أنواع وتركيبات غرف مضخات الحريق

Follow us

MCP Engineering Academy

Table of content

	Page
Introduction مقدمة	1
Main Fire Pump المضخات الرئيسية	2
مضخات الطرد المركزية Centrifugal Pumps	3
Stand by, Deisel Fire Pump المضخة الاحتياطية و مضخات الديزل	6
مضخة التعويض (الجوكي) Jockey fir pump	9
fire Pump Room Type أنواع غرف مضخات الحريق	10
Pump Suction Valves توصيلات ومحابس خط سحب المضخات	13
Pump Discharge Valves توصيلات ومحابس خط الخروج المضخات	21
صمام الإنذار وعدم الرجوع Alarm Check Valve	29
Fire Water Tank خزنات المياه لشبكة الحريق	31
متطلبات غرف مضخات الحريق Fire Pumps Room	35
حماية غرفة المضخات الحريقFire Pump Room Protection	37
لوحات الكهرباء لمضخات الحريق Fire Pump Electrical Panel	38
فحص وتشغيل مضخات الحريق Fire Pump Test and Operation	39
High Rise Building Fire Pump مضخات الحريق بمباني ومشاريع الابراج	46
رات التلخيص والمراجع من أكواد NFPA لموضوعات المذكرة	فَق
References from NFPA: National Fire Protection Association	
NFPA 20 Standard for the Installation of Stationary Pumps for Fire P	rotection
Pump Performance, Requirement الاشتراطات الفنية لمضخات الحريق Fire Pump Room Requirement متطلبات غرف مضخات الحريق	49 51

	Page	
حماية غرف مضخات الحريق Fire Pump Room Protection	53	
محابس مضخات الحريق Fire Pump Valves	54	
ضبط ضغوط التشغيل للمضخات Fire Pump Setting	59	
NFPA 22 Standard for Water Tanks for Private Fire Protection		
مواد تصنيع خزانات المياه Water Tank Material for Fire Pump	60	
متطلبات تركيب الخزانات Tank Component and Requirement	60	
اختبارات وفحص الخزانات Fire Water Tank Test and Inspection	62	
NFPA 13 Standard for the Installation of Sprinkler Systems		
زمن تخزين المياه بالخزنات Water Supply Duration Requirement	64	
♦ لمشاهدة فيديوهات الشرح العملي لموضوعات الملف YouTube Video		
https://youtu.be/-erEBlUj1UI Fire Pump Type وتطبيقات مضخات الحريق	🛨 أنواع	
https://youtu.be/kSKGWV5_XBU Pump Valves تركيبات ومحابس مضخات الحريق		
ت المياه ومضخات الحريق بالأبراج Water Tank بأذن الله سيتم إضافة الرابط بعد النشر	🛨 خزنان	
ات الغرفة و اختبارات تشغيل مضخات الحريق Test and Inspection	🛨 متطلب	
يل مذكره مكونات ومحابس نظام رشاشات المياه التلقائية لمكافحة الحريق	♦ لتحم	
https://tinyurl.com/5vvhx8ya	✓ .	
https://lnkd.in/eTvxmjw6 YouTube Channel لمتابعتنا على اليوتيوب		
ل مذكرات الشرح لمواضيع ومحتوى القناة https://tinyurl.com/4deu6kjp	← لتحمي	
Eng Khaled Mohsen, LinkedIn Profile: https://tinyurl.com/5ame	m939	

مقدمة Introduction

مضخات الحريق تعد أحد أهم أجزاء نظام مكافحة الحريق، وتعتبر مضخات الحريق ضرورية للحفاظ على سلامة المباني والأشخاص الذين يعيشون فيها، حيث تساعد على السيطرة على الحرائق وتوفر مضخات الحريق نظاماً فعالاً لإمداد المياه بشكل كافٍ وسريع للسيطرة الفورية على الحرائق وتجنب انتشارها بشكل كبير.

تعتبر المضخات جزءًا أساسيًا من أنظمة الرش المائي والتي تعتمد على الرش لإيقاف انتشار الحرائق في المراحل الأولى والسيطرة عليها وتتميز مضخات الحريق بقدرتها على توفير ضغط عالٍ للمياه وإيصالها إلى نقطة الحريق بسرعة كبيرة كما يتم تصميمها بمعايير أمان عالية لضمان عملها الفعال والآمن.

تتوفر مضخات الحريق بأحجام وسعات مختلفة لتتناسب مع متطلبات المباني المتنوعة، بدءًا من المنازل الصغيرة وصولاً إلى المجمعات الكبيرة والمبانى التجارية والصناعية

تعد مضخات الحريق الجزء الحيوي في أي نظام مكافحة حريق وتساهم في إنقاذ الأرواح والممتلكات. لذلك، ينبغي التأكد من بقاء هذه المضخات في حالة جيدة والقيام بالصيانة الدورية لها واختبارها بانتظام للتأكد من عملها السليم في حالة حدوث حريق .

لا تقتصر أهمية مضخات الحريق على الحماية من الخسائر المادية فحسب، بل تمتد أيضًا إلى الحفاظ على الأرواح وتوفير بيئة آمنة للعمل والعيش. لذا ينبغي أن يتم التأكد من وجود مضخات الحريق المناسبة وفقًا لمتطلبات كل مكان لضمان سلامة الافراد والمنشئات.

أنواع وتطبيقات الاستخدام لمضخات الحريق

> Main Fire Pump المضخات الرئيسية

المضِخة الرئيسية تعمل على إمداد الشبكة بالضغط ومعدل التدفق المطلوب حسب التصميم وتعمل المضِخة الرئيسية بماتور كهربي وتكون عادتا مضِخات الحريق من النوع الطاردة مركزية Centrifugal

The main pump works to supply the network with the pressure and flow rate required according to the design. The main pump works with an electric motor. Fire pumps are often centrifugal type

مضخات الطرد المركزية Centrifugal Pumps

هي النوع الشائع الاستخدام في أنظمة الحريق شرط استخدام هذا النوع هو أن يكون ضغط السحب موجب هذه الأنواع تعطى ضغط عالي مع معدل تدفق عالي

أنواع مضخات الطرد المركزية Types of Centrifugal Pumps

1-End Suction Pump

سميت بذلك لان خط السحب يكون بنهاية المضخة اتجاه السحب في اتجاه عمود دوران المضخة والطرد في اتجاه عمودي على عمود المضخة (رأسي) وتعتبر السعات لهذا النوع من المضخات محدودة

General

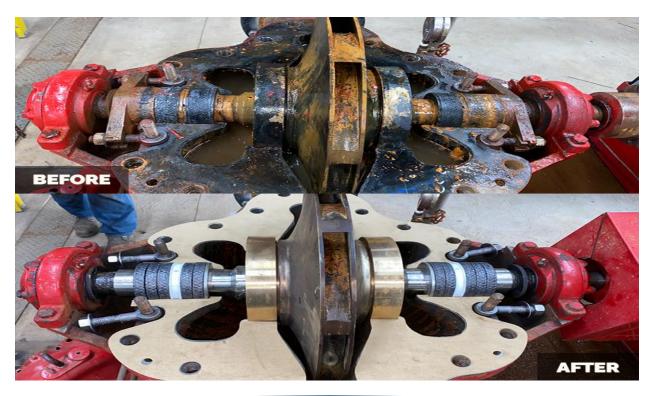
The casing s a heavy duty design. Back pull out design for fast and easy maintenance. Replaceable wear ring to assure optimum efficiency.

Removable and adjustable support foot provides added rigidity and ease of maintenance. Stainless steel shaft sleeve prevents damage to the shaft reduces the maintenance cost. Mechanical seal or soft packing on request.

End Suctioin Centrifugal Pump

2-Vertical Inline Pump

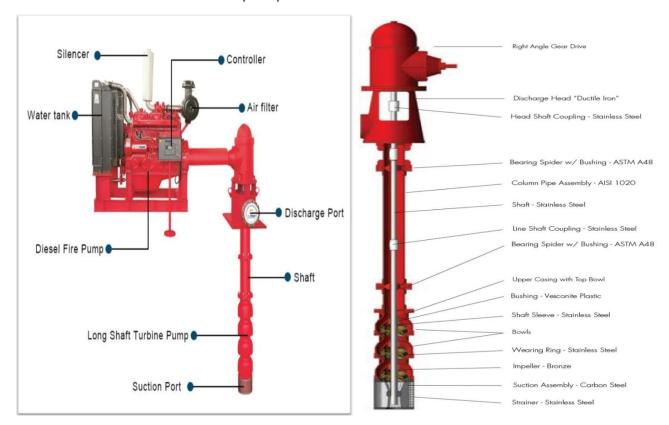
اتجاه السحب والطرد على خط واحد في اتجاه محور المضخة من مميزاتها لا تشغل حيز كبير وعادتا يتم استخدامها عندما تكون المساحة المتاحة صغيرة ويعتبر سعرها منخفض نسبيا وتكاليف الصيانة مرتفعة


The direction of suction and expulsion is in one line in the direction of the pump axis. One of its advantages is that it does not take up much space and is usually used when the available space is small.

3-Horizental Split Case Pump

أشهر الأنواع استخداما في أنظمة الحريق اتجاه السحب والطرد عمودي على اتجاه المضخة أفقي لها سعات كبيرة لذا تشغل حيز كبير عند التركيبات وتعتبر مرتفعة السعر ولكنها تتميز بسهولة الصيانة حيث تتم عملية الصيانة في نفس المكان عن طريق فك مسامير النصف العلوي لجسم المضخة

4-Vertical Turbine Pump


يستخدم هذا النوع في حالة أن غرفة المضخات أعلى من الخزان وبالتالي أتجاه السحب أسفل المضخات مما تتطلب مضخات بسرعات عالية

Centrifugal Fire Pump, Vertical Turbine

VERTICAL TURBINE

This type is used if the pump room is higher than the tank and therefore the suction direction is below the pumps.

★ **ملاحظة** يمكن تشغيل المضخات بمحركات كهربائية او محركات الديزل كما هو موضح بالصورة السابقة

المضخة الاحتياطية Stand by Pump

المضخات الاحتياطية وظيفتها إمداد الشبكة بالضغط ومعدل التدفق المطلوب في حالة حدوث عطل بالمضخة الرئيسية لأي سبب ويجب ان تعمل بمصدر طاقة بديل حال انقطاع التيار الكهربائي الرئيسي وذلك عن طريق (ربط المضخات الكهربائي بشبكة أحمال الطوارئ والمولدات بالمبنى ---- او من خلال استخدام مضخات تعمل بمحرك ديزل .) غالبا تكون المضخة من نوع طاردة مركزية

في حاله تشغيل المضخة الاحتياطية عن طريق المولد الكهربي Generator وشبكة احمال الطوارئ Emergency Power الموجود بالمبنى يجب ان يتم زيادة الحمل الكهربي للمولد بحيث يكون كافي لتشغيل مضخات الحريق

مضخات الديزل Deisel Fire Pump

كما سبق توضيحه فان مضخات الحريق الاحتياطية والتي تعمل بمحركات الديزل فان الغرض منها هو توفير مصدر كهرباء بديل وعادتا يتم استخدامه في المباني التي لا يوجد بها مولدات لتغذية شبكة وأحمال الطوارئ لتوفير مصدر للطاقة في حالات انقطاع الكهرباء

Stand by fire pump is to supply the network with the required pressure and flow rate in the event of a malfunction in the main pump for any reason, and it must operate with an alternative power source in the event of a main power outage, by (connecting the electrical pumps to the emergency load network and generators in the building ---- or by using working pumps with a diesel engine) the pump is often of the centrifugal type.

In the event that the backup pump is operated via the generator and the Emergency Power network located in the building, the electrical load of the generator must be increased so that it is sufficient to operate the fire pumps.

Stand by fire pump, which are operated by diesel engines, are intended to provide an alternative source of electricity and are usually used in buildings that do not have generators to feed the network and emergency loads to provide a source of energy in cases of power outages.

وصلات خزان الوقود لمضخة الديزل

خط تغذية الخزان: ويجب أن يكون متصل بالخزان من الأعلى ومتصل مع ماسورة الvent

خط التغذية للمحرك: يتم أخذ وصله من أسفل الخزان لتتصل بتغذية المحرك

خط الراجع: يتم توصيل خط الراجع إلى الخزان من محركات الديزل للخزان

يجب أن يكون خزان الوقود أعلى من المحرك لضمان استمرارية التغذية كما يجب التأكد من أن مستوى الوقود في الخزان لا يقل عن 75 % من سعته ويتم استكماله إن لزم الأمر مع فحص الوقود وعدم احتوائه على رواسب وسلامة وصلات العادم ونظام التبريد والتزييت وقراءة البيانات بتشغيل مضخة الديزل مع اختبار عمل المحرك الكهربائي وانخفاض الجهد وتيار البدء

Fuel tank connections to diesel pump

<u>Tank feeding line</u>: connected to the tank from the top and connected to the vent pipe - <u>Engine feed line</u>: A connection is taken from the bottom of the tank to connect to the engine feed - <u>Return line</u>: The return line is connected to the tank

Note: The fuel tank must be higher than the engine to ensure continuity of feeding and ensured that the fuel level in the tank is not less than 75% of its capacity, and it is completed, if necessary, with checking the fuel and that it does not contain sediments, the integrity of the exhaust connections.

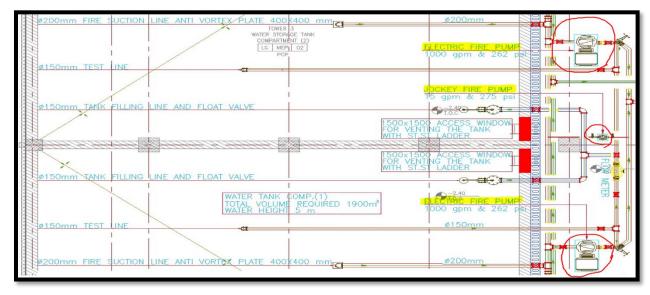
> Jockey fir pump (الجوكي)

مضخة تعويضية مساعدة Jockey Pump تكون صغيرة في الحجم ووظيفتها العمل عند حدوث تسريب بالشبكة بدلا من المضخة الرئيسية وتعمل المضخة الجوكي دايما تشتغل بماتور كهربي وغالبا تكون راسية متعددة المراحل لتحقيق ضغط عالى وتعويض الفقد بالشبكة

JOCKEY PUMPS

Jockev pumps are small. motor driven pumps used in conjunction with main fire pumps to compensate for minor leaks in the fire protection system and automatically maintain stand-by pressure. This reduces wear on the main pump and controller caused by unnecessary, frequent operation. Jockey Pump controllers are available for across the-line starting.

يكون ضغط المضخة التعويضية Jockey Pump أعلى من ضغط المضخة الرئيسية Main Pump والاحتياطية O.7 &10 PSI (الضغط التشغيلي للنظام) بحدود 810 PSI بار يعتبر معدل التدفق للمضخة التعويضية قليلا مقارنة بالمضختين الرئيسية والاحتياطية، بالتالي فإن حجمها صغير مقارنة بالمضختين الرئيسية والاحتياطية.


Jockey Pump also known as a pressure maintenance pump, maintains the pressure in the fire sprinkler system to avoid starting of the main fire pump.

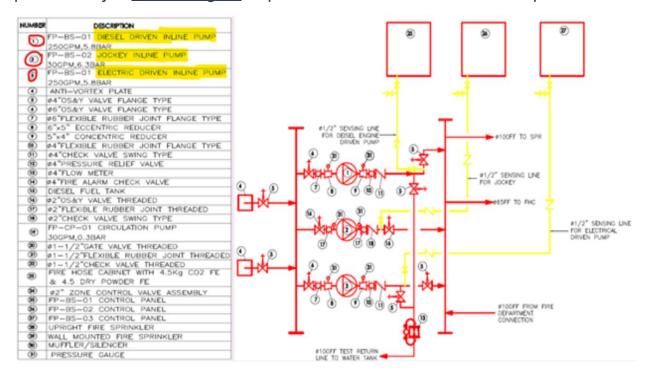
أنواع غرف مضخات الحريق Fire Pump Room Type

يمكن التصنيف للغرف حسب أنواع المضخات المستخدمة بالنظام كالتالي

System Contain: 2 Electrical Pump + 1 Jockey Pump

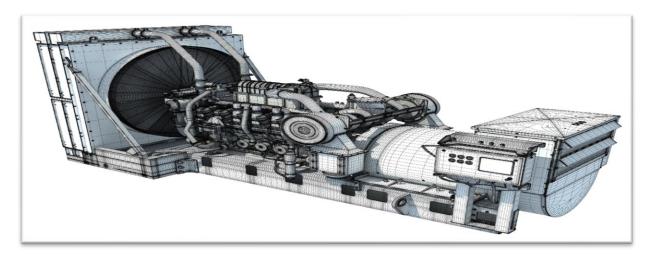
في هذه الحالة تكون كلا من المضخة الرئيسية والاحتياطية تعمل بموتور كهربائي ويستخدم في المباني التي يكون بها مولدات تعمل في حاله انقطاع التيار الكهربائي الرئيسي

Main and Stand by Pump are powered by an <u>electric motor</u>. It is used in buildings that have generators that operate in the emergency power



System Contain: 1 Elec Pump + 1 Diesel Pump + 1 Jockey Pump

في هذه الحالة تكون المضخة الرئيسية هي التي تعمل بموتور كهربائي والمضخة الاحتياطية تعمل بمحرك الديزل لتوفير مصدر بديل للطاقة في حاله انقطاع التيار الكهربائي الرئيسي


Main Pump is powered by an <u>electric motor</u> and the **Stand by Pump** is powered by a <u>diesel engine</u> to provide an alternative source of power

المبائى التى بها مولدات للطاقة الاحتياطية واحمال الطوارئ

Building with Generator for Emergency Power

ليس من الضرورة في المباني التي بها مولدات ان يتم استخدام مضخات الحريق الاحتياطية من النوع الكهربائي ففي بعض الاحيان يتم تصميم المولدات واحمال الطوارئ للمبنى لأغراض أخرى غير مكافحة الحريق والتي تختلف حسب طبيعة وأنشطة العمل بالمبنى مثل غرف البيانات او أجهزة تحكم وفي هذه الحالة تكون مضخات الحريق الاحتياطية من النوع الديزل بالرغم من وجود المولدات

يجب في حاله اختيار مضخات الحريق الاحتياطية من النوع الكهربائي مراعاة قدرات الاحمال للمولدات والتأكد من توافقها مع الاحمال التشغيلية المطلوبة لمضخات الحريق

In the case of choosing electric stand by fire pumps, the load capacities of the generators must be taken into account and ensure their compatibility with the operational loads required for the fire pumps.

الوصلات والمحابس على خط السحب من الخزان الى المضخة

Valves and Suction line connection from tank to pump

خط السحب داخل خزنات المياه: مانع الدوامات Anti Vortex Plate في حاله الخزنات الخرسانية تركيب Puddle Flange ضمن الجدار الفاصل بين الخزان وغرفة المضخات.

المحابس على خط السحب داخل غرفة المضخات: صمام عزل Isolation Gate Valve من نوع OS&Y

الربط مع المضخة: وصلة مرنة Flexible Connection & مسلوب لا مركزية للأنابيب Eccentric Reducer

التوصيلات على المضخات: مقياس ضغط السحب Compound Suction Gauge صمام & Cir Vent

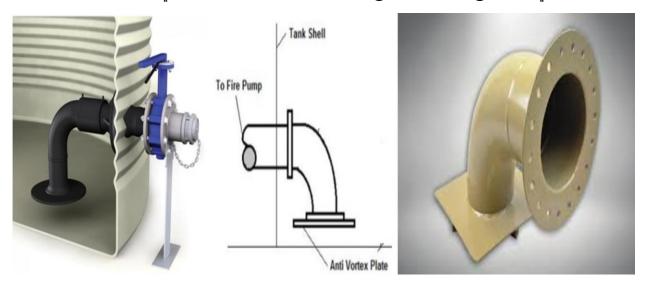
<u>Suction line inside water tanks</u>: Anti-vortex plate, Puddle Flange in the case of concrete tanks

<u>Valves on the suction line inside pump room</u>: OS&Y Isolation Valve

<u>Connection to the pump</u>: Flexible Connection & Eccentric Reducer

<u>Connections on pumps</u>: Pressure Gauge & Pump relief valve Air Vent

المحابس والوصلات على خطوط سحب مضخات الحريق

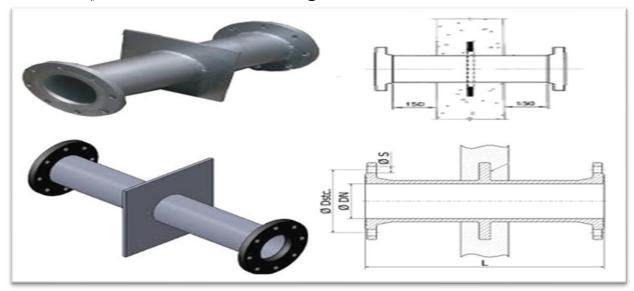

خط السحب داخل خزنات المياه

مانع حدوث الدوامات Anti Vortex Plate

يتم تركيب على بداية ماسورة السحب بالخزان anti - vortex plate لمنع حدوث دوامات vortex و D كليب على بداية ماسورة السحب ولها مقاسات معينة في حالة الشكل المربع مقاسة 2D X 2D حيث أل D هو قطر ماسورة السحب، اما في حاله مانع الدوامات الدائري فقطرها لا يقل عن ضعف قطر ماسورة السحب من الخزان

ويكون مستواها من أسفل الخزان على ارتفاع نصف قطر ماسورة السحب أو 6 بوصة إيهما أكبر. ولا تزيد عن 15 سم

لا يقل أبعادها في حاله مانع الدوامات المربع عن ضعف قطر ماسورة السحب في حساب ابعاد Plate


<u>Anti-Vortex Plate</u> is installed at the beginning of the tank's intake pipe to prevent the occurrence of vortex flow on the intake pipe. It has specific sizes in the case of a square shape

Installation level from the bottom of the tank will be at the height of half the diameter of the intake pipe or 6 inches, whichever is greater and not more than 15 cm

In the case of a square vortex preventer, its dimensions shall not be less than twice the diameter of the intake pipe when calculating the dimensions of the plate

Puddle Flange فلانشة منع التسريب للخزنات الخرسانية

في حالة سحب المضخات من خزان خرسانة يتم عمل جرابات بالحوائط قبل الصب وتوضع فلانشة تسمى فلانشة عدم التسريب في منتصف الحائط بحيث تعمل كحائل أكثر قوة في وسط الخرسانة عبارة عن ماسورة قطرها نفس قطر الماسورة التي سيتم توصيلهاPuddle Flange بالخزان وبها فلانشة بالمنتصف يكون قطرها أكبر من قطر الماسورة وتصنع من الحديد المجلفن أو الصلب الذي لا يصدا

يتم تركيبها قبل صب الخرسانة وتكون الفلانشة في المنتصف ويتم لحامها بأسياخ الحديد التي يتم تسليح جسم الخزان بها والهدف من تركيب ال Puddle Flange لمنع تسريب الماء كما تعمل على التثبيت الجيد للماسورة بالخزان

In the case of water concrete tank type, sockets are made in the walls before pouring concrete, and a flange called a non-leaking flange is placed in the middle of the wall so that it acts as a stronger barrier in the middle of the concrete.

It is a pipe with the same diameter as the diameter of the pipe that will be connected to the tank, and it has a flange in the middle whose diameter is larger than the diameter of the pipe. The pipe is made of galvanized iron or stainless steel

It is installed before pouring the concrete. The flange is in the middle and is welded with iron rods with which the tank body is reinforced. The purpose of installing the Puddle Flange to Prevent water from leaking out of the tank and works to securely attach the pipe to the tank

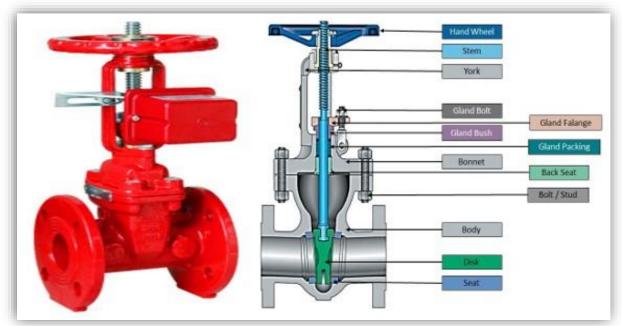
خط السحب داخل غرفة المضخات

← Isolation Gate Valve صمام عزل

يتم تركيب محبس سكينة من النوع OS & Y Gate Valve على خط السحب للمضخة كمحبس عزل يستخدم أثناء الصيانة ويكون وضعه التشغيلي دئماOn مفتوح و من النوع OS & Y و يتم تركيب عليه Tamper Switch

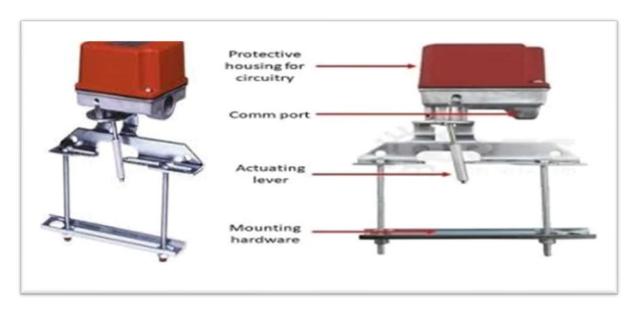
<u>Isolation OS & Y Gate Valve</u> type is installed on the suction line of the pump as an isolation valve used during maintenance. Its operational position is always On. It is of the OS & Y type and a Tamper Switch is installed on it for monitoring.

Valves Open


Valves Closed

يتميز محبس VS&Y انه يمكن ملاحظة فتحة او إغلاقه فقط بالنظر عليه ففي حاله بروز العمود المسنن فوق يد المحبس يكون مفتوح

The <u>OS&Y Valve</u> is distinguished by the fact that it is possible to notice its opening or closing just by looking at it. If the valve threaded road above the valve handle valve is open.


يتم تركيب Tamper Switch والربط مع أجهزة التحكم والإنذار في حاله اغلاق المحبس بالخطاء ودون علم لفريق التشغيل والصيانة الموجود بالمبنى مما سيؤدى الى اغلاق المياه على المضخات في حاله حدوث الحريق وبالتالى مخاطر عدم تشغيل النظام

OS&Y Valve Gate Valve with Tamper Switch

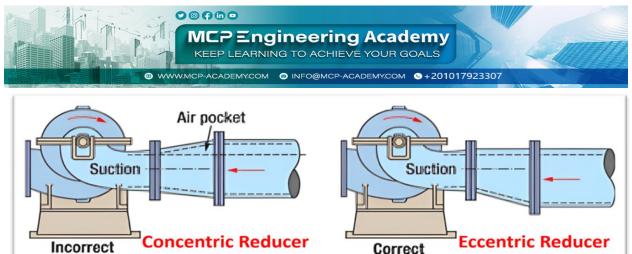
<u>Tamper Switch</u> is installed and connected to the control fire system in the event that the valve is closed by mistake and without the knowledge of the operation and maintenance team in the building, which will lead to the water being shut off to the pumps in the event of a fire and thus the risk of the system not operating.

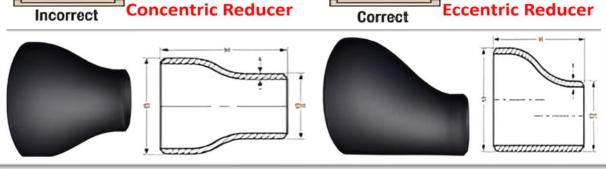
Tamper Switch Component

الربط لخط المواسير مع المضخات

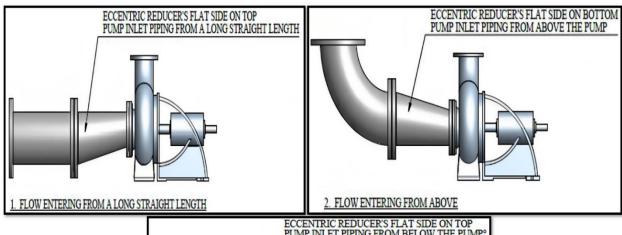
> Flexible Connection وصلة مرنة

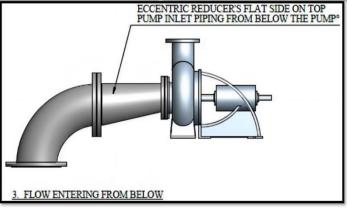
الوصلة المرنة يتم تركيبها على خط السحب لامتصاص الاهتزازات وتقليل انتقالها من المضخات لخطوط المواسير وفي حالة تركيب وصلة مرنة ويفضل أن تكون من الصلب الغير قابل للصدأStainless Steel


<u>Flexible Connection</u> is installed to absorb vibrations and reduce their transmission from the pumps to the pipelines.


مسلوب لا مركزية للمواسير Eccentric Reducer 🗸

في حالة أن قطر الماسورة أكبر من قطر مدخل السحب للمضخة يتم تركيب مسلوب لا مركزي Avoid Air Pocketsيكون المسلوب من جهة واحدة ليمنع تكون فقاعات هواءEccentric Reducer ويقلل من حدوث ظاهرة التكهف للمضخةCavitation





كما سبق توضيحه يتم تركيب المسلوب اللامركزي لمنع تكون الفقاعات الهوائية وفي الصورة التالية توضيح لاتجاه تركيب المسلوب حسب اتجاه وطريقة السحب من الخزنات

التركيبات على المضخات

عداد قياس الضغط Pressure Gauge

يتم تركيب عداد الضغط على خط السحب وخط الطرد لقياس الضغط على جانبي المضخة ويكون تدريج القياس بوحدات Bar or Psi Or Both ويجب ان تتحمل مكونات العداد قراءات للضغوط أكبر من الضغوط المطلوبة بالنظام

<u>Pressure Gauge</u> installed on the suction line and discharge to measure the pressure on both sides of the pump. The measurement scale is in Bar, Psi, or Both. The components of the meter must withstand twice the operating pressure.

ب Automatic Air Release Valve صمام طرد الهواء

يتم تركيبه على أعلى نقطة بالمضخة من نوع Split Case لا يتم تركيبه على نوع End Suction ويعمل على خروج الهواء من المضخة على على خروج الهواء من المضخة Split Case

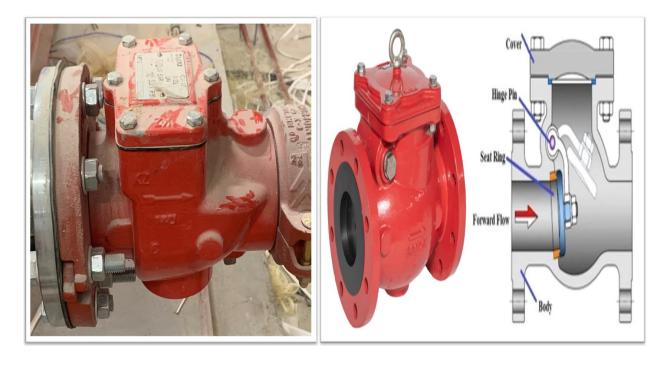
الوصلات والمحابس على خط الخروج من المضخات

Pump Discharge Valves and Connection

خط الطرد Discharge بالتسلسل من المضخة باتجاه الشبكة

مسلوب لا مركزية للمواسير Eccentric Reducer كما سبق توضيحه على خط الدخول ليمنع تكون فقاعات هواء Avoid Air Pockets ويقلل من حدوث ظاهرة التكهف للمضخة Cavitation

في حالة ان قطر الخروج للمضخة مساوى لقطر المسورة فلا يوجد حاجة لتركيبة المسلوب ويمكن التركيب كما هو موضح بالصورة التالية:


Case of: Pump outlet diameter same pipe size

وصلة مرنة Flexible Connection كما سبق توضيحه على خط الدخول لامتصاص الصدمات والاهتزازات الأنابيب.

عداد قياس الضغط Discharge Pressure Gauge لقياس ضغط المياه قبل وبعد المضخات

ب (Check (Non-Return) Valve صمام عدم الرجوع

هو محبس يتم تركيبه لمنع التدفق العكسي بالشبكة وضمان حدوث السريان باتجاه واحد من خط خروج المضخات للشبكة وعادتا يتم استخدامه للتركيب على خطوط خرج المضخات بمختلف الشبكات لنفس الغرض ويتم تركيبه باتجاه السريان مع اتجاه السهم الموضح على الجسم الخارجي المحبس

<u>Non-Return – Check Valves</u> installed to prevent backflow in the network and ensure that flow occurs in one direction from the pumps' exit line to the network. It is usually used for installation on the pumps' output lines in various networks for the same purpose.

It is installed in the direction of the flow with the direction of the arrow shown on the outside body of the stopcock.

خط استشعار الضغط Pressure Sensing Line

هو خط فرعي يتم أخذه من الماسورة الواصلة بين صمام عدم الرجوع Check Valve وصمام العزل Pressure Switch Actuation بنش ويتصل ب OS&Y-Isolating Valve داخل اللوحة الكهربائية Control Panel التى تتحكم بمضخات الحريق (لكل مضخة خط خاص بها.)

It is a branch line that is taken from the pipe connecting the Check Valve and the OS&Y-Isolating Valve with a diameter of ½ inch and is connected to the Pressure Switch Actuation inside the electrical panel that controls the fire pumps (each pump has its own line).

الهدف من تركيب الخط نقل قراءة الضغط على خط الطرد وبالتالي ضغط الشبكة للوحات الكهربائية لكل مضخة من المضخات، الأمر الذي سيمكن اللوحة من التحكم بتشغيل المضخة في حال هبوط الضغط نتيجة وجود حالات تسريب في الخط أو حدوث حريق، وايقافها في حال ارتفاع الضغط.

the line is to transmit the pressure reading on the discharge line and thus the network pressure to the electrical panels for each of the pumps, which will enable the panel to control the operation of the pump in the event of a drop in pressure as a result of leaks in the line or the occurrence of a fire, and to stop it in the event of an increase in pressure.

مادة صنع الخط تكون من مواسير معدنية غير قابلة للتآكل مثل النحاس Copper أو سبائك النحاس والزنك Series 300 أو من Stainless Steel عيار. 300

The material for the line is non-corrosive metal pipes, such as copper, copper and zinc alloy, or Series 300 stainless steel.

مكونات الخط:

عدد اثنان صمام عدم الرجوع بقطر نصف بوصة يتم تركيبهم بعكس اتجاه الجريان بحيث لا تقل المسافة بينهما عن 5 [ft] أي ما يعادل 1.52 [m] ، يكون من النوع القابل للفك من الأعلى، بحيث يتم فكه وإخراج اللسان الداخلي Valve Disc وثقبه من الداخل لتمرير المياه مع اتجاه السريان ، والغاية من تركيب صمام عدم الرجوع بعكس اتجاه السريان هو لامتصاص صدمة المطرقة المائية وتغيرات الضغط عند بدء عمل النظام، الأمر الذي سيؤدي إلى سريان المياه من الثقب بحيث يصل إلى جهاز قراءة الضغط ضغط ستاتيكي فقط.

> Isolation Gate Valve OS&Y صمام عزل

يتم تركيب محابس العزل قبل وبعد مجموعة المحابس والوصلات على مضخات الحريق لغرض الصيانة بالمضخات او المحابس ويكون وضعها التشغيلي مفتوح on ويتم اغلاقها فقط للصيانة مع وجود tamper switch للإنذار حاله اغلاق المحبس بالخطاء دون علم فريق الصيانة المتخصص

<u>Isolation Valves</u> are installed before and after the set of valves and connections on fire pumps for the purpose of maintenance on the pumps or valves.

ملاحظة: وسيلة مراقبة محابس السكينة بغرف المضخات باستخدام Tamper Switch تعتبر الوسيلة الأفضل ولكنها ليست الوحيدة فحسب كود NFPA 20 يمكن استخدام طرق أخرى لمراقبة اغلاق المحبس مع الاخذ في الاعتبار أي متطلبات واشتراطات خاصة بالجهات المختصة (الدفاع المدني)

4.18* Valve Supervision.

4.18.1 Supervised Open. Where provided, the suction valve, discharge valve, bypass valves, and isolation valves on the backflow prevention device or assembly shall be supervised open by one of the following methods:

- Central station, proprietary, or remote station signaling service
- (2) Local signaling service that will cause the sounding of an audible signal at a constantly attended point
- (3) Locking valves open
- (4) Sealing of valves and approved weekly recorded inspection where valves are located within fenced enclosures under the control of the owner

4.18.2 Supervised Closed. Control valves located in the pipeline to the hose valve header shall be supervised closed by one of the methods allowed in 4.18.1.

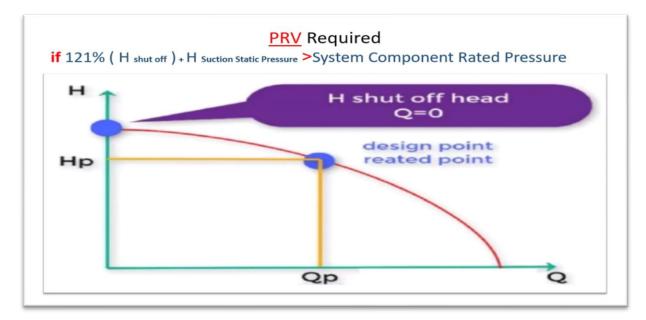
> Pressure Relief Valve (في بعض الحالات)

الهدف من تركيبة هو تصريف والتخلص من الضغط الزائد والناتج عن المضخة في حال حدوث تسارع في محرك المضخة نتيجة ازدياد السرعة RPM, Over Speed عن السرعة الاعتيادية أو التصميمية وعادتا ما يتم استخدامه مع مضخات الديزل ويكون مكان التركيب على خط الطرد للمضخة قبل محبس عدم الرجوع وذلك للحفاظ على مكونات النظام مثل توصيلات المواسير والمحابس من الضغط المرتفع

PRV With Waste Cone (Sight Glass)

متى تحدث الزبادة في الضغط:

عند استخدام مضخات الديزل ودوران محرك الديزل بسرعة أكبر من السرعة الاعتيادية التصميمية. عند استخدام مضخة كهربائية متغيرة السرعة.Variable Speed Pump ويتم ضبط الضغط لها ليكون أكبر من ضغط الشبكة ب PSI 10 , (0.68bar)


مكان التركيب:

على خط طرد المضخة وقبل صمام عدم الرجووCheck Valve لحمايته أيضا من ارتفاع الضغط حيث يتم تركيب وصلة T بالمواسير ويكون مخرجها بمسلوب يتم توصيلة مع المحبس.

Its purpose is to relief over pressure from the pump to preserve the components of the fire network. It is usually installed on the discharge line of the diesel pump.

Install on the discharge line of the pump before the non-return valve, and the pressure is set to be greater than the network pressure by 10 PSI (0.68bar).

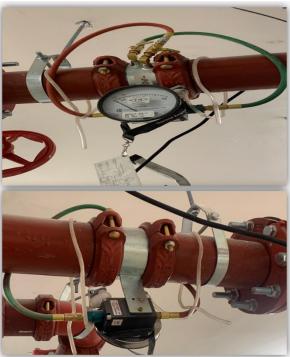
تتم الحسابات التي تشترط تركيبة حسب كود 20 NFPA مع مضخات محرك الديزل كالتالي:

- ◘ A=Zero التدفق الصفري نوجد قيمة الضغط. Q=Zero التدفق الصفري نوجد قيمة الضغط. Churn Pressure ثم نضرب قيمة ضغط
 1.21 في Churn Pressure ثم نضرب قيمة ضغط
 - ولا حاله تواجد ضغط على مدخل خط السحب من خلال معرفة ارتفاع المياه عن خط السحب للمضخات، حيث كل متر في الارتفاع يعطى ضغطا قيمته 1.4. [psi]
- ← نقوم بمراجعة مكونات النظام ونتحقق من Rated Pressure لكافة المكونات من محابس، مواسير، رشاشات وغيرها من مكونات النظام، ونختار الأقل تحملا للضغط لنقارن بها الحسابات

ضغط Rated Pressure لمكونات النظام هو قيمة وقدرات تحمل الضغط لمكونات وأجزاء النظام المعتمدة والتي سيتم تركيبها بالشبكة وتتم المقارنة مع اقل قيمة فعلى سبيل المثال لو ان ضغط التحمل للرشاشات اقل من ضغط محابس صناديق الحريق تتم المقارنة مع ضغط التحمل للرشاشات

Where a diesel engine fire pump is installed and where a total of 121 percent of the net rated shutoff (churn) pressure plus the maximum static suction pressure, adjusted for elevation, exceeds the pressure for which the system components are rated, a pressure relief valve shall be install

خط فحص واختبار المضخات Test Line Connections


خط فحص واختبار المضخات Test Line Connections وفحص تسلسل عملها:

صمام بوابي من نوع OS&Y أو صمام فراشةButterfly Valve ، عداد قياس كمية التدفق Flow Meter يجب ان لا تقل قدرته وقراءة القياس عن 175 % من التدفق المطلوب للمضخة.

OS&Y gate valve or Butterfly Valve. It is preferable to place two valves before and after the flow meter for maintenance purposes.

Flow Meter, so that the measurement is not less than 175% of the flow required for the pump.

عند فحص منظومة المضخات، يتم اغلاق المحابس على خط الطرد Discharge ويتم فتح المحابس على خط السحب وفحص المضخات من خلال عداد التدفق الموجود على خط فحص المضخات.

يجب مراعاة إن عملية تصريف المياه للخزان ستعمل على تشكل دوامات في الخزان الأمر الذي سيؤدي إلى سحب المياه مع الهواء، مما يؤدي إلى حدوث ظاهرة التكهف في المضخات، لذا يجب أن تكون نقطة الطرد في الخزان أبعد ما يمكن عن نقطة سحب المضخات من الخزان

When checking the pump system, the valves on the discharge line are closed, the valves on the suction line are opened, and the pumps are checked using the flow meter located on the pump test line.

محبس الإنذار Alarm Check Valve

عند حدوث حريق ترتفع درجة الحرارة بالمكان إلى أن تصل ألي درجة الحرارة التي يفتح عندها الرشاش Temperature Rating للرشاش ويخرج الماء من الرشاش فيقل الضغط الماء في الشبكة ويستشعر بذلك Pressure Switch وبدورة يقوم بتشغيل المضخات ويسمح محبس ACV بمرور الماء وعمل جرس وانذار بحدوث سريان للمياه بالشبكة مما يعنى احتمالية حدوث الحريق

When a fire occurs, the temperature in the place rises until it reaches the temperature at which the sprinkler opens. Temperature Rating The glass bulb of the sprinkler breaks and water comes out of the sprinkler. The pressure of the water in the network decreases. The Pressure Switch senses this and in turn turns on the pumps. The ACV valve allows the water to pass through and creates a bell and alarm. Water flowing into the network, which means a fire may occur

فكرة عمل محبس الإنذار Operation

قبل ال ACV يتم تركيب محبس بوابة من النوعOS and Y Gate Valve وهذا لزوم أعمال الصيانة إحدى وظائف ال ACV انه محبس عدم الرجوع يسمح لمرور المياه في اتجاه واحد وهو Check إحدى وظائف الوظيفة الأساسية للمحبس إعطاء إنذار ميكانيكي وكهربي والسماح بمرور الماء عند حدوث الحريق

مكونات المحبس

ACV عبارة عن قرص معدني مثبت من جهة واحدة على مفصلة و طالما أن ضغط الماء قبل وبعد البوابة متعادل فالصمام مغلق و لا يوجد أي سريان للماء و لن يفتح الصمام حتى يكون الضغط بعدها أقل عند حدوث حريق

في جسم الصمام فتحة اسمها <u>Alarm Outlet</u> ووظيفتها عند حدوث حريق يمر كم خلالها ماء مضغوط بضغط التشغيل لل Water Motor Gong والذي بدورة يعطى إنذار ميكانيكي

Retard Chamber عبارة عن بلونة صغيرة موجودة قبل Water Gong حيث أن الماء تمر بها لتملؤها إلى أن تصل إلى ال Water Gong ليعطى إنذار ميكانيكي بالتالي تقوم بتأخير حدوث الإنذار الميكانيكي من water Gong حتى يتم التأكد من حدوث الحريق

<u>Drain Valve</u>موجود في جسم الصمام بعد البوابة وذلك حتى يتم في حالة الصيانة غلق محبس & OS وتصفية الماء وذلك عن طريق فتح الصمام الصرف

يتم تركيب مقياس للضغط قبل وبعد محبس الإنذار ACV ذلك لقياس ضغط الشبكة قبل وبعد المحبس ويتم تركيب Ball Valve قبل كل عداد لصيانة أو التغيير

يوجد ماسورة By Pass على جسم الصمام ACV وأخد طرف قبل الصمام وربطه بطرف بعد الصمام ويتم تركيبه في حالة تشغيل المضخات يزيد الضغط قبل الصمام ليتم تسريب الضغط غلى ما بعد الصمام (أي تقوم بمعادلة الضغط قبل وبعد الصمام) ويمكن تركيب Pressure Switch لإعطاء إنذار كهربي عند حدوث الحربق

مكان تركيب المحبس بالشبكة

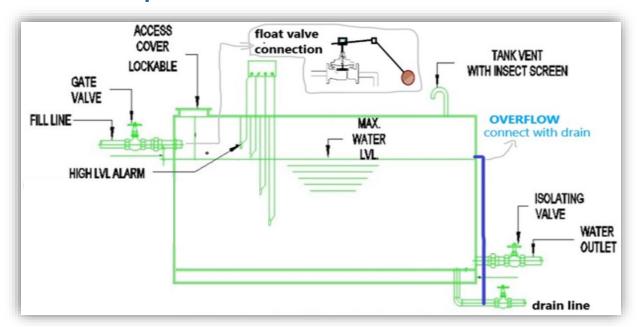
بعد المضخات قبل خطوط التغذية وعلى بداية الصواعد (الربازر) Riser

خزنات المياه لشبكة الحريق Fire Water Tank

المواد التي تصنع منها الخزانات Tank Material

يجب أن تصنع خزانات مياه الحريق من مواد غير قابلة للصدأ أو منفذة للماء مقاومة للتآكل من المياه والكلور غير سامة ويجب أن تعالج مرارا وتنظف دوريا وتكون الخزانات بسمك معين بحيث تتحمل الضغط الواقع عليها

يتوقف مادة صنع الخزان على ظروف المشروع والسعة المطلوبة – المكان المتاح للخزان – التكلفة & ويعتبر أشهر المواد المستخدمة في خزانات المياه بشبكة الحريق الخزانات الخرسانية وخزانات GRP


GRP Water Fire Pump Valves Connection

Fire water tanks must be made of water-permeable materials that are resistant to corrosion from water and chlorine and are non-toxic. They must be treated repeatedly and cleaned periodically. The tanks must be of a certain thickness so that they can withstand the pressure applied to them.

The most popular tank materials used for fire **Concrete Tanks** and **GRP** tanks

تكون الخزانات أقرب ما يكون عن غرفة المضخات، يراعى أن يكون منسوب الماء بالخزان أعلى من مستوى المضخات وتعتبر خزانات مياه الحريق الخرسانية هي الأشهر استخداما في الخزانات بحيث يكون سمك الخرسانة من 20 – 25 سم وتكون المواد المضافة لها غير سامة، ويفضل استخدام ويتم تبطينها بمواد تمنع نفاذية الماء مواد مقاومة للماء كالأبوكسي المقاوم للماء والأحماض

التوصيلات والمحابس للخزنات Pipe and Valves Tank Connection

Water Tank Valves and Main Connection

ماسورة التهوية Vent Pipe >

يزود الخزان بماسورتين تهوية بسقف الخزان وينتهيان بكوع مقلوب رقبة وزة ومركب علية شبكة حماية للخزان بكوع مقلوب رقبة وزة ومركب علية شبكة حماية wire Mesh لمنع دخول الحشرات والقوارض للخزان تستخدم ماسورة التهوية لمعادلة الضغط داخل الخزان أثناء السحب والملىء

ماسورة المليء (Make up Pipe) filling Pipe

تستخدم لملئ الخزان بالماء من مصدر الماء من شبكات المياه بالمدينة ويركب عليها صمام عوامة Float valve يعمل على غلق مسار المياه عند الوصول إلى المنسوب المطلوب يكون أعلى من مستوى الماء بالخزان بمسافة 25 سم والمسافة بين المحبس وسقف الخزان لا تقل عن 10 سم

ماسورة الفائض Overflow Pipe

تستخدم في تصريف المياه من الخزان في حالة حدوث عطل بصمام العوامة وعدم اغلاق لمسار المياه وارتفاع منسوب الماء بالخزان ويتم توصيل ماسورة الفائض على خط تصفية للخزان

ماسورة التصفية أو التصريف Drain Pipe

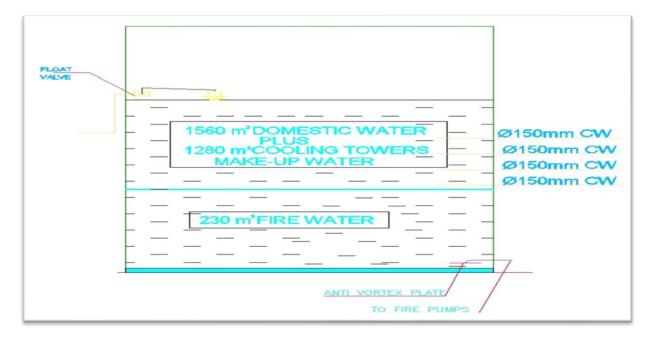
تستخدم في تصفية الخزان حالة الغسيل أو الصيانة تكون أرضية الخزان مائلة بمقدار 0.5 سم لكل متر نحو خط التصفية يتم تركيب محبس بوابة وفتحة فقط في حالات الصيانة والتصفية للخزان

ماسورة السحب أو التغذية من الخزان Discharge Pipe

لا يقل قطرها عن 4 بوصة في جميع الأحوال ولا يقل منسوب ماسورة السحب عن 5 سم قاع الخزان حتى لا يتم سحب الرواسب والاوساخ من قاع الخزان وفي بداية ماسورة السحب والحفاظ على مسافة تركيب مانع الدوامات داخل الخزان anti-vortex plate

ماسورة خط الاختبار Test line

يتم توصيلها بالخزان وتكون بمنسوب أسفل ماسورة الفائض ويتم استخدام الخط كما سبق شرحها أثناء تشغيل واختبارات المضخة لقياس معدلات التدفق


ماسورة خط تصريف الضغط الزائد Relief line

يتم توصيلها بالخزان وتكون أسفل ماسورة الفائض مباشر ويتم استخدام الخط في حاله تركيب محبس Pressure Relief Valve

يزود الخران بباب صيانة Access Door بالسقف وكذلك سلم بحاري من الصلب الذي لا يصدأ أو من الحديد المجلفن لتسهيل دخول عامل للقيام بعملية التنظيف والصيانة وفي بعض الأحيان يتم تركيب أجهزة بالخزان لقياس المنسوب المنخفض والعالى للمياه

الخزنات المشتركة لشبكات المياه والحريق

في حاله الخزنات المشتركة لتغذية شبكات المياه او أنظمة التكييف كأبراج التبريد وشبكاه الحريق بالمبنى يراعى ان يكون منسوب سحب مضخات المياه اعلى من مقدار وكمية المياه المطلوبة لشبكة الحريق

حجم خزان المياه

FIRE Tank Volume Capacity

يمكن تحديد حجم المياه اللازم للإطفاء من المعادلة الأتية:

C: Capacity of Volume for Water tank (gallon)

$$C = \frac{(Q_p * 3.78 * Time)}{1000}$$

Time Duration (min)

هو الزمن اللازم للإطفاء حتى وصول رجال الدفاع المدني والمطافئ حيث أن حجم الخزان من المفترض أنه يكفى لمكافحة الحريق حتى وصول عربات الدفاع المدني

يتم تحديد هذا الوقت من جدول الموجود بالكود NFPA 13 والذي يحدد الوقت الازم للمدة الزمنية المطلوبة للمكافحة على حسب درجة الخطورة بالمبنى

★ ملاحظة هامة: يجب الأخذ في الاعتبار المسافة والوقت المتوقع عن أقرب مركز مطافئ عن المشروع وزمن لوصول عربات الاطفاء إلى مكان المشروع ويجب مراجعة واعتماد وقت التشغيل من الدفاع المدنى.

It is the time required for extinguishing until the arrival of Fire trucks and firefighters, as the size of the tank is assumed to be sufficient to fight the fire until the arrival of Fire trucks.

The distance from the nearest Fire trucks center to the project must be taken into account and the time of arrival of Fire trucks to the project location, assuming that the degree of danger is Ordinary and the time of arrival of Fire trucks to the building location is two hours, Calculations are made over two hours.

Qp: Flow Rate of pump (gpm)

معدل التدفق وقدرات المضخات والتي يتم تحديدها من خلال الحسابات الهيدروليكية للنظام بالمشروع Flow rate which are determined through the hydraulic calculations of the building system in the project

غرف مضخات الحريق Fire Pumps Room

الهدف من غرفة مضخات الحريق هو حماية المضخات والمحركات الكهربية ولوحات التشغيل وخزان ومحرك الديزل من أي ضرر كالحريق أو الانفجار أو العوامل الجوية أو دخول الحشرات The purpose of the fire pump room is to protect the pumps, electric motors, operating panels, tank and diesel engine from any damage such as fire, explosion, weather factors or insect ingress.

حب أن تكون محمية من خطر الانفجار والنيران والفيضانات والهزات الأرضية والتجمد وغيرها من الأخطار التي تمنع تشغيل المضخات.

must be protected from the risk of explosion, fire, floods, earthquakes, freezing and other hazards that prevent the operation of the pumps.

وأن تكون بالسعة والارتفاع الكافي لاستيعاب المضخات وتوصيلاتها وملحقاتها. It must be of sufficient capacity and height to accommodate the pumps, their connections and accessories.

المضخات مناسبة تسمح بوجود فراغات Clearance ما بين المضخات والمنافذة وبعضها وبين لوحات التشغيل وبعضها وبين المضخات والحائط وذلك لسهولة التشغيل والصيانة وبعضها وبين المضخات والحائط وذلك لسهولة التشغيل والصيانة the area of the pump room is appropriate to allow for the presence of clear spaces between the pumps and each other and between the pumps and the wall, for ease of operation and maintenance.

يجب أن تكون معزولة عن باقي المبنى باستخدام مواد مقاومة للحريق للسقف والجدران It must be isolated using fire-resistant materials for the roof and walls

حب ألا تزيد درجة الحرارة داخل الغرفة عن درجة الحرارة المسموح بها من قبل الشركة الصانعة للمضخات، وخاصة المضخات التي تدار بالديزل.

The temperature inside the room must not exceed the temperature permitted by the pump manufacturer, especially diesel-driven pumps.

ونش بالغرفة Over Head Crane لزوم التركيبات ونش بالغرفة المضخات كبيرة الحجم يمكن تركيبا ونش بالغرفة المضخات كبيرة الحجم والصانة

In the event that the pumps are large, an Over Head Crane can be installed in the room for necessary installation and maintenance

ے يجب ان تكون الإضاءة داخل غرفة المضخات مناسبة وتكون متصلة بالتيار الأساسي والاحتياطي Emergency Power

The lighting inside the pump room must be appropriate and connected to the main power and emergency power in the event of a power outage

🗗 يجب أن تكون التهوية داخل الغرفة المضخات جيدة وذلك حتى يتم:

Ventilation inside the pump room must be as per technical requirement

To control the maximum temperature 49 c To supply air for engine combustion To remove any hazardous vapors

المياه أثناء يتوافر نظام صرف بغرفة المضخات الحريق Drainage System لزوم تصريف المياه أثناء لتجب أن يتوافر نظام صرف بغرفة المضخات العرفة وعمل trench وعمل ميول بالأرضية الصيانة، ويتم ذلك عن طريق عمل ميول بأرضية الغرفة وعمل A drainage system must be available in the fire pump room, as it is necessary to drain water during maintenance.

في حال كانت غرفة المضخات تحت الأرض تحت منسوب التصريف الطبيعي يتم عمل بيارة صرف Submersible Pump وتركيب مضخة غاطسة Submersible Pump لزوم تصريف المياه If the pump room is underground and below the normal drainage level, a sump pit is constructed and a submersible pump is installed

توصيل عادم (مدخنة) مضخة الديزل بقطر مناسب ومعزول بمواد مقاومة للحرارة. Exhaust (chimney) connection of the diesel pump of suitable diameter and insulated with heat-resistant material.

- سد جميع الفتحات والفراغات حول أماكن اختراق الأنابيب والكوابل للجدران والأسقف والأرضيات. Close all openings around where pipes and cables penetrate walls, ceilings, floors.
- حمل قواعد للمضخات تتناسب مع وزنها وحسب توصيات وتعليمات الجهة المصنعة، وذلك بهدف حمايتها من الاهتزازات والعوامل الميكانيكية.

Make bases for the pumps that are proportional to their weight and according to the manufacturer's recommendations and instructions

تأمين كاشف للدخان ويتم ربطه على نظام الإنذار بالمبنى. Room smoke detector that is connected to the building's alarm system.

حماية غرفة المضخات الحريق

Fire Pump Room Protection

في حالة إن غرفة المضخات تحتوي على مضخات تعمل بمحركات كهربائية يتم مكافحة الحريق للغرفة برشاشات تلقائية (إن لزم الأمر) وتعامل الغرفة على أن درجة الخطورة Ordinary Hazard Group 1

حالة إن غرفة المضخات تحتوي على مضخات تعمل بمحركات ديزل يلزم عمل نظام مكافحة حريق للغرفة بالرشاشات التلقائية Extra Hazard Group 2 وتصنف الغرفة بالرشاشات التلقائية كما يتم عادتا وضع أجهزة إطفاء يدوية تعمل بالفوم خارج الغرفة لزوم مكافحة الحريق لخزانات الديزل

تعليمات تركيبات مضخات الحريق

- المثال نوع النظام لوحة تحكم كل مضخة حالة الصمامات (مفتوحة أم مغلقة) اتجاه السريان المثال نوع النظام لوحة تحكم كل مضخة حالة الصمامات
 - ← يجب توصيل ماسورة عادم مضخة الديزل Muffler إلى الخارج وأن تكون بقطر مناسب ويتم عزلها بمواد مقاومة للحرارة و أن يكون السحب من خزان الوقود أعلى من الدخول على محرك الديزل
- ← يجب أن تكون جميع المواسير في غرفة المضخات فوق الارض على ركائز supports ودهان جميع المواسير باللون الأحمر فيما عدا مواسير الوقود او الزيوت باللون الأخضر
 - 🛨 يجب سد جميع الفراغات حول مواسير والكابلات للحوائط والكابلات
 - البحارية البطاريات الخاصة بمضخة الديزل فوق حامل على الارض وفي موقع لا يتأثر العوامل الجوبة أو موقع رشح الماء أو وقود أو زبت
 - ← يجب توفير قواعد للمضخات تتناسب مع وزن المضخة وحسب تعليمات الجهة المصنعة وذلك لحمايتها من الاهتزازات والعوامل الميكانيكية
 - ← يفضل ان لا تقل الفراغات حول مجموعة المضخات الديزل والجوكي والكهربية عن 1 متر من كل الجوانب لسهولة التركيبات والصيانة ولا تقل المسافة ما بين المضخات عن 80 سم

لوحات الكهرباء لمضخات الحريق Fire Pump Electrical Panel

- 🛨 لكل مضخة حريق يوجد لوحة كهربائية للتحكم والتشغيل
- 🛨 يجب ان تكون لوحة التحكم وملحقاتها خاصة لاستعمال مضخات الحريق فقط
 - 🛨 يجب أن تكون لوحات التحكم محمية من العوامل الجوية
- ➡ يجب ان تكون اللوحات معتمده وتتوافق مع معايير الجهات الحكومية المختصة (الدفاع المدني) مع مراعاة الاشتراطات الخاصة بالأكواد المحلية والعالمية
- 🛨 يراعي عند تركيب لوحات التحكم وجود مسافة مناسبة بين اللوحة والأخرى لزوم التشغيل والصيانة
- ➡ يجب أن تحتوي على مصابيح وأجراس لبيان الأخطار وللتحذير ارتفاع درجة حرارة المحرك- انخفاض مستوى الزيت انخفاض فولتية البطارية محرك الديزل)
 - 🛨 يجب وضع مخطط التوصيلات الكهربائية للمضخة داخل غلاف لوحة التحكم
 - أن يتوجد بطاريتين لكل محرك ديزل بحيث تكون كل بطارية كافية لتشغيل المحرك 🗲

فحص وتشغيل مضخات الحريق Fire Pump Test and Operation

الاشتراطات الفنية التي يجب تحقيقها بمضخات الحريق

لدينا ثلاث قراءات رئيسية يجب أخذها بالاعتبار والتي تشكل الفرق بين مضخة الحريق والمضخات الأخرى فعند اختيار مضخة الحريق من كتالوجات الشركات المصنعة فيجب تحقيق الاشتراطات الاتية:

1-أن تعطى معدل التدفق Rated Flow Rate و الضغط المطلوب Rated Head حسب التصميم

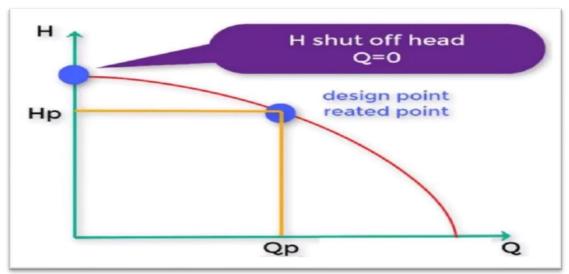
2-أن تعطى معدل تدفق حتى 150 % من معدل التدفق المطلوب و عند هذه القيمة تعطينا ضغط لا يقل عن 65 % من الضغط المطلوب بالنظام

3- يجب ألا يزيد ضغط Shut off headعن 140% من القيمة التصميمية DDوهي الحالة عندما يكون معدل التدفق Q=0

يتم تطبيق هذه الشروط على Performance Curve الخاص بالمضخات والتأكد من تطبيقها بالموقع اثناء الاختبارات والتشغيل

Technical requirements that must be met with fire pumps

When choosing a fire pump the following requirements must be met:


- 1- The Rated Flow Rate and the required Rated Head pressure shall be given according to the design
- 2-To give a flow rate of up to 150% of the required flow rate, and at this value gives a pressure not less than 65% of the required design and system operated pressure
- 3- Shut off pressure must not exceed 140% of the design value, which is the case when the flow rate Q=0.

These conditions are applied to the Performance Curve of the pumps and ensured that they are applied on site during tests and operation

ما هو منحنى الأداء للمضخات Pump Performance Curve

هو المنحنى الذي يوضح العلاقة ما بين قيم معدلات التدفق للمياه من المضخات مع قيم ضغط هذه المياه ويمكن الحصول على هذا المنحني في كتالوجات الشركة المصنعة للمضخات.

Pump Performance Curve shows the relationship between the flow rate values of water from pumps and the pressure values of this water.

قراءه منحنى الأداء

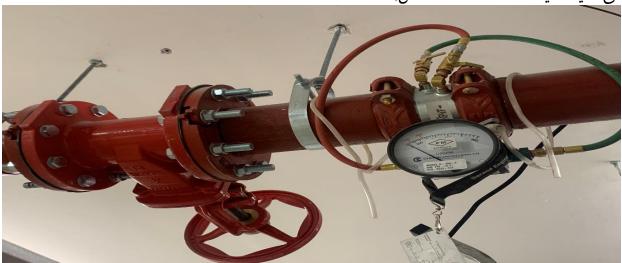
القراءة الرأسية وتمثل مقدار ضغط المضخة.Pump Head

العلاقة بين الضغط والتدفق على هذا المنحى علاقة عكسية، أي أنه كلما زادت قيمة التدفق قلت قيمة الضغط والعكس فمثلا عندما يكون التدفق صفر، بالتالي يكون الضغط في أعلى قراءة له.

Pump Performance Curve

The vertical reading represents the <u>pump head pressure</u>.

The horizontal reading represents the amount of pump flow.


The relationship between pressure and flow on this curve is an inverse relationship, meaning that the higher the flow value, the lower the pressure value, for example, when the flow is zero, therefore, the pressure is at its highest reading.

خطوات فحص أداء مضخات إطفاء الحريق

فحص أداء المضخات باستخدام خط الفحص Test Line للحصول على القراءات الفعلية لمعدل التدفق Flow والضغط Head ، ومقارنة هذه القراءات مع ما هو منحني أداء المضخات كالتالي:

المياه المتدفقة فقط إلى خط فحص المضخات.

√ قبل أخذ القراءات المطلوبة نقوم بفتح المحبس الأول على خط الفحص بشكل كامل بحيث لا يؤثر على كمية المياه المتدفقة أثناء الفحص.

Water Flow Meter and Gate Valve (Test Line)

√ يتم التحكم بكمية المياه المتدفقة من خلال المحبس الموجود بعد مقياس التدفق Flow Meter على خط الاختبار، حيث نأخذ ثلاث قراءات للتدفق لقياس أداء المضخة الرئيسية ونقوم بتسجيل قراءة الضغط Pressure المقابلة لها كالتالى:

- 🛨 عند القيم التصميمية للنظام لكل من الضغط والتدفق
 - Q=0 عندما تكون —
 - 🗲 عند القيمة العظمى لمعدل التدفق
- → من خلال تحديد قيم الضغط ومعدلات التدفق التشغيلي للمضخات ومعرفة الضغوط ومعدلات التدفق التصميمية أو التشغيلية ومقارنته مع منحنى أداء المضخة التي تم اعتمادها وتركيبها بالمشروع ✓ بعد الانتهاء من الفحص نقوم باغلاق المحبس على خط الفحص وفتح محابس تغذية الشبكة

Steps to check the performance of firefighting pumps

Check the operational performance of the pumps using the Test Line to obtain the actual readings of the flow rate and head pressure for the three pumps, and compare these readings with the pumps' performance curve as follows:

First, we close all valves on systems discharge, so that only flowing water goes to the pump test line.

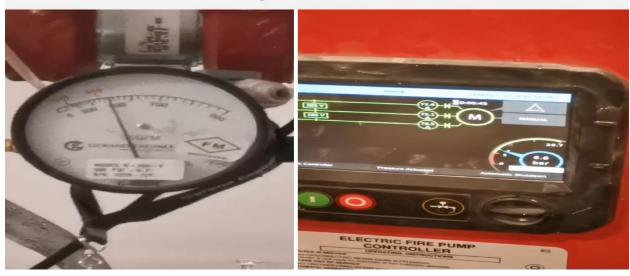
Before taking the required readings, we completely open the first valve on the test line so that it does not affect the amount of water flowing during the test.

The amount of water flowing is controlled through the valve located after the flow meter on the test line, where we take three flow readings to measure the performance of the main pump and record the corresponding pressure reading as follows:

When Q=0.

At the system's design values for both pressure and flow. At the maximum value of the flow rate

By determining the pressure values and operational flow rates of the pumps, knowing the design or operational pressures and flow rates, and comparing them with the performance curve of the pump.


After completing the inspection, we completely close the valve on the test line and open the main network valves

التطبيق العملى لقراءات اختبار وفحص المضخات

بعد التأكد من اغلاق محبس تغذية الشبكة وفتح محبس خط الاختبار على خط خروج المضخات سيتم العمل للحصول على 3 قراءات الاتية ومقارنتها مع متطلبات كود NFPA 20

الخطوة الأولى: اختبار تشغيل المضخات لقيمة الضغط ومعدلات التدفق المطلوبة حسب التصميم

Test for Design Flow Rate, Pressure

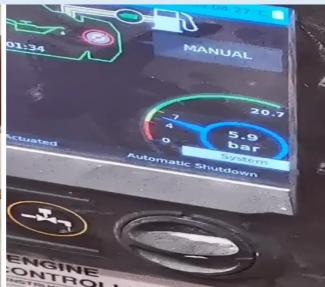
- 🛨 يتم التحكم بكميات وسريان المياه من خلال المحبس الموجود بعد عداد قراءه معدلات التدفق
- طى سبيل المثال في حاله ان الضغط المطلوب للشبكة 7 بار مع معدل تدفق GPM 500 يتم التحكم لقياس كمية المياه من خلال المحبس الموجود بعد عداد قراءه معدلات التدفق Flow Meter
- الضغط التى تم تركيبها على المضخات تشغيل المضخات والتأكد من قيمته من خلال عدادات الضغط التى تم تركيبها على المضخات
 - 🗸 بعد ذلك يتم التأكد القراءات التي تم الحصول عليها انها تتوافق مع متطلبات التصميم بالشبكة

<u>Firest Step</u>: Test operation of pumps to the required pressure value and flow rates as per design water flow are controlled through the valve located after the flow rate water meter at fire pump test line

الخطوة الثانية: التأكد من ان أقصى ضغط يمكن ان يحدث اثناء عمل المضخات وتوقف السريان للمياه بالشبكة لا يزيد عن 140 % من الضغط التشغيلي المطلوب بالشبكة

Test for Flow Rate Zero & H shut of Pressure < 140 % System Design

- المضخات والحصول على اعلى قراءه للضغط يمكن حدوثها بالشبكة
 - المضخات مع قيمة الفراءة التي سيتم الحصول عليها من لوحات الكهرباء وعدادات الضغط على المضخات مع قيمة الضغط التصميمي للشبكة
- ✓ كما هو موضح بالصورة السابقة اثناء اختبار مضخات بالقيم التصميمية المطلوبة كمثال للضغط المطلوب 7 بار ومعدل تدفق GPM 500 فان قراءه ضغط Churn Pressure & Head Shutoff كانت 8.1 بار وهو رقم لا يزيد عن 140 % من قيمة الضغط المطلوب للنظام حسب اشتراطات NFPA 20


Second Step: Ensure that the maximum shut of (churn) pressure does not exceed 140% of the required system pressure by completely closing the valve located after the flow rate meter while the pumps are running and obtaining the highest pressure reading that can occur in the network.

الخطوة الثالثة: التأكد من عند حدوث سريان ومعدل تدفق بقيمة 150 % من المطلوبة للنظام لا يقل الضغط عن قيمة 65% من الضغط التصميمي للشبكة

Test for Flow Rate 150 % Design & Pressure > 65% System Design

← يتم ذلك من خلال التحكم بمقدار فتح المحبس بعد عداد معدلات التدفق حتى يتم تسجيل قراءه بعداد قياس معدلات التدفق Flow Rate التصميمية وتسجيل قراءات الضغط عند هذا الرقم لمقارنته بعد ذلك بالضغوط التصميمية للشبكة

√ كما هو موضح بالصورة السابقة اثناء اختبار مضخات بالقيم التصميمية المطلوبة كمثال للضغط المطلوب 7 بار ومعدل تدفق 67M GPM فانة في حاله سريان المياه بقيمة 750 GPM سجلت قراءات الضغط لتكون 5.8 وهي قيمة لا تقل عن 65 % من الضغط التصميمي المطلوب 7 بار

ملاحظة: قيم اختبارات الضغوط ومعدلات التدفق بالصور السابقة قد تختلف من شبكة لأخرى حسب احتياجات النظام التصميمية

Third Step: Ensure that when flow and flow rates occur at 150% of what is required for the system, the pressure is not less than 65% of the network's design pressure by controlling valve opening after the flow meter when a reading recorded equal to 150% of the design flow rate, recording the pressure readings.

مضخات الحريق في مباني الأبراج

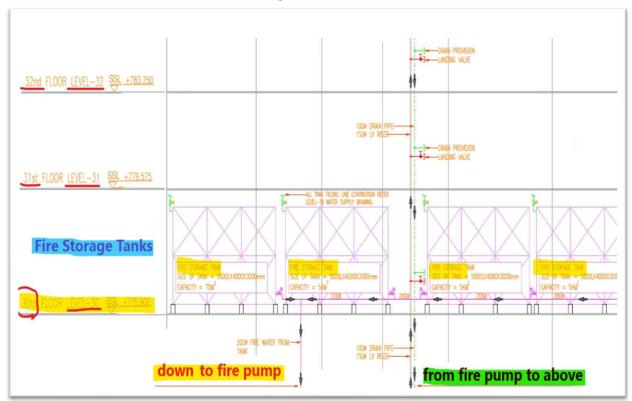
Fire Pump at High Rise Building

لمعرفة الأفكار التصميمية لشبكة الحريق بمشاريع الأبراج والتي قد تختلف من برج لأخر حسب الارتفاع فسيتم عمل مقارنة بين فكره التصميم لمشروعين أبراج واحد 15 دور والتاني 33 دور وذلك لاختلاف الأفكار التصميمية فيما بينهم.

تعريف مباني الأبراج High Rise Building حسب كود 101 NFPA

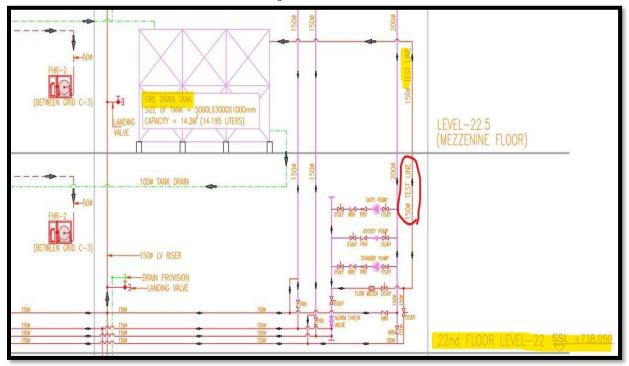
✓ هي المباني تكون فيه ارتفاع الأدوار التي يتم اشغالها أكبر من 75 قدمًا (23 مترًا) فوق أدنى مستوى لمركبات وسيارات الإطفاء

3.3.37.7* *High-Rise Building.* A building where the floor of an occupiable story is greater than 75 ft (23 m) above the lowest level of fire department vehicle access. (SAF-FUN)


الحالة الأولى لبرج بارتفاع 15 دور

- → كمثال توضيحي لفكره التصميم فيمكن ان تتواجد مضخات الحريق بمبنى خدمات ملحق بالمبنى الرئيسي ومنسوب غرفة المضخات تحت منسوب الدور الأرضي بجوار خزانات المياه الخرسانية & او تركيب المضخات بالأدوار الخدمية وغرف الميكانيكا أسفل من البرج مع استخدام خزنات خرسانية او خزنات GRP بداخل المبنى
- → كميات المياه والضغوط المطلوبة بالشبكة ليس فقط لغرض تغذية رشاشات الحريق ولكن أيضا لتغذية صناديق حريق والتي يكون الضغط التشغيلي لها 4.5 بار 2 Class و محابس رجال الإطفاء بسلالم المبنى 1 Class والتي تطلب ضغط تشغيلي 6.9 بار
- → يجب ان لا تقل قيمة الضغط عن 6.9 بار في اعلى نقطة بالبرج (نهاية الريازر) في حاله استخدام محابس السلالم 1 Class حتى يتم تغطيه كامل متطلبات ضغوط التشغيل للمحابس بجميع أدوار المبنى
 - → قد يصل الضغط التشغيلي المطلوب من المضخات بالنظام في هذه الحالة الى 16 بار لتغذية وتحقيق متطلبات ضغوط ومتطلبات الشبكة بالمبنى (ملاحظة تختلف قيمة الضغوط حسب المعايير والمتطلبات التصميمية من مبنى للأخر لذلك يعتبر الرقم بالمثال السابق اعتباريا لتوضيح الفكرة وقيم الضغوط المتوقعة)

→ نظرا لان أقصى قيمة لضغط رشاشات الحريق يجب ان لا تزيد هي 12 بار وبالتالي سيتم تركيب واستخدام محابس لتخفيض الضغط مع مجموعة محابس الزونات Zone Control Valve في الأدوار التي يكون الضغط عندها اعلى من القيمة المسموح بها


الحالة الثانية لمبائى الأبراج شاهقة الارتفاع والتى قد تصل الى 30 دور او أكثر

- → لنفترض تطبيق نفس الفكرة للبرج السابق لبرج بارتفاع 33 دور فان قيمة الضغط الافتراضية المطلوبة من المضخات للوصول لأعلى البرج قد تتجاوز 28 بار وهي تعتبر قيمة كبيره يصعب توفرها بكميات المياه ومتطلبات مضخات الحريق وأيضا ستجد مشكله في قدرات التحمل للضغوط العالية في المواسير والقطع والمحابس بالشبكة
 - ✓ كيف يتم توزيع شبكة الحريق بمباني الأبراج شاهقة الارتفاع والتي قد تصل لأكثر من 30 دور
 - → كمثال بمشروع برج ارتفاعه 33 دور يمكن توزيع الشبكة كالتالي غرفه المضخات في الدور 22 وخزنات المياه للحريق بالدور 30 واستخدام خزانات من النوع GRP

√ في الصورة السابقة من مخطط Riser Diagram للبرج يوضح تجميع الخزنات الموجودة بالدور 30 للمياه ونزول المياه بتأثير الجاذبية لتغذية المضخات بالدور 22 ثم ضخ المياه حاله حدوث الحريق من المضخات للأدوار العليا لمكافحة الحريق

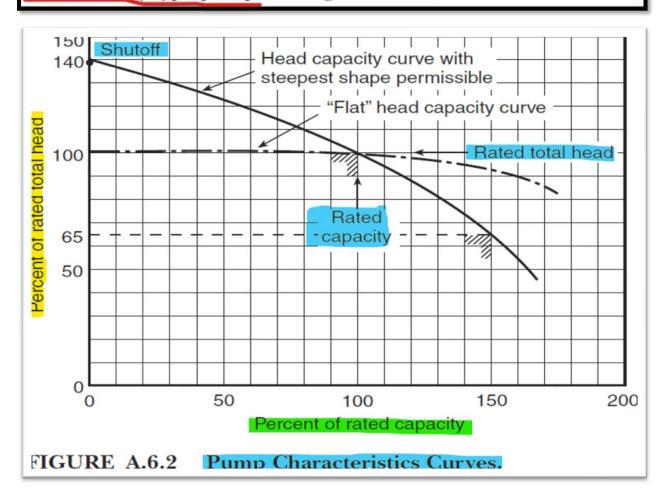
→ ظروف التشغيل حاله حدوث الحريق في الادوار العليا من البرج فوق الدور 22 لمكان غرفة المضخات حيث ان عدد الادور اعلى المضخات تصل ل 11 دور وبالتالي يمكن للمضخات تحقيق الضغوط المطلوبة

√ في الصورة من مخطط Riser Diagram للبرج يوضح مكان غرفة المضخات بالدور 22 من البرج ويلاحظ ان خط الاختبار Test Line يكون قريب من مكان المضخات ولا يتم إعادة وربط خط الاختبار بخزنات تغذية المياه للمضخات والموجودة في البرج بالدور 30 كما سبق توضيحه

→ بالنسبة للأدوار القريبة وتحت غرف المضخات الموجود بالدور 22 ستعمل المضخات لتحقق الضغوط المطلوبة اما بالنسبة للأدوار السفلية (منخفضة الارتفاع) من المبني فيتم تحقق الضغط بتأثير ضغوط Static Pressure والناتجة عن ارتفاع خزانات المياه بالشبكة مع تركيب محابس لتخفيض الضغط في بعض الأدوار في حاله زيادة الضغوط عن اقصى قيمة مسموح بها

★ <u>ملاحظة:</u> ما سبق شرحة لهدف توضيح الأفكار التصميمية للأبراج من واقع الخبرات العملية مع أهمية الاخذ في الاعتبار ان مكان الادوار الخدمية للمضخات والخزنات قد تختلف من برج ومبنى للأخر.

تلخيص للمراجع References


NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection

Pump Performance and technical requirement

6.2* Factory and Field Performance.

6.2.1 Pumps shall furnish not less than 150 percent of rated capacity at not less than 65 percent of total rated head. (See Figure A.6.2.)

6.2.2 The shutoff head shall not exceed 140 percent of rated head for any type pump. (See Figure A.6.2.)

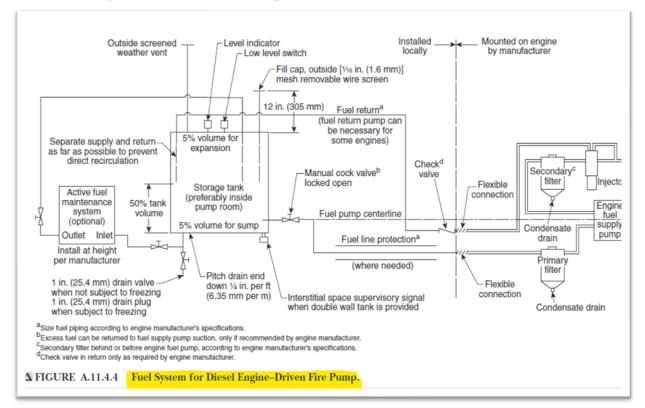
Centrifugal Fire Pump Flow Rate Capacities

△ Table 4.10.2 Centrifugal Fire Pump Capacities

gpm	L/min	gpm	L/min
25	95	1,000	3,785
50	189	1,250	4,731
100	379	1,500	5,677
150	568	2,000	7,570
200	757	2,500	9,462
250	946	3,000	11,355
300	1,136	3,500	13,247
400	1,514	4,000	15,140
450	1,703	4,500	17,032
500	1,892	5,000	18,925
750	2,839		

Vertical Turbine Fire Pump Application

Chapter 7 Vertical Shaft Turbine-Type Pumps


7.1* General.

7.1.1* Application. Where the water supply is located below the discharge flange centerline and the water supply pressure is insufficient to deliver the water to the fire pump, a vertical shaft turbine—type pump shall be used.

> Deisel Fire Pump Daily Tank Calculation

A.11.4.1.2 The quantity 1 gal per hp (5.07 L per kW) is equivalent to 1 pint per hp (0.634 L per kW) per hour for 8 hours. Where prompt replenishment of fuel supply is unlikely, a reserve supply should be provided along with facilities for transfer to the main tanks.

Fuel System for Diesel Engine

Fire Pump Room Requirement

Room Lighting

- **4.14.4 Normal Lighting.** Artificial light shall be provided in a pump room or pump house.
- 4.14.5 Emergency Lighting.
- 4.14.5.1 Pump rooms shall be provided with emergency lighting.
- **4.14.5.2** The intensity of illumination in the pump room(s) shall be 3.0 ft-candles (32.3 lux), unless otherwise specified by a requirement recognized by the authority having jurisdiction.
- 4.14.5.3 Emergency lights shall not be connected to an engine-starting battery.
- 4.14.5.4 The emergency lighting shall be capable of maintaining the lighting level for a minimum of 2 hours.

Room Containment Permitted and Required Clearance

4.14.1.1.2* Except as permitted in 4.14.1.1.3, indoor fire pump rooms in non-high-rise buildings or in separate fire pump buildings shall be physically separated or protected by fire-rated construction in accordance with Table 4.14.1.1.2.

4.14.1.1.3* Fire pump units supplying a local application fire protection system(s) shall be physically separated from the hazard being protected in a manner that will prevent a fire associated with the hazard from directly exposing the pumping unit.

4.14.1.1.4 The location of and access to the fire pump room shall be preplanned with the fire department.

4.14.1.1.5* Except as permitted in 4.14.1.1.6, rooms containing fire pumps shall be free from storage, equipment, and penetrations not essential to the operation of the pump and related components.

4.14.1.1.6* Equipment related to domestic water distribution shall be permitted to be located within the same room as the fire pump equipment.

4.14.1.1.7 The pump room or pump house shall be sized to fit all of the components necessary for the operation of the fire pump and to accommodate the following:

- (1) Clearance between components for installation and maintenance
- (2) Clearance between a component and the wall for installation and maintenance
- (3) Clearance between energized electrical equipment and other equipment in accordance with NFPA 70
- Orientation of the pump to the suction piping to allow compliance with 4.16.6.3

> Room Ventilation

4.14.6 Ventilation. Provision shall be made for ventilation of a pump room or pump house.

> Room Heat

4.14.3 Heat.

4.14.3.1 An approved or listed source of heat shall be provided for maintaining the temperature of a pump room or pump house, where required, above 40°F (4°C).

Room Drainage

4.14.7* Drainage.

4.14.7.1 Floors shall be pitched for adequate drainage of escaping water away from critical equipment such as the pump, driver, controller, and so forth.

4.14.7.2 The pump room or pump house shall be provided with a floor drain that will discharge to a frost-free location.

Room Protection

Room Hazard Classification

4.14.1.4 Fire Pump Buildings or Rooms with Electric Drivers. For buildings that are required to be sprinklered, fire pump buildings or rooms enclosing electric fire pump drivers shall be protected with an automatic sprinkler system installed in accordance with NFPA 13 as an Ordinary Hazard Group 1 occupancy.

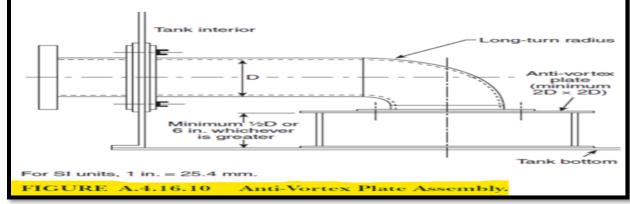
4.14.1.3 Fire Pump Buildings or Rooms with Diesel Engines. Fire pump buildings or rooms enclosing diesel engine pump drivers and day tanks shall be protected with an automatic sprinkler system installed in accordance with NFPA 13 as an Extra Hazard Group 2 occupancy.

> Room Fire Rated Construction Requirement

4.14.1.1.27 Except as permitted in 4.14.1.1.3, indoor fire pump rooms in <u>non-high-rise buildings</u> or in separate fire pump buildings shall be physically separated or protected by fire-rated construction in accordance with <u>Table 4.14.1.1.2.</u>

Table 4.14.1.1.2 Equipment Protection

Pump Room/ House	Building(s) Exposing Pump Room/House	Required Separation 2 hour fire-rated or 50 ft (15.3 m) 1 hour fire-rated or 50 ft (15.3 m)	
Not sprinklered Not sprinklered Fully sprinklered	Not sprinklered Fully sprinklered Not sprinklered		
Fully sprinklered	Fully sprinklered		


Fire Pump Valves

Pump Suction Line

4.16.6* Installation.

4.16.6.1 General. Suction pipe shall be <u>laid carefully</u> to avoid air leaks and air pockets, either of which can seriously affect the operation of the pump.

4.16.10* Anti-Vortex Plate. Where a tank is used as the suction source for a fire pump, the discharge outlet of the tank shall be equipped with an assembly that controls vortex flow in accordance with NFPA 22.

Pump Suction Valves

4.16.5* Valves.

4.16.5.1 A listed outside screw and voke (OS&Y) gate valve shall be installed in the suction pipe.

Pump Automatic Air Release Installation

6.3.3 Automatic Air Release.

6.3.3.1 Unless the requirements of 6.3.3.2 are met, pumps that are automatically controlled shall be provided with a listed float-operated air release valve having a nominal 0.50 in. (12.7 mm) minimum diameter discharged to atmosphere.

Valves Supervision Method

4.18* Valve Supervision.

- **4.18.1 Supervised Open.** Where provided, the suction valve, discharge valve, bypass valves, and isolation valves on the backflow prevention device or assembly shall be supervised open by one of the following methods:
- Central station, proprietary, or remote station signaling service
- (2) Local signaling service that will cause the sounding of an audible signal at a constantly attended point
- (3) Locking valves open
- (4) Sealing of valves and approved weekly recorded inspection where valves are located within fenced enclosures under the control of the owner
- **4.18.2 Supervised Closed.** Control valves located in the pipeline to the hose valve header shall be supervised closed by one of the methods allowed in 4.18.1.

Pump Discharge Pressure Relief Valves (Case of Required)

4.20 Relief Valves for Centrifugal Pumps.

4.20.1* General.

4.20.1.1* Pressure relief valves shall be used only where specifically permitted by this standard.

4.20.1.2 Where a diesel engine fire pump is installed and where a total of 121 percent of the net rated shutoff (churn) pressure plus the maximum static suction pressure, adjusted for elevation, exceeds the pressure for which the system components are rated, a pressure relief valve shall be installed.

Relief Valve Installation Requirement

4.20.9 Shutoff Valve. A shutoff valve shall not be installed in the relief valve supply or discharge piping.

⊕ WWW.MCP-ACADEMY.COM © INFO@MCP-ACADEMY.COM ©+201017923307

4.20.6.3 Relief valve discharge piping returning water back to the supply source, such as an aboveground storage tank, shall be run independently and not be combined with the discharge from other relief valves.

N 4.20.6.4 Relief valve discharge piping from a single fire pump returning water back to the supply source shall be permitted to be combined with fire pump test piping downstream of any control valve in a manner that complies with 4.20.6, 4.22.2, and 4.22.3.

4.13 Circulation Relief Valve.

4.13.1 General Requirements.

4.13.1.1* Where an electric variable speed pump is installed, the automatic circulation relief valve shall open at the minimum speed.

4.13.1.2 Unless the requirements of 4.13.1.8 are met, each pump(s) shall have an automatic relief valve listed for the fire pump service installed and set below the shutoff pressure at minimum expected suction pressure.

4.13.1.3 The valve shall be installed on the discharge side of the pump before the discharge check valve.

4.13.1.3.1 For multistage multiport pumps, the automatic circulation relief valve shall be installed before the discharge check valve for the last port and set below the churn pressure of the first port.

4.13.1.4 The valve shall provide sufficient water flow to prevent the pump from overheating when operating with no discharge.

Relief Valve Installation Location

4.20.3 Location. The relief valve shall be located between the pump and the pump discharge check valve and shall be so attached that it can be readily removed for repairs without disturbing the piping.

4.20.4 Type.

4.20.4.1 Pressure relief valves shall be either a listed springloaded or a pilot-operated diaphragm type.

Relief Valve Setting Pressure

4.20.1.3.1 Where an electric variable speed pump or diesel pressure limiting driver is used, the pressure relief valve shall be set to a minimum of 10 psi (0.68 bar) above the set pressure of the variable speed pressure limiting control.

Pressure Sensing Line

4.32* Pressure Actuated Controller Pressure Sensing Lines.

4.32.1 For all pump installations, including jockey pumps, each controller shall have its own individual pressure sensing line.

4.32.1.1 Every multistage multiport pump for each discharge port shall have its own individual pressure sensing line connected to the fire pump controller.

4.32.1.1.1 The pressure maintenance pump controller for each discharge port shall have its own individual pressure sensing line.

4.32.2 The pressure sensing line connection for each pump, including jockey pumps, shall be made between that pump's discharge check valve and discharge isolation valve.

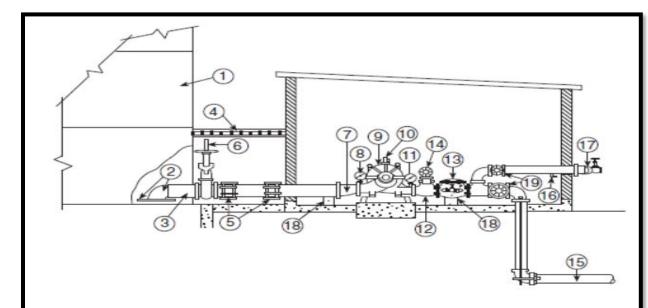
4.32.3* The pressure sensing line shall be brass, rigid copper pipe Types K, L, or M, or Series 300 stainless steel pipe or tube, and the fittings shall be of $\frac{1}{2}$ in. (15 mm) nominal size.

> Fire Pump Test Line

4.22 Water Flow Test Devices.

4.22.1 General.

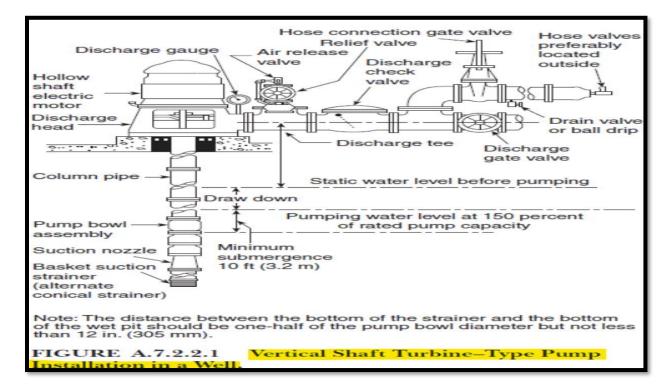
4.22.1.1* A fire pump installation shall be arranged to allow the test of the pump at its rated conditions as well as the suction supply at the maximum flow available from the fire pump.


Test Line Flow Meter Requirement

4.22.2 Meters and Testing Devices.

4.22.2.1* Metering devices or fixed nozzles for pump testing shall be listed.

4.22.2.2 Metering devices or fixed nozzles shall be capable of water flow of not less than 175 percent of rated pump capacity.


Fire Pump Valves Hook up

- 1 Aboveground suction tank
- 2 Entrance elbow and square steel vortex plate with dimensions at least twice the diameter of the suction pipe. Distance above the bottom of tank is one-half the diameter of the suction pipe with minimum of 6 in. (152 mm).
- 3 Suction pipe
- 4 Frostproof casing
- 5 Flexible couplings for strain relief
- 6 OS&Y gate valve (see 4.16.5 and A.4.16.5)
- 7 Eccentric reducer
- 8 Suction gauge

- 9 Horizontal split-case fire pump
- 10 Automatic air release
- 11 Discharge gauge
- 12 Reducing discharge tee
- 13 Discharge check valve
- 14 Relief valve (if required)
- 15 Supply pipe for fire protection system
- 16 Drain valve or ball drip
- 17 Hose valve manifold with hose valves
- 18 Pipe supports
- 19 Indicating gate or indicating butterfly valve
- △ FIGURE A.6.3.1(a) Horizontal Split-Case Fire Pump Installation with Water Supply Under a Positive Head.

Vertical Turbine Pumps Valves

Fire Pump Setting and Operation

- (4) *Fire Pump Settings.* The fire pump system, when started by pressure drop, should be arranged as follows:
 - (a) The jockey pump stop point should equal the pump churn pressure plus the minimum static supply pressure.
 - (b) The jockey pump start point should be at least 10 psi (0.68 bar) less than the jockey pump stop point.
 - (c) The fire pump start point should be 5 psi (0.34 bar) less than the jockey pump start point. Use 10 psi (0.68 bar) increments for each additional pump.
 - (d) Where minimum run times are provided, the pump will continue to operate after attaining these pressures. The final pressures should not exceed the pressure rating of the system.
 - (e) Where the operating differential of pressure switches does not permit these settings, the settings should be as close as equipment will permit. The settings should be established by pressures observed on test gauges.

NFPA 22 Standard for Water Tanks for Private Fire Protection

Water Tank Material for Fire Pump

4.4 Tank Materials.

4.4.1 Materials shall be limited to <u>steel, wood, concrete,</u> coated fabrics, and <u>fiberglass-reinforced</u> plastic tanks.

4.4.2 The elevated wood and steel tanks shall be supported on steel towers or reinforced concrete towers.

Fire Water Tank Component and Requirement

Anti-Vortex Plate

14.2.13* Anti-Vortex Plate Assembly.

14.2.13.1 The discharge outlet for every suction tank shall be equipped with an anti-vortex plate assembly.

14.2.13.2* The assembly shall consist of a horizontal steel plate that is at least twice the diameter of the outlet on a long radius elbow fitting, where required, mounted at the outlet a distance above the bottom of the tank equal to one-half the diameter of the discharge pipe.

14.2.13.3 The minimum distance above the bottom of the tank shall be 6 in. (152 mm).

Water Tank Overflow

14.6 Overflow.

14.6.1 Size. The overflow pipe shall have a capacity greater than the fill connection but shall not be less than 3 in. (75 mm) throughout.

14.6.2 Inlet.

14.6.2.1 The inlet of the overflow pipe shall be located at the top capacity line or high waterline.

14.6.2.2 The inlet also shall be located at least 1 in. (25 mm) below the bottom of the flat cover joists in a wood tank, but shall never be closer than 2 in. (50 mm) to the top of the tank.

Water Tank Filling Line Requirements

14.4 Filling.

- **14.4.1** A permanent pipe connected to a water supply shall be provided to fill the tank, except as provided in 14.4.1.1.
- **14.4.1.1** Where a permanent water supply is not available to refill the tank, an approved plan shall be permitted for manually refilling the tank.
- 14.4.1.2 During the time that the tank does not have sufficient capacity to meet the demand of the fire protection system(s), the impairment procedures of NFPA 25 shall be followed.
- **14.4.2** The means to fill the tank shall be sized in accordance with 4.2.1.4.
- 14.4.3 The tank shall be kept filled, and the water level shall never be more than 4 in. (102 mm) below the designated fire service level.
- 14.4.4 The filling bypass shall be kept closed when not in use.

Water Tank Drain

14.7.4 Tank Riser Drain.

14.7.4.1 A drain pipe of at least 2 in. (50 mm) that is fitted with a controlling valve and a ½ in. (13 mm) drip valve shall be connected into the tank discharge pipe near its base and on the tank side of all valves.

Water Tank Sump Pit

15.1.8* Pit Drain. A sump and drain shall be provided wherever a sewer is available or where soil conditions make the arrangement possible.

Water Tank Sensors (Case of Required)

14.9 Sensors.

- **14.9.1** Provisions shall be made for the installation of sensors in accordance with *NFPA 72* for two critical water temperatures, two critical water levels, and two critical pressure readings (for pressure tanks only).
- **14.9.2** Where supervision is required, supervision shall be provided as follows:
- (1) Water temperature below 40°F (4.4°C)
- (2) Return of water temperature to 40°F (4.4°C)
- (3) Water level 3 in. (76.2 mm) (pressure tanks) or 12 in. (300 mm) (all other tanks)
- (4) Return of water level to normal
- (5) Pressure in pressure tank 10 psi (0.48 kPa) below normal
- (6) Pressure in pressure tank 10 psi (0.48 kPa) above normal

Fire Water Tank Test and Inspection

Concrete Tank Leakage Test

17.7 Concrete Tanks.

- 17.7.1 Leakage Testing. On completion of the tank and prior to any specified backfill placement at the footing or wall, the test specified in 17.7.2 through 17.7.4 shall be applied to ensure watertightness.
- 17.7.2 Preparation. The tank shall be filled with water to the maximum level and left to stand for at least 24 hours.
- 17.7.3 Measurement. The drop in liquid level shall be measured over the next 72-hour period to determine the liquid volume loss. Evaporative losses shall be measured or calculated and shall be deducted from the measured loss to determine whether there is net leakage.
- 17.7.4 There shall be no measurable leakage after the tank is placed in service.

GRP Tank Leakage Test

17.9 Fiberglass-Reinforced Plastic Tanks — Hydrostatic Test.

- 17.9.1 After the excavation hole is backfilled to the bottom of the influent and effluent piping, influent and effluent piping shall be sealed off with watertight caps or plugs.
- 17.9.2 The tank shall be filled with water up to 3 in. (76 mm) into the access openings.
- 17.9.3 The water shall be allowed to stand in the tank for a minimum of 2 hours.
- 17.9.4 The tank shall be examined for leakage or drop in water elevation.
- 17.9.5 If the water level drops, plugs or caps sealing off piping shall be checked to see that they are tight.
- 17.9.6 If tightening is required, more water shall be added to fill air voids back to the standard testing level.
- 17.9.7 The tank shall show no visible signs of leakage, and the water level shall stabilize within a 2-hour test period.
- **17.10 Disposal of Test Water.** The owner's representative shall provide a means for disposing of test water up to the tank inlet or drain pipe.

> Anti-Vortex Plate Inspection Requirement

17.11 Anti-Vortex Plate Inspection.

- 17.11.1 After completion of the tank construction, and before filling the tank with water, the anti-vortex plate shall be inspected.
- **17.11.2** The inspection shall verify that the horizontal steel plate and long radius elbow meet the requirements of 14.2.13.2 and are installed in accordance with 14.2.13.3.
- **17.11.3** The inspection results shall be included in the written report specified in 17.1.2.

NFPA 13 Standard for the Installation of Sprinkler Systems

Water Supply Duration Requirement

Occupancy	Inside Hose		Total Combined Inside and Outside Hose		Duration
	gpm	L/min	gpm	L/min	(minutes)
Light hazard	0, 50, or 100	0, 190, or 380	100	380	30
Ordinary hazard	0, 50, or 100	0, 190, or 380	250	950	60 or 90
Extra hazard	0, 50, or 100	0, 190, or 380	500	1900	90 or 120

Occupancy - Classification	Minimum Residual Pressure Required		Acceptable Flow at Base of Riser (Including Hose Stream Allowance)		Duration
	psi	bar	gpm	L/min	(minutes
Light hazard	15	1	500-750	1900-2850	30 or 60
Ordinary hazard	20	1.4	850-1500	3200-5700	60 or 90

thanks for your interest

نحن مهندسون متخصصون لدينا الخبره على مدار العديد من السنوات بمجال الهندسه الميكانيكيه وتقديم الدعم الفنى والاستشارات الهندسيه لمشروعات كبرى بالوطن العربي بجانب الخبرات العملية بمجال المقاولات ودراسه المشاريع والتصميم والتي يستطيع المتدرب التعرف عليها تفصيلا من خلال زياره الصفحه الشخصيه للينكدان الخاصه بالمحاضر كما اننا نسعى من خلال برامجنا التدريبية تأهيل المهندسين للمستوى الاحترافي المطلوب للمنافسه بسوق العمل

Contact Us

تواصل معنا

- +201017923307
- info@mcp-academy.com
- WWW.MCP-ACADEMY.COM

م/خالد محسن

in follow us