Sludge at WWTPs: Global Trends of **Treatment and Disposal / Reuse**

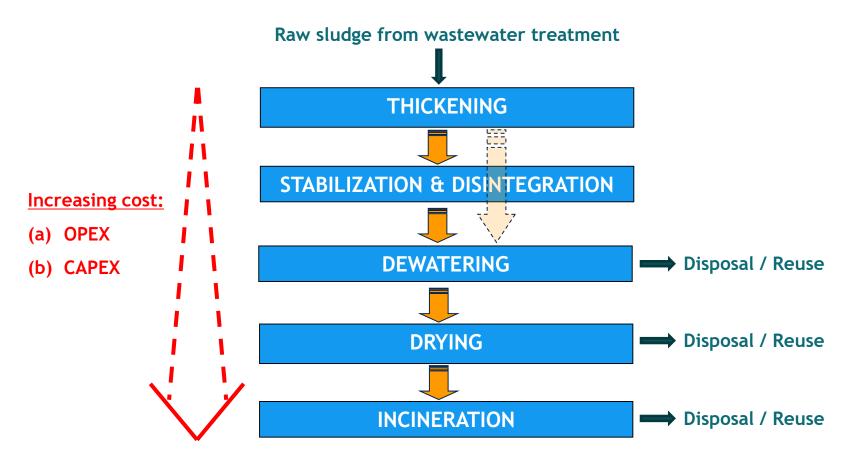
Beirut, September 27, 2019

Dr. Konrad Buchauer, Technical Consultant, World Bank

Outline of presentation

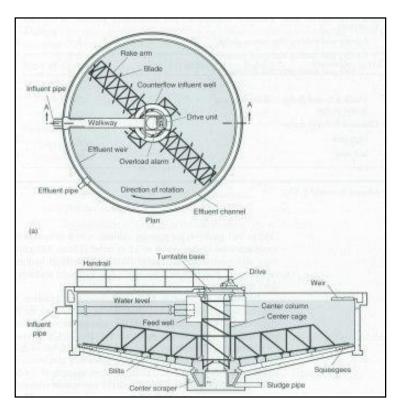
1. Sludge Treatment: Technologies & Trends

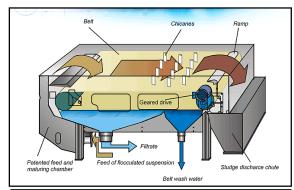
- A. Overview
- **B.** Thickening
- C. Stabilization & Disintegration
- D. Dewatering
- E. Drying
- F. Incineration


2. Sludge Disposal / Reuse: Options & Trends

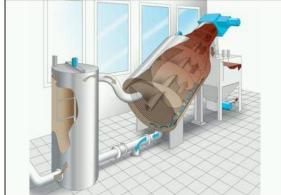
- A. Overview
- **B.** Global Trends

3. Conclusions for Lebanon


A. Overview


B. Thickening (1/3)

(i) Gravity thickening



Source: Metcalf & Eddy

(ii) Mechanical thickening

Source: Bellmer

Source: Huber

Thickening continued (2/3)

Mechanical thickeners:

Disc thickener

Screw thickener

Belt thickener

Rotary drum thickener

Thickening continued (3/3)

	Gravity thickening	Mechanical thickening
Achievable Dry Solids (%DS)	 In cold climates: max. 3-5% In warm climates: max. 3% 	 Independent of climate: 5-6%
Chemicals	 Usually no use of chemicals 	 Polymer: 2-8 g/kgDS
Advantages / Disadvantages	 Sludge Dewatering: increased capacity requirements and cost Large volume and cost for digesters. 	 Sludge Dewatering reduced capacity requirements and cost. Digesters with substantially reduced volume and CAPEX.

C. Stabilization & Disintegration (1/6)

Note:

- <u>Stabilization</u> minimizes bad odour risks; helps to reduce sludge volume (apart from option with lime dosage).
- <u>Disintegration</u> focusses on minimized sludge volume + maximum biogas yield.

1. Stabilization in wastewater treatment:

- Extended Aeration
- Anaerobic wastewater technologies (e.g. UASB)

2. Stabilization in sludge treatment:

- Anaerobic digestion with external heating / at ambient temperature
- Separate aerobic stabilization
- Lime dosage

Disintegration (only OPTIONAL!)

- Ultrasonic treatment of secondary sludge
- Thermal disintegration

Stabilization continued (2/6)

Extended Aeration:

(Large reactors with sludge age typically > 15-20 days)

Siliana WWTP (Tunesia)

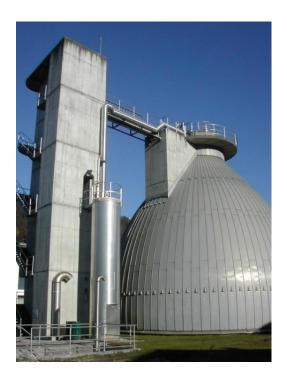
Qilidian WWTP (China)

Stabilization continued (3/6)

Anaerobic wastewater technologies:

ABR technology:

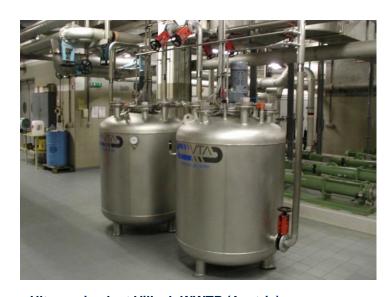
Bhubaneswar SpTP (India)



Stabilization continued (4/6)

Anaerobic digestors:

Cylinder shaped digester



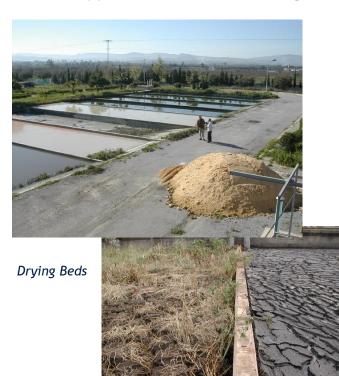
Egg shaped digester

Stabilization continued (5/6)

Disintegration (hydrolysis):

Ultrasonic plant Villach WWTP (Austria) (Designed for 100 m3/d sludge with 6%DS)

Thermal hydrolysis (CAMBI process): Ringsend WWTP Dublin (Ireland)


Stabilization continued (6/6)

	Extended Aeration	UASB	Anaerobic digester	Aerobic stabilization	Lime dosage	Ultrasonic treatment	Thermal treatment
Achievable stabilization	medium	good	good	medium	good		
Chemicals' consumption	no	no	no	no	high	no	no
Energy consumption	high	low	low	high	low	medium	high
Energy production	no	Possible (from biogas)	Possible (from biogas)	no	no	Biogas increase by ≈ 20 (10-30)%	Biogas increase just sufficient to cover thermal needs.
Impact on sludge production	(similar to CAS)	Very low sludge yield	Reduction by ≈ 30%	Typically not operated as efficiently as digester	Strong vol. increase, in order of +30%	Reduction by ≈ 10 (5-20)%	Improved dewatering results
Advantages / Disadvantages	Simple operation, but high OPEX.	Requires post- treatment. Only efficient in warm climate.	Standard technology globally	High OPEX; often limited stabilization effects.	Odor risks + cost of lime + increased sludge volume	Ease of operation, but limited effect. Amortization 5-10 years.	High-tech; usually only economic with > 4000 tons DS/year

D. Dewatering (1/2)

(i) Natural dewatering

(ii) Mechanical dewatering

Dewatering continued (2/2)

	Drying Beds	Centrifuge	Belt Filter Press	Screw Press	Chamber Press
Achievable DS(%) dewatered sludge	≈ 20-40%, dependent on climate	• EA: 18-24% • CAS: 22-30%	• EA: 15-22% • CAS: 20-28%	• EA: 18-24% • CAS: 20-28%	EA: 18-24%CAS: 22-30% (with polymer cond.)
Chemicals' consumption	(no chemicals required)	8-14 g polymer/kgDS	6-12 g polymer/kgDS	6-12 g polymer/kgDS	6-12 g polymer/kgDS
Energy consumption	(only for sludge pumping to drying beds + filtrate pumping to treatment)	40-60 kWh/ton DS	20-30 kWh/ton DS	8-16 kWh/ton DS	30-40 kWh/ton DS
Advantages / Disadvantages	 Simple/cheap to operate. Intermittent sand replacement needed. Large footprint. 	Continuous operation.Closed units.Noise!Low odor risks.	Continuous operation.Easy to operate & maintain.	 Continuous operation. Relatively new on the market => maintenance? 	Intermittent operation.

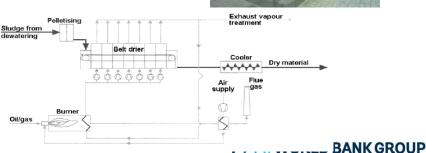
Data source: German Advisory Leaflet DWA-M 366, Feb.2013

EA ... Extended Aeration.

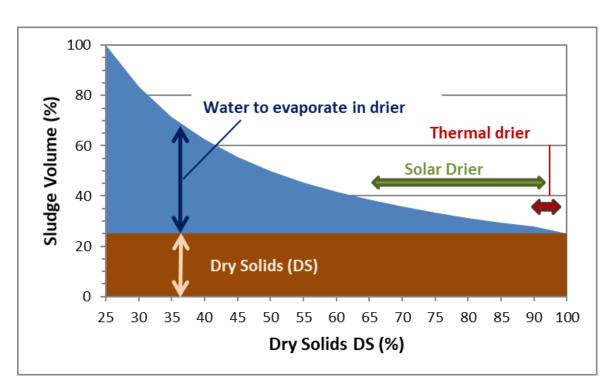
CAS ... Conventional Activated Sludge (with sludge digesters)

E. Drying (1/3)

(i) Solar Drying

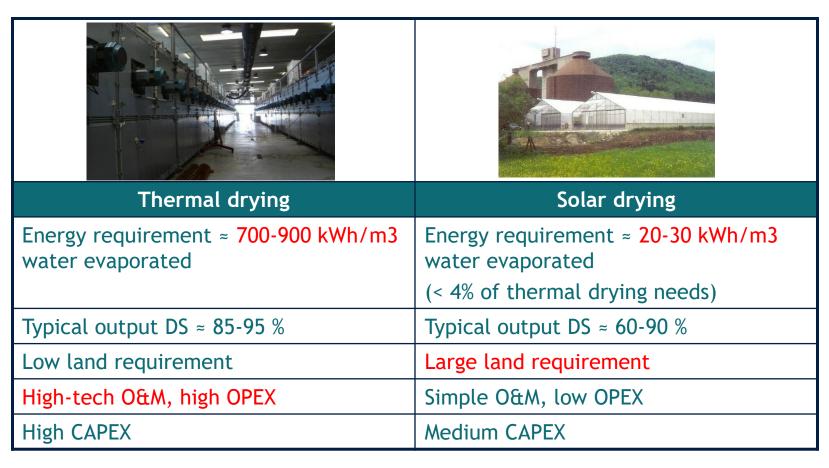

(ii) Thermal Drying

=> Belt drier is most common type of thermal driers


Source: Geyer (2013)

Belt drier at Innsbruck WWTP (Austria)

Drying continued (2/3)


<u>Potential for sludge volume</u> reduction in driers

(assuming that mechanically dewatered sludge with 25% DS equals 100% of initial volume)

=> After drying only 20-40% of dewatered volume remain; 80-60% of volume are removed.

Drying continued (3/3)

F. Incineration

- (i) Sludge Mono-Incineration
- ☐ Incinerators specifically designed for dewatered / dried sludge only.
- ☐ Typical capacity of such incinerators 10,000 100,000 tons DS/year.
- ☐ Gaining increased attention recently, since phosphorus recycling from ashes may offer interesting potential.

- (ii) Co-Incineration
- ☐ Sludge is incinerated in existing installations that were designed for other purposes, such as:
 - ✓ Cement kilns
 - ✓ Coal-fired power stations
 - ✓ Solid waste incinerators
- □ Dependent on status of existing installations more or less adjustments may be needed, particularly of exhaust gas filters.

A. Overview

Options for sludge disposal / reuse:

☐ Sludge disposal in a sanitary landfill: ✓ Dumping together with municipal waste; ✓ Use of sludge as greening cover of closed sections of landfill; ☐ Sludge reuse in agriculture: ✓ Use for products, which are not directly consumed (grain, maize, etc); ✓ Use for fruit trees: ✓ Composting of sludge, and subsequent marketing of compost; ☐ Sludge reuse in afforestation: ✓ For production of wood for construction, furniture, heating, etc; ☐ Sludge reuse for land application: ✓ In abandoned mining areas; ✓ For road embankments, etc; □ Sludge reuse as a replacement of raw materials; ✓ For production of clay-based bricks or other materials; ☐ Thermal reuse of sludge through incineration.

B. Global Trends

Issues that shape global trends regarding sludge disposal/reuse:

☐ Public opinion:

- ✓ <u>Food safety</u>: Increasing resistance towards food products where sewage sludge was involved in one way or another;
- ✓ <u>Environmental impacts</u>: Effect of pollutants on environment?
- ✓ <u>Product safety</u>: Are bricks / cement / etc, produced from sewage sludge, safe, or do they include dangerous compounds?

☐ Legislation:

- ✓ <u>Ever stricter regulations</u> for sludge parameters in disposal/reuse;
- ✓ Increasing range of <u>parameters</u>: hygiene, heavy metals, micro-pollutants;
- ✓ <u>Prohibition of disposal</u> of organic matter on sanitary landfills;
- ✓ Legal requirements for <u>phosphorus recycling</u> from sewage sludge (new!);

☐ Commitment to reduce greenhouse gas emissions:

✓ Increasingly biogas production is maximized, to generate electric energy (considered to come from renewable source);

☐ Sewage sludge as a resource:

- ✓ Sewage sludge as fertilizer (N,P);
- ✓ Sewage sludge as source for energy production;
- ✓ Sewage sludge as a resource for P recovery;

Trends continued (2/6)

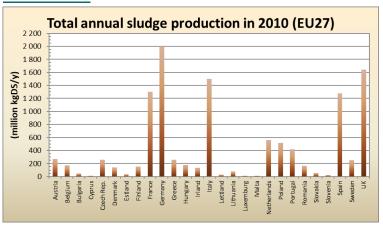
<u>Issues that shape global trends regarding sludge disposal/reuse:</u>

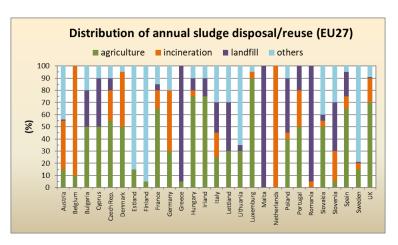
- Technological developments:
 - ✓ Increasing number of technologies on the market that facilitate <u>sludge minimization</u>;
 - ✓ Drying and incineration facilities for ever smaller installations;
 - ✓ Wide range of <u>technologies for phosphorus recovery</u> from sewage sludge, both from wet sludge and from sludge ashes;
 - ✓ Only <u>sludge treatment that permits for flexible sludge disposal/reuse</u> is "safe".

■ Quantities of sewage sludge:

✓ Where most sludge is being generated, also trends develop fastest:

	EU	USA	China
tons DS/year	11.5 million 1)	7 million ²⁾	6 million 4)
m3/year	58 million 4)	35 million 4)	30 million 3)


¹⁾ UBA (2012), 2) Ormeci (2014), WEF (2011), 3) see WB (2016), 4) based on average 20%DS



Trends continued (3/6)

Exemplary developments:

□ EUROPE:

- ✓ No uniform trend across all countries, but some tendencies are apparent:
 - <u>Landfilling will be gradually phased out</u> (legislation!), and it is mostly just the countries with low sludge production that currently still employ it on a larger scale.
 - Reuse in agriculture is decreasing.
 - Thermal reuse is increasing.
- ✓ Some features from **Germany**, the largest sludge producer, appear worth noting:
 - <u>Total sludge volume has decreased</u> by -17% from 2007 to 2017 due to focus on sludge minimization at WWTPs.
 - <u>Sludge incineration has increased</u> from 50% to 70% in same period.

Trends continued (5/6)

ORLD BANK GROUP

Exemplary developments:

☐ INDIA:

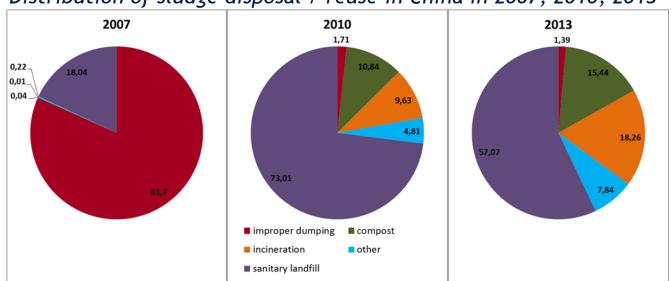
- ✓ The legal signals in India are quite contradictive. The CPHEEO Manual (2013), which is strongly guiding the Indian sanitation sector, defines:
 - "Landfills are not usually recommended for disposal of STP sludge. In case they are adopted, the above points should be considered." (Those points define criteria typically associated with sanitary landfills.)
 - "The use of <u>raw sludge</u> as a soil filler directly on land <u>for raising crops as a means of disposal is not desirable</u> since it is fraught with health hazards." Notwithstanding, subsequently the Manual continues with describing principles, which should be followed, whenever sludge is applied to soils.
 - Ministry of Environment, Forest and Climate Change, Notification: Solid Waste Management Rules (2016) defines quality criteria for compost.
- ✓ "Recommendations and Guidelines" published mutually by 7 Indian Institutes of Technology (2010) only recommends thickening + dewatering, as well as generation of biogas in digesters, and composting.
- ✓ In practice, this background does not provide for clear guidance, and most sewage sludge is eventually disposed at sites of different quality standards. This actual status is equivalent to what was depicted on the previous page for China in the period between the years 2007 and 2010.

Trends continued (6/6)

Exemplary developments:

□ BRAZIL:

- ✓ Sludge disposal/reuse is not yet fully recognized as a major issue in Brazil. E.g., the latest "Atlas esgoto" by ANA (2017), Brazil's National Water Agency, which provides an excellent overview of wastewater treatment, does not even include a single para related to sewage sludge disposal/reuse!
- ✓ Consequently, the situation is characterized by:
 - Sludge is typically disposed at landfills, or at dedicated sites at the WWTP.
 - Sometimes sludge is also reused in agriculture, however mostly just in rural environments.
 - Sludge incineration is not commonly employed.
 - Sludge digestion is popular (both via anaerobic wastewater technologies, and in anaerobic sludge digesters), and biogas use for generation of electric energy has become a trend in recent years, receiving a particular push by strongly increased power unit cost since about 2015. (Previously most of the biogas was simply flared.)



Trends continued (6/6)

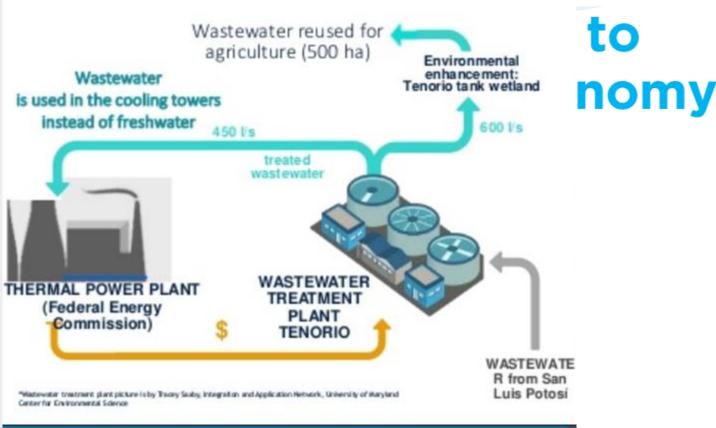
Exemplary developments:

☐ CHINA:

Distribution of sludge disposal / reuse in China in 2007, 2010, 2013

Source: WRI (2016), using data from MOHURD and its

own estimate


- \Rightarrow Within recent years a major shift has taken place from improper dumping to
 - Sanitary landfill has become main way of disposal, and
 - recently thermal reuse also gained increasing prominence.

3. Trend in the Sector

San Luis Potosi, Mexico

Was Res Con

Source Norhan Sadik, WCEF, 2019

4. Conclusions for Lebanon

- 1. A clear-cut sludge treatment technology and thereupon based disposal/reuse strategy should be considered an indispensable, integral part of any WWTP project.
- 2. Lebanese legal regulations for all sorts of sludge disposal/reuse should be checked, if they meet international standards, and if they are appropriate for actual conditions. Legal revisions/adjustments may be needed.
- 3. Investigate and analyze the existing potential for sludge reuse.

4. Promote:

- a. Measures to minimize sludge volume, such as anaerobic sludge digesters, and solar sludge drying.
- b. Measures to generate and utilize biogas for power generation.
- c. Regional co-operation in sludge management should be assisted, since economy of scale can help in bringing down sludge disposal/reuse cost.

Thank You!

