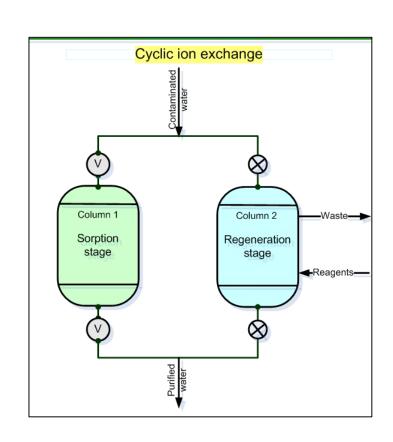
Recovery of water-based paints from electrocoating

processes

Separation of activated sludge flocs from effluents in

membrane bio-reactors

Ion exchange


Operating principle:

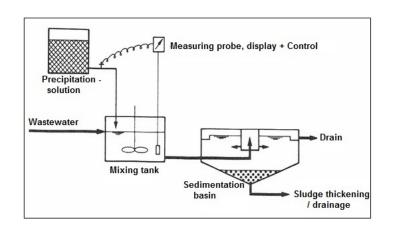
Uptake of cations or anions from wastewater by porous resin beads that release a stoichiometric amount of ions (of the same charge) originally bound to the resin (sorption stage)

Desorption of these ions from the resin by applying a concentrated solution of the ions initially present on the resin (regeneration stage)

Operating mode:

- → co-current (for high ion concentrations)
- → counter-current (for high effluent qualities)

Source: http://www.ion-exchange.com.aa


Precipitation of heavy metals

Principle of precipitation processes:

Transformation of dissolved substances by chemical reactions in components with low solubility

- → Hydroxide precipitation: Precipitation of metal ions as hydroxides or basic salts
 Solubility product L = a(Me^{z+}) * a(OH⁻)^z << 1
- → Sulphide precipitation: Precipitation of divalent metal ions as sulfides

```
Solubility product L = a(Me^{2+}) * a(S^{2-}) << 1
```


Precipitation stage

Oxidation

Principle of oxidation processes:

Release of electrons by a substance, increase of its oxidation state

Oxidizing agents in industrial wastewater treatment, applied for instance for the detoxification of cyanide:

Hydrogen peroxide H₂O₂

$$CN^{-} + H_{2}O_{2} + H_{2}O + H^{+} \Leftrightarrow NH_{4}^{+} + HCO_{3}^{-}$$

- Ozone O₃

$$CN^{-} + O_{3} + 2 H_{2}O + H^{+} \Leftrightarrow NH_{4}^{+} + O_{2} + HCO_{3}^{-}$$

Sodium hypochlorite NaOCI

$$2 \text{ CN}^{-} + 5 \text{ OCI}^{-} + \text{H}_{2}\text{O} \iff \text{N}_{2} + 5 \text{ CI}^{-} + 2 \text{ HCO}_{3}^{-}$$

Reduction

Principle of reduction processes:

Uptake of electrons by a substance, decrease of its oxidation state

Reducing agents in industrial water and wastewater treatment, applied for instance for the detoxification of chromate:

Sodium hydrogen sulfite NaHSO₃

$$Na_2Cr_2O_7 + 3 NaHSO_3 + 4 H_2SO_4 \Leftrightarrow Cr_2(SO_4)_3 + 3 NaHSO_4 + Na_2SO_4 + 4 H_2O$$
 followed by hydroxide precipitation of $Cr(OH)_3$

- Fe(II) salts, e.g. FeSO₄ Na₂CrO₄ + 3 FeSO₄ + 4 NaOH + 4 H₂O \Leftrightarrow Cr(OH)₃ + 3 Fe(OH)₃ + 3 Na₂SO₄

Reverse Osmosis

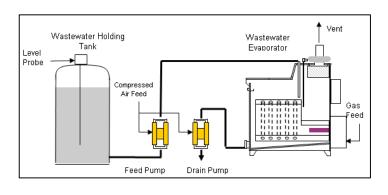
Operating principle:

similar to Micro- and Ultrafiltration

Characteristic differences:

- separation size 1 2 nm (dense membranes)
- operating pressure 10 200 bar
- very good removal of ions and large organic molecules
- limited rejection of dissolved gases and small uncharged molecules, e.g. silicic acid

Source: http://www.ameriwater.com/products


Evaporation

Operating principle:

Separation of wastewater and both dissolved and suspended substances by applying energy in order to transform the water into vapor

Boundary conditions:

- → high energy demand (ca. 800 kWh/m³) for single-stage evaporation
- → precipitation of salts, formation of deposits
- → pollution of condensate by volatile compounds
- → corrosion and foam generation

Source: http://www.wastewaterevaporators.com

Typical applications in industries

Ion exchange: Regeneration of process solutions in metal-plating companies

Recovery of noble metals and non-ferrous metals from

metal-plating rinsing waters

Removal of residual heavy metals from wastewater streams

after a precipitation stage

Precipitation: Removal of heavy metals in wastewater from metal-plating

industries and from flue gas washing processes

Removal of fluoride (as CaF₂), sulfate (as CaSO₄ or as ettringite), phosphate (as MePO₄ with iron and aluminium salts, or as hydroxyl apatite with calcium hydroxide), and ammonium (as struvite) in wastewaters of different origin

Typical applications in industries

Oxidation: Detoxification of cyanide and nitrite in wastewater streams

from metal-plating industries

Reduction: Detoxification of chromate and nitrite in effluents from

metal-plating processes

Reverse Osmosis: Concentration of wastewater streams from chemical

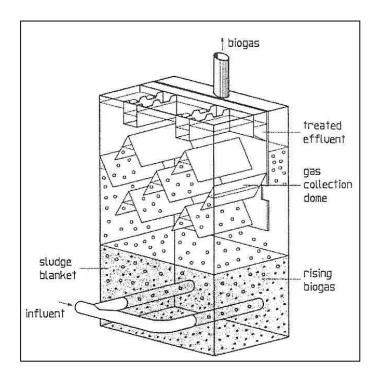
industries, electroplating, and landfills (in Germany)

Recovery of process water in the semiconductor industry

and other sectors

Evaporation: Recovery of resources from wastewater streams

Pre-treatment prior to combustion, e.g. in pulp production


Anaerobic biological treatment

Principle:

- conversion of organic matter to biogas (CH₄,
 CO₂) that can be utilized
 - → gain instead of consumption of energy
- two-stage process:1. pre-acidification, 2. methane production
- production of surplus sludge quite small

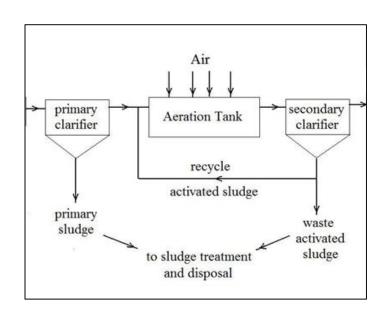
Operating parameters:

- hydraulic loading: 2 30 kg COD/(m³ d)
- temperature: 30 40°C (mesophilic conditions, preferred operating mode)

Scheme of an UASB-reactor (Lettinga und Hulshoff Pol, 1991)

Aerobic biological treatment

Principle:


- conversion of organic matter to CO₂, H₂O and biomass; yield up to 50 %
- removal of nitrogen (nitrification/denitrification)

Process realisation:

- (multi-stage) activated sludge systems
- biofilm reactors

Operating parameters:

- sludge loading: <0.1 0.5 kg BOD / (kg MLSS * d)
- hydraulic retention time: 6 > 24 h

Flow diagram of the activated sludge process

Application of biological processes in industries

Anaerobic treatment: Pre-treatment of wastewater with high concentrations

of biodegradable organic matter (COD = 1.5 - 40 g/L),

e.g. wastewater from food industries, breweries and

pulp and paper production

Aerobic treatment:

Removal of biodegradable organic matter from wastewater generated by all kind of industries, in particular by food companies, petrochemical plants, chemical industries, tanneries, textile companies, and paper mills

Post-treatment of anaerobically treated wastewater in order to remove residual BOD and nutrients (nitrogen,

phosphorous)

Adsorption

Principle:

Accumulation of organic substances at the inner surface of a porous solid (adsorbent), most often activated carbon

Process configurations:

- application of powdered material in a three-step batch process that includes a) dosing,
 b) reaction and c) separation of the adsorbent
- use of granular adsorbent as a filter material in a continuously operated adsorption column

Source: http://generalcarbon.com

Oxidation at low temperatures

... with hydrogen peroxide H₂O₂:

Activation by UV-irradiation or addition of Fe(II)-salts (Fenton's reagent) in order to generate OH radicals

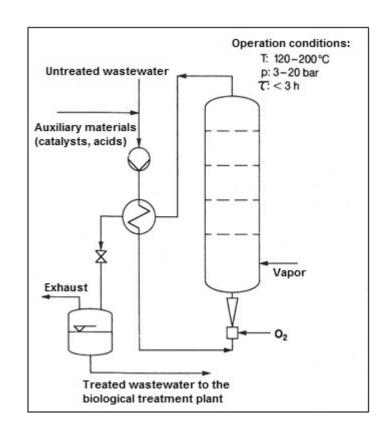
$$H_2O_2 + Fe^{2+} \Leftrightarrow {}^{\bullet}OH + OH^{-} + Fe^{3+}$$

If iron salts are used, they will precipitate as hydroxides, i.e. management of residuals will be required.

... with ozone O₃:

Combination with UV-irradiation for an increased generation of hydroxyl radicals is advantageous

$$O_3 + H_2O \Leftrightarrow 2 \cdot OH + O_2$$


Oxidation at high temperatures

Operating principle of "wet oxidation":

Conversion and partial mineralization of refractory organic substances with air or oxygen

<u>Process schemes</u>:

- \rightarrow low-pressure oxidation (p = 6 10 bar, T = 140 180 °C)
- \rightarrow high-pressure process (p = 20 200 bar, T = 250 330 °C)
- → oxidation in super-critical water (still under development)

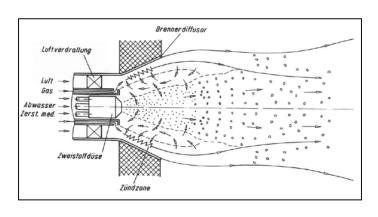
Scheme of the wet oxidation process

Combustion

Principle:

Evaporation of water and oxidation of organic substances in a gas burner

Pre-condition:


High concentration of organic material (> 10 % by mass, or COD > 100 g/L)

Estimate of the net calorific value:

 H_U [kJ/kg] = 13 · COD [g/kg])

Operational challenge:

Handling of slag from salts in the wastewater

Gas burner for wastewater combustion (System BASF)

Application of physico-chemical processes in industries

Adsorption: Removal of specific components or total COD,

e.g. in chemical or metal-processing industries

Low-temperature oxidation: Pre-treatment of wastewater with refractory matter

(COD concentrations of 0.5 - 5 g/L)

Removal of chelating agents in wastewater from

metal-plating industries

High-temperature oxidation: Pre-treatment of chemical wastewater with

refractory matter (COD content of 5 - 100 g/L)

Combustion: Disposal of wastewater with very high organic

content, e.g. in chemical industries and refineries

Final remarks

- Industrial wastewater treatment can be based on a central biological plant, but it often requires the application of physicalchemical or chemical processes for the (pre-)treatment of separate streams.
- These processes must be selected and designed by taking all of the specific boundary conditions into account.
- Therefore standard solutions are not the best option but individual process configurations have to be developed in order to obtain optimal removal efficiencies at reasonable costs.