Activated Carbons

For Wastewater Odor Control

Deepak Raina
Y. B. A. Kanoo Co.

Presentation Overview

Review of odor control basics.

Review of activated carbon basics.

Activated carbons and odor control.

Review of Odor Control Basics

- Odors are produced primarily in two areas:
- Wastewater Treatment Plants (WWTP)
 - Headworks
 - Clarification Systems
 - Biological Systems
 - Solids Processing
- Collection System Facilities
 - Force Main Discharges
 - Pump / Lift Stations
 - Transition Structures

Nature of Odors

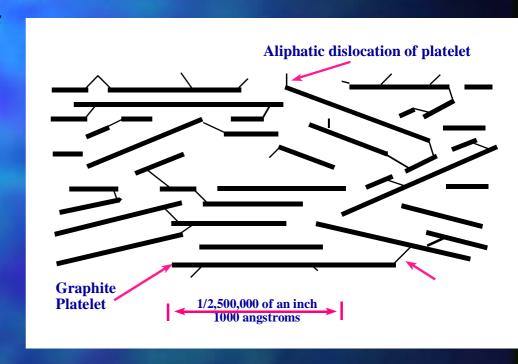
- Odorous compounds in wastewater include both inorganic and organic gases.
 - Primary inorganic odorous compounds:
 - Hydrogen Sulfide (H₂S)
 - Ammonia (NH₃)
 - Common organic odorous compounds:
 - Methyl Mercaptan (CH₃SH)
 - Dimethyl Sulfide ((CH₃)₂S)
 - Indole (C₆H₄(CH)₂NH)

Odor Generation

- Odors are ordinarily generated when turbulence in the wastewater stream volatilizes the odorous compounds from the liquid.
- Odors from inorganic compounds (primarily H₂S) dominate the Collection System.
- Odors at the WWTP generally originate from a mixture of inorganic and organic compounds. However, even here, H₂S tends to be the major odor contributor.

Importance of Odor Control

- Factors influencing growing importance of controlling odors include:
 - Encroachment of new residential and commercial development near once isolated wastewater facilities.
 - New neighbors do not want to smell odors!
 - Increased waste loadings being carried by collection systems and treated by WWTPs fueling expansion of plants.
 - Another result of population growth and encroachment!


Review of Activated Carbon

Definition of Activated Carbon:

Activated carbon is a crude form of graphite with a random or amorphous platelet structure, which is highly porous over a broad range of pore sizes, from visible cracks and crevices to cracks and crevices of molecular dimensions.

The Structure of Activated Carbon

- This is a conceptual view of the structure of activated carbon, magnified 10,000,000 times.
- The carbon shown is a standard, unimpregnated, bituminous coal based material.

How is Activated Carbon Made?

- Activated carbon is made in one of two ways:
 - Direct Activation
 - Reagglomeration

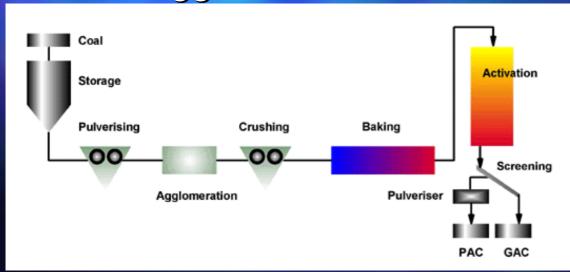


Diagram showing reagglomerated carbon manufacturing process.

Direct Activated Carbon

Direct Activation:

- Starting material is crushed to desired final size and fed into activation furnace.
- Virtually all carbons are made this way, as it is easier, requires less capital equipment, and is therefore less expensive.

Reagglomerated Carbon

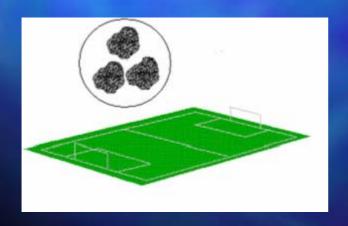
- Reagglomeration:
 - Starting material is crushed to a powder. It is then recombined (reagglomerated) with a binder into a briquette. The briquette is then crushed to the final desired size and fed into the activation furnace.
 - This method provides much greater surface area than direct activation. Resultant adsorption capacity is greater.

What is Activated Carbon made of?

Any carbonaceous material can be a starting material for activated carbon:

- Coal (typically bituminous)
- Coconut shell
- Wood
- Even blood and animal bones!

How does Activated Carbon Work?

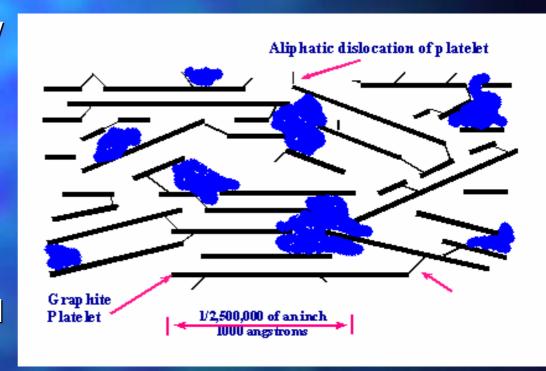

- Most activated carbons work primarily through the mechanism of *Physical Adsorption*.
- Some activated carbons used in odor control work primarily through other means:
 - Chemisorption
 - Catalytic Adsorption

Physical Adsorption

- Based on "London Dispersion Forces":
 - An intermolecular interaction that exists between all molecules.
 - Responsible for condensation of most gases to liquids as well as physical adsorption on carbon.
 - Essentially, this force traps and holds incoming molecules (odorous and otherwise) between carbon particle platelets!

Physical Adsorption

Activated carbon has the strongest physical adsorption forces or the highest volume of adsorbing porosity of any material known to mankind.


A 4.0 mm diameter granule of reagglomerated activated carbon has as much internal surface area as a football field!

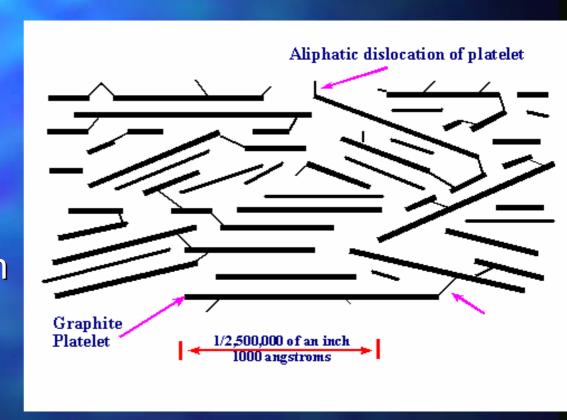
Chemisorption

- Activated carbons can be impregnated with various chemical compounds.
- After incoming molecules are initially physically adsorbed, they react with the chemical impregnant to form a new compound more readily adsorbed onto the carbon.
- This approach can result in higher removal capacity for specific compounds.

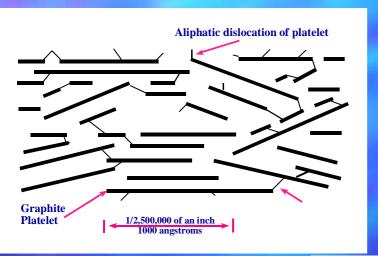
Chemisorption

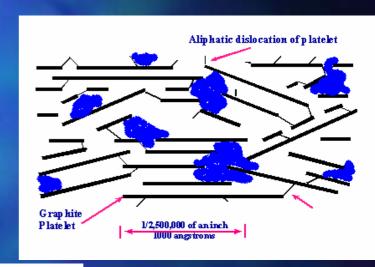
- This is a conceptual view of a chemically impregnated activated carbon at 10,000,000 magnification.
 - Compare this to the earlier slide of the standard, unimpregnated carbon. The blue splotches are the chemical impregnants.

Chemisorption

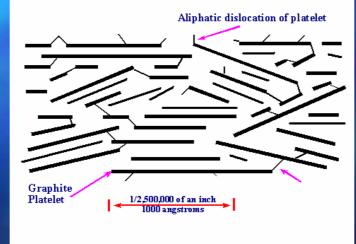

- In municipal odor control, the most common impregnant is caustic soda:
 - Sodium hydroxide
 - Potassium hydroxide
- The caustic chemical oxidizes the H₂S to form elemental sulfur. This greatly increases the carbon's capacity for H₂S removal.
- Caustically impregnated carbons can theoretically be regenerated in-place with more caustic.

Catalytic Adsorption


- The *newest* type of activated carbon.
- All activated carbons exhibit some degree of catalytic activity.
- Calgon Carbon Corp. has discovered how to modify the surface of the carbon granule to greatly enhance the carbon's catalytic nature.
 - CCC's catalytic carbon is Centaur HSV.


Catalytic Adsorption

- This is a view of Centaur HSV at 10,000,000 magnification.
- Note that the carbon has more platelets than standard carbon.



Comparison of Activated Carbon Structures

■Standard Carbon

■Impregnated Carbon

- ■Catalytic Carbon
- ■Centaur HSV

Catalytic Adsorption

- The greater number of platelets results in the carbon having more "high energy" (i.e. catalytic) adsorption sites than standard activated carbon.
- Other than this, Centaur HSV is very similar to standard, unimpregnated, bituminous coal based carbon:
 - Shape, size, color, texture is the same.

How does Catalytic Adsorption Work?

- After the initial physical adsorption step, catalytic carbon promotes an oxidation reaction.
- In odor control applications, this primarily means conversion of H₂S to sulfuric acid (H₂SO₄).
- This differs from conventional carbon in that:
 - Standard (virgin or reactivated) carbon only physically adsorbs the H₂S.
 - Impregnated carbons chemically react with H₂S to form sulfur (S).

Reactions on Catalytic Carbon

■ $H_2S + 2O_2$ ■ $H_2S + 3/2 O_2$	H_2SO_4	90%
	H_2SO_3	~5%
■ H ₂ S + ½ O ₂	$H_2O + S$	~5%

Note that 90% of the reaction product is sulfuric acid. This material is water soluble. This is what makes catalytic adsorption advantageous for H₂S removal ... the catalytic carbon can be washed with water to remove the acid and allow further H₂S removal.

Use of Activated Carbon in Odor Control

- Factors to consider when selecting an activated carbon for odor control:
 - Capacity for hydrogen sulfide removal.
 - This means total capacity, not just initial cycle capacity.
 - Capacity for odorous organic compound removal.
 - Organic sulfides can be present in odor streams.
 - **■** Economics:
 - Initial Cost of Media versus Lifespan of the Media.
 - Frequency and ease of regeneration and replacement:
 - Both from an economic and operational nuisance standpoint.

Comparison of Activated Carbons for Odor Control

- The following slides compare the three most common types of activated carbons relative to their odor control capabilities.
 - Physical Adsorptive (also known Standard Carbon or Unimpregnated Carbon)
 - Chemisorptive (Caustically Impregnated)

Catalytic (Centaur HSV)

Standard (Physical Adsorptive) Carbon

■ Benefits:

- Simple, passive systems with few moving parts.
- Effective capacity to remove low ppm levels of organics.
- Safe operation with no hazardous materials.
- Can provide an effective second stage polishing treatment for other technologies.
- Flexible ("off-on").

Limitations:

- Very limited H₂S capacity leads to frequent change-outs and resultantly poor economics for H₂S removal.
- Media change-out is time consuming, labor intensive, and dirty.
- Spent media must be either land-filled or thermally reactivated off-site – no inplace regeneration is possible.

Impregnated (Chemisorptive) Carbon

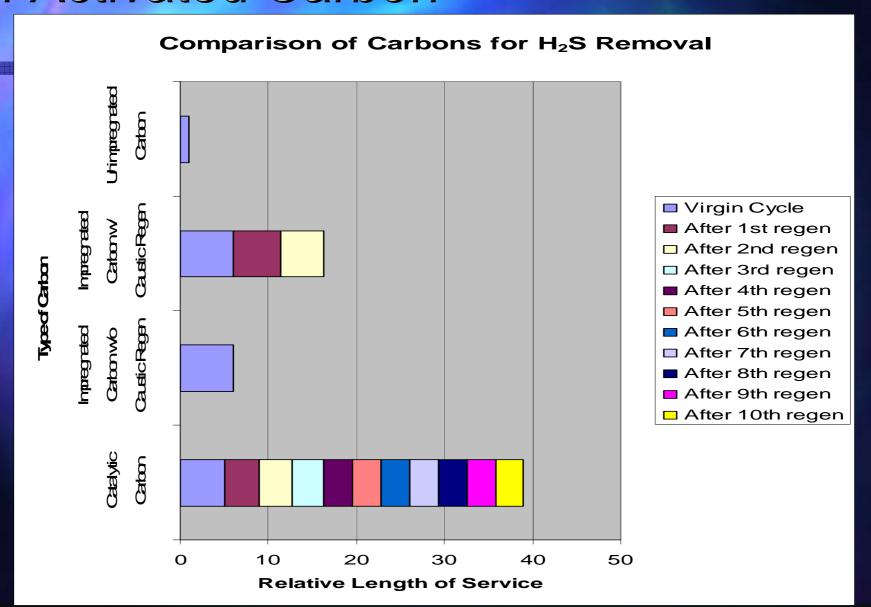
■ Benefits:

- Simple, passive system with few moving parts.
- Effective removal capacity for H₂S levels up to ~ 20 ppm.
- Flexible ("off-on").

Limitations:

- Reduced capacity to remove organic compounds due to impregnant.
- System must go off-line for regeneration (6 to 7 days).
- Caustic regeneration is costly and hazardous (use of 50% caustic).
 Generally only two regenerations are possible.
- Improper system operation can lead to fires (relatively low ignition temperature).
- Media change-out is time consuming, labor intensive, and dirty.
- Spent media must be land-filled.

Catalytic Carbon (Centaur HSV)


Benefits:

- With water washing, total H₂S capacity is far in excess to that provided by other carbons.
- Effective treatment of H₂S levels up to ~ 20 ppm.
- Provides organic compound removal capacity equal to standard carbon and greater than impregnated carbon.
- Vastly reduces bed fire potential present with impregnated carbon.
- Flexible ("on-off").
- Replacement operation is far less frequent than with the other carbons.
- Can be returned to the factory for reactivation, thereby avoiding land-filling.

Limitations:

- System must go off-line for water washing (2 days maximum).
- After 10 water washes, carbon usually must be replaced:
 - Replacement operation is time consuming, labor intensive, and dirty.

Relative Total H₂S Removal Capacities of Activated Carbon

Relative H₂S Capacities

- Catalytic carbon (Centaur HSV) has up to 35 times the capacity to removal H₂S as standard / unimpregnated carbon!
- Catalytic carbon has up to 6 times the capacity for H₂S as impregnated carbon which is not regenerated in place!
- Catalytic carbon has up to 2.5 times the capacity for H₂S as impregnated carbon which is caustically regenerated twice!

Conclusions

- Use of Activated Carbon Will Continue To Be An Effective Method of Treating Wastewater Odors.
- Centaur HSV Makes Activated Carbon Better.
 - Risk of Bed Fires Virtually Eliminated.
 - Caustic Regeneration Problems Eliminated.
 - Spent Carbon Disposal Potentially Eliminated with Ability to Return Centaur HSV to CCC for Reactivation.
 - Long Term Costs of Using Granular Carbon for H2S Are Greatly Reduced.