Boiler Water Chemical Treatment

Agenda

- ▲ Nalco Introduction
- ▲ General Water Chemistry Overview
- ▲ Boiler Internal Training
- Quick checks for Plant Visit
- ▲ Plant Visit Update
- ▲ Questions?

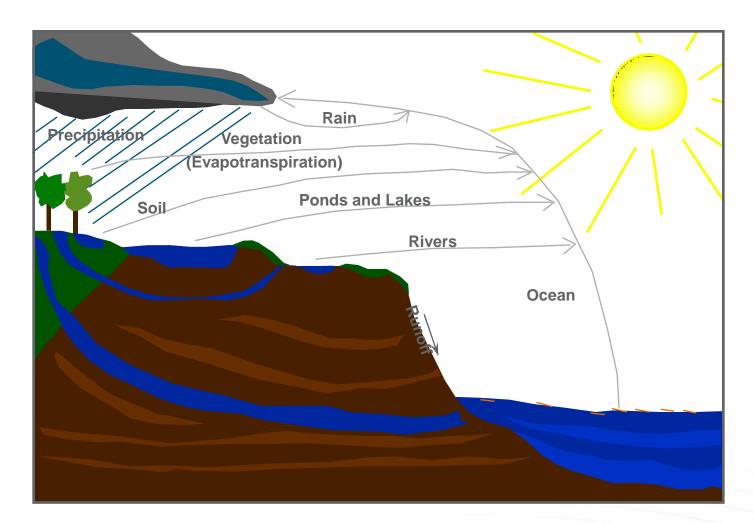
BOILER WATER TREATMENT GENERAL WATER CHEMISTRY

Why Use Water for Heating?

Why Use Water for Heating?

- ▲ Abundant
- ▲ Available
- ▲ Inexpensive
- ▲ Safe
- ▲ High Specific Heat

Why Isn't Water Perfect for Heating?


Why Isn't Water Perfect for Heating?

- ▲ Dissolved Solids
- ▲ Dissolved Gases
- Suspended Matter

THE HYDROLOGIC CYCLE

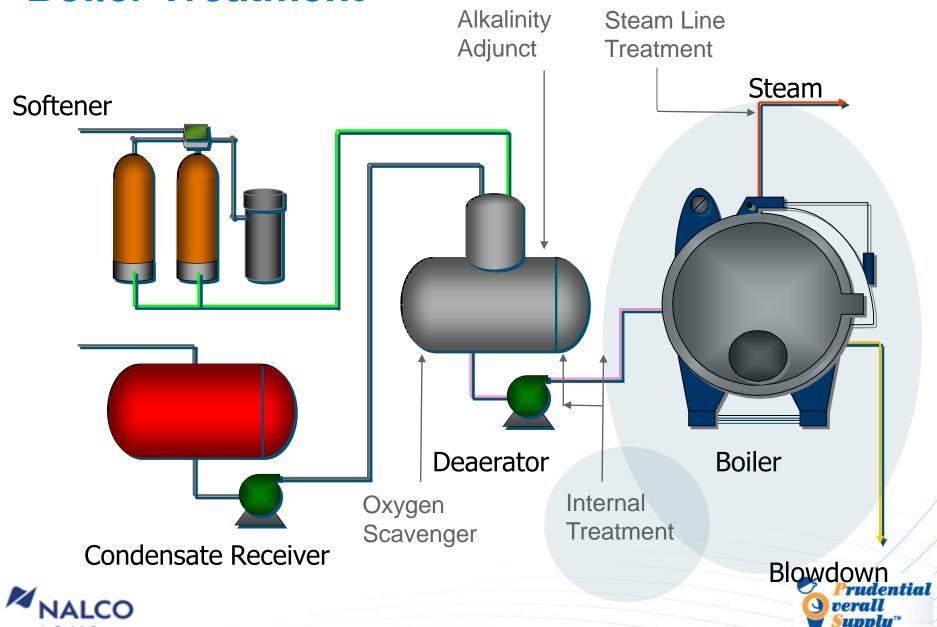
Heating Water Systems Overview

SURFACE WATER

- Lower in dissolved solids
- ▲ Higher in suspended solids
- Quality changes quickly with seasons and weather

GROUND WATER

- ▲ Higher in dissolved solids and Lower in suspended solids
- ▲ Higher in iron and manganese
- Low in oxygen, may contain sulfide gas
- Relatively constant quality and temperature



BOILER INTERNAL TREATMENT

Boiler Treatment

Purpose of Internal Treatment

- ▲ Inhibit formation of mineral scales
- ▲ Inhibit deposition of iron particles
- Maintain efficient heat transfer
- Maintain equipment integrity
- Maintain steam generation capability
- ▲ Lengthen time between or eliminate boiler cleanings

Our goal is a 100% reliable and safe source of steam

How Do We Prevent This?



What control parameters should we be concerned with?

- ▲ Neutralized Conductivity
- ▲"O" Alkalinity
- **▲** Sulfite residual
- ▲ Silica (If you have high Silica Make-Up)
- **▲** Hardness

Neutralized Conductivity

- ✓ Elevated TDS
 - Boiler carryover
 - Hardness or Silica Scaling due to higher mineral content, this also can lead to elevated Stack Temps
 - Potential Deposition of iron and other foulants

▲Depressed TDS

- Increased chemical usage
- Increased water usage
- Increased corrosion potential in the boiler due to lower alkalinity/pH due to low cycles

→ High Sulfite

- Wasted product due to overfeed
- Potential elevated corrosion rates in feedwater tank due to suppressed pH (Catalyzed Sulfite)

∠Low Sulfite

- Increased corrosion potential due to presence of oxygen in FW due to low sulfite levels
- During offline "stand-by" operation lower sulfite levels can also lead to increased oxygen corrosion potential in internal boiler

Hardness

▲ High Hardness

- Internal boiler scaling from high hardness
- Scaling reduces boiler heat transfer efficiency (excessive fuel usage)
- Scale leads to uneven heating of heat transfer surfaces and premature boiler tube failures

What Causes Problems with Internal Treatment?

- ▲ Mechanical Carryover
- ▲ Hardness Intrusion in Feedwater

▲TDS induced Carryover

What causes Mechanical Carryover?

- ▲ Malfunctioning steam separation equipment
- ▲Improper Level Control
- ▲ Wide load fluctuations

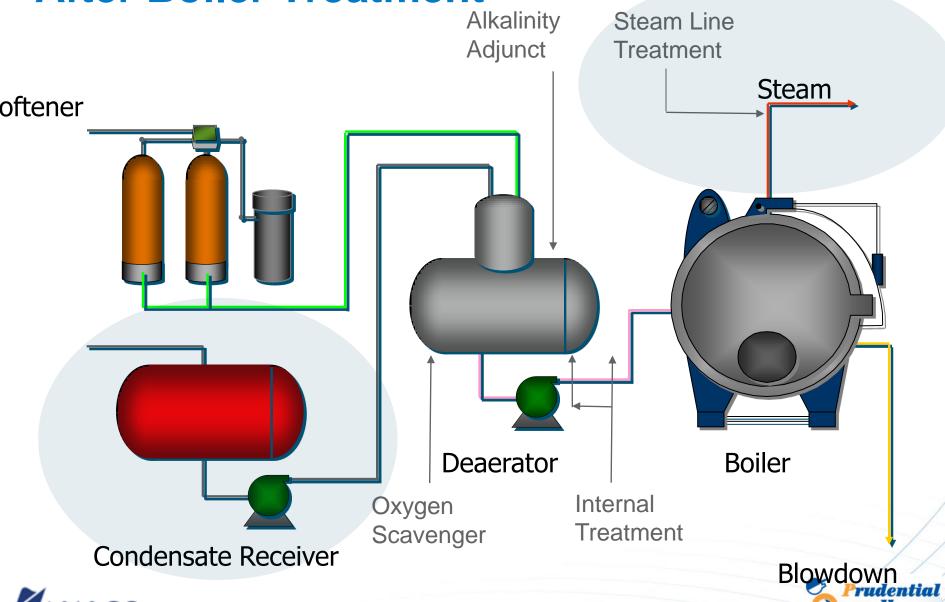
What are other causes of Carryover?

- → High TDS in Boiler
 - This can lead to severe scaling potential or deposition of incoming minerals such as Silica, Calcium, Magnesium, and iron.

▲ Elevated chemical levels can lead to carryover and foaming

http://www.youtube.com/watch?v=a0xZPI_bwHI

http://www.youtube.com/watch?v=tl3tWuSsX7c&feature=relmfu



CONDENSATE SYSTEM OPERATION AND TROUBLESHOOTING

After Boiler Treatment

Value/Benefit of Condensate

- ✓ Increased condensate return means increased thermal efficiency.
- ▲ Increased condensate return means higher boiler cycles.
- ✓ Increased condensate return means lower chemical usage.
- ✓ Increased condensate return, and better treatment, means longer equipment life.

Why Treat Condensate Systems?

"A typical 100 psi boiler system producing 8,000 pounds steam/hour may save up to \$10,000/year in energy, water, and chemicals by increasing their condensate return 10%."

How Do We Prevent This?

What Causes Problems in the Condensate System?

∠ Carbon Dioxide

■ Oxygen

▲ Ammonia

Where Does Carbon Dioxide Come From?

▲ Breakdown of feedwater alkalinity

$$2 \operatorname{HCO}_{3}^{-} = \square \square \square \operatorname{CO}_{3}^{=} + \operatorname{H}_{2}\operatorname{O} + \operatorname{CO}_{2}$$

Bicarbonate Carbonate Water Carbon Dioxide

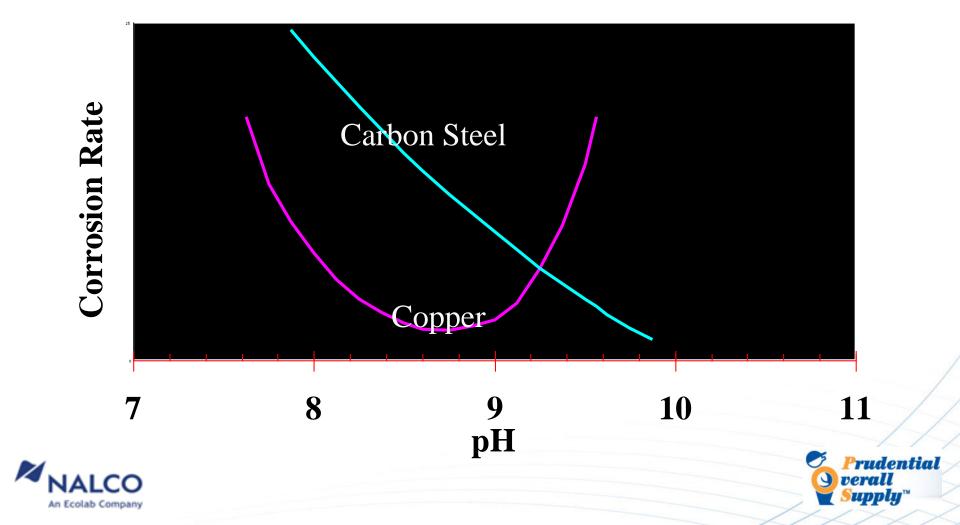
$$CO_3^{=} + H_2O = \square 2OH^{-} + CO_2$$

Carbonate Water Hydroxide Carbon Dioxide

- ▲ Air in-leakage
- Organics breakdown

What's the Problem?

▲ Dissolves in the condensate forming carbonic acid


$$CO_2$$
 + H_2O = H_2CO_3
Carbon Dioxide Water Carbonic Acid

▲ This drops the pH in the condensate and increases corrosion rates.

Corrosion of Carbon Steel and Copper Depends on pH of Water

Carbonic Acid Corrosion

Results in a thinning and grooving of the metal surface

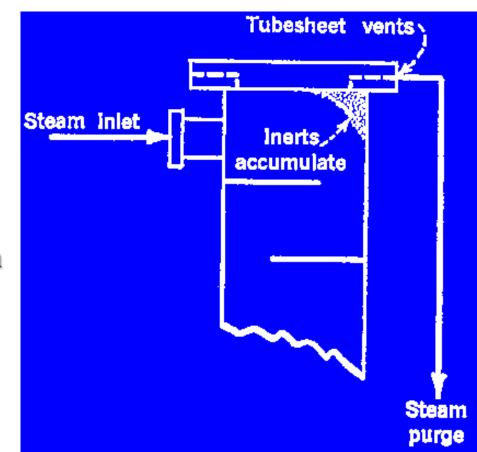
Where Does Oxygen Come From?

- ▲ Air in-leakage- pumps, traps, vacuum systems, vented receivers
- **▲** Inefficient deaerator operation
- **▲** Improper sulfite residual from FW tank to Boiler
- **▲** Raw water intrusion- pump seals, heat exchanger leaks

What's the Problem?

- **△** O₂ attack results in pitting type corrosion
- **▲** Rapid localized metal loss
- ✓ Combined corrosion rate of carbon dioxide and oxygen is 10 to 40% faster than the sum of either alone...

How Can We Mechanically Minimize the Problems?


Mechanical Reduction of Corrosion Potential

▲ Reduce air in-leakage

▲ Vent process equipment

▲ Implement proper deaeration

▲ Improve Sulfite Control

An Ecolab Company

Common Air in-Leakage Sites

- **▲** Vacuum systems (most likely source)
- **▲** Vented receivers
- **∠** Condensate pumps, traps, and valves
- **▲** Intermittently operating systems

How Can We Chemically Minimize the Problems?

Chemical Condensate Treatment

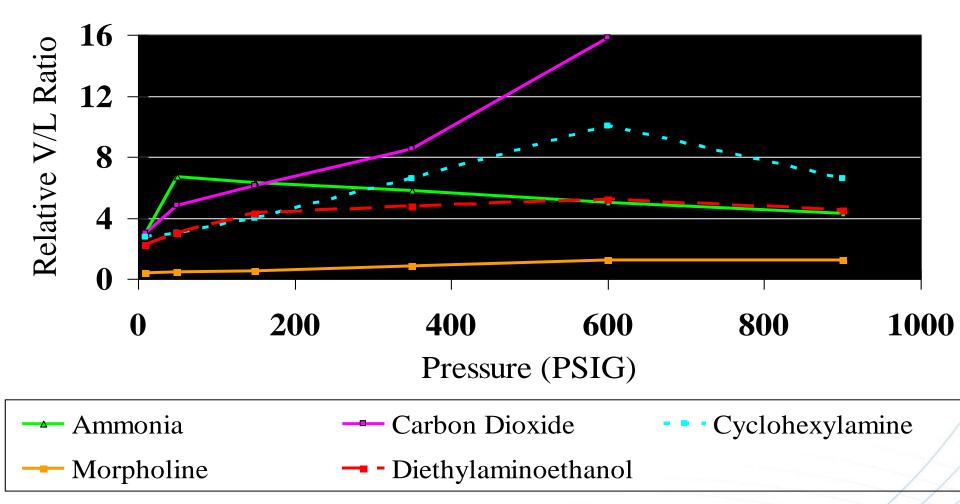
▲ Three Choices:

- Neutralizing Amine
 - (This is most common and we will only be discussing this one.)
- Filming Amines
- Oxygen Corrosion Inhibitors

Neutralizing Amines

Benefits of Neutralizing Amines:

- Effective against carbonic acid corrosion
- Effective against other acids
 - Condensate systems are commonly contaminated with acidic substances
 - Neutralizing amines do not discriminate. They neutralize any acid found.
 - Often this can be seen as an increase in amine demand for no apparent reason


Neutralizing Amines Are Characterized by:

- Vapor/Liquid (V/L) Distribution Ratio
 - Molecular Weight
 - Basicity
 - Component Blend Ratio

Vapor/Liquid Distribution Ratios:

Quick Checks

- ▲ Softeners Producing <1 PPM of hardness (Not Grains Per Gallon, 1PPM=17.1GPG)
- ▲ TDS Control in Boiler (<3500 umhos), (Automation Available)</p>
- ▲ Polishing Softener Operation (If Installed)
- ▲ Feedwater Temperature (180F Minimum)
- ▲ Operator Log Sheet testing (Daily)
- ▲ All Pumps Primed and Operating

