

Cost Management for Engineers

Dr. Attia Gomaa

Industrial Engineering Professor & Consultant

Mechanical Eng. Department – Shoubra Faculty of Eng. - Benha University

& Engineering and Science Services - American University in Cairo

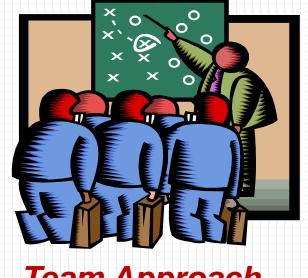
Facebook: Attia Gomaa & Group: Project Management – Dr. Attia Gomaa May 2018

Cost Management for Engineers

Course Contents:

- Cost Management
- Cost Classification
- Cost Estimation
- Cost Analysis
- Depreciation Analysis
- Financial Analysis
- Project Cost Analysis
- Project Cost Control
- Case Studies

Rules of the Course:


This is an Open Discussion Course:

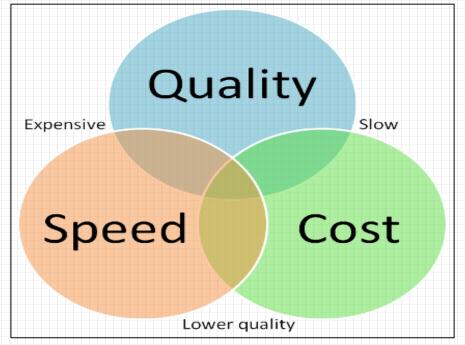
- Share Knowledge
- Share Experiences
- Share Best Practices تبادل التجارب الجيدة
- Share Questions

_ تبادل المعرفة

_ تبادل الخبرات

_ تبادل الأسئلة

Team Approach

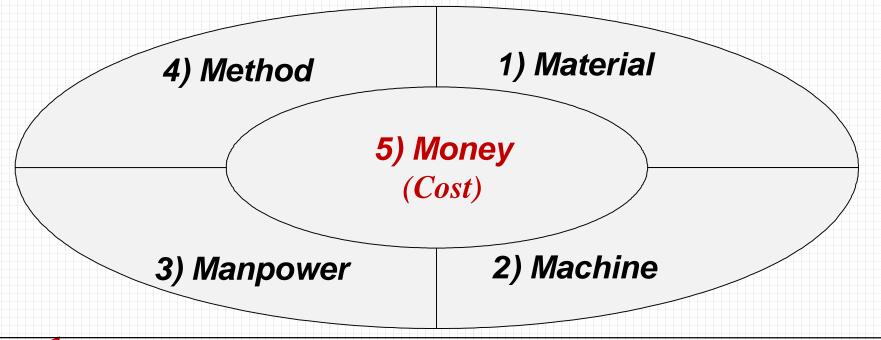

Remember ... You can't do it alone!

Let us be a teamwork.

Project Triple Constraints:

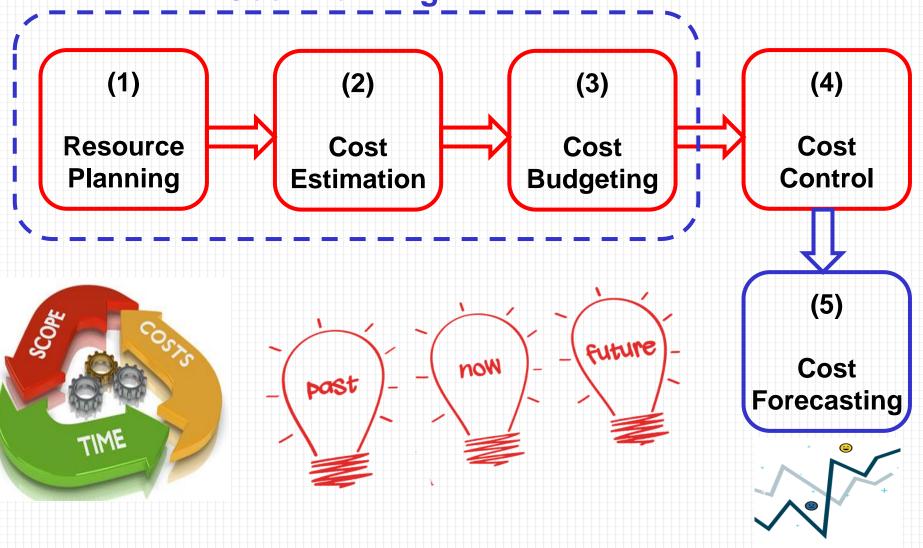
Project Definition:

- 1. Objectives:
- 2. Scope of Work:
- 3. Quality Standards:
- 4. Duration:
- 5. Cost:
- 6. Contract:



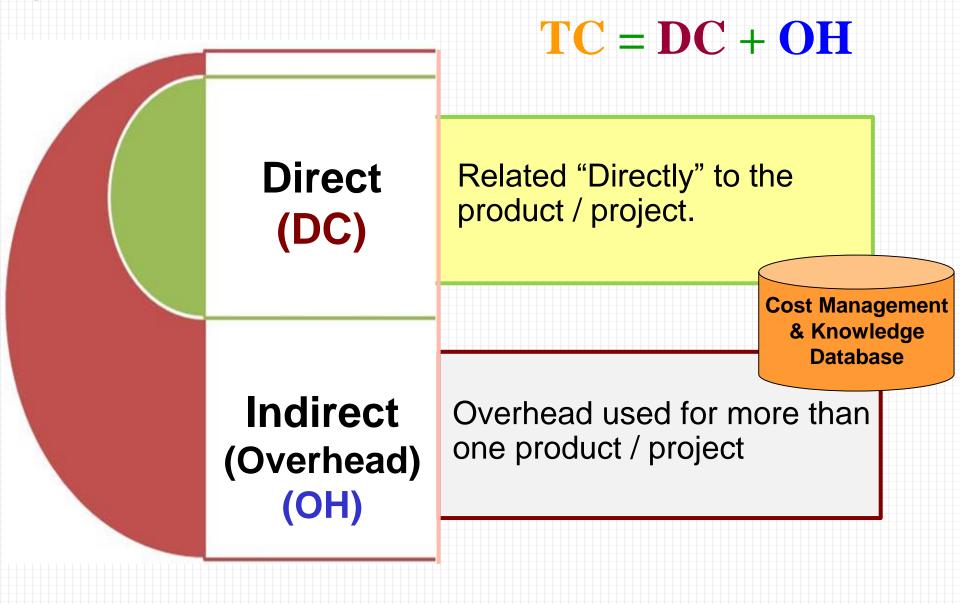
Project Constraints:

- 1. Scope of Work (Specs)
- 2. Quality (Service Quality)
- 3. Time (Schedule)
- 4. Cost (Budget)


Resources Analysis (5 M's):

Cost Management

Cost Planning


Cost Management

	(1) Resource Planning	(2) Cost Estimating
1.	Work breakdown structure (WBS)	5. Resource requirements
2.	Main activities	6. Cost rates
3.	Resource allocation	7. Cost estimation
4.	Resource limits (constraints)	8. Cost analysis
(3) Cost Budgeting		(4) Cost Control
9.	Cost baseline	13. Planned performance
10	. Cash in / cash out	14. Actual performance
	. Cash in / cash out . Budget plan	14. Actual performance15. Change requests

Source: PMBOK Standard

1) Cost Classification:

Direct Costs

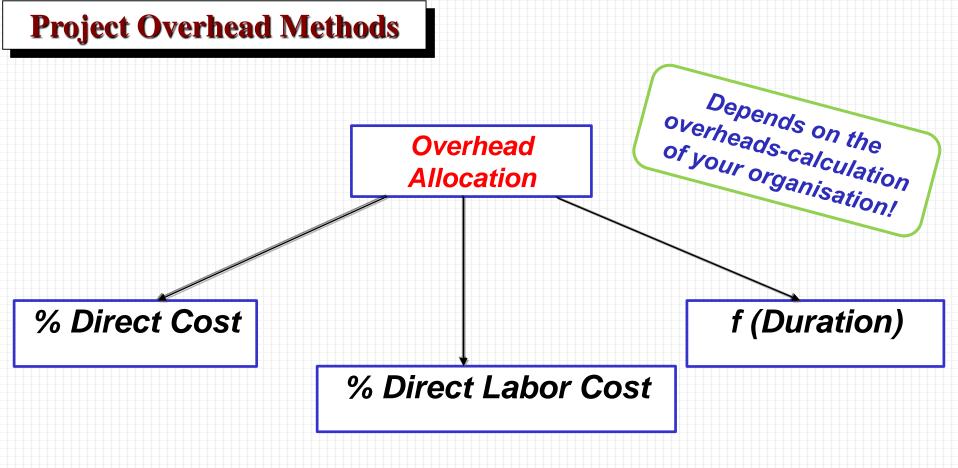
Are those costs which can be directly identified with a job / product.

- Direct Material
- Direct Labor
- Direct Equipment
- Sub-contractors

Indirect Costs

Are those costs which cannot be directly identified with a job / product.

Indirect Cost (Overhead)

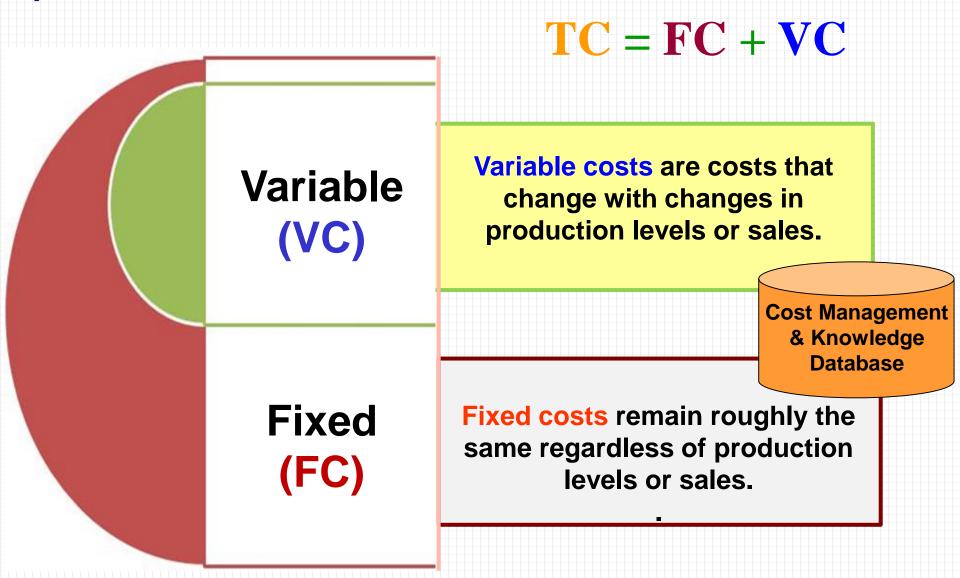

Technical Overhead:

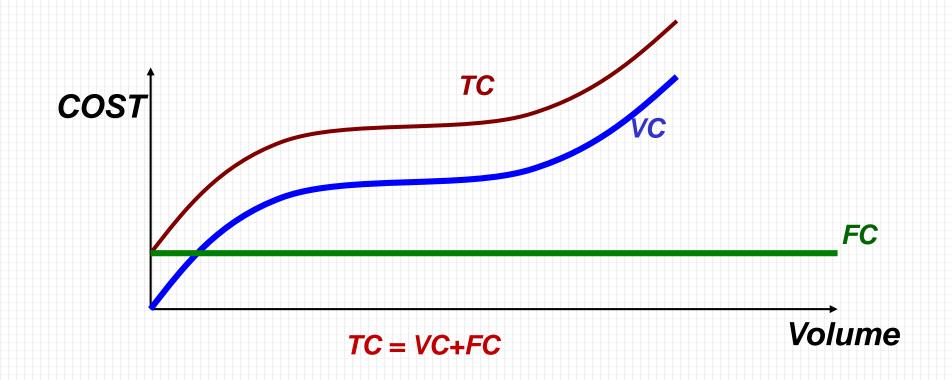
- Site Services
- Material handling
- Quality / Safety
- Maintenance
- Inventory, etc.

Office Overhead:

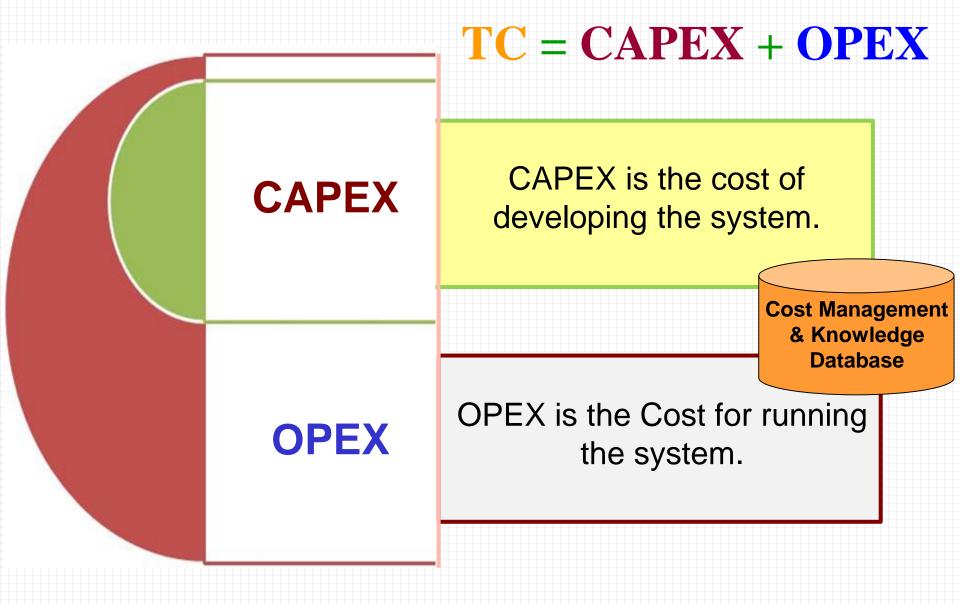
- Office Services
- Financial
- Sales / Market
- HRM
- Other expenses

For Example;





2) Cost Classification:


Variable Cost – VC - Changes with volume

Fixed Cost – FC- Stay the same, regardless of volume

3) Cost Classification:

CAPEX / OPEX Analysis

CAPEX

Capital Expenses

(Long term > 1 year)

CAPEX is the cost of developing the system.

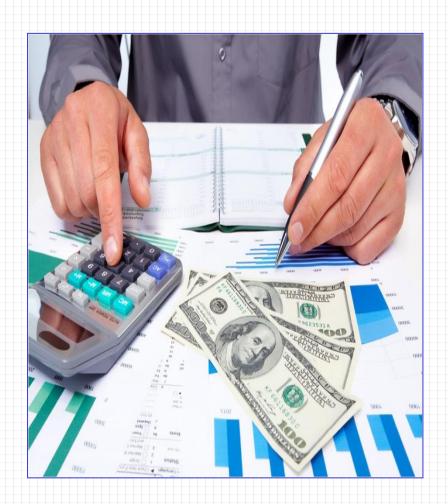
CAPEX is investment in the business.

CAPEX tends to cover fixed assets

Fixed assets: buildings, equipment, etc.

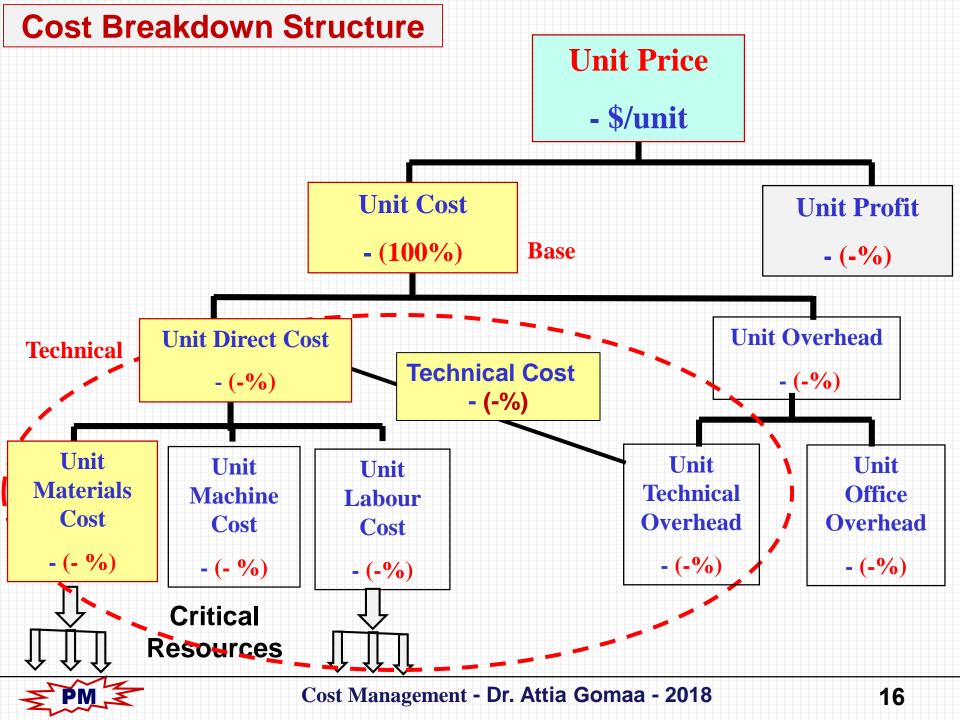
OPEX

Operating Expenses

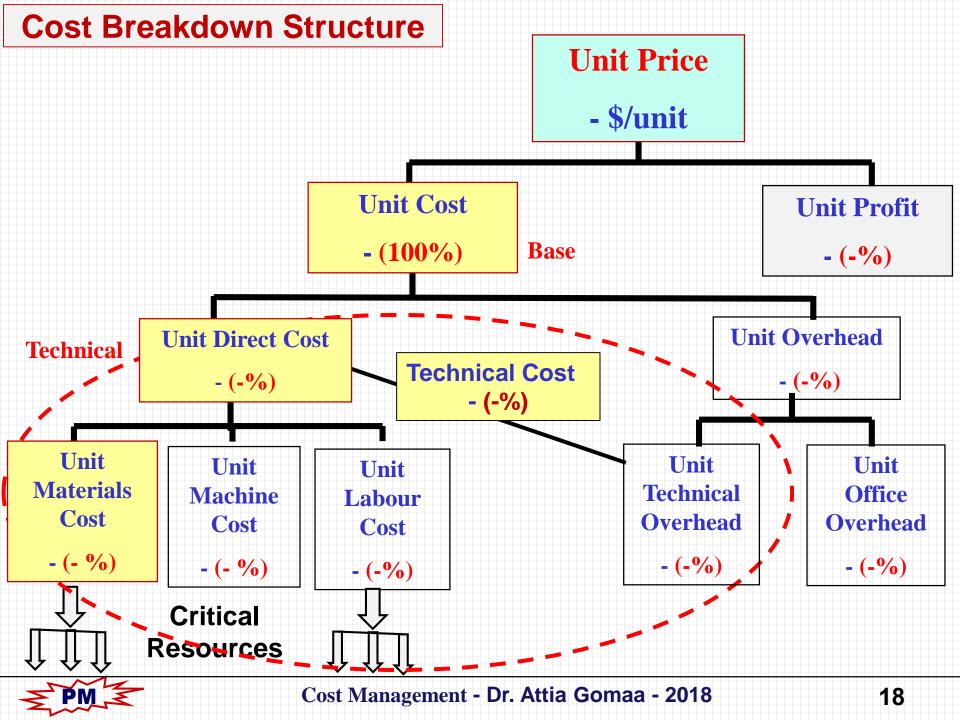

(Short term <=1 year → Running)

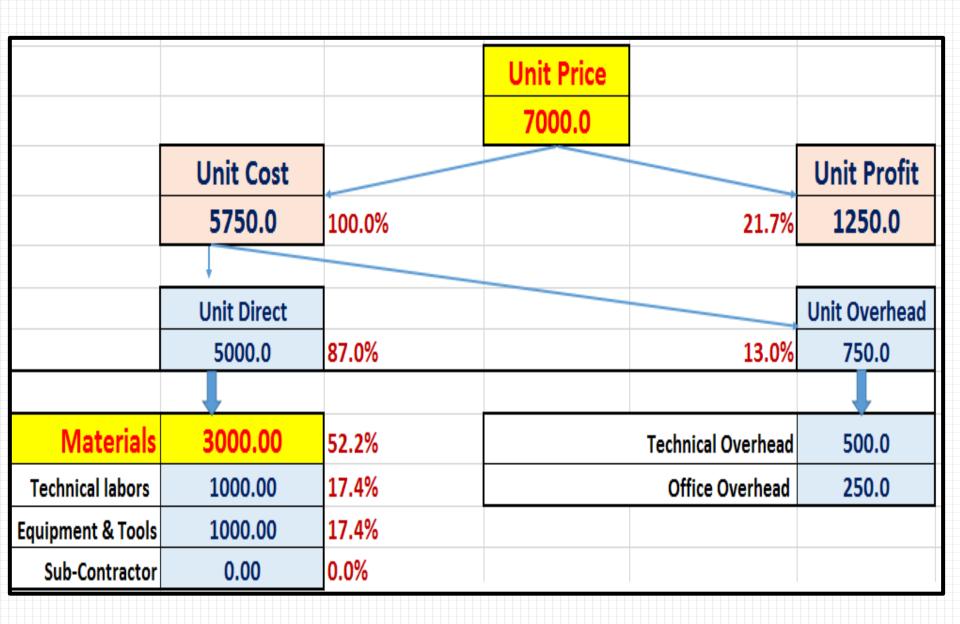
OPEX is the Cost for running the system.

wages, utilities, maintenance, and repairs,



Product / Project Cost Analysis




The project cost information is as follows:

- Project : Office Building 10 Floors
- Bill of Quantity (BOQ): 6000 m2
- Direct Material Cost: 18,000,000 LE
- Direct Machine Cost: 6,000,000 LE
- Direct Labor Cost: 6,000,000 LE
- Technical Overhead 3,000,000 LE
- Office Overhead: 1,500,000 LE
- Unit Price: 7,000 LE/m2

Cost Breakdown Structure

The project cost information is as follows:

- Project : Office Building 10 Floors
- Bill of Quantity (BOQ): 6000 m2
- Direct Material Cost: 18,000,000 LE
- Direct Machine Cost: 6,000,000 LE
- Direct Labor Cost: 6,000,000 LE
- Technical Overhead 10% Direct Cost
- Office Overhead: 5% Direct Cost
- Unit Price: 7,000 LE/m2

The project cost information is as follows:

Item (Main Activity): Plain Concrete

• Bill of Quantity (BOQ) 300 m3

Direct Material Cost 120,000 LE

Direct Machine Cost 54,000 LE

• Direct Labor Cost 24,000 LE

Factory Overhead 33,000 LE

Office Overhead 16,500 LE

Unit Price 1,100 LE/m3

The project cost information is as follows:

Item (Main Activity): Concrete

Bill of Quantity (BOQ) 1000 unit

Direct Material Cost 10,00,000 LE

Direct Machine Cost 500,000

Direct Labor Cost 300,000

Technical Overhead 10% Direct cost

Office Overhead 5% Direct cost

• Profit 20% Total cost

The project cost information is as follows:

Item (Main Activity): Concrete

Bill of Quantity (BOQ) 1000 unit

Direct Material Cost 10,00,000 LE

Direct Machine Cost 500,000

Direct Labor Cost 300,000

Technical Overhead 10% Direct cost

Office Overhead 5% Direct cost

• Unit Price 3000 LE/m3

The project cost information is as follows:

Item (Main Activity): Office Building

Bill of Quantity (BOQ) 1000 m2

Direct Material Cost 2,000,000

Direct Machines 200,000

• Direct Labors 200,000

Tech. Overhead 15% Direct Cost

Office Overhead 5% Direct Cost

Profit20% Total Cost

The project cost information is as follows:

• Item (Main Activity): Power Cable

Bill of Quantity (BOQ) 1000 m

Direct Material Cost 1,500,000

• Direct Machines 500,000

Direct Labors 400,000

Tech. Overhead
 15% Direct Cost

Office Overhead
 5% Direct Cost

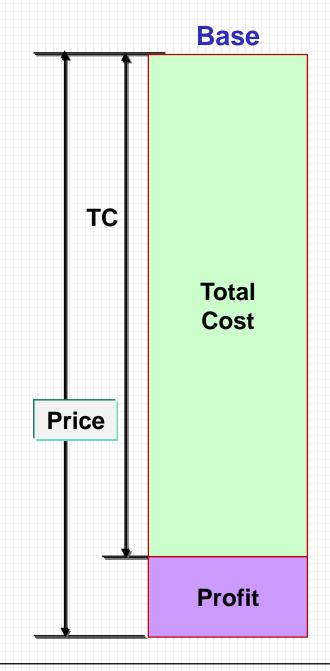
Profit
 20% Total Cost

• Item (Main A	Activity):	Gas Pipe Lir	1e
----------------	------------	--------------	----

• Profit 20% Total Cost

Profit Analysis:

Operating Profit


- = Total Revenue Total Cost
 - → (assume; Zero Stock)

Operating Profit

= Sales Revenue – Cost of Sales

Stock Types:

- Final products
- Work In Process (WIP)
- Raw Materials
- Spare Parts, etc.

Profit Analysis:

Production Information:

Production Quantity = 1000 Cars Total Production Cost = 100,000,000 LE

Sales Information:

Sales Quantity = 600 Cars

Total Revenue = 72,000,000 LE

Based on this information, Calculate the profit ratio

Profit Analysis:

Production Information:

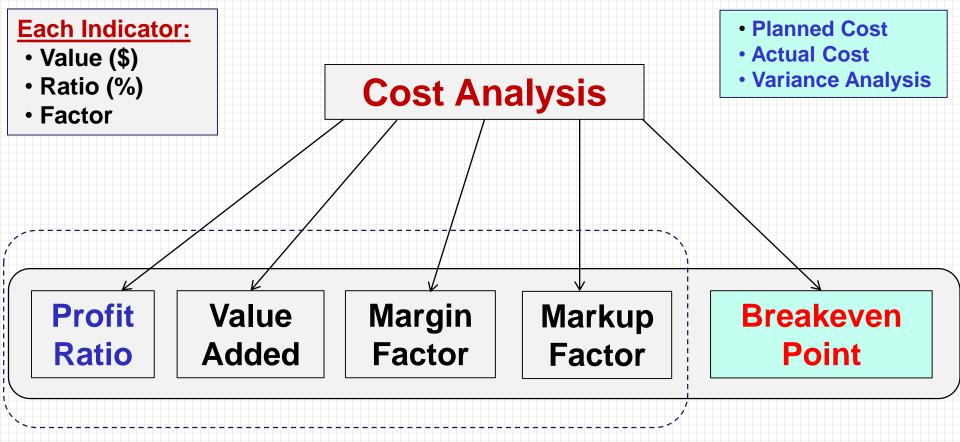
Production Quantity = 1000 Cars Total Production Cost = 100,000,000 LE

Sales Information:

Sales Quantity = 600 Cars

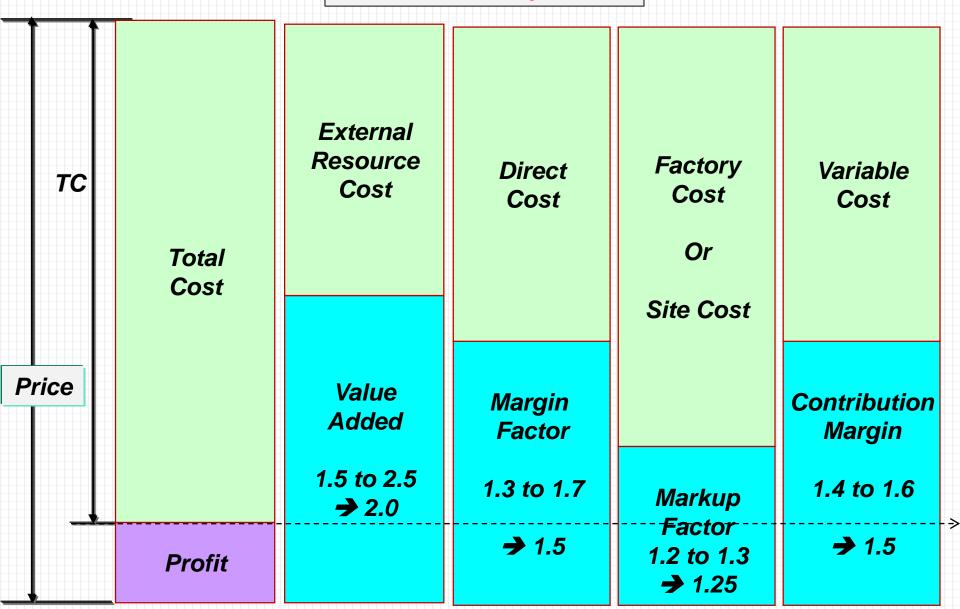
Total Revenue = 72,000,000 LE

Based on this information, Calculate the profit ratio


Profit = Revenue - Cost = 72 - 100 = -28 M-LE Profit Ratio = Profit / Cost = -28/100 = -28%

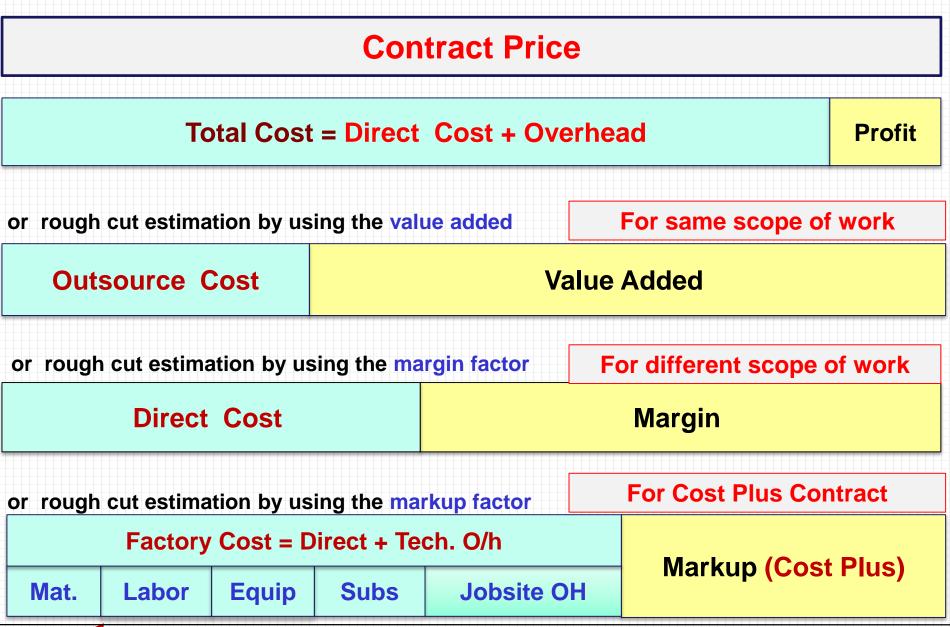
Unit Profit = Unit Price - Unit Cost = 120 - 100 = +20 Profit Ratio = Unit Profit / Unit Cost = 20/100 = + 20%

Main Indicators:

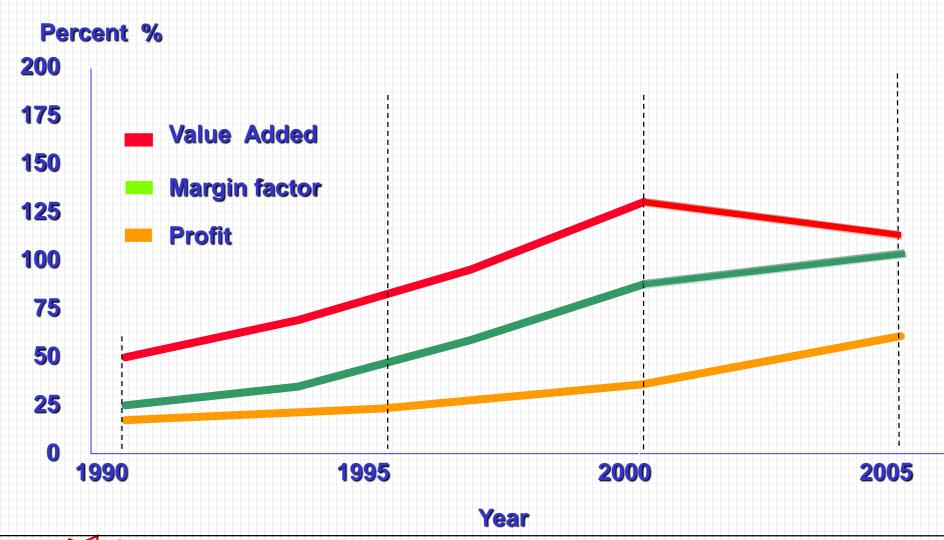

- Profit
- Value Added Factor
- Margin Factor
- Markup Factor
- Breakeven Point

- = Price Cost
- = Price / Mat. Cost
- = Price / Direct Cost
- = Price / Factory Cost
- = F/(p-v)

- **→** Total Productivity
- **→** Material Productivity
- **→** Direct Resource Productivity
- **→** Factory Productivity
- **→** Margin of Safety



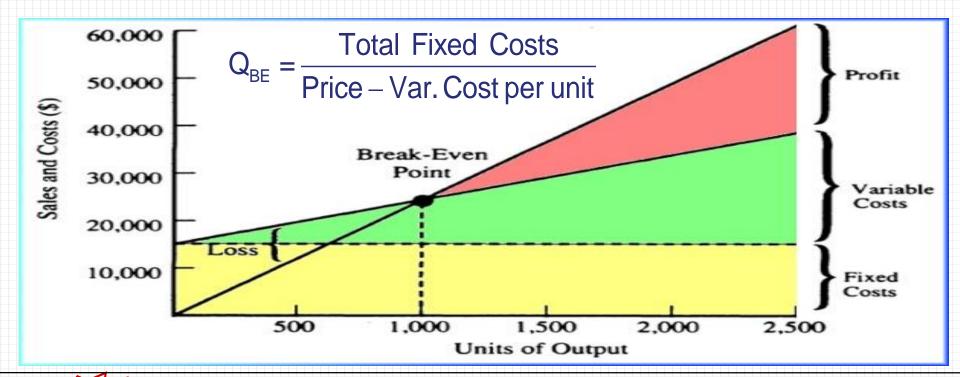
Cost Analysis



Price Structure Analysis: (Cost KPIs - Objectives)

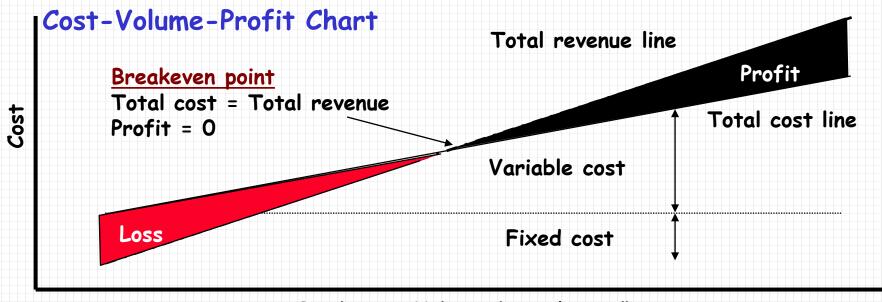
Discuss the following figure:

Break-Even Analysis



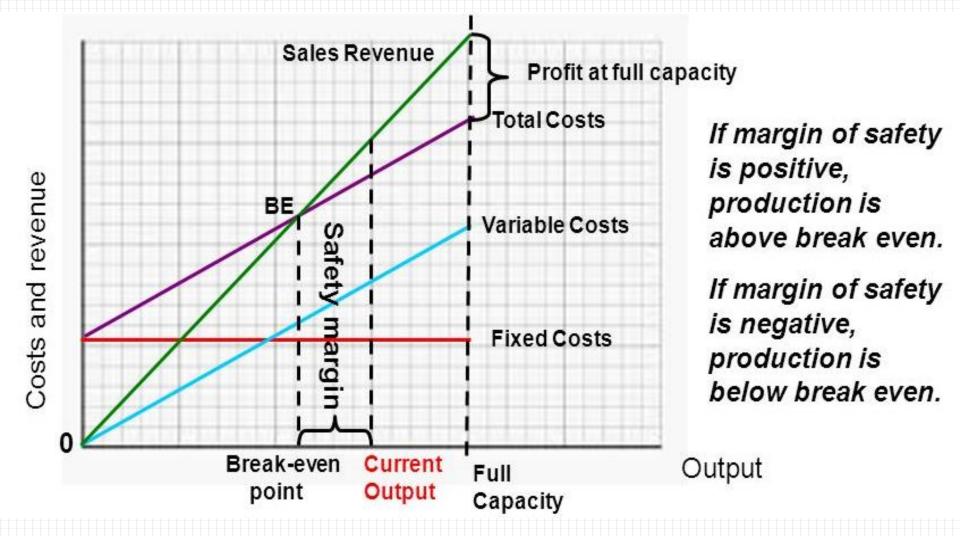
Breakeven Quantity of Sales:

Total costs = fixed costs + variable costs


- Total fixed cost (TFC) is the cost of fixed inputs, inputs that do not vary with output (e.g., rent)
- Total variable cost (TVC) is the cost of all inputs that vary with output (e.g., wages, raw materials)

Break-Even Analysis:

- Determines at what level cost and revenue are in equilibrium
- Break-even point
 - Obtained directly by mathematical calculations
 - Usually presented in graphic form known as break-even chart


Production Volume (units/period)

Breakeven quantity =

(Total Fixed Cost) / (unit price - unit variable cost)

Breakeven - Margin of Safety

Margin of safety is the amount by which the sales level exceeds the break-even level. If sales drop below this level, a loss will occur.

Contribution Analysis:

- = sales variable costs **Contribution margin**
- **Unit Contribution margin** = Unit Price – Unit Variable Cost
- Contribution margin ratio (C/M ratio)
 - Also known as marginal income ratio or Profit-volume ratio
 - Contribution of each dollar towards covering fixed costs and making a profit

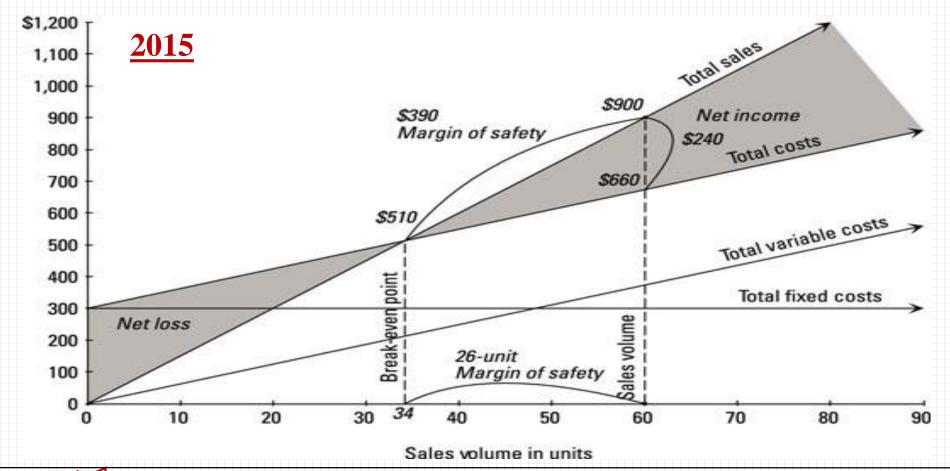
Contribution margin ratio = 1 - (Variable costs/Sales)

Contribution margin ratio = unit contribution margin/unit sales price

Income Statement:

•	Sales	xxx
•	Less variable expenses	xxx
•	Total contribution margin	xxx
•	Less fixed expenses	xxx
•	Profit	XXX

XXX


Break-even = <u>Fixed costs</u>
sales volume (\$) (Unit Price – Unit Variable)

Break-even = <u>Fixed costs</u>
sales volume (\$) Contribution margin ratio

Break-even = <u>Fixed costs</u>
sales volume (\$) 1 – (Variable costs/Sales)

Year	2015	2016	2017
Planned Capacity	60 units	70	80
Annual Fixed Cost	300 M\$	325	350
Annual Variable Cost	360 M\$	370	380

Ye	ar 2015	2016	2017
Planned Capacity	60	70	80
Annual Fixed Cost	300	325	350
Annual Varible Cost	360	370	380
Total cost	660	695	730
Profit	132	139	146
Total price	792	834	876
U. Price	13.2	11.91	10.95
U. Varible	6	5.29	4.75
B.E.P Quantity	41.67	49.03	56.45
BEP %	69.44	70.04	70.56
Margin of safety	30.56	29.96	29.44

Conclusion:

Scenario Analysis

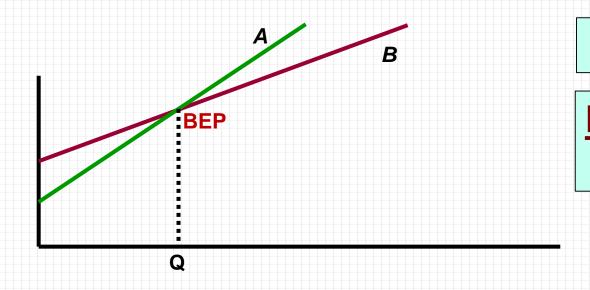
	Worst- Case Scenario	Most-Likely- Case Scenario	Best- Case Scenario
Demand (units)	1,600	2,000	2,400
Unit price (\$)	48	50	53
Unit Variable cost (\$)	17	15	12
Fixed Cost (\$)	11,000	10,000	8,000

Based on this information, discuss the profit & breakeven analysis

Target Net Profit:

- We can use break-even analysis to find the sales required to reach a target level of profit.
- Number of sales units required to earn target profit:
 - = Fixed Cost + Target net profit
 Unit contribution margin

Example:


Calculate the number of units the company needs to sell in order to realize a Profit of \$500,000?

Given:

- Fixed costs= \$100,000
- Sale price=\$10
- Variable cost per unit= \$5

Breakeven analysis between two alternatives:

$$TC = FC + Q.VC$$

BEP: TC(A) = TC(B)

$$FC_A + VC_A*Q_{BE} = FC_B + VC_B*Q_{BE}$$

$$Q_{BE} = (FC_A - FC_B) / (VC_B - VC_A)$$

Example:

A manager is trying to decide between two machines (A or B) to produce a certain product:

- Alt. 1: Machine A:
 - Fixed Costs:
 - Annual Depreciation: \$120,000
 - Annual Maintenance: \$20,000
 - Variable costs:
 - Material: \$2.25 / unit
 - Labor: \$6.25 / unit
- Alt. 2: Machine B:
 - Fixed Costs:
 - Annual Depreciation: \$165,000
 - Annual Maintenance: \$35,000
 - Variable costs:
 - Material: \$2.25 / unit
 - Labor: \$2.25 / unit

Based on this information, select the best machine.

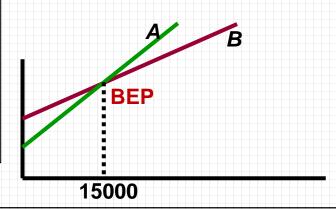
$$TC(A) = 140,000 + 8.5 Q$$

$$TC(B) = 200,000 + 4.5 Q$$

BEP:

TC(A) = TC(B)

Q = 15,000


TC= 267,500 units

Q= 10,000:

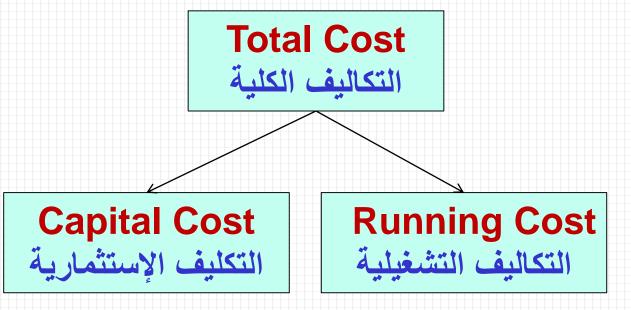
TC(A) = 225,000

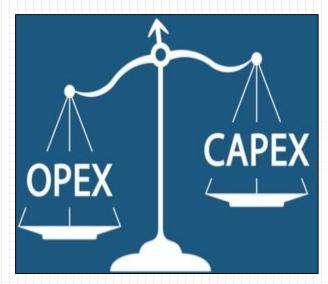
TC(B) = 245,000

<15000	15000	>15000
A	A,B	В

Example:

Two alternatives exist for a machining process.


Alternative 1 has an initial cost of \$10,000 and a salvage value of \$1000 after 5 years. Alternative 1 also has a variable cost of \$1/unit of product produced and an annual maintenance of \$1000.


Alternative 2 has an initial cost of \$15,000 and a salvage value of \$2,000 after 7 years. Alternative 2 also has a variable cost of \$0.80/unit of product produced and an annual maintenance cost of \$1200.

What is the breakeven point in annual production volume?

46

CAPEX and OPEX Analysis

CAPEX Ratio + OPEX Ratio = 100%

Capital Expenses = CAPEX Ratio

(Best CAPEX ≥ 25%)

= Fixed Asset Depreciation / Annual Total cost

Operating Expenses = OPEX Ratio

(Best OPEX ≤ 75%)

= 100 - CAPEX

Assets:

The economic resources owned by a business that can be used for future operations

Fixed Assets: أصول ثابته

- Land
- Building
- Equipment

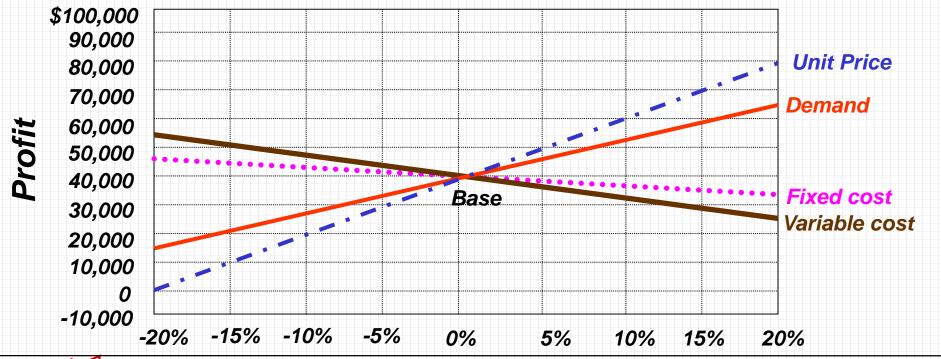
Current Assets: أصول متداولة

- Cash
- Accounts Receivable
- Inventories
- Raw Materials
- Supplies

Intellectual Assets:

أصول غير ملموسة (فكرية)

• Brand, Know-how



Sensitivity Analysis: Objective: Profit \$

Profit Matrix

Deviation	-20%	-15%	-10%	-5%	0% Base	5%	10%	15%	20%
Unit price	\$57	\$9,999	\$20,055	\$30,111	\$40,169	\$50,225	\$60,281	\$70,337	\$80,393
Demand	12,010	19,049	26,088	33,130	40,169	47,208	54,247	61,286	68,325
Variable cost	52,236	49,219	46,202	43,186	40,169	37,152	34,135	31,118	28,101
Fixed cost	44,191	43,185	42,179	41,175	40,169	39,163	38,157	37,151	36,145

Product Cost Analysis: (Information)

The cost classification matrix for a project (First year 2018) is as follows:

Product / Project: xxxxxxx

Cost Classification Matrix

Cost Elements			nual Fixed Cost	Annual Variable Cost	
	1) Materials				
Direct Costs	2) Technical labors				
Direct Costs	3) Equipment & Tools		Cc	net	
	4) Sub-Contractor		- Cost - Account		
5) Technical Overhead Costs			ACC	Juiit	
Overheads	6) Office Overhead Costs				

Cost Analysis?

Company:	ABC					
Product:	Office Building	Period:	Year 2017			
Unit Price:	7,000	Capacity:	6,000	m2		
	Product / Projec	t Cost Matrix				
C	ost Elements	Total				
	1) Raw Materials	18,000,000				
Direct Costs	2) Technical labors	6,000,000				
(Technical)	3) Equipment & Tools	6,000,000				
	4) Sub-Contractor					
Overheads	5) Technical Overhead	3,000,000				
(Indirect)	6) Office Overhead	1,500,000				

Company:	ABC					
Product:	Office Building	Period:	Year 2017			
Unit Price:	7,000	Capacity:	6,000	m2		
	Product / Project Cost Matrix					
Co	ost Elements	Total Fixed	Total Variable			
	1) Raw Materials		18,000,000			
Direct Costs	2) Technical labors	2,000,000	4,000,000			
(Technical)	3) Equipment & Tools	2,000,000	4,000,000			
	4) Sub-Contractor					
Overheads	5) Technical Overhead	3,000,000				
(Indirect)	6) Office Overhead	1,500,000				

Company:	ABC					
Product:	Office Building	Period:	Year 2017			
Unit Price:	7,000	Capacity:	6,000	m2		
	Product / Project Cost Matrix					
C	ost Elements	Total CAPEX	Total OPEX			
	1) Raw Materials		18,000,000			
Direct Costs	2) Technical labors	1,000,000	5,000,000			
(Technical)	3) Equipment & Tools	2,000,000	4,000,000			
	4) Sub-Contractor					
Overheads	5) Technical Overhead	1,000,000	2,000,000			
(Indirect)	6) Office Overhead	500,000	500,000			

Product:	Electric Fan		Period:	Year 2015		
Unit Price:	150	Planne	d Capacity:	100,000	Requirements:	
C	ost Elements	Annual Fixed Cost	Annual Variable Cost		1) Total Cost Analysis	
	Materials		7,000,000		2) Unit Cost Analysis	V
Direct	Technical labors	2,000,000	1,000,000		3) Cost Breakdown Structure	
Costs	Equipment & Tools	500,000	500,000		4) Breakeven Analysis	
	Sub-Contractor				5) CAPEX / OPEX Analysis	
Overheads	Technical Overhead	200,000	100,000		6) Sensitivity Analysis (±10%)	d
Overheads	Office Overhead	100,000				

Product:	Product: Petrochemical Industry		Period:	Year 2015	
Unit Price:	1500	Planne	d Capacity:	100,000	Requirements:
C	ost Elements	Annual Fixed Cost	Annual Variable Cost		1) Total Cost Analysis
	Materials		65,000,000		2) Unit Cost Analysis
Direct	Technical labors	7,000,000	2,000,000		3) Cost Breakdown Structure
Costs	Equipment & Tools	30,000,000	5,000,000		4) Breakeven Analysis
	Sub-Contractor	3,000,000	2,000,000		5) CAPEX / OPEX Analysis
Onsult and a	Technical Overhead	4,000,000	1,000,000		6) Sensitivity Analysis (±10%)
Overheads	Office Overhead	2,000,000	1,000,000		

1)	Total Co	st Analysis:
	C	ost Elements
		Materials

Direct

Costs

Overheads

Direct

Costs

Overheads

Office Overhead

Total Cost

)		03,000,000	
Technical labors		7000000	2000000	9,000,000	
	Equipment & Tools	30000000	5000000	35,000,000	
	Sub-Contractor	3000000	2000000	5,000,000	114,000,000
l.	Technical Overhead	4000000	1000000	5,000,000	
ls	Office Overhead	2000000	1000000	3,000,000	8,000,000
	Total Cost	46,000,000	76,000,000	122,000,000	
Cost Elements		Annual Fixed Cost	Annual Variable Cost	Total	
	Materials	0.0%	53.3%	53.3%	
	Technical labors	5.7%	1.6%	7.4%	
	Equipment & Tools	24.6%	4.1%	28.7%	
	Sub-Contractor	2.5%	1.6%	4.1%	93.44%
	Technical Overhead	3.3%	0.8%	4.1%	

0.8%

62.3%

Annual Variable

Cost

65000000

Annual Fixed

Cost

0

1.6%

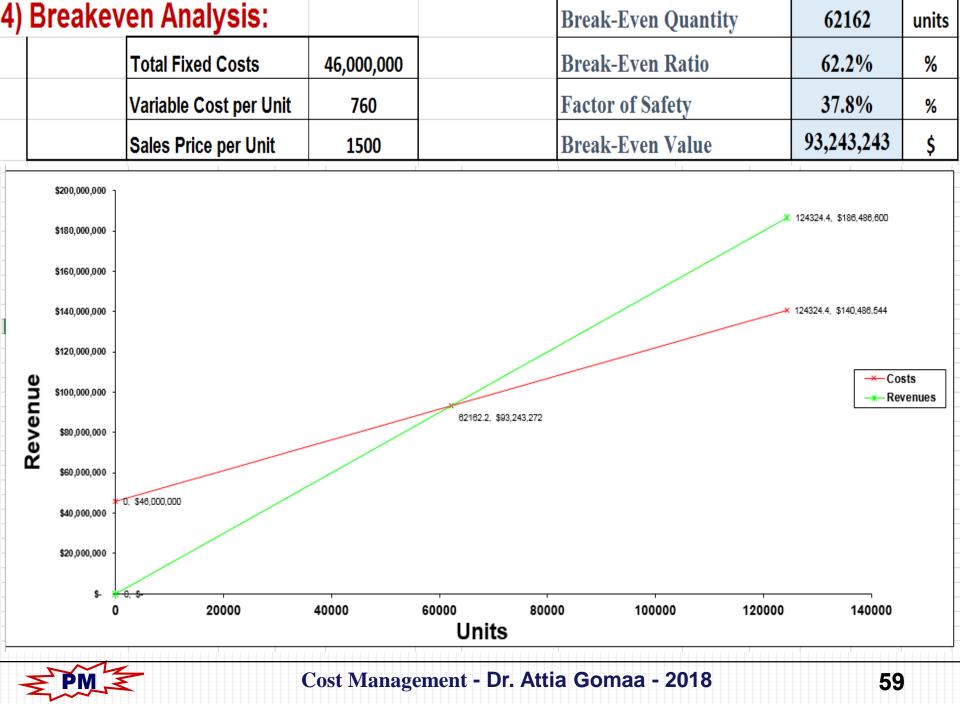
37.7%

2.5%

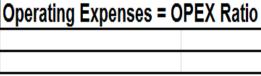
100.0%

Total

65,000,000


6.56%

2) Unit Cost Analysis:


st Elements	Cost			
	Cost	Cost	Unit Cost	
Viaterials	0.0	650.0	650.0	
Technical labors	70.0	20.0	90.0	
Equipment & Tools	300.0	50.0	350.0	
Sub-Contractor	30.0	20.0	50.0	1140.0
Technical Overhead	40.0	10.0	50.0	
Office Overhead	20.0	10.0	30.0	80.0
Unit Cost	460.0	760.0	1220.0	
	echnical labors quipment & Tools ub-Contractor echnical Overhead office Overhead	echnical labors 70.0 quipment & Tools 300.0 ub-Contractor 30.0 echnical Overhead 40.0 Office Overhead 20.0 Unit Cost 460.0	echnical labors 70.0 20.0 quipment & Tools 300.0 50.0 ub-Contractor 30.0 20.0 echnical Overhead 40.0 10.0 office Overhead 20.0 10.0	echnical labors 70.0 20.0 90.0 quipment & Tools 300.0 50.0 350.0 ub-Contractor 30.0 20.0 50.0 echnical Overhead 40.0 10.0 50.0 Office Overhead 20.0 10.0 30.0

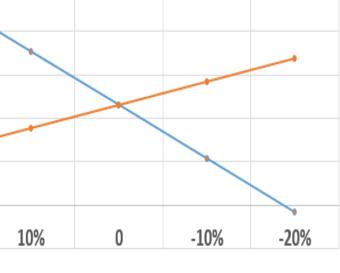
3)	Cost Breakdown Structu	ıre:					
				Unit Price			
				1500.0			
		Unit Cost				Unit Profit	
		1220.0	100.0%		23.0%	280.0	
		Unit Direct				Unit Overhead	
		1140.0	93.4%		6.6%	80.0	
	Materials	650.0	53.3%	Те	chnical Overhead	50.0	4.1%
	Technical labors	90.0	7.4%		Office Overhead	30.0	2.5%
	Equipment & Tools	350.0	28.7%				
	Sub-Contractor	50.0	4.1%				
	Value Added Factor	2.31		Margin	Factor =	1.32	
	EPM E	Cost Manag	ement - Dr. Att	ia Gomaa - 2	2018	58	3

10.7%

-1.6%

Profit %

Capital Expenses = CAPEX Ratio



Sensitivity Graph

Unit Price	Material Cost
47.5%	12.3%
35.2%	17.6%
23.0%	23.0%

24.6%

Operating Expenses = OPEX Ratio

Capital Expenses = CAPEX Ratio

Change %

20%

10%

-10%

-20%

20%

24.6%

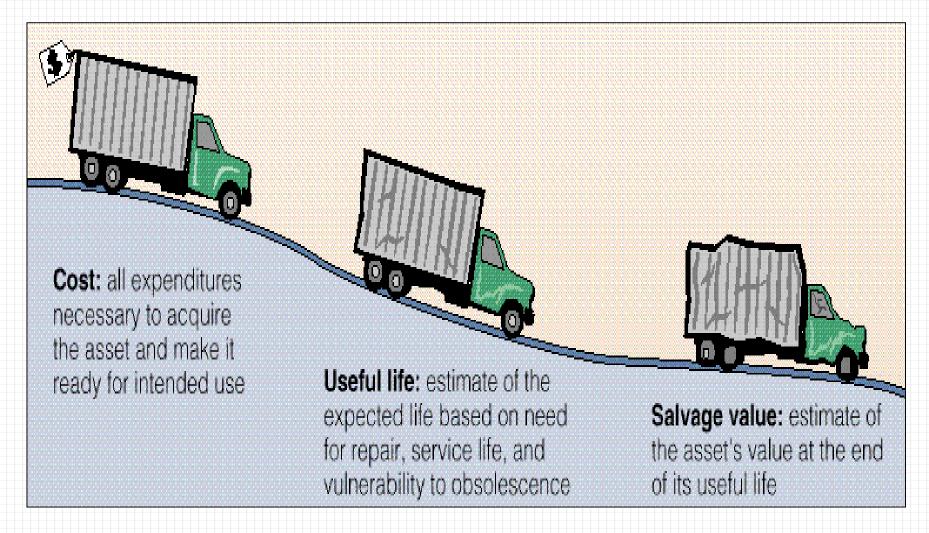
75.4%

50.0%

40.0%

30.0%

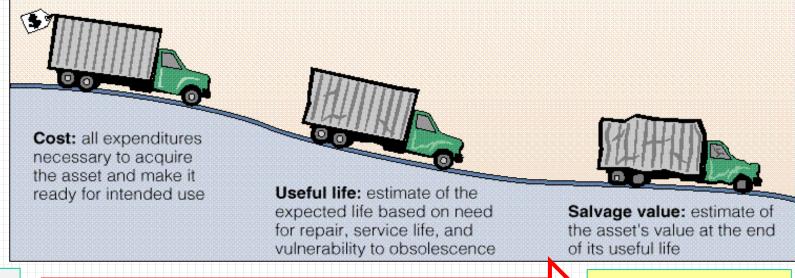
20.0%


10.0%

0.0%

-10.0%

75.4%


Depreciation Analysis

Depreciation is the systematic allocation of the cost of a depreciable asset to expense.

Example:

Initial Cost \$ 50,000

Life = 5 years

Straight Line = 40,000/5 = \$8000 / year

Salvage Value \$ 10,000

Period	Book Value	Annual Dep.
0	50,000	
1	42,000	8000
2	34,000	8000
3	26,000	8000
4	18,000	8000
5	10,000	8000

Ok for financial feasibility study only Not Ok for operational cost management

Main Defect in this method:

- 1) Neglect technical efficiency
- 2) Neglect value of many

Relative weight from time to time?

Depreciation Terms

- Cost: the price paid for the asset
- Useful life: number of years the asset is expected to be used in business
- Salvage value: expected market value of the asset at the end of its useful life
- Book value: the asset's original cost less accumulated depreciation

Example:

Calculate depreciation for a compressor with initial cost of \$10,000, useful life of 5 years (from 2009 to 2013), and salvage value of \$2,000.

Discuss & Analysis the depreciation under the following methods.

- a) Straight-line depreciation "Constant Value"
- b) Sum-of-the-years'-digits.
- c) Double-declining balance "Constant ratio"

d) Units-of-Production Method -> Production Profile

Year	2009	2010	2011	2012	2013
Annual Running Hours	3000	2500	2000	1500	1000

Total Depreciation Value = (Initial cost – Salvage) = 10,000 - 2,000 = 8,000

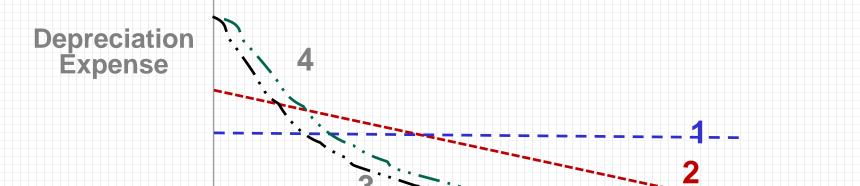
1) Straight-line depreciation:

Annual Depreciation = 8,000/5 = 1,600 \$/year

Year	0	1	2	3	4	5
Dep.		1,600	1,600	1,600	1,600	1,600
Book Value	10,000	8,400	6,800	5,200	3,600	2,000

2) Sum-of-the-years'-digits:

Year	0	1	2	3	4	5
Rel. weight		5	4	3	2	1
Factor		5/15	4/15	3/15	2/15	1/15
Dep.		2666.7	2133.3	1600	1066.7	533.3
Book Value	10,000	7333.3	5200	3600	2533.3	2,000



3) Double-declining balance : Constant ratio = 2/n = 0.4

Year	0	1	2	3	4	5
Dep.		3200	1920	1152	691.2	414.7
Book Value	10,000	6800	4880	3728	3036.8	2,000

4) Units-of-Production Method:

Year	0	1	2	3	4	5
Factor		0.3	0.25	0.20	0.15	0.10
Dep.		2400	2000	1600	1200	800
Book Value	10,000	7600	5600	4000	2800	2,000

Example:

Calculate depreciation for a new car with initial cost of \$50,000, useful life of 5 years (from 2009 to 2013), and salvage value of 40% initial cost.

Discuss & Analysis the depreciation under the following methods.

- a) Straight-line depreciation.
- b) Sum-of-the-years'-digits.
- c) Double-declining balance "Constant ratio"

d) Units-of-Production Method -> Production Profile

Year	2009	2010	2011	2012	2013
Annual Km	60000	50000	45000	30000	25000

Example:

A new excavator equipment with initial cost of \$200,000, useful life of 5 years (from 2009 to 2013), and salvage value of 50% initial cost.

Discuss & Analysis the annual depreciation and the book value under the following methods:

- a) Straight-line depreciation.
- b) Sum-of-the-years'-digits.
- c) Double-declining balance "Constant ratio"
- d) Optimal constant ratio
- e) Units-of-Production Method → Production Profile

Year	2009	2010	2011	2012	2013
Annual performance(1000 m3)	60	80	100	80	60

Depreciation Information System → Long term → Blue Book

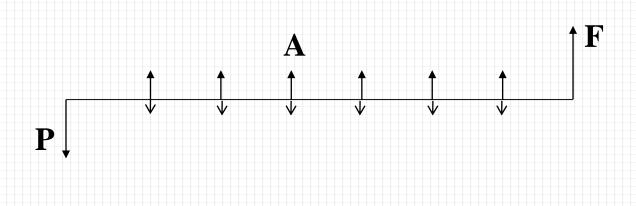
Asset / Equipment	Life, year	Salvage (% initial)	Dep. Method
Computer Units	5	10%	SYD
Building	50	zero	SL
Service Facilities System (SFS)	10	zero	Production units
Crude Oil Pipe Line	20	zero	Production units
Cars	10	10%	CR
Water Pump	10	10%	CR
Equipment (crane, excavator,)	20	10%	CR 10%

Project Financial Analysis (Long Term)

Cash Flow Analysis

there is a difference between \$1000 today and \$1000 after 3 years.

If the interest rate 10% annual; then: \$ 1000 today = \$ 1331 after 3 years


$$F = P (1 + i)^n$$

$$P = F/(1+i)^n$$

Cash Flow Analysis $F = P (1 + i)^n$

Revenue

(+)

(-)

Cost

i = Interest rate (%)

P = **Present value**

F= Future value

A=Annual uniform value

n = Life time (year)

- \rightarrow Value at time = 0
- \rightarrow Value at time > 0
- **→** Equal value over time
- Interest rate → Certain bank → i% given (10%)
- Minimum Attractive Rate of Return (MARR)
- Internal Rate return

 Cash In/out for Certain project

Project Financial Analysis:

- 1. Payback Period
- 2. Net Present Value (NPV)
- 3. Profitability Index
- 4. Internal Rate of Return (IRR)
- 5. Minimum Attractive Rate of Return (MARR)

Payback Period

Definition:

The length of time until the original investment has been recouped by the project

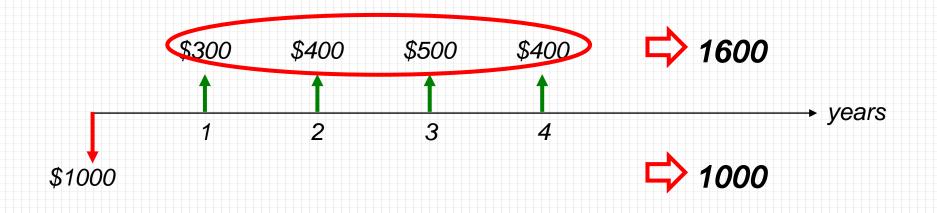
- Ignore time value of money
- Does not consider profitability
- A shorter payback period is better

Example:

Year	Project X	Cumulative Cash Flow
0	- \$100	- \$100
1	25	-75
2	50	-25
3	75	50

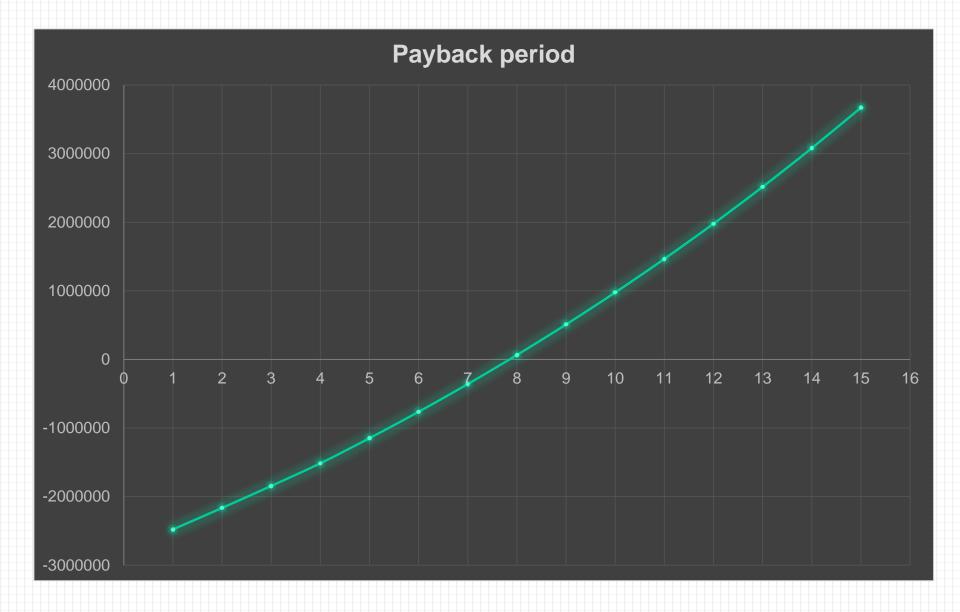
Payback period = 2 + 25 / 75 = 2.333 years

Firm recovers its initial investment in 2.333 years



Year	0	1	2	3	4
Cost	-1000				
Revenue		+350	+350	+350	+350
Cumulative Cash Flow	-1000	- 650	- 300	+ 50	+400

Payback Period = (2 to 3) years = 2 + 300/350 = 2.857 years = 2 years & 11 months



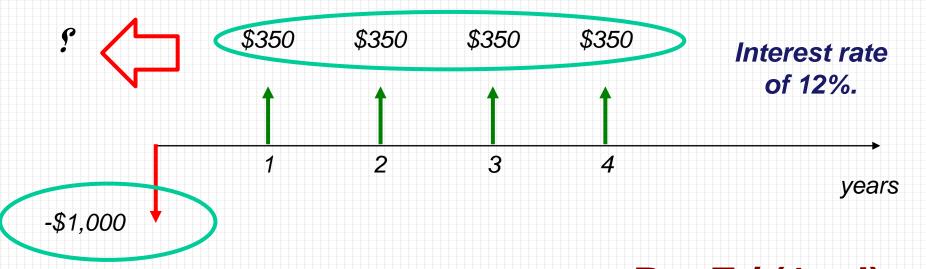
Year	0	1	2	3	4
Cost	-1000				
Revenue		+300	+400	+500	+400
Cumulative Cash Flow	-1000	- 700	- 300	+ 200	+600

Payback Period = (2 to 3) years = 2 + 300/500 = 2.6 years = 2 years & 7.2 months

Based on the communitive cash flow the Payback period = 7.85 Years

Net Present Value (NPV)

Converting Cash Flows to Present Value



- Time zero: 🗡
- Initial Investment = \$105,000

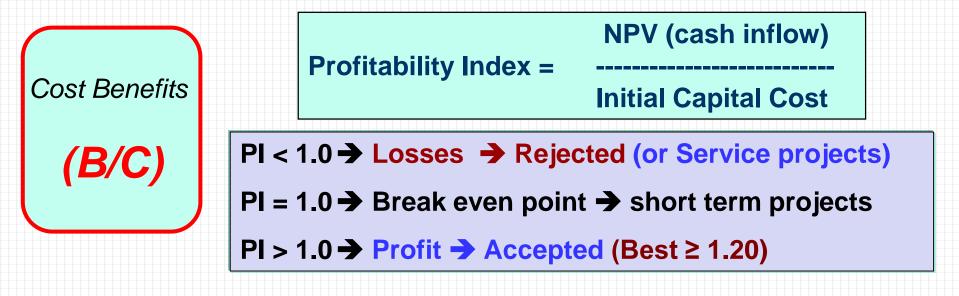
- A higher NPV is better
- Higher the discount rate lower the NPV

Net Present Value

$P = F / (1 + i)^n$

NPV(Investment)

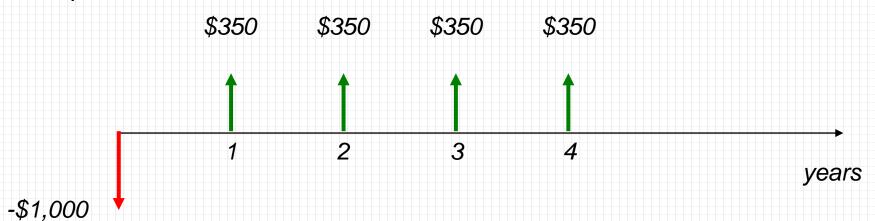
$$= -1,000 + \frac{350}{1.12} + \frac{350}{1.12^2} + \frac{350}{1.12^3} + \frac{350}{1.12^4}$$
$$= -1,000 + 350*0.89 + 350*0.80 + 350*0.71 + 350*0.64$$



Profitability Index:

 Allows a comparison of the costs and benefits of different projects to be assessed and thus allow decision making to be carried out

Profitability Index = 1063 / 1000 = 1.063 > 1.0 Accepted



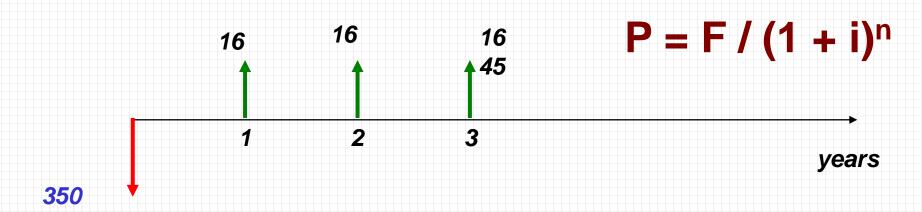
Internal Rate of Return

Definition:

The rate of return that yields a Net Present Value of zero.

Example:

$$P = F / (1 + i)^n$$


$$\frac{350}{1+IRR} + \frac{350}{(1+IRR)^2} + \frac{350}{(1+IRR)^3} + \frac{350}{(1+IRR)^4} - 1,000 = 0 \Rightarrow IRR = 0.15$$

14.96%

You can purchase a building for \$350,000. The investment will generate \$16,000 in cash flows (i.e. rent) during the first three years. At the end of three years you will sell the building for \$450,000.

What is the IRR on this investment?

$$0 = -350,000 + \frac{16,000}{(1 + IRR)^{1}} + \frac{16,000}{(1 + IRR)^{2}} + \frac{466,000}{(1 + IRR)^{3}}$$

IRR = 12.96%

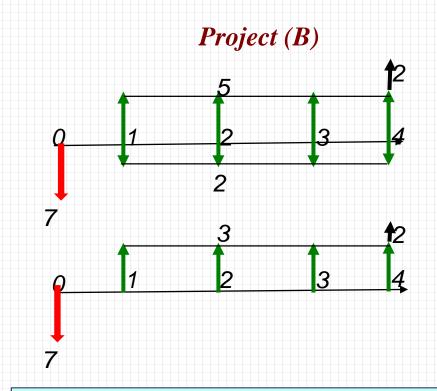
A manager is trying to decide between two projects (A or B):

Item	Project (A)	Project (B)
Initial Investment; M\$	5	7
Annual Running Cost; M\$/year	2	2
Annual Revenue; M\$/year	4	5
Salvage Value; M\$	1	2
Project Life; years	4	4


Minimum Attractive Rate of Return (MARR) 20%

Based on this information, discuss the following:

- 1. Cash Flow Diagram
- 2. Payback Period
- 3. Internal Rate of Return (IRR)
- 4. Which offer should you accept and why?
- 5. Sensitivity analysis for annual revenue, salvage value& initial investment (±10%)


Cash Flow Diagram:

Payback Period = 5/2 = 2.5 years = 2 years & 6 months

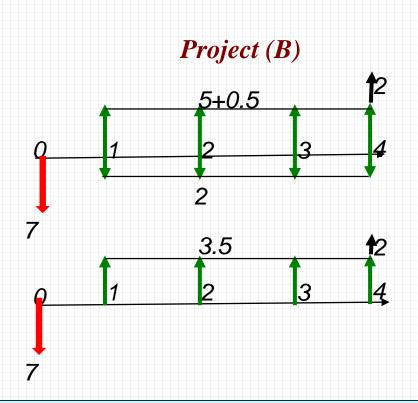
$$0 = -5 + 2/(1+i) + 2/(1+i)^2 + 2/(1+i)^3 + 3/(1+i)^4$$

IRR = 26.40 % > 20% MARR (Accepted)

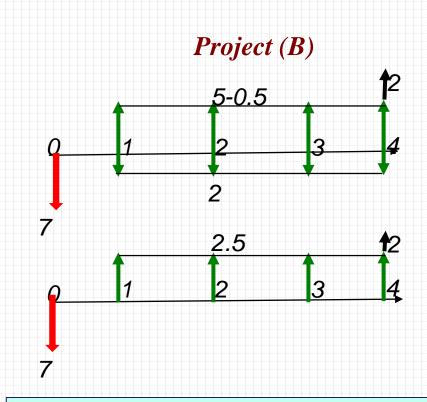
Payback Period = 7/3 = 2.33 years = 2 years & 4 months

$$0 = -7 + 3/(1+i) + 3/(1+i)^2 + 3/(1+i)^3 + 5/(1+i)^4$$

IRR = 31.56 % > 20% MARR (Accepted)


IRR (A) < IRR (B) < MARR
Project B is better than project A

	Financial A	nalysis - Dr. A	ttia Gomaa -	2018				
Time	Cost	Revenue	Net	Cumulative	Payback	Bank Interes	st Rate	Given
0	5		-5	-5	FALSE		20.00%	
1	2	4	2	-3	FALSE			
2	2	4	2	-1	FALSE			
3	2	4	2	1	TRUE	Internal Rat	e of Return (IRR)	=IRR(E4:E24)
4	2	5	3	4	TRUE		26.4%	
5			0	4	TRUE			
6			0	4	TRUE	Net Present	: Value (NPV)	=NPV(14,E5:E24)+E4
7			0	4	TRUE		0.7	20.00%
8			0	4	TRUE			
9			0	4	TRUE	Profitability	Index	=IF(E4>=0,"Don't Use PI.", NPV(I4,E5:E24)/ABS(E4))
10			0	4	TRUE		1.13	20.00%
11			0	4	TRUE			
12			0	4	TRUE	Payback Per	iod (year)	
13			0	4	TRUE		3	First Year Positive
14			0	4	TRUE			
¥	Cost Management - Dr. Attia Gomaa - 2018 84							


Sensitivity Analysis for Project (B)

Annual revenue (±10%)

Payback Period = 7/3.5 = 2years

$$0 = -7 + 3.5/(1+i) + 3.5/(1+i)^2 + 3.5/(1+i)^3 + 5.5/(1+i)^4$$

Payback Period = 7/2.5 = 2.8 years = 2 years & 10 months

$$0 = -7 + 2.5/(1+i) + 2.5/(1+i)^2 + 2.5/(1+i)^3 + 4.5/(1+i)^4$$


$$IRR = 22.96$$

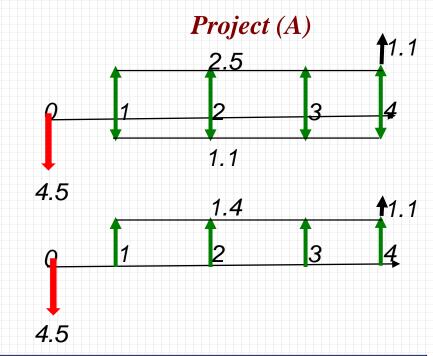
Sensitivity Analysis Graph for Project (B)

IRR Matrix

Deviation	-20%	-15%	-10%	-5%	0% Base	5%	10%	15%	20%
Annual revenue			22.96		31.56 %		39.94		
Salvage value					31.56 %				
Initial Investment					31.56 %				

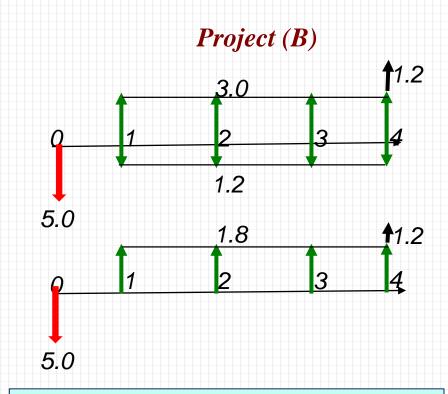
A manager is trying to decide between two projects (A or B):

Item	Project (A)	Project (B)
Initial Investment; M\$	4.5	5.0
Annual Running Cost; M\$/year	1.1	1.2
Annual Revenue; M\$/year	2.5	3.0
Salvage Value; M\$	1.1	1.2
Project Life; years	4	4


Minimum Attractive Rate of Return (MARR) 25%

Based on this information, discuss the following:

- 1. Cash Flow Diagram
- 2. Payback Period
- 3. Internal Rate of Return (IRR)
- 4. Which offer should you accept and why?
- 5. Sensitivity analysis for annual revenue, salvage value& initial investment (±10%)



Cash Flow Diagram:

$$0 = -4.5 + 1.4/(1+i) + 1.4/(1+i)^2 + 1.4/(1+i)^3 + 2.5/(1+i)^4$$

Payback Period = 2.78 years = 2 years & 10 months

$$0 = -5.0 + 1.8/(1+i) + 1.8/(1+i)^2 + 1.8/(1+i)^3 + 3.0/(1+i)^4$$

IRR = 22.3 % < 25% *MARR* (rejected)

IRR (A) < IRR (B) < MARR
Project B is better than project A



	Financial A	nalysis - Dr. A	ttia Gomaa - :	2018				
Time	Cost	Revenue	Net	Cumulative	Payback	Bank Interest Rate		Given
0	4.5		-4.5	-4.5	FALSE		25.00%	
1	1.1	2.5	1.4	-3.1	FALSE			
2	1.1	2.5	1.4	-1.7	FALSE			
3	1.1	2.5	1.4	-0.3	FALSE	Internal Rate of Return (IRR)		=IRR(E4:E24)
4	1.1	3.6	2.5	2.2	TRUE		16.3%	
5			0	2.2	TRUE			
6			0	2.2	TRUE	Net Present	t Value (NPV)	=NPV(14,E5:E24)+E4
7			0	2.2	TRUE		(0.7)	25.00%
8			0	2.2	TRUE			
9			0	2.2	TRUE	Profitability	/ Index	=IF(E4>=0,"Don't Use PI.", NPV(I4,E5:E24)/ABS(E4))
10			0	2.2	TRUE		0.83	25.00%
11			0	2.2	TRUE			
12			0	2.2	TRUE	Payback Per	iod (year)	
13			0	2.2	TRUE		4	First Year Positive
14			0	2.2	TRUE			
15			0	2.2	TRUE			
\leq	Cost Management - Dr. Attia Gomaa - 2018 89							89

Sensitivity Analysis Graph for Project (B)

IRR Matrix

Deviation	-20%	-15%	-10%	-5%	0% Base	5%	10%	15%	20%
Annual revenue			22.96		22.3 %		39.94		
Salvage value					22.3 %				
Initial Investment					22.3 %				

TA	Scenario				
Item	Worst	Base	Best		
Probability; %	25%	50%	25%		
Initial Investment; M\$	6	5	4		
Annual Running Cost; M\$/year	5	4	3		
Annual Revenue; M\$/year	4	5	6		
Salvage Value; M\$	1	2	3		
Project Life; years	4	4	4		

Based on this information, discuss the following:

- 1. Cash Flow Diagram
- 2. Payback Period
- 3. Internal Rate of Return (IRR)
- 4. Which project is better investment?

A manager is trying to decide between two projects (A or B):

Item	Project (A)	Project (B)
Construction Period	One year	One year
Initial Investment; M\$	4	5
Annual Running Cost; M\$/year	1	2
Annual Revenue; M\$/year	3	5
Salvage Value; M\$	1	1
Life after construction; years	4	4

Based on this information, discuss the following:

- 1. Cash Flow Diagram
- 2. Payback Period
- 3. Internal Rate of Return (IRR)
- 4. Which offer should you accept and why?
- 5. Sensitivity analysis for market price change (±10%)

Loan 15%

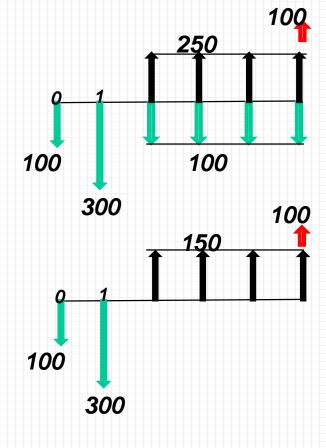
MARR = 20%

A manager is trying to decide between two projects (A or B):

ltem	Project (A)	Project (B)
Construction Period	One year	Two years
Construction investment	\$ 100,000 Down payment (t=0) \$ 300,000 Final payment	\$ 100,000 Down payment (t=0) 200,000 after one year 100,000 after two years
Running cost after construction	\$ 100,000 / year	50,000 first year 100,000 second year 150,000 third year 200,000 forth year
Revenue after construction	\$ 250,000 / year	150,000 first year 300,000 second year 500,000 third year 400,000 forth year
Life after construction	Four years	Four years
Salvage value	\$ 100,000	\$ 100,000

Bank Interest Rate 10% Annual

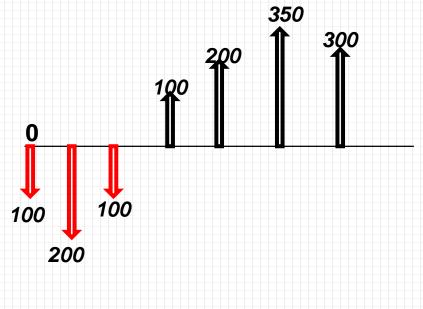
Minimum Attractive Rate of Return (MARR) 25%


Based on this information, discuss & select the best alternative.

A manager is trying to decide between two projects (A or B):

Item	Project (A)
Construction Period	One year
Construction investment	\$ 100,000 Down payment (t=0) \$ 300,000 Final payment
Running cost after construction	\$ 100,000 / year
Revenue after construction	\$ 250,000 / year
Life after construction	Four years
Salvage value	\$ 100,000

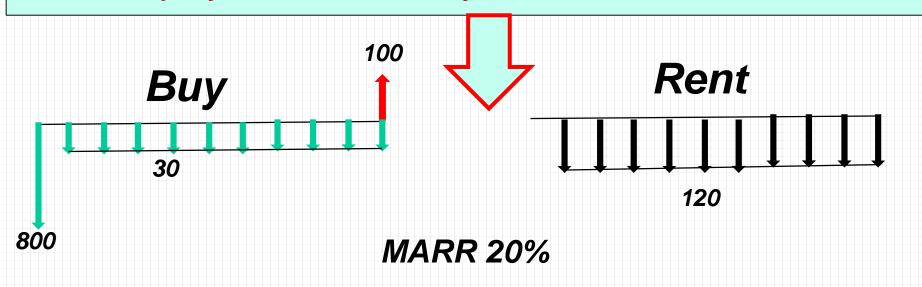
Minimum Attractive Rate of Return (MARR) 25%



IRR = 21.7 < 25% (Rejected)

A manager is trying to decide between two projects (A or B):

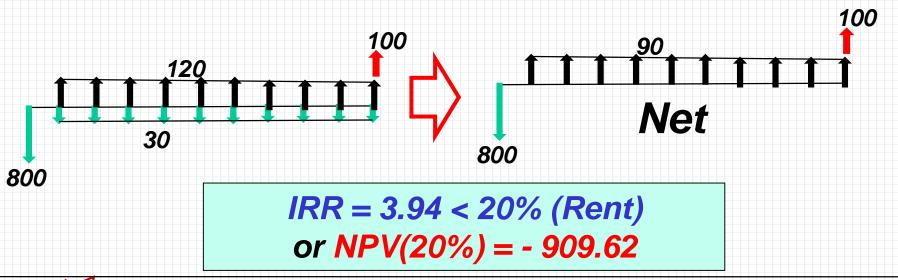
Item	Project (B)
Construction Period	Two years
Construction investment	\$ 100,000 Down payment (t=0) 200,000 after one year 100,000 after two years
Running cost after construction	50,000 first year 100,000 second year 150,000 third year 200,000 forth year
Revenue after construction	150,000 first year 300,000 second year 500,000 third year 400,000 forth year
Life after construction	Four years
Salvage value	\$ 100,000


IRR = 25.25% 25% (Accepted)

A company needs a mobile crane for the next 10 years. Two alternatives are available to buy or to lease the crane.

- 1) The buy decision includes a first cost of 800,000 LE with a market value after 10 years of 100,000 LE and annual O&M cost of 30,000 LE.
- 2) To lease a similar crane, the annual charge will be 120,000 LE including everything.

If the company earns 20% annually which alternative is to be selected.



A company needs a mobile crane for the next 10 years. Two alternatives are available to buy or to lease the crane.

- 1) The buy decision includes a first cost of 800,000 LE with a market value after 10 years of 100,000 LE and annual O&M cost of 30,000 LE.
- 2) To lease a similar crane, the annual charge will be 120,000 LE including everything.

If the company earns 20% annually which alternative is to be selected.

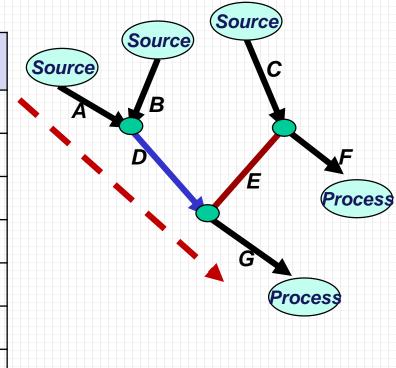
Standard Information

There are two ways (A and B) to construct a power line:

Item	Project (A)	Project (B)
Method	Under lake	Around lake
Length	5 km	15 km
First Cost	\$ 25,000/km	\$ 5,000/km
Annual Maintenance Cost	\$ 400/km	\$ 200/km
Capital Maintenance	- \$/ x years	- \$/ x years
Expected Life	20 year	15 year
Salvage Value	\$ 5000/km	\$ 3000/km
Annual Power Losses	\$ 500/km	\$ 400/km

Interest rate 12% (Loan)

Based on this information, discuss & select the best alternative. Sensitivity analysis for first cost change (±20%) and line length (±10%).

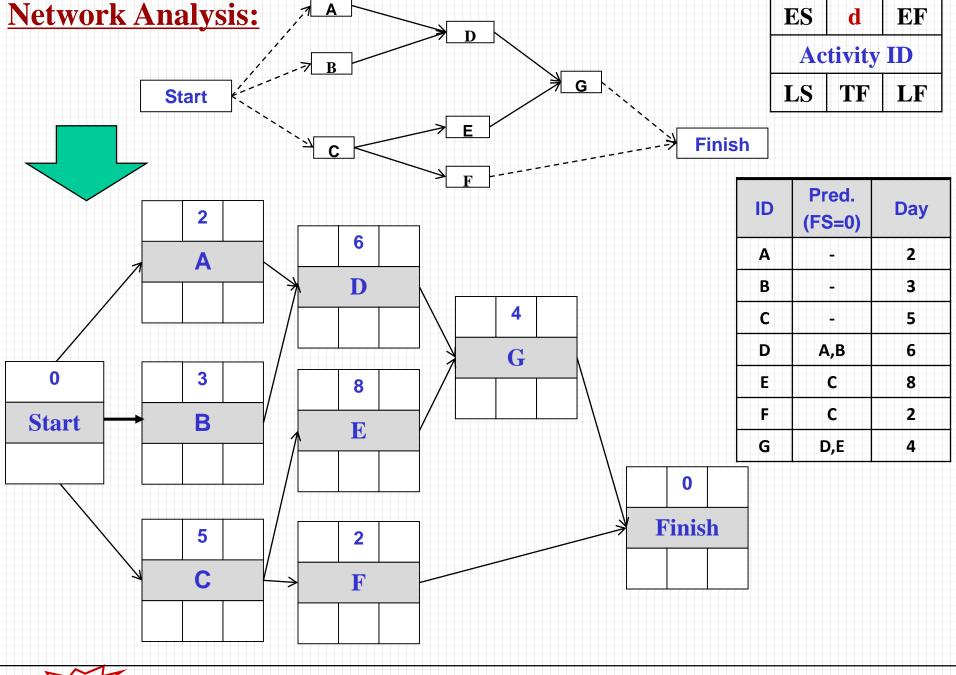


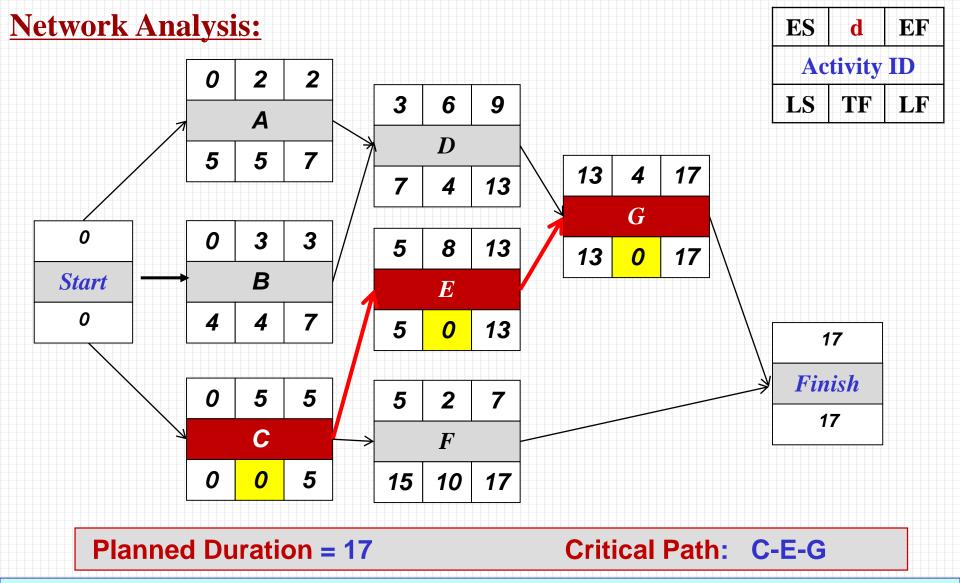
Project Cost Analysis

Project: Water Pipeline Network

ID	Name	Duration (Day)	Pred.	Number of Crews	Material Cost, \$
Α	Line A	2	-	2	4000
В	Line B	3	-	1	3000
С	Line C	5	-	2	10000
D	Line D	6	A,B	2	12000
E	Line E	8	С	2	16000
F	Line F	2	С	2	4000
G	Line G	4	D,E	2	8000

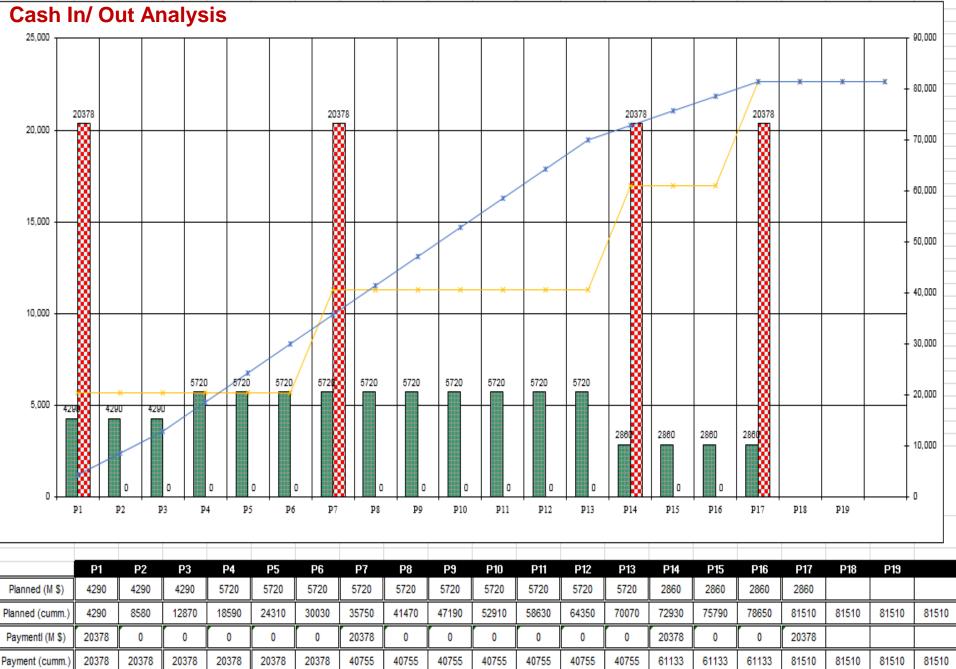
Planned duration = 17 day Average Crew Cost Rate = 100 \$/day Maximum number of crew = 4 (fixed)
Margin Factor = 30% from direct cost


Based on this information, discuss & analysis the following:


- 1) Network
- 2) Gantt Chart
- 3) Workers Profile
- 4) Cost Analysis
- 5) Cash In/ Out Analysis

Payment Conditions:

- 1) 25% Down Payment
- 2) 25% After One Week
- 3) 25% After Two Weeks
- 4) 25% Final Payment


It is recommended that risk analysis be considered for critical and near-critical path work in the schedule because such work carries the greatest likelihood of affecting timely completion

Gantt Ch	art:																
ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A				2	2												
В	1	1	1														
С	2	2	2	2	2												
D						2	2	2	2	2	2						
E						2	2	2	2	2	2	2	2				
F												2	2				
G														2	2	2	2
Workers	3	3	3	4	4	4	4	4	4	4	4	4	4	2	2	2	2
PM	Cost Management - Dr. Attia Gomaa - 2018											103					

Project: Wa									
Cost Analy	sis:								
									Item Cost
ID		Duration		Number	Material	Labor	Direct	Item	Rate
	Name	(Day)	Pred.	of Crews	Cost, \$	Cost, \$	Cost, \$	Cost,\$	\$/day
Α	Line A	2	-	2	4000	400	4400	5720	2860.0
В	Line B	3	-	1	3000	300	3300	4290	1430.0
С	Line C	5	-	2	10000	1000	11000	14300	2860.0
D	Line D	6	A,B	2	12000	1200	13200	17160	2860.0
E	Line E	8	С	2	16000	1600	17600	22880	2860.0
F	Line F	2	С	2	4000	400	4400	5720	2860.0
G	Line G	4	D,E	2	8000	800	8800	11440	2860.0
				Total	57000	5700	62700	81510	
Payment C	onditions	<u>3:</u>							
	Down Pay	ment	25%	20377.5		Average (Crew Cost F	Rate =	100
	After One	Week	25%	20377.5		Margin Fa	ctor =		30%
	After Two	Weeks	25%	20377.5					
	Final Pay	ment	25%	20377.5					
			Total	81510					
₹ PM ₹		C	ost Manag	gement - D	r. Attia G	Somaa - 2	018		104

Cash In/ Ou	ıt Analysi	is															
ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Α				2860	2860												
В	1430	1430	1430														
С	2860	2860	2860	2860	2860												
D						2860	2860	2860	2860	2860	2860						
E						2860	2860	2860	2860	2860	2860	2860	2860				
F												2860	2860				
G														2860	2860	2860	2860
Cash Out	4290	4290	4290	5720	5720	5720	5720	5720	5720	5720	5720	5720	5720	2860	2860	2860	2860
	4290	8580	12870	18590	24310	30030	35750	41470	47190	52910	58630	64350	70070	72930	75790	78650	81510
Cash In	20377.5						20377.5							20377.5			20377.5
	20377.5	20377.5	20377.5	20377.5	20377.5	20377.5	40755	40755	40755	40755	40755	40755	40755	61132.5	61132.5	61132.5	81510
Net Cash		11797.5		1787.5	-3932.5		5005	-715	-6435	-12155	-17875	-23595	-29315	-11798	-14658	-17518	0
Flow	10001.5	1110110	1001.5	1101.5	-5552.5	-5052.5	3003	-113	-0433	-12100	-11013	-25555	-20010	-11150	-14000	-11010	ŭ
								Net	t Cash F	low							
20000																	
15000																	
10000		_															
5000			_														
0							/_										,
-5000										10		12		4.4		16	
2000	0	2	2	4		6	-	8		10		12		14		10	
-10000	0	2	2	4		6		8				1/2		14		10	
	0		2	4		6		8		10		12		14			
-10000	0	2	2	4		6		8				12		14	_		
-10000 -15000	0	2	2	4		6		8				12		14	_		
-10000 -15000 -20000 -25000	0		2	4		6		8				II.		14	_		
-10000 -15000 -20000 -25000 -30000	0		2	4		6		8				IZ		14			
-10000 -15000 -20000 -25000 -30000 -35000) M_3		2	4		st Mar								14			

Cost Management - Dr. Attia Gomaa - 2018

106

Example; Building

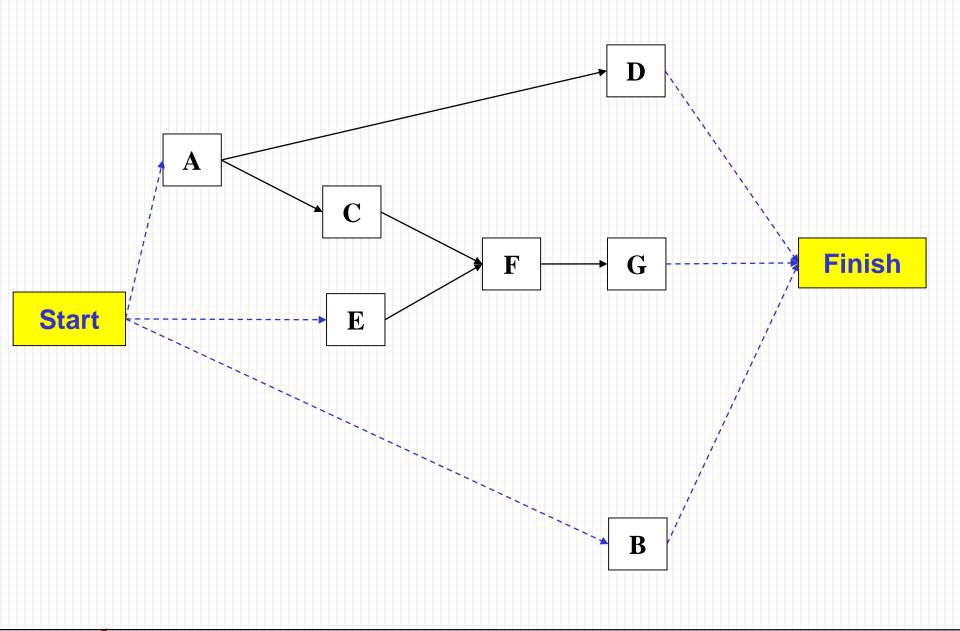
Project Cost Analysis

ID	Duration (weeks)	Predecessor	Direct Cost \$
Α	5	-	15,000
В	3	-	30,000
С	8	A	33,000
D	7	A	42,000
	7	-	57,000
	4	C, E	61,000
G	5	F	72,000

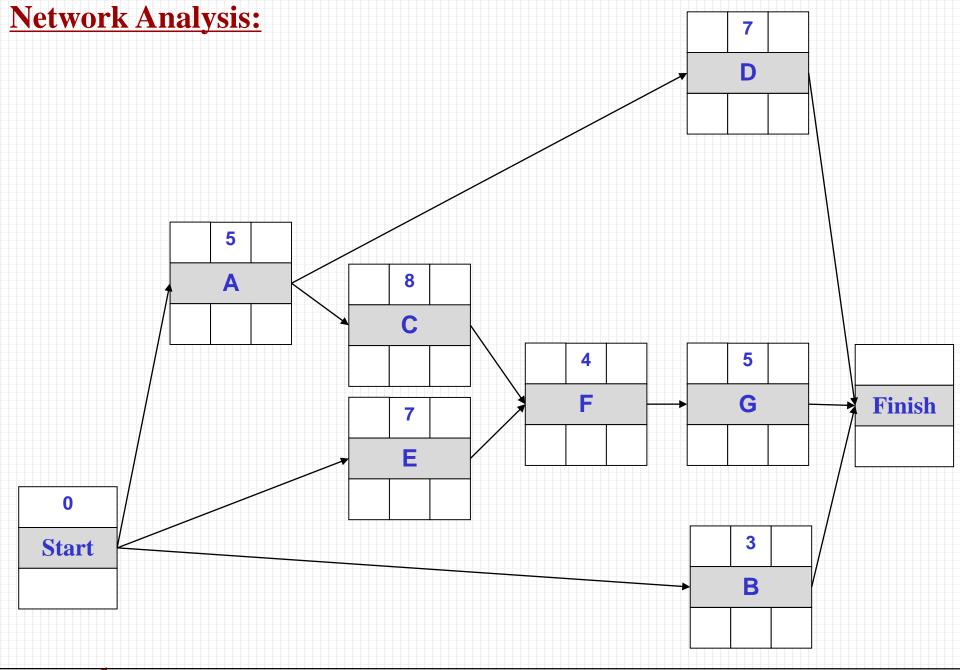
Planned Duration = 22 weeks

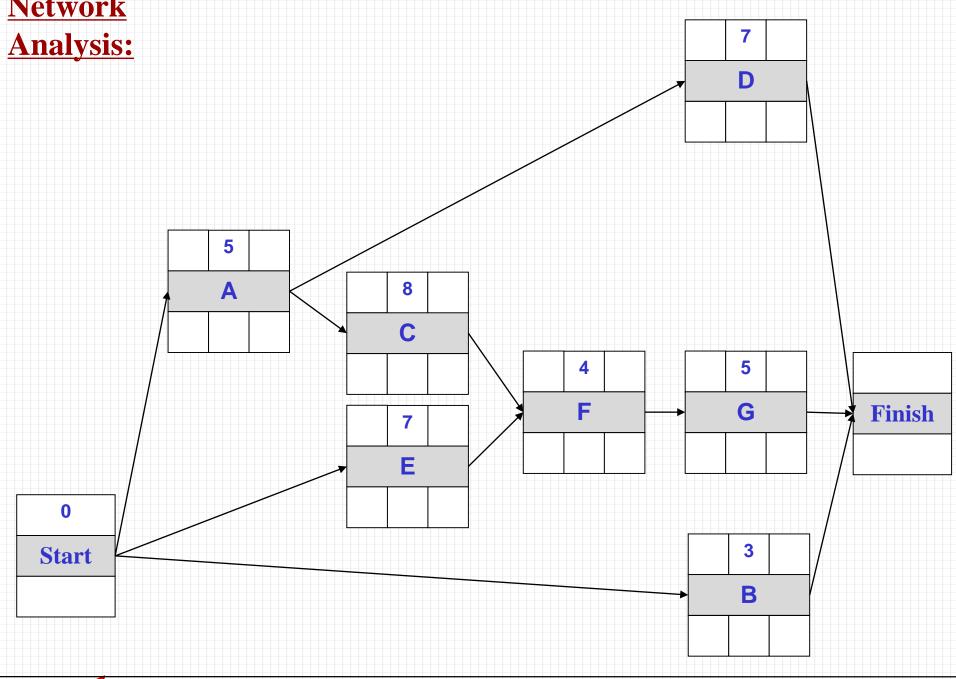
Margin Factor = 30% from direct cost

Based on this information, discuss & analysis the following:


- 1) Network
- 2) Gantt Chart
- 3) Cost Analysis
- 4) Cost Smoothing
- 5) Cash Flow (In/ Out) Analysis

Payment Conditions:


- 1) 25% Down Payment
- 2) 25% After 8 Weeks
- 3) 25% After 16 Weeks
- 4) 25% Final Payment



Logic Diagram:

Gantt Chart:

Q	<u>~</u>	pa		Weeks																				
=	Day Pred	P	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Α	5	-	X	X	Х	Х	X																	
В	3	-	X	X	X																			
С	8	Α						X	X	X	X	x	X	X	X									
D	7	Α						X	X	X	X	x	X	X										
Ε	7	-	X	X	X	X	X	X	X															
F	4	C, E														х	X	X	X					
G	5	F																		X	X	x	X	X

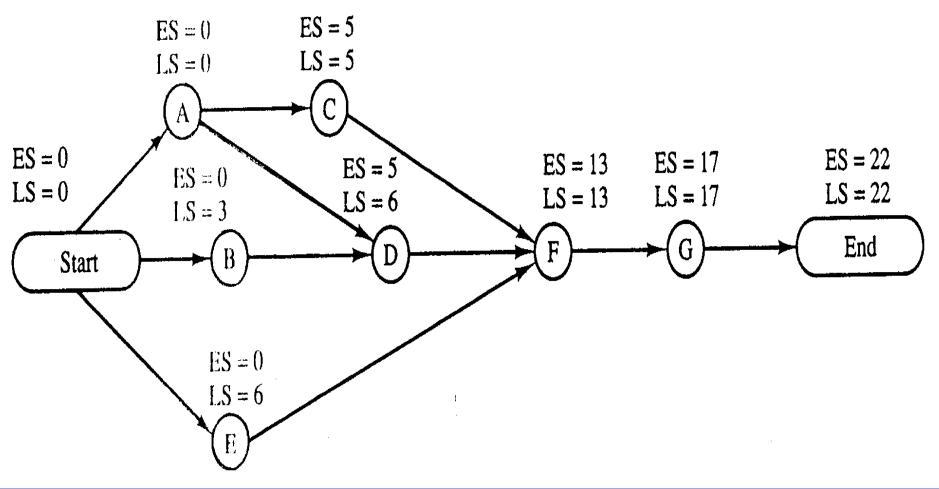
Example;

Project Cost Analysis

ID	Duration (weeks)	Predecessor	Direct Cost \$
Α	5	-	15000
В	3	-	30000
С	8	A	33000
D	7	A	42000
E	7	-	57000
	4	C, E	61000
G	5	F	72000

Planned Duration = 22 weeks

Margin Factor = 30% from direct cost


Based on this information, discuss & analysis the following:

- 1) Network
- 1) Gantt Chart
- 2) Cost Analysis
- 3) Cash Flow (In/ Out) Analysis

Payment Conditions:

- 1) 25% Down Payment
- 2) 25% After 8 Weeks
- 3) 25% After 16 Weeks
- 4) 25% Final Payment

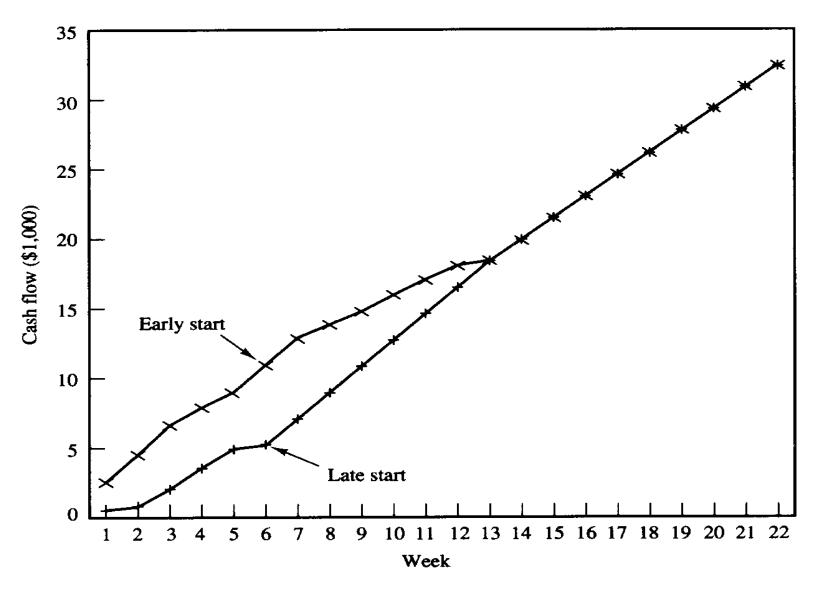
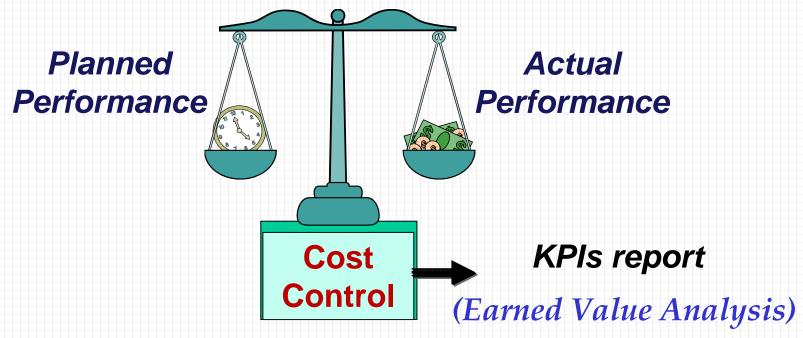
We have found that (A,C,F,G) is the critical path, which has a length 22 weeks. The critical activities are A, C, F, and G, while activities B, E, and D have either free or total slack that can be used for budget planning.

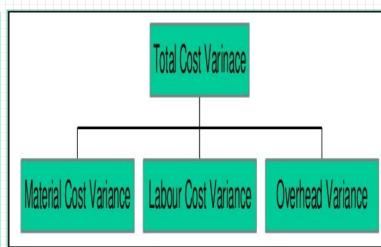
TABLE 8-4 CASH FLOW OF AN EARLY START SCHEDULE

				Activity				Weekly	Cumulative cost
Week	A	В	С	D	E	F	G	cost	
1	300	1,000		·	814.3		*	2,114	2,114
2	300	1,000			814.3			2,114	4,229
3	300	1,000			814.3			2,114	6,343
4	300				814.3			1,114	7,457
5	300				814.3			1,114	8,571
6			412.5	600	814.3			1,827	10,398
~			412.5	600	814.3			827	12,225
8			412.5	600				1,013	13,238
9			412.5	600				1,013	14,250
10			412.5	600				1,013	15,263
11			412.5	600				1,013	16,275
12			412.5	600				1,013	17,288
13			412.5					412	17,700
14						1,525		1,525	19,225
15						1,525		1,525	20,750
16						1,525		1,525	22,275
17						1,525		1,525	23,800
18							1,440	1,440	25,240
19							1,440	1,440	26,680
20				-			1,440	1,440	28,120
21							1,440	1,440	29,560
22							1.440	1,440	31,000
— 	1,500	3,000	3,300	4,200	5,700	6,100	7,200	31,000	-

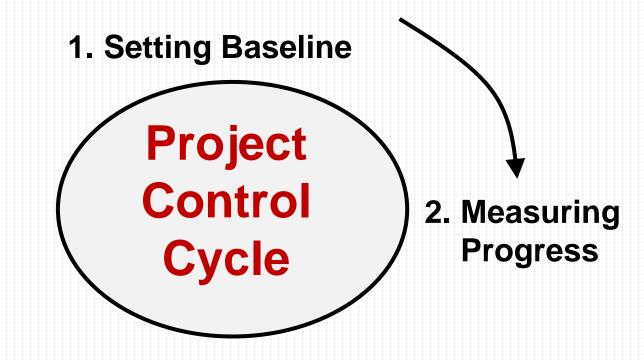
TABLE 8-5 CASH FLOW OF THE LATE START SCHEDULE

				Activity				Weekly	Cumulative
Week	A	В	С	D	E	F	G	cost	cost
1	300		-					300	300
2	300							300	600
3	300	1,000						1,300	1,900
4	300	1,000						1,300	3,200
5	300	1,000						1,300	4,500
6			412.5					412	4,913
7			412.5	600	814.3			1,827	6,739
8			412.5	600	814.3			1,827	8,566
9			412.5	600	814.3			1,827	10,393
10			412.5	600	814.3			1,827	12,220
11			412.5	600	814.3			1,827	14,046
12			412.5	600	814.3			1,827	15,873
13			412.5	600	814.3			1,827	17,700
14						1,525		1,525	19,225
15						1,525		1,525	20,750
16						1,525		1,525	22,275
17						1,525		1,525	23,800
18							1,440	1,440	25,240
19							1,440	1,440	26,680
20							1,440	1,440	28,120
21							1,440	1,440	29,560
22							<u>1,440</u>	<u> 1,440</u>	31,000
	1,500	3,000	3,300	4,200	5,700	6,100	7,200	31,000	


Figure 8-2 Cumulative cash flow for early start and late start schedules.

Project Co\$t Control



Project Cost Control

4. Taking Action

3. Comparing Actual with Planned

Project Cost Control

(Earned Value Analysis)

(4)
70% of projects are
over budget and/or

behind schedule

(3)

50% of completed projects have a schedule variance of >10%

52% of all projects
finish at 189% of their
initial budget

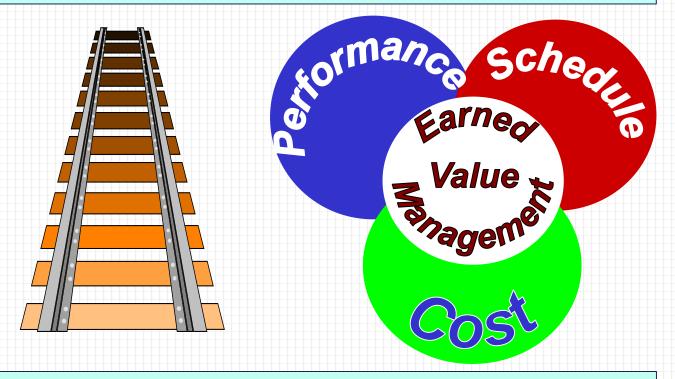
(1)

(2)

30% of completed projects have a cost

variance of ≥10%

Cost control is a Part of Cost Management.



Earned Value Management (EVM)

Earned Value Management Systems measure progress

EVM is a project management tool that integrates

the project performance with schedule and cost elements.

EVM is a cost management technique where the value of completed work is compared to actual costs and the scheduled costs

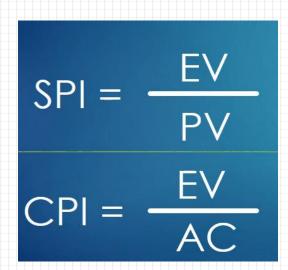
Earned Value Analysis

Planned Value = PV = BCWS

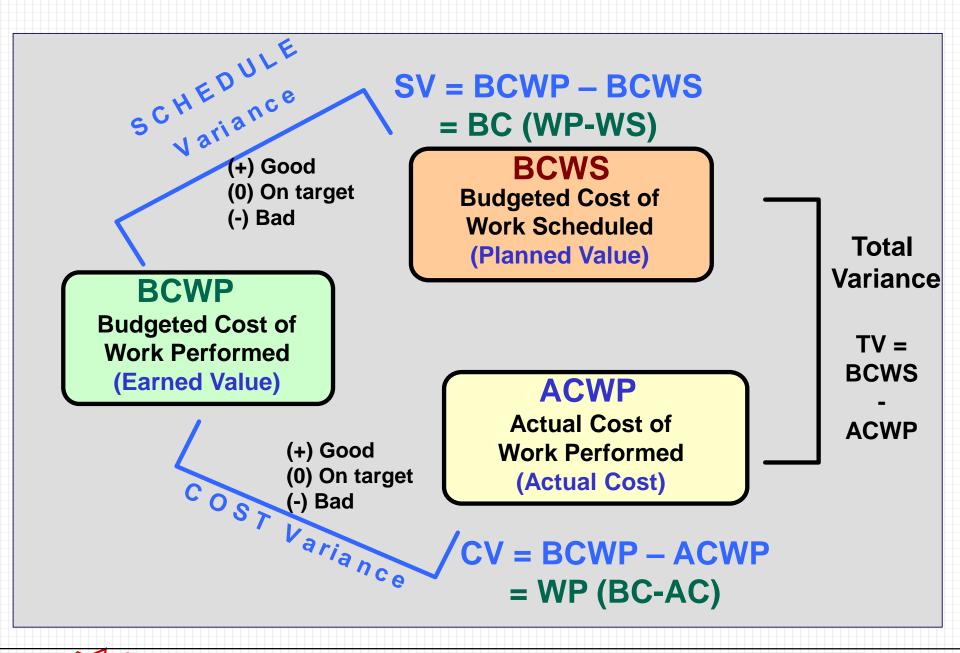
(Budget Cost for the Work Schedule) → Base line

Actual Value = AV = ACWP

(Actual Cost for the Work Performed)


Earned Value = EV = BCWP

(Budget Cost for the Work Performed) → Invoice


Schedule SV = EV - PVVariance

Cost
Variance CV = EV - AC

Schedule
Performance
Index
Cost
Performance
Index

Earned Value Analysis

Schedule Variance

SV = BCWP - BCWS

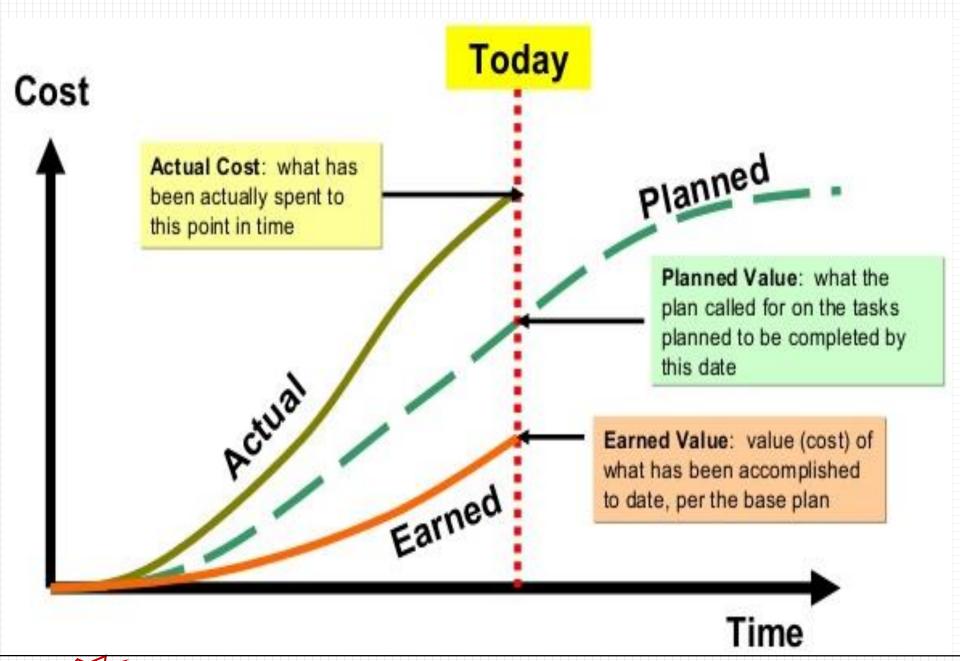
(>0 is ahead, 0 is on target, <0 is behind)

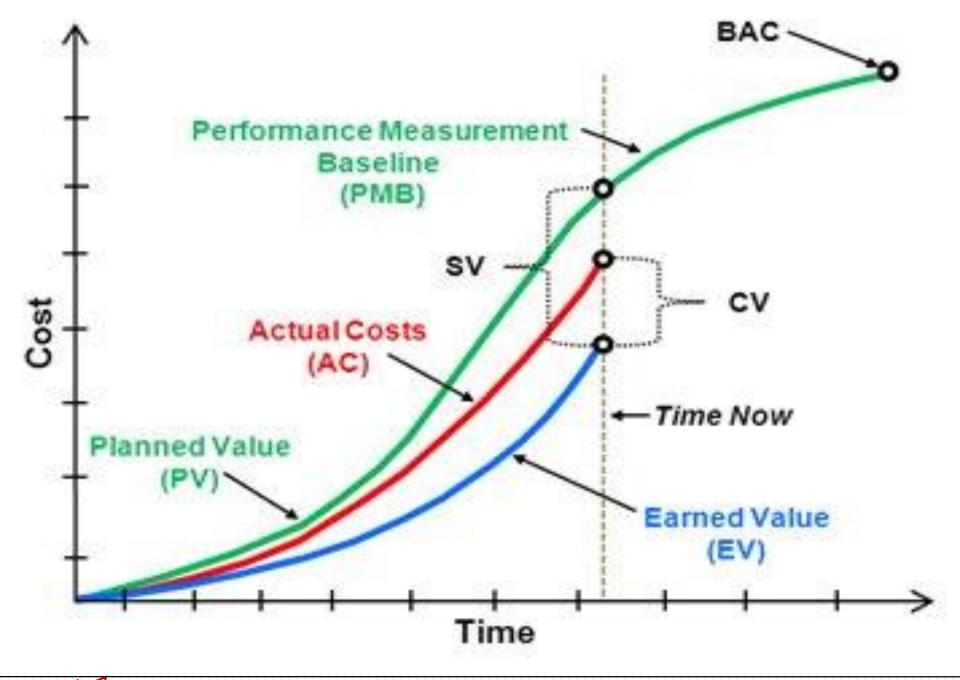
Schedule Performance Index
 SPI = BCWP/BCWS

(>1 is ahead, 1 is on target, <1 is behind)

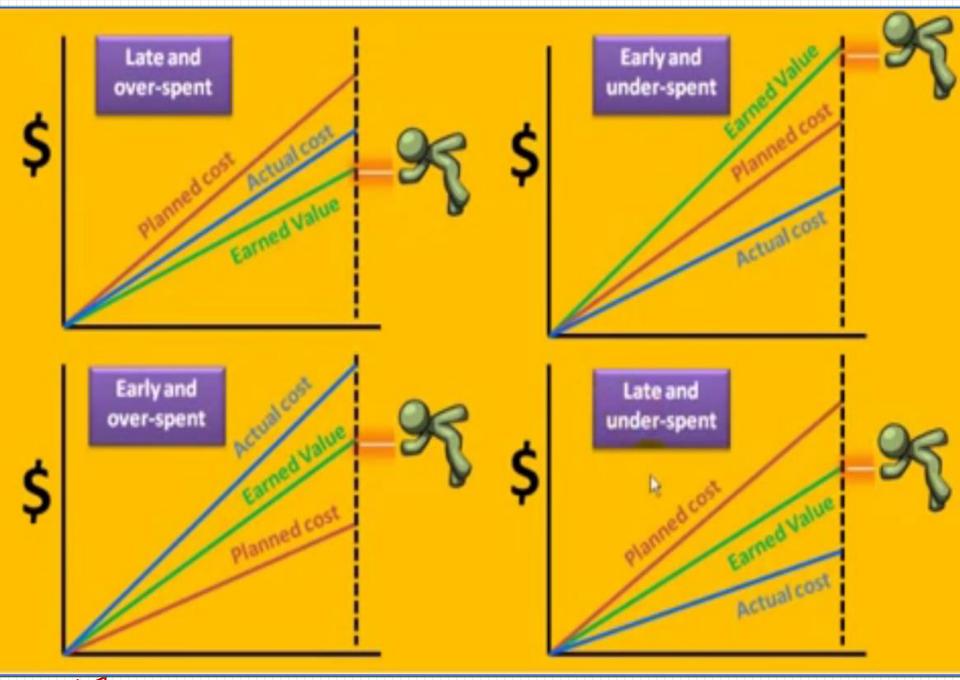
Cost Variance

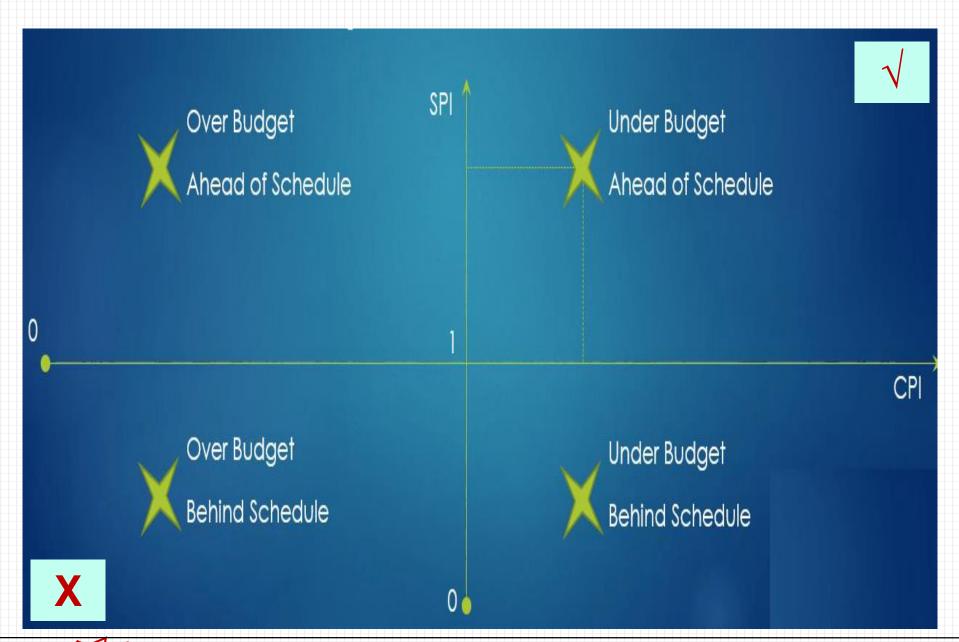
CV = BCWP - ACWP

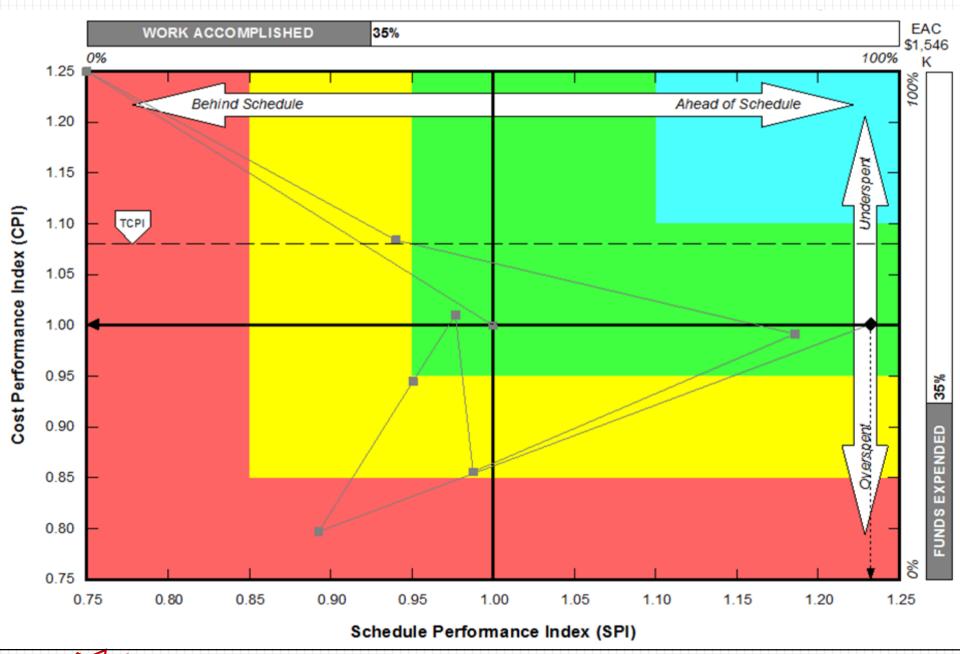

(>0 is under-run, 0 is on target, <0 is overrun)

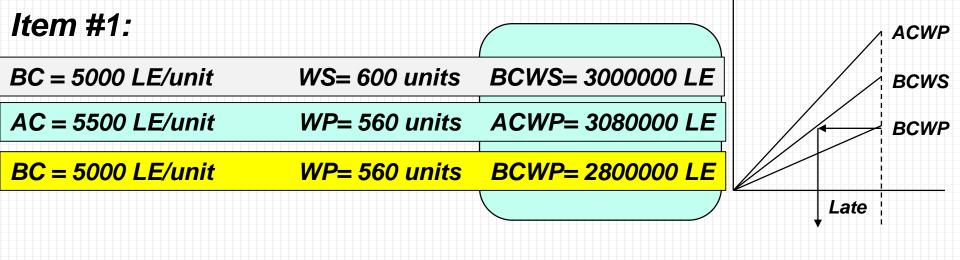

Cost Performance Index

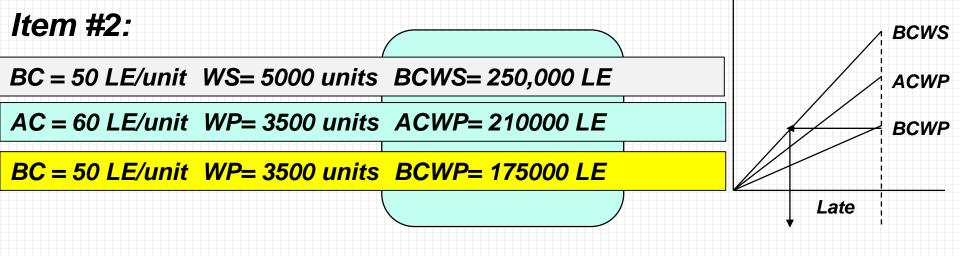
CPI = BCWP/ACWP


(>1 is under-run, 1 is on target, <1 is over-run)



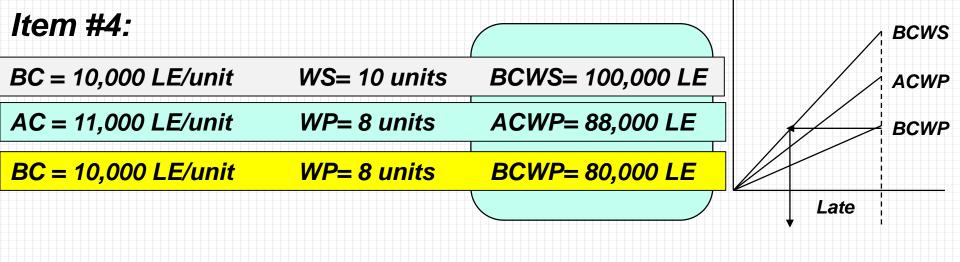







- <u>Schedule Variance</u> = SV = BCWP BCWS = 2800000 3000000 = -200000 (>0 is ahead, 0 is on target, <0 is behind)
- Schedule Performance Index = SPI = BCWP/BCWS = 2800000/3000000=0.93
 (>1 is ahead, 1 is on target, <1 is behind)
- <u>Cost Variance</u> = CV = BCWP ACWP = 2800000 3080000 = -280000 (>0 is under-run, 0 is on target, <0 is overrun)
- Cost Performance Index = CPI = BCWP/ACWP = 2800000/3080000 = 0.9 (>1 is under-run, 1 is on target, <1 is over-run)

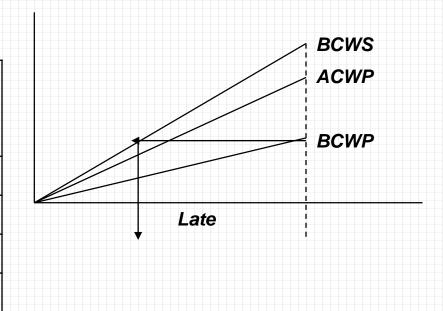
- <u>Schedule Variance</u> = SV = BCWP BCWS = 175000 250,000 = -75,000 (>0 is ahead, 0 is on target, <0 is behind)
- <u>Schedule Performance Index = SPI = BCWP/BCWS = 175000 / 250,000 = 0.70</u> (>1 is ahead, 1 is on target, <1 is behind)
- <u>Cost Variance</u> = CV = BCWP ACWP = 175000 210000 = -35,000 (>0 is under-run, 0 is on target, <0 is overrun)
 - Cost Performance Index = CPI = BCWP/ACWP = 175000 / 210000 = 0.83 (>1 is under-run, 1 is on target, <1 is over-run)



- <u>Schedule Variance</u> = SV = BCWP BCWS = 520000 500,000 = + 20,000 (>0 is ahead, 0 is on target, <0 is behind)
- Schedule Performance Index = SPI = BCWP/BCWS = 520000 / 500,000 = 1.04
 (>1 is ahead, 1 is on target, <1 is behind)
- <u>Cost Variance = CV = BCWP ACWP = 520000 468000 = + 52,000</u> (>0 is under-run, 0 is on target, <0 is overrun)
- Cost Performance Index = CPI = BCWP/ACWP = 520000 / 468000 = 1.11

 (>1 is under-run, 1 is on target, <1 is over-run)

(>0 is ahead, 0 is on target, <0 is behind)


Schedule Variance = SV = BCWP - BCWS = 80,000 - 100,000 = -20,000

- Schedule Performance Index = SPI = BCWP/BCWS = 80,000 / 100,000 = 0.80 (>1 is ahead, 1 is on target, <1 is behind)
- <u>Cost Variance</u> = CV = BCWP ACWP = 80,000 88,000 = 8,000 (>0 is under-run, 0 is on target, <0 is overrun)
- Cost Performance Index = CPI = BCWP/ACWP = 80,000 / 88,000 = 0.90 (>1 is under-run, 1 is on target, <1 is over-run)

Project: A Construction Project

Item	Planned Value (BCWS)	Actual Cost (ACWP)	Earned Value (BCWP)
#1	3000000	3080000	2800000
#2	250000	210000	175000
#3	500000	468000	520000
#4	100000	88000	80000

EVM Report:

Itom	BCWS	ACWP	BCWP	SV	SPI	CV	CPI	Comments		
Item	BCWS	ACWP	BCWP	SV	SFI	CV	CFI	Schedule	Cost	
#1	3000000	3080000	2800000	-200000	0.93	-280000	0.91	Behind 7%	Over run 9%	
#2	250000	210000	175000	-75000	0.70	-35000	0.83	Behind 30%	Over run 17%	
#3	500000	468000	520000	20000	1.04	52000	1.11	Ahead 4%	Under run 11%	
#4	100000	88000	80000	-20000	0.80	-8000	0.91	Behind 20%	Over run 9%	
Total	3850000	3846000	3575000	-275000	0.93	-271000	0.93	Behind 7%	Over run 7%	

Brainstorming: Earned Value Analysis

Project: Office Building

Item (main activity): Excavation works

Planned Performance (Baseline):

Bill of Quantity (BOQ) = 500 m³

Unit Price = 10 /m3

Duration = 10 day

Actual Performance (Status Report after 6 days):

Actual Quantity = 320 m3

Actual Cost = 3300 \$

Based on this information, calculate and analyze the following:

- a) What is the cost variance?
- b) What is the Schedule variance?
- c) What is the Cost Performance Index?
- d) What is the Schedule Performance Index?
- e) How would you describe this project?

Budget At Completion (BAC) = 500 * 10 = 5000 \$

Planned quantity after 6 days = WS = 500 * (6/10) = 300 m3

$$BCWS = 3000$$

$$BCWP = 3200$$

$$ACWP = 3300$$

- What is the cost variance?
 - BCWP ACWP = 3200 3300 = -100
- What is the Schedule variance?
 - BCWP BCWS = 3200 3000 = +200
- What is the Cost Performance Index?

$$CPI = BCWP/ACWP = 3200/3300 = 0.97 = 97\%$$

What is the Schedule Performance Index?

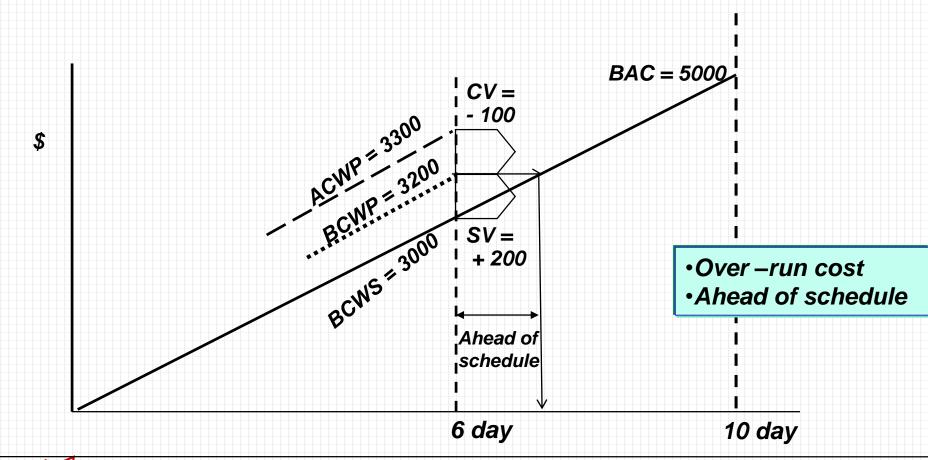
$$SPI = BCWP/BCWS = 3200/3000 = 1.07 = 107\%$$

How would you describe this project?

The project is ahead schedule (good), but over run cost (bad)

Example:

Project: Gas Pipeline
Bill of Quantity (BOQ) = 500 m3


Activity: Excavation
Unit Price = 10 LE/m3

Duration= 10 day

Status Report after 6 day:

Actual Quantity = 320 m3

Actual Cost = 3300 LE

Brainstorming: Earned Value Analysis

Project: Office Building

Item (main activity): Excavation works

Planned Performance (Baseline):

Bill of Quantity (BOQ) = 600 m³

Unit Price = 10 /m3

Duration = 10 day

Actual Performance (Status Report after 6 days):

Actual Quantity = 300 m³

Actual Cost = 3300 \$

Based on this information, calculate and analyze the following:

- a) What is the cost variance?
- b) What is the Schedule variance?
- c) What is the Cost Performance Index?
- d) What is the Schedule Performance Index?
- e) How would you describe this project?

Brainstorming: Earned Value Analysis

Project: Gas Pipeline 12 km 6 inch

Item (main activity): Excavation works

<u>Planned Performance (Baseline):</u>

Bill of Quantity (BOQ) = 500 m³

Unit Price = 10 /m3

Duration = 10 day

Actual Performance (Status Report after 6 days):

Actual Quantity = 320 m3

Actual Cost = 3300 \$

Based on this information, calculate and analyze the following:

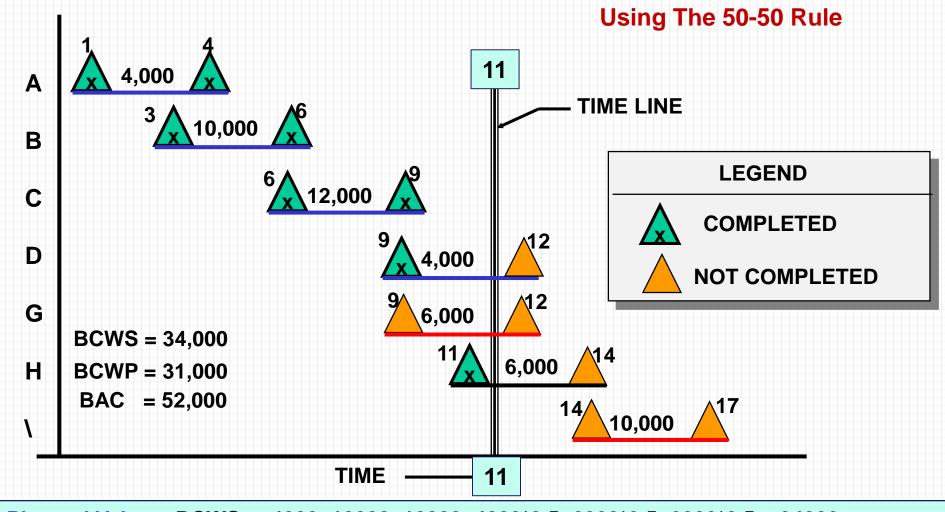
- a) What is the cost variance?
- b) What is the Schedule variance?
- c) What is the Cost Performance Index?
- d) What is the Schedule Performance Index?
- e) How would you describe this project?

Case Study:

Project Status Report:

Activity	Planned	Planne	ed Date	Actual	
ID	Cost	Start	Finish	Performance at period #10	
Α	4000	1	4	Completed	
В	10000	3	6	Completed	
С	12000	6	9	In Progress	
D	4000	9	12	In Progress	
G	6000	9	12	Not Started	
Н	6000	11	14	Not Started	
I	10000	14	17	Not Started	

Based on this information; discuss the earned value analysis using the 50-50 rule?

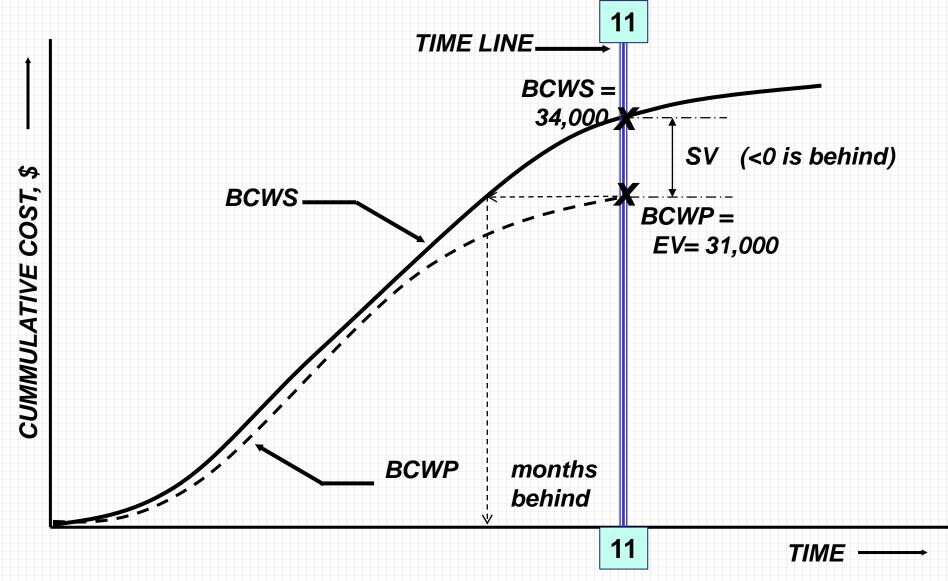

Case Study:

Project Status Report:

Activity	Planned	Planne	ed Date	Actual		
ID	Cost	Start	Finish	Performance at period #11		
Α	4000	1	4	Completed		
В	10000	3	6	Completed		
С	12000	6	9	Completed		
D	4000	9	12	Started		
G	6000	9	12	Not Started		
Н	6000	11	14	Started		
ı	10000	14	17	Not Started		

Based on this information; discuss the earned value analysis using the 50-50 rule?

Planned Value = BCWS = 4000+10000+12000+4000*0.5+6000*0.5+6000*0.5 = 34000


Earned Value = BCWP = 4000+10000+12000+4000*0.5+6000*0+6000*0.5 = 31000

Schedule Variance = SV = BCWP - BCWS = 31000 - 34000 = - 3000 (<0 is behind)

Schedule Performance Index SPI = BCWP / BCWS = 31000 / 34000 = 0.91 (<1 is behind 9%)

Budget at Complete; BAC=4000+10000+12000+4000+6000+6000+10000= 52000

Cost Graph (S-Curve):

Translating schedule variance into lead/lag

Example:

A ~4334	DAC	Plann	ed Day	Performance at period 9					
Activity	BAC	Start	finish	BCWS	ACWP	BCWP			
A	30	1	30	9	8	6			
В	30	1	30	9	8	12			
Project	60	1	30	18	16	18			

Based on this information; discuss the following:

- 1. Total Variance (TV)
- 2. Cost Variance (CV)
- 3. Schedule Variance (SV)
- 4. Estimate At Completion (EAC)
- 5. Variance At Completion (VAC)

Example:

Activity	BCWS	ACWP	BCWP
A	9	8	6
В	9	8	12
Project	18	16	18

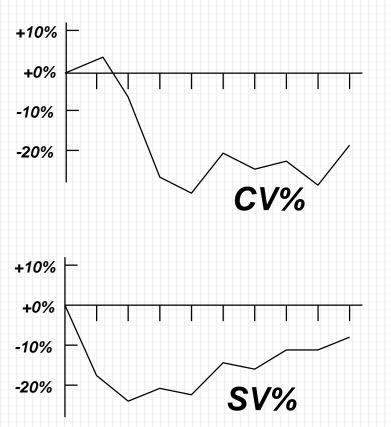
Activity	TV=	CV=	SV=		
	BCWS -ACWP	BCWP - ACWP	BCWP - BCWS		
A	1	-2	-3		
В	1	4	3		
Project	2	2	0		

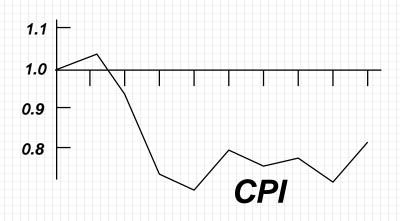
Activity	BAC	Perform	nance at p	ГЛС	\/AC	
		BCWS	ACWP	BCWP	EAC	VAC
Α	30	9	8	6	40	- 10
В	30	9	8	12	20	+10
Project	60	18	16	18	60	0

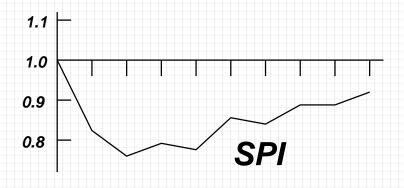
Estimate To Completion → Forecasting

ETC = BAC * ACWP/BCWP = 30 * (8/6) = 40 (activity A)

Variance To Completion VTC=BAC-EAC=30-40=-10 (activity A)


Basics of EV – Old Vocabulary


- ACWP
 - Actual Cost of Work Performed
 - replaced by AC
- BCWP
 - Budgeted Cost of Work Performed
 - replaced by EV
- BCWS
 - Budgeted Cost of Work Scheduled
 - replaced by PV



Cost Performance Index CPI = EV / ACCV = EV - AC**Cost Variance** Earned Value (for a task) EV = PV * %Complete **Estimate To Complete** ETC = EAC - ACSPI = EV / PVSchedule Performance Index Schedule Variance SV = EV - PVVariance At Completion VAC = BAC - EACEAC has a separate set of equations Estimate At Completion (EAC) **Estimate At Completion** EAC = AC + ETCRe-Estimated EAC = AC + (BAC - EV)**Atypical** EAC = AC + ((BAC - EV) / CPI)**Typical** EAC = BAC / CPI**Typical** Cost Management - Dr. Attia Gomaa - 2018 147

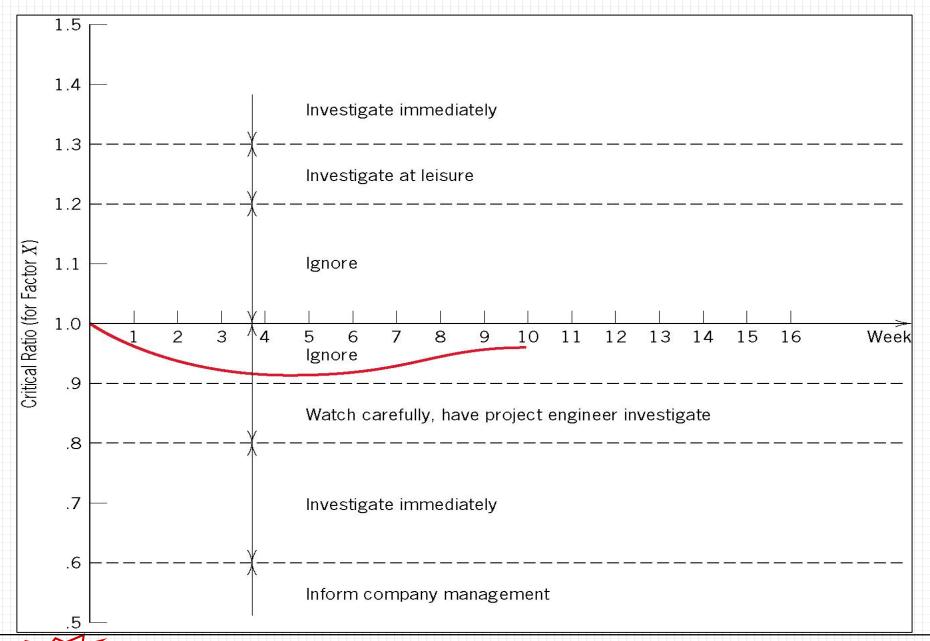
Discuss the following figures:

Critical Ratio

actual progress x budgeted cost scheduled progress actual cost

If ratio is 1 everything is probably on target
The further away form 1 the ratio is, the more we may need to investigate

Task Number	Actual Progress		Scheduled Progress		Budgeted Cost		Actual Cost		Critical Ratio
1	(2	1	3)	Χ	(3	1	2)	=	1.00
2	(2	/	3)	Χ	(6	1	6)	=	0.67
3	(3	1	3)	Χ	(4	1	6)	=	0.67
4	(3	1	2)	Χ	(6	/	6)	=	1.50
5	(3	/	3)	Χ	(6	1	4)	=	1.50


Critical ratio example

Calculate the critical ratios for the following activities and indicate which are probably on target and need to be investigated.

Activity	Baseline		Ac	Critical	
	Scheduled Progress	Budgeted Cost	Actual progress	Actual cost	ratio (CR)
A	4 days	60	4 days	40	
В	2 days	50	3 days	50	
С	3 days	30	2 days	20	
D	1 day	20	1 day	30	
E	4 days	25	2 days	25	

Critical Ratio Control Limits

Establishing an EVMS

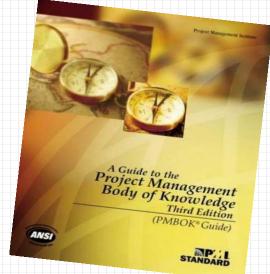
ANSI/EIA 748 Standard Criteria provides a list of guidelines

- Organization
- Planning, Scheduling, and Budgeting
- Accounting Considerations
- Analysis and Management Reports
- Revisions and Data Maintenance (change management)

ANSI/EIA 748 doesn't identify 'approved systems'

Earned Value Management is a tool for performance measurement (cost and schedule) and forecasting

Glossary of Terms


EV	Earned value for a task is simply the percent complete times its original budget. Stated differently, EV is the percent of the original budget that has been earned by actual work completed.
PV	The planned time-phased baseline of the value of the work scheduled. An approved cost estimate of the resources scheduled in a time-phased cumulative baseline [BCWS—budgeted cost of the work scheduled]
AC	Actual cost of the work completed. The sum of the costs incurred in accomplishing work. [ACWP—actual cost of the work performed].
CV	Cost variance is the difference between the earned value and the actual costs for the work completed to date where CV = EV - AC.
SV	Schedule variance is the difference between the earned value and the baseline line to date where SV = EV - PV.
BAC	Budgeted cost at completion. Total budgeted cost of the baseline or project cost accounts.
TAC	The duration of the critical path
EAC	Estimated cost at completion.
ETC	Estimated cost to complete remaining work.
VAC	Cost variance at completion. VAC indicates expected actual over- or under-run cost at completion.

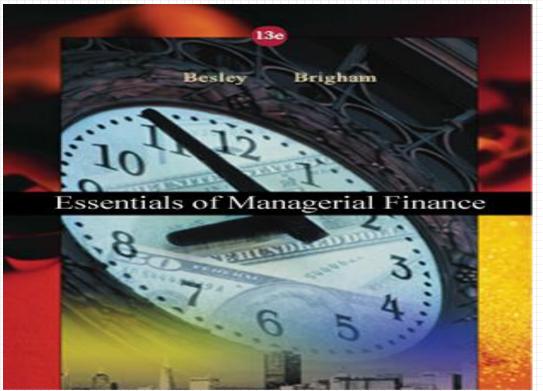
Project Management

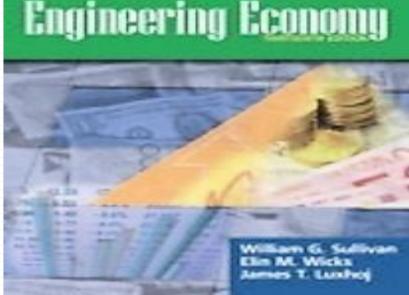
The Project Management Body of Knowledge http://www.PMI.org

- www.pmi-ctt.org
- www.projectkickstart.com/html/tips.htm
- www.pmforum.org
- www.princeton.edu/ppo

•Value at Risk: A New Benchmark for Measuring Derivatives Risk - by Philippe Jorion Hardcover - 332 pages (August 1996)

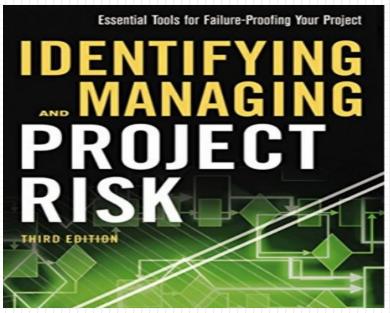
Irwin Professional Pub; ISBN: 0786308486; Dimensions (in inches): 1.20 x 9.33 x 6.34

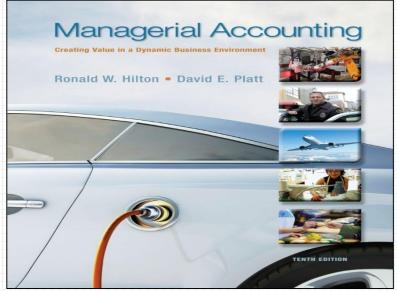

- •Managing Financial Risk: A Guide to Derivative Products, Financial Engineering and Value Maximization (Irwin Library of Investment & Finance) -
- •by Charles W. Smithson, Clifford W. Smith


Hardcover - 620 pages 3rd edition (July 1998)

McGraw-Hill; ISBN: 007059354X; Dimensions (in inches): 2.05 x 9.76 x 7.86

- Engineering Economy, William G. Sullivan (Editor), Elin M. Wicks, James T. Luxhoj, May 2005, Publisher: Prentice Hall.
- Engineering Economy, Leland T. Blank, Anthony J. Tarquin, December 2004, McGraw-Hill




Leland Blank . Anthony Tarquin

- Baker M J (1994) The Marketing Book 3rd edit. Butterworth Heinemann
- Christopher M. Payne A, and Ballantyne D (1991) Relationship Marketing
 Butterworth Heinemann
- Cowell D (1984) <u>The Marketing of Services</u>. Butterworth- Heinemann Ltd.
- Cravens D W (2000) <u>Strategic Marketing</u> 6th edit. Irwin McGraw-Hill
- Cravens D W, Merrilees B and Walker R H (2000) <u>Strategic Marketing Management</u>
 <u>for the Pacific Region</u>. The McGraw-Hill Companies, Inc.
- Doyle P (1994) <u>Marketing: Management & Strategy</u> Prentice Hall
- Drucker P (1974) <u>Management: Tasks, Responsibilities, Practices</u> New York, Harper and Row
- Fifield P and Gilligan C (1998) <u>Strategic Marketing Management 1998-99 CIM</u>
 <u>Workbook Butterworth Heinemann</u>
- Payne A (1993) The Essence of Services Marketing Prentice Hall

صنع في مصر - Made in Egypt

اللهم يا حفيظ - أحفظ مصر وأهل مصر من كل سوء - اللهم أمين

Thank you for your attention!

Copyrights of this file & More information:

Dr. Attia Gomaa

Industrial Engineering Professor & Consultant

Mechanical Eng. Department - Shoubra Faculty of Eng. - Benha University

& Engineering and Science Services - American University in Cairo

attiagomaa@yahoo.com or attiagomaa@aucegypt.edu

Tel: 01222738497

اللهم تقبل هذا العلم

قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا اللهِ هَا عَلَّمُتَنَا الِّلِكَ أَنتَ الْعَلِيمُ الْحَكِيمُ" (سورة البقرة آية 32)

