Journal of Cleaner Production 179 (2018) 63—80

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Journal of

B
Contents lists available at ScienceDirect ~  (Cleaner
P tion

Advanced process control for ultrafiltration membrane water R

freatment system

Check for
updates

Chun Ming Chew ¢, Mohamed Kheireddine Aroua ™ ¢ ~, Mohd Azlan Hussain ?

@ Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
b Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya,

Malaysia

¢ Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 16 May 2017

Received in revised form

7 December 2017

Accepted 11 January 2018
Available online 16 January 2018

Keywords:

Process control
Ultrafiltration
Dead-end

Fouling parameters
Water treatment

Dead-end ultrafiltration (UF) has been considered as a more energy efficient operation mode compared
to cross-flow filtration for the production of drinking/potable water in large-scale water treatment
systems. Conventional control systems utilize pre-determined set-points for filtration and backwash
durations of the constant flux dead-end UF process. Commonly known potential membrane fouling
parameters such as feed water solids concentrations and specific cake resistance during filtration were
not taken into considerations in the conventional control systems. In this research, artificial neural
networks (ANN) predictive model and controllers were utilized for the process control of the UF process.
An UF experimental system has been developed to conduct experiments and compare efficiencies of both
the conventional set-points and ANN control systems. The novelty of this study is to utilize commonly
available on-line and simple laboratory analysis data to estimate potential membrane fouling parameters
and subsequently utilize the ANN control system to reduce water losses. Reduction of water losses were
achieved by prolonging filtration duration for feed water with low turbidity using the ANN control
system. This advanced control system would be of interest to operators of industrial-scale UF membrane

water treatment plants for the reduction of water losses with existing facilities.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Proliferation of human population and rapid development on a
global scale has pushed towards higher consumption and quality of
drinking/potable water particularly in urban cities (Goh et al., 2016).
Developed Asian countries such as Singapore, Japan and South Korea
have all adopted large-scale ultrafiltration (UF) membrane water
treatment systems to partially fulfil their nations need for potable
water through public-piped water supply and distribution networks.
Membrane technologies have been reported to fulfil multiple sus-
tainability criteria in terms of flexibility, adaptability, minimal foot
print and environmental impacts (Le and Nunes, 2016). UF mem-
brane systems have gained immense attention in water treatment
industry as it could provide consistent filtrate quality by removing
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colloids, particles and microorganisms (Monnot et al., 2016). Most of
the large-scale UF membrane water treatment plants are operating
under constant flux dead-end filtration mode with intermittent
backwash sequence to reduce the energy consumption per cubic
meter of filtrate (Massé et al., 2011). High energy consumption is
directly related to carbon emission which causes environmental is-
sues (Rahim and Raman, 2015). Polymeric membranes particularly
Polyethersulfone (PES) and Polyvinylidene fluoride (PVDF) are
dominantly utilized at industrial-scale UF membrane water treat-
ment plants (Hog et al.,, 2015). PES membranes exhibit beneficial
properties such as good thermal stability, excellent chemical resis-
tance and wide pH tolerance. This type of membranes have the
potential to be blended with additives to reduce membrane fouling
tendency (Vatsha et al., 2014).

Membrane fouling remains the most critical issue for commer-
cial systems (Smith et al., 2006; Guo et al., 2012). Many approaches
to minimize membrane fouling have been proposed such as
membrane surface modification, physical and hydrodynamic
cleaning methods to enable better removal of attached solids on
membrane surfaces (Shamsuddin et al., 2015). Membrane cleaning
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is defined as procedures applied on the membrane to relieve it of
non-integral substances which are known as “foulant” (Porcelli and
Judd, 2010). Physical cleaning method such as hydraulic backwash
is essential for the sustainable application of UF systems in water
treatment processes. The extent of irreversible fouling is highly
dependence on the hydraulic cleaning efficiency (Chang et al,
2015). Intermittent backwash after each filtration sequence is
commonly conducted as physical cleaning in dead-end membrane
filtration systems to recover membrane permeability (Mendret
et al., 2009). Membrane fouling could be mitigated by optimiza-
tion of the operational conditions (Shi et al., 2014).

Natural surface water from rivers are common sources of feed
water to industrial-scale water treatment plants to produce potable
water (Davies and Mazumder, 2003). It contains matrix of organic
matters and particles which are considered to be the main sources
of organic foulant on UF membranes (Shang et al., 2015). Feed water
characteristics and operational conditions of UF membrane pro-
cesses are factors which affect the systems performance (Decarolis
et al,, 2001). Any characteristics or composition changes in the feed
water could induce huge changes on membrane fouling (Massé
et al., 2015). Most industrial-scale water treatment plants analyse
and monitor parameter such as raw water turbidity on hourly basis
to detect any possible feed water characteristic changes. Recent
literature has suggested that specific cake resistance or « is one of
the important parameter for estimation of potential membrane
fouling propensity (Sioutopoulos and Karabelas, 2016). It is a
commonly used parameter to express the characteristics of the
cake layer. Most industrial-scale UF membrane water treatment
plants do not have the advanced analysis equipment and skilled-
personnel required to determine « experimentally at their own
in-house laboratories.

The dominant fouling mechanism in dead-end filtration for
physical solid-liquid separation of UF process is known as “cake”
formation which could be described by Darcy's equation
(Sioutopoulos and Karabelas, 2015). Feed water characteristics such
as solids concentrations and specific cake resistance are some
essential parameters in Darcy's equation. Constant changes of
surface water characteristics due to heavy rainfalls and surface run-
off cause these parameters to fluctuate from time to time. Under
constant flux dead-end filtration operation mode, the trans-
membrane pressure (TMP) readings increase gradually over time
due to cake formation on the membrane surface (Iritani et al.,
2015). High TMP during operation is considered undesirable as
more energy is required for the filtration process.

Conventional set-points control systems for industrial-scale UF
membrane water treatment plants utilize a pre-determined filtra-
tion duration before an intermittent backwash is initiated (Cogan
and Chellam, 2014). Programmable logic controllers (PLC) are
often programmed with user's defined set-points to perform the
control loop automatically (Alphonsus and Abdullah, 2016). Some
of the most common causes of membrane fouling are related to its
process control and operation parameters (Damour et al., 2014).
Feed water characteristic such as turbidity is one of the major
parameter often monitored on hourly basis during operation. The
feed water characteristics and the complex interaction of the con-
taminants with the membrane necessitates formulating and solv-
ing highly non-linear equations or theoretical models (Shetty et al.,
2003). In accordance to Darcy's equation, the solids contaminants
build-up on the membrane surface increases the TMP during con-
stant flux dead-end filtration (Mendret et al., 2009). However, the
rate of TMP increase is governed by feed water characteristics
which may differ from time to time if the source is from natural
rivers.

Artificial neural networks (ANN) provide an alternative method
to model these complex systems based on commonly available data

(Hussain and Kershenbaum, 2000; Shetty and Chellam, 2003; Chew
et al,, 2017). Successful applications of ANN in chemical systems as
models and estimators have been reported in literature (Mohd Ali
et al,, 2015a; Mohd Ali et al,, 2015b). ANN control system has
been utilized in the steel pickling process which involved the
release of hazardous wastewater with major environmental im-
pacts (Kittisupakorn et al., 2009). In another research study, ANN
based correlation was used to estimate the permeability constant of
membrane systems under fouling conditions (Barello et al., 2014).

Fouling mitigation and water losses reduction control method-
ology for membrane processes are research areas which have
generated immense interests. Aluminium coagulation has been
reported as an effective control measure to reduce UF membrane
fouling from organic matters (Yan et al., 2017). An advanced fouling
control method which utilizes pulsed short-wavelength ultraviolet
light with pre-coagulation to mitigate membrane fouling by micro-
organism was also highlighted in literature (Yu et al.,, 2016). In
another different approach, a real-time control system using self-
adaptive cycle-to-cycle has been utilized to control the dosing
rate of coagulant prior to the UF process (Gao et al., 2017). This
control strategy has been found to be very robust to ensure fouling
control measured in an UF system. All of the control methods
mentioned earlier required the use of coagulant or additional
advanced equipment for implementations. Limited and very few
research studies have reported using commonly available on-line
and simple laboratory analysis data to increase the efficiency of
direct feed UF systems by reducing water losses while ensuring
acceptable potential membrane fouling propensity.

A typical direct feed industrial-scale UF membrane water
treatment system consists of various control valves, pumps, pres-
sure transmitters, storage tanks and flowmeters to implement the
conventional set-points control system. Raw water from rivers are
usually used as feed water to the UF system. During the filtration
sequence, a feed pump is utilized to provide sufficient pressure and
flow rate into the UF membrane modules for the solid-liquid sep-
aration process. Filtrate from the UF membrane modules are tem-
porary stored in a filtrate tank before transferring to a contact tank
for chlorine disinfection. During backwash sequence, water from
the filtrate tank is pumped back in reverse flow to the UF mem-
brane modules to dislodge accumulated solids and foulant. Fig. 1
shows the schematic diagram of a direct feed industrial-scale UF
membrane water treatment system. Under the conventional set-
points control system, both the filtration and backwash se-
quences operate on alternate basis to produce the desired volume
of filtrate while ensuring periodic cleaning of the membrane to
reduce fouling.

In this research study, an advanced control system utilizing ANN
model and controllers have been implemented on an UF experi-
mental system operating under constant flux dead-end filtration
mode. Natural surface water from a river was directly fed to the UF
experimental system. It contains significant amount of suspended
solids which could cause membrane fouling. Correlation of the feed
water turbidity and its solids concentrations were established using
simple laboratory analysis procedures. The ANN control system
predicts the specific cake resistance using relevant inputs data
during the filtration sequence. Potential membrane fouling pro-
pensity estimated from these data was utilized by the ANN control
system to regulate the filtration durations. Instead of depending on
advanced analysis equipment to determine the potential mem-
brane fouling propensity, commonly available on-line and simple
laboratory analysis data were utilized in the ANN control system.
This approach brings down the capital expenditure required to
upgrade available facilities in commercial UF membrane water
treatment plants to reduce water losses under fluctuating feed
water characteristics. Comparisons between both the conventional
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Fig. 1. A typical direct feed industrial-scale UF membrane water treatment system.

set-points and ANN control systems have been conducted to
elucidate the advantages and drawbacks of both systems.

2. Methodology

On-line data collection was required to train the ANN model and
controllers for the UF process. An UF experimental system has been
designed and commissioned to gather related data and implement
the on-line process control systems automatically. This experi-
mental system was equipped with UF membrane module Dizzer P
2521-1.0 manufactured by Inge GmbH, Germany. The UF mem-
brane was made from modified PES material with 1.0 m? of mem-
brane surface area suitable for constant flux dead-end filtration
operation mode. Fig. 2 shows the actual and schematic diagram of
the UF experimental system. Control valves labelled in Fig. 2 as
“Valve 1A”, “Valve 2A”, “Valve 3A” and “Valve 4A” correlate with the
control valves labelled as “Valve 17, “Valve 2”, “Valve 3” and “Valve
4" for the industrial-scale UF membrane water treatment system in
Fig. 1. During filtration sequence “Valve 2A” and “Valve 3A” is
opened to allow the feed water flow into the UF membrane module.
The flow of water (filtrate) into the UF membrane module is
reversed during the backwash sequence by opening “Valve 1A” and
“Valve 4A”.

The supervisory control and data acquisition (SCADA) of the UF
experimental system consists of a control panel linked to personal
computer. This SCADA system utilized MATLAB software to
implement on-line process control. The process sequence of the UF
experimental system was very similar to an industrial-scale UF

membrane water treatment plant operating under constant flux
dead-end filtration mode (Chew et al., 2015, 2016). Same river
water source used as feed water to the industrial-scale UF mem-
brane water treatment plant was utilized as feed water to the UF
experimental system. The UF membrane module for all the exper-
iments was also produced by the same membrane manufacturer of
the UF membrane water treatment plant.

During the experiments, TMP readings (pressure difference
between the UF membrane module feed port and filtrate port) from
the pressure transmitters were continuously monitored and
recorded by the SCADA system. The feed water turbidity was ana-
lysed using laboratory turbidity analyser and entered into the
SCADA system prior to the experiments. In this study, constant flux
was considered to be achieved within a tolerance of +10% from the
desired flux rate. Manual volumetric analyses during the experi-
ments were conducted to ensure the flux rate was within this
tolerance. All the on-line readings and status of the control valves
and pumps could be viewed from the graphical user's interface of
the SCADA system during the experiments. The SIMULINK toolbox
control diagram under the MATLAB software for the UF experi-
mental system is shown in Fig. 3.

The SCADA hardware communication system consists of 2 in-
puts (feed and filtrate ports pressure transmitters) and 6 outputs
(four control valves and two pumps) to implement automatic
process control on the UF experimental system. All relevant data
such as on-line TMP, filtration time, backwash time, control valves
and pumps status were recorded digitally in the SCADA system for
post analysis. This automation process enabled different control
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systems to be implemented on-line to compare their performances
with various feed water samples.

2.1. Conventional set-points control system for UF process

Typical industrial-scale UF membrane water treatment plants
commonly utilize conventional set-points control systems for the
automation process operation. There are two major sequences in
the constant flux dead-end membrane filtration process which are
known as filtration sequence and backwash sequence. Before the
process commences, pre-determined filtration duration (normally
between 20 and 60 min) and backwash duration (normally be-
tween 30 and 120s) were entered as set-points in the control
system. The process begins with the filtration sequence under
constant flux dead-end mode until reaching a pre-determined
filtration duration. Subsequently a backwash sequence ensues to
hydraulically clean up the membrane within a pre-determined
backwash duration. The next filtration sequence shall be repeated
after the backwash sequence and these two sequences shall
continue to operate alternately until a chemical cleaning of the
membrane is required. This conventional set-points control system
was implemented on-line using the UF experimental system to
gather the required data for analysis.

2.2. ANN control system for UF process

Development of the ANN control system requires relevant
training data from the UF experimental system. In order to train the
ANN model and controllers, on-line TMP profiles and laboratory
analysis data were compiled as the training data. Fluctuation of feed
water characteristics have been known as one of the major chal-
lenges in water treatment processes (Ramirez et al., 2017). A series
of filtration experiments with feed water samples of various
turbidity measured in Nephelometric Turbidity Units (NTU) from
the river were fed to the UF experimental system. A filtration
sequence of 60 min was conducted for each feed water samples.
River water samples with turbidity of between 5 NTU to 30 NTU
were analysed for its turbidity and solids concentrations. Subse-
quently a graph correlating the river water turbidity and its solids
concentrations was established. The ANN control system consisted
of two major components which were the ANN predictive model
(utilized to estimate «) and the ANN controllers (utilized to control
the filtration and backwash durations)

2.2.1. ANN predictive model

In order to implement this advanced control system, an ANN
predictive model was utilize to estimate the specific cake resistance
or « in real-time. Relevant inputs were fed into the ANN predictive
model to estimate « as shown in Fig. 4. According to literature report,
«a is strongly related to physical properties such as particle size dis-
tribution and shape of the feed water (Bourcier et al., 2016). Labo-
rious experiments with advanced analysis equipment are generally
required to determine values of « during filtration (Peiris et al., 2013;
Chen et al., 2014). Using the ANN predictive model to estimate « in
real-time significantly reduces the duration required for conven-
tional laboratory analysis on this parameter. Inputs data of the feed

Feed water turbidity ——— > —

T™P 5~
Filtration time — 3 oG
g —

Hidden layer

Fig. 4. Inputs and outputs of the ANN predictive model.

water turbidity, on-line TMP, filtration time and the immediate past
value of a (at.1) were fed into the predictive model to estimate the
current value of « (). This is known as dynamic ANN modelling
whereby the immediate past value of the output is fed back as input
into the model to allow a much more accurate prediction (Gautam
and Soh, 2015). The estimated values of « by the ANN predictive
model is then fed into the ANN controller No. 1 as input for the
estimation of the filtration duration as shown in Fig. 6.

Another important physical parameter which required estima-
tion was the feed water solids concentration or c;. The correlation
between feed water turbidity and c; could be determined experi-
mentally with simple laboratory analysis. Both « and c¢; were re-
ported as potential membrane fouling parameters in UF systems
(Pontié et al., 2012). The main objective of estimating the values of «
and ¢ was to determine the potential membrane fouling pro-
pensity represented by the product of ac;. In this research, the ANN
predictive model provides a convenience tool to rapidly estimate
values of « in real-time. Detailed procedures on the development of
the ANN predictive model to estimate values of « has been reported
in literature (Chew et al., 2017).

2.2.2. ANN controllers

The constant flux dead-end UF process operation consists of
filtration and backwash sequences as shown in Fig. 5. These two
sequences operate alternately until a chemical cleaning is required
after 12 h of continuous operations. During filtration sequence,
relevant inputs such as estimated values of « by the ANN predictive
model and other relevant data were continuously fed into the ANN
controller No. 1 (indicated in Fig. 6) to determine the filtration
duration. When the filtration sequence ends, ANN controller No. 2
shall be initiated to determine the backwash duration based on the
on-line data (TMP;,, and Vp,,). The whole process control loop with
the ANN control system is illustrated in a schematic diagram shown
in Fig. 6.

The filtration sequence would continue until ANN controller No.
1 gives out an output signal to cease the sequence and subsequently
initiate the backwash sequence. Backwash sequence commences
when signal was received by ANN controller No. 2 (indicated in
Fig. 6). ANN controller No. 2 shall decide the backwash duration
based on the relevant inputs. Once the backwash sequence has
been completed, all the designated control valves and pumps shall
be switched over to initiate another filtration sequence. All the
relevant inputs and outputs of the system have been further elab-
orated in the subsequent sections.

2.2.3. Differences between the ANN and conventional control
systems

There are significant differences between the ANN and con-
ventional control systems for the constant flux dead-end UF pro-
cess. Conventional control system pre-determined the filtration
and backwash durations. Once these set-points have been reached,

Feed water To drain

R A ¥ f*,fﬁ

‘e 000 w °
UF membrane

UF membrane

¥ RRRR

Filtrate Backwash

Fig. 5. Illustration of the filtration and backwash sequences.
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the controller would switch to the next sequence. Under the con-
ventional set-points control system for the UF process, minimum
two set-points are required; filtration duration and backwash
duration set-points. A maximum allowable TMP set-point during
filtration sequence is optional and acts as a precaution measure.

The ANN control system offers a distinctive advantage over the
conventional set-points control system because the former takes
into account the characteristic changes of the feed water. When the
feed water characteristic changes (eg. turbidity), the ANN predic-
tive model would swiftly estimates the values of « to reflect on the
fluctuations. The information shall be fed as input to the ANN
controller No. 1 with other relevant data to determine the filtration
duration. During the backwash sequence, ANN controller No. 2
would make a decision on the backwash duration depending on the
inputs data shown in Fig. 6. This enables the ANN control system to
have much more flexibility on both the filtration and backwash
durations under various feed water samples.

3. Results and discussion

In this research, on-line process control utilizing the UF exper-
imental system was conducted using the conventional set-points
and the ANN control systems. The conventional set-points control
has been practiced widely at industrial-scale UF membrane water
treatment plants whereby the filtration and backwash durations
have been pre-determined. In order to gather data for the ANN
model and controllers training, open-loop filtration data was ob-
tained with the UF experimental system. Under the ANN control
system there were 3 individually trained ANN (1 predictive model
and 2 controllers) to replace the conventional set-points control
system. Comparisons of the experimental results between the
performance of both the conventional and ANN control systems
were made. Actual operational information from an industrial-scale
UF membrane water treatment plant was obtained in order to
replicate the same condition on the UF experimental system.
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Table 1
Operational parameters of the UF experimental system.

Parameters UF experimental system

Hollow fibre (modified PES)

UF membrane type

Feed water source River water
Total membrane surface area 1.0m?
Filtration flux 80L/m%hr
Backwash flux 230L/m2hr
Filtration duration 30 min
Backwash duration 60s

Similar river water source and UF membrane utilized in the
industrial-scale UF membrane water treatment plant was used in
the UF experimental system.

3.1. Conventional set-points control system

Previous case studies of an industrial-scale UF membrane water
treatment plant was taken as reference for the set-points of the
conventional control system (Chew et al., 2015, 2016). This water
treatment plant was operating under constant flux dead-end
filtration mode and similar operational condition was imple-
mented on the UF experimental system. The same river source to
the water treatment plant was utilized as feed water to the UF
experimental system. Similar hollow fibre UF membrane made
from modified PES utilized in the water treatment plant was used in
all the experiments. Table 1 shows the operational parameters of
the UF experimental system.

0.6

TMP (Bar)
o o o o
N w = wv

o
i

10
20
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The SCADA of the UF experimental system was programmed to
record the on-line TMP data during operation. For every 30 min of
filtration sequence, a 60s backwash sequence ensues for the
membrane cleaning. The feed water turbidity was analysed and
recorded at the beginning of each filtration sequence. A recom-
mended maximum limit of 20 NTU feed water turbidity have been
imposed on the industrial-scale UF membrane water treatment
plant to ensure optimum performance for the direct feed UF pro-
cess. Under normal weather conditions the feed water turbidity
was usually between 8 NTU to 15 NTU. Figs. 7 and 8 show the on-
line TMP profiles recorded using the UF experimental system for
feed water samples of 8 NTU and 18 NTU respectively.

All the TMP profiles shown in Figs. 7 and 8 have indicated
similar pattern with gradual increase of TMP during the filtration
sequences. Initially the TMP readings were between 0.36 and 0.38
Bar and increased to between 0.41 and 0.43 Bar after 30 min of
filtration sequence. The TMP readings returned back to between
0.36 and 0.38 Bar after the 60 s backwash sequences. This indicates
that the intermittent hydraulic backwash was capable of cleaning
the membrane and restored back its permeability in the next
filtration sequence.

3.2. Conventional set-points control system for water treatment
and its limitations

The conventional set-points or feed-back control system is
widely implemented on industrial-scale UF membrane water
treatment plants for the convenience and simplicity of operations
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Fig. 7. On-line TMP profiles with feed water turbidity of 8 NTU.
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Fig. 8. On-line TMP profiles with feed water turbidity of 18 NTU.
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(Cogan and Chellam, 2014). It only requires pre-determined values
or set-points to be entered into the control system to initiate sub-
sequent sequences (Alphonsus and Abdullah, 2016). Measured
parameters such as TMP, filtration and backwash time are
constantly feed-back to the control system for comparison with the
set-points. Usually filtration duration and the maximum allowable
TMP are entered as set-points for the filtration sequence while only
backwash duration set-point is required for the backwash
sequence. Under normal circumstances the filtration duration set-
point would triggered the next backwash sequence and not the
maximum allowable TMP set-point. The maximum allowable TMP
set-point acts as a precaution measure in case there is any
abnormal feed water composition with very high solids concen-
tration enters the system. High solids loading entering the system
could increase the TMP values significantly within a short period of
time and possibly causing damages to the UF membrane modules.
The maximum allowable TMP set-point is utilized to prevent
excessive pressure on the UF membrane modules. Control set-
points are normally provided by design engineers or plant man-
agers which might not reflects the necessary changes to the actual
process from time to time (Wang et al., 2016).

Control action in membrane systems such as backwash is unable
to fully restore initial operating conditions due to irreversible
membrane fouling (Rabuni et al., 2015). Over prolong continuous
operation period of usually between 3 and 6 months, irreversible
membrane fouling causes the initial TMP of the filtration sequence to
increase gradually even after backwash. If a TMP set-point is utilized
for process control, the duration of each filtration sequence would be
reduced when the set-point is reached. Under such condition the
productivity decreases due to shorter filtration duration and more
frequent backwash sequences (Smith et al., 2006). This is one of the
reasons filtration duration set-point is more preferable than a TMP
set-point for industrial-scale UF membrane water treatment plant.
The production volume would remain the same although higher feed
water pressure is required to overcome the increase of TMP due to
irreversible membrane fouling.

Similarly a backwash duration set-point is more preferable than
a pressure set-point in membrane systems. Irreversible membrane
fouling also causes higher back pressure or reverse TMP (TMP;e,)
during backwash which could not be reduced even after prolong
hydraulic cleaning. Under constant flux backwash sequence, the
total volume of water utilized for hydraulic cleaning and the TMP,,,

40

R?=0.927

35

30

25

20

15

10

Solids concentrations (mg/L)

are important parameters to evaluate the cleaning efficiency.
Advanced control such as ANN is capable of “learning” and adapts
to current conditions of membrane fouling in the system to decide
on the duration of backwash sequences.

For low pressure UF processes in drinking water applications,
the correlation between specific flux and TMP is mathematically
non-linear. The significance of this non-linear correlation is that it
complicates the interpretation of membrane fouling (Boyd and
Duranceau, 2013). Irreversible membrane fouling causes decrease
in specific flux and gradual increase in TMP. Using pressure (TMP
and reverse TMP) as set-points in the conventional control system
to trigger the filtration and backwash sequences are not practical as
the set-points would need to be increased periodically and incurred
inconsistent filtrate production. Unlike the pressure set-points,
using durations (filtration and backwash) as set-points ensure
consistent filtrate production. The drawback of using pre-
determined set-points (both pressure and duration) is the lacks of
capability to predict potential membrane fouling propensity («c;)
for various feed water characteristics. Under conventional set-
points control system, the amount of water losses is the same
irrespective of the feed water turbidity due to the pre-determined
filtration and backwash duration set-points. Advanced control
system such as ANN has the advantage of estimating the potential
membrane fouling propensity data and prolongs the filtration
sequence for low turbidity feed water. The ANN control system
could also be trained to ensure a thorough backwash based on the
on-line TMPy,, data to minimize membrane fouling. This is a novel
control method which ensures acceptable potential membrane
fouling propensity and reduction of water losses for the UF dead-
end constant flux process.

3.3. Data collection for ANN training

River water samples of different turbidity were analysed for its
solids concentrations. In order to establish correlation between the
solids concentrations and the turbidity of the feed water, the data
were plotted on a graph shown in Fig. 9. The analyses of the water
samples solids concentrations were conducted in accordance to
American Public Health Association (APHA) guidelines which
require between 10 and 15 h for the results. Fig. 9 indicated a linear
correlation could be established between the feed water solids
concentrations and turbidity data for samples between 5 NTU to 30

0 5 10 15

20 25 30 35

River water turbidity (NTU)

Fig. 9. Correlation between river water solids concentrations and turbidity.
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Fig. 10. Estimated values of c; for various feed water samples of different turbidity.

NTU. The industrial-scale UF membrane water treatment plant
mentioned earlier was designed for direct feed with feed water
turbidity of 20 NTU or below. Experiments with similar feed water
turbidity range were conducted using the UF experimental system.

It was reported in literature that the product of specific cake
resistance («) and the feed water solids concentration (c;) is an
indication of the potential membrane fouling propensity (Boerlage
et al., 2004). There are possibilities to extend filtration duration of
the constant flux dead-end UF process to a common «c; value and
reduce water losses with lower frequency of backwash sequences.
In order to gather the required filtration data, feed water samples
with different turbidity from the river were collected. These various
turbidity feed water samples were obtained by collecting 1 m> of
the river water with turbidity of between 30 NTU to 40 NTU in a
tank. Subsequently the river water in the tank was allowed to settle
between 1 and 12 h. The top layer of the water was scoop out from
the tank to produce various turbidity feed water samples (5 NTU, 10
NTU, 15 NTU, 20 NTU and 25 NTU). These water samples were fed
into the UF experimental system for 60 min each filtration
sequence under constant flux dead-end mode to obtain the TMP
profiles.

Darcy's equation in Eqn. (1) was utilized to investigate the
changes of « for each feed water samples. In Eqn. (1), J represents
the filtrate flux, 4P the TMP, u the filtrate viscosity, R, the mem-
brane resistance, « the specific cake resistance and m is the cake
mass per unit membrane area. The membrane resistance (R;;) was
determined through normal procedures reported in literature (Roy
and De, 2015). It was reported that both « and m are parameters
which were known to be difficult to determine experimentally
(Boerlage et al., 2004). In this research study, efforts were made to
estimate these 2 parameters with simple laboratory analysis
method and by using the ANN predictive model. The parameter cg
could be estimated based on the correlation of feed water solids
concentrations and turbidity shown in Fig. 9. By applying Eqn. (2),
the parameter m could be easily estimated for the constant flux
dead-end UF process. In Eqn. (2), ¢, is the feed water solids con-
centration, Vs is the volume of the feed water and A is the mem-
brane surface area. Since all the experiments in this study were
conducted under constant flux dead-end filtration mode, both V;
and A were known values.
J= AP (1)

u(Rm + am)

_ csVs

Estimation of ¢s of the feed water samples (5NTU, 10 NTU, 15
NTU, 20 NTU and 25 NTU) were conducted by utilizing the solids
concentrations and turbidity correlation in Fig. 9. Fig. 10 shows the
estimated c; values based on the respective turbidity of the feed
water samples. Fig. 11 shows the increase of m for various feed
water samples of different turbidity during filtration estimated
from Eqn. (2).

Gradual increase of m for the samples were expected since all
the experiments were conducted under constant flux dead-end
filtration conditions with feed water remains the same turbidity
throughout the whole 60 min. Higher turbidity feed water samples
represent higher loading of solids/cake mass or m values against
filtration time. Estimation of the specific cake resistance («) could
be conducted using Eqn. (1) once the value of m for each samples
have been determined. In this equation, all the other parameters
such as J, ¢ and R;;; were constant values while 4P were obtained
from the TMP profiles using the various feed water samples (5 NTU,
10 NTU, 15 NTU, 20 NTU and 25 NTU). This permits a straight for-
ward estimation on the values of « using Eqn. (1). Fig. 12 shows the
estimated values of « against the filtration time for various feed
water samples.

Fig. 12 shows that a approach constant values for all the feed
water samples after 20 min of filtration time. There was also an
interesting observation whereby the ultimate values of « increase
as the feed water turbidity of the samples decrease. Similar
observation has been reported in literature stating that the values
of « increase with decreasing solids concentrations of the feed
solution samples in membrane filtration experiments (Chang and
Kim, 2005). It was suggested that for low solids concentrations of
the feed solution samples, « decreases with increasing solids con-
centrations. Literature has reported that the value of ac; represents
an indicative of potential membrane fouling propensity (Boerlage
et al. 1998, 2000, 2003, 2004).

The industrial-scale UF membrane water treatment plant
mentioned earlier implements a cycle of 30 min filtration duration
followed by 60 s of backwash duration for feed water turbidity of
not exceeding 20 NTU. Most of the time the river water turbidity
was below 20 NTU except during heavy rainfalls whereby the
turbidity could shoots up to more than 50 NTU. The 30 min filtra-
tion duration with feed water turbidity of 20 NTU was assumed as
the basis of the recommended potential membrane fouling
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Fig. 12. Estimated specific cake resistance («) during filtration.
Table 2
Estimated values of « and c; for various feed water samples.
5 NTU 10 NTU 15 NTU 20 NTU 25 NTU
a (m/kg) 13.85 x 10™ 6.79 x 10™ 448 x 10 3.42 x 10" 2.67 x 10"
¢ (kg/m?) 0.00596 0.01215 0.01833 0.02451 0.03070
acs (m~2) 8.25 x 1012 8.24 x 1012 8.21 x 102 8.38 x 10'? 8.20 x 102
Filtration duration 55 min 50 min 40 min 30 min 25 min

propensity for this UF process. Table 2 shows the estimated values
of @ and ¢, from Figs. 10 and 12 for the feed water samples.

Data shown in Table 2 have indicated that based on the rec-
ommended 30 min filtration duration with feed water turbidity of
20 NTU, the ac; was 8.38 x 102 m~2. As mentioned earlier, the
value of acs; was suggested to represent the potential membrane
fouling propensity and it should be kept below the recommended
value to mitigate membrane fouling issues. Analysis of all the feed

water samples shown in Table 2 have indicated that in order to
achieve ac; less than 8.38 x 10> m~2, the samples below 20 NTU (5
NTU, 10 NTU and 15 NTU) could proceed for more than 30 min
filtration duration while the 25 NTU sample could only undergo
filtration for 25 min before reaching near to the recommended acg
value of 8.38 x 10"* m 2.

The river water turbidity was directly proportional to cs as
shown in Fig. 9. Feed water with low turbidity represents less solids
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loading on the UF membrane which permits longer filtration
duration. Under the constant flux dead-end filtration mode, acg
represents the cake resistance which is an indication for potential
membrane fouling propensity. The potential membrane fouling
propensity increases in accordance to the cake resistance. Using the
acs values as indication for different feed water samples could
provide an alternative control method to ensure acceptable po-
tential membrane fouling propensity while increases filtration
durations for low turbidity feed water samples. Fig. 13 shows the
estimated filtration duration based on Table 2 which utilized the
analysis of the acg values for each feed water samples. As the
turbidity of the feed water samples increase, the estimated filtra-
tion durations decrease as indicated in Fig. 13.

3.4. ANN predictive model and controllers

Based on all the data collected through the UF experimental
system and laboratory analysis, three ANN model/controllers were
trained. These include the ANN predictive model, ANN controller
No. 1 and ANN controller No. 2 as shown in Fig. 6. The ANN pre-
dictive model was developed and further elaborated in a previous
research work (Chew et al., 2017). This ANN predictive model was
developed as part of a hybrid model for the estimation of «. The
ANN controller No. 1 was trained to control the filtration duration
before a backwash sequence was required. Data obtained from
Figs. 9—13 was utilized to train this controller. The ANN controller
No. 1 provides outputs of either 1 (continue filtration) or O (stop
filtration) according to the relevant inputs. Once the filtration
sequence ends, a backwash sequence shall be initiated.

The ANN controller No. 2 was trained to ensure an efficient
backwash sequence by observing the reverse TMP (TMP;.,) and the
total volume of water utilized during backwash (Vpy,). This

Table 3
Inputs and outputs of the ANN model and controllers.

controller provides outputs of either 1 (continue backwash) or
0 (stop backwash) based on these inputs. Once the backwash
sequence ends, the next filtration sequence commences. The whole
cycle of filtration and backwash sequences would then be repeated
again. Table 3 shows the inputs and outputs of all the ANN model
and controllers.

All three ANN model/controllers were individually trained with
the relevant data. Subsequently all these model and controllers
were incorporated into the SCADA software for on-line imple-
mentation with the UF experimental system. Experiments were
conducted using this ANN control system with feed water samples
from the river source. These experiments were conducted under
the same constant flux dead-end filtration mode with filtration and
backwash flux rates shown in Table 1.

Fig. 14 shows the on-line TMP profiles and outputs from the
ANN model/controllers for feed water sample with 8 NTU of
turbidity. The results in Fig. 14(a) have indicated that the TMP in-
creases gradually from 0.37 Bar to 0.46 Bar during the filtration
sequence of 50 min. After a backwash sequence, the TMP dropped
back to its initial value of 0.37 Bar in the next filtration sequence.
Fig. 14(b) shows the estimated values of « by the ANN predictive
model during the filtration sequences. The estimated values of «
remains almost the same at 8.52 x 10 m/kg throughout the
filtration sequences. Fig. 14(c) and (d) indicated the outputs from
ANN controller No. 1 and ANN controller No. 2 respectively. During
filtration sequence, ANN controller No. 1 allowed 50 min filtration
duration based on the inputs data provided. Once the filtration
sequence stops, ANN controller No. 2 was initiated to commence
the backwash sequence. This controller decides the duration of the
backwash sequence based on the relevant inputs data. The
controller allowed 51 s of backwash duration. Once the backwash
sequence has stopped, the next filtration sequence commences and

ANN predictive model

ANN controller No. 1
(filtration sequence)

ANN controller No. 2
(backwash sequence)

Inputs * Feed water turbidity

* On-line TMP

* Filtration time

* Past values of « (a¢.1)
Outputs * Current values of « ()

*
*

*

*
*
*

Feed water turbidity * On-line reverse TMP

On-line TMP (TMP;y)
Current values of « («) * Volume of backwash
m water used (Vi)

1 (continue filtration)
0 (stop filtration)

* 1 (continue backwash)
* 0 (stop backwash)
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Fig. 14. (a) TMP profiles during filtration (8 NTU sample), (b) Outputs from ANN predictive model (8 NTU sample), (c) Outputs from ANN controller No.1 (8 NTU sample), (d) Outputs

from ANN controller No.2 (8 NTU sample).

the cycle was repeated again. This filtration-backwash cycle was
repeated five times to determine the consistency of the ANN
control system on the same feed water sample with 8 NTU of
turbidity. Table 4 summarizes the data from the five filtration-
backwash cycles in Fig. 14. The value of c¢; for this 8 NTU feed
water sample was estimated to be 9.67 x 10~3 kg/m> from Fig. 10
and the average value of acs for the five filtration sequences was
824 x 102 m2,

The ANN control system was also implemented on higher

turbidity feed water sample of 18 NTU with the same procedures.
Results of the TMP profiles and the ANN control system outputs for
the 18 NTU feed water sample were depicted in Fig. 15. During the
filtration sequence even though the initial TMP of 0.37 Bar observed
was similar to the sample of 8 NTU, the final TMP was much lower
at only 0.42 Bar as shown in Fig. 15(a). The ANN predictive model
has estimated the values of a as 3.64 x 10 m/kg indicated in
Fig. 15(b). Data shown in Fig. 15(c) indicated that the ANN controller
No. 1 has limited the filtration duration to only 31 min due to the



CM. Chew et al. / Journal of Cleaner Production 179 (2018) 63—80 75

Table 4
Summarized data from Fig. 14 (8 NTU sample).
Initial TMP Final TMP a Filtration duration Backwash duration
1%t sequence 0.37 Bar 0.46 Bar 8.52 x 10" m/kg 50 min 50s
2" sequence 0.36 Bar 0.46 Bar 8.51 x 10" m/kg 51 min 51s
3" sequence 0.38 Bar 0.45 Bar 8.53 x 10"* m/kg 50 min 51s
4™ sequence 0.38 Bar 0.46 Bar 8.51 x 10" m/kg 51 min 50s
5% sequence 0.37 Bar 0.46 Bar 8.53 x 10" m/kg 50 min 51s
Average 0.37 Bar 0.46 Bar 8.52 x 10" m/kg 50 min 51s
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Fig. 15. (a) TMP profiles during filtration (18 NTU sample), (b) Outputs from ANN predictive model (18 NTU sample), (c) Outputs from ANN controller No.1 (18 NTU sample), (d)
Outputs from ANN controller No.2 (18 NTU sample).

higher turbidity of the feed water. Once the filtration sequence Similar filtration-backwash cycle was repeated five times with the
stops, ANN controller No. 2 takes control of the backwash sequence. same 18 NTU feed water sample. Table 5 summarizes the data on
The backwash sequence stops after 51s as shown in Fig. 15(d). Fig. 15. The estimated value of ¢, for the 18 NTU feed water from



76 C.M. Chew et al. / Journal of Cleaner Production 179 (2018) 63—80

Table 5
Summarized data from Fig. 15 (18 NTU samples).

Initial TMP Final TMP a Filtration duration Backwash duration
1%t sequence 0.37 Bar 0.41 Bar 3.64 x 10" m/kg 32 min 50s
214 sequence 0.37 Bar 0.42 Bar 3.65 x 10" m/kg 32 min 51s
3™ sequence 0.38 Bar 0.43 Bar 3.66 x 10"* m/kg 31 min 51s
4™ sequence 0.37 Bar 0.42 Bar 3.64 x 10" m/kg 31 min 50s
5™ sequence 0.37 Bar 0.42 Bar 3.64 x 10" m/kg 31 min 51s
Average 0.37 Bar 0.42 Bar 3.64 x 10" m/kg 31 min 51s

Fig. 10 was 22.04 x 103 kg/m>. Average value of acs for this sample
was 8.03 x 102 m~2,

All the ANN model/controllers were trained with data from feed
water samples of various turbidity ranging from 5 NTU to 25 NTU.
The average river water turbidity was between 8 NTU to 15 NTU. It
was considered abnormal conditions for the river water turbidity to
exceed 20 NTU. These abnormal conditions were usually caused by
surface run-off due to heavy rainfalls. Most direct feed UF mem-
brane water treatment systems for surface water were designed to
handle moderate and low turbidity feed water to reduce potential
membrane fouling propensity.

Even though this ANN control system was designed to cater for
feed water with turbidity of 20 NTU and below, efforts were made
to test this control system with much higher turbidity of feed water
from the same river source. Table 6 shows the results obtained from
experiments with feed water sample of 30 NTU which was also
beyond the training data of the ANN model and controllers.

Comparing data from Table 6 and Fig. 13 indicated that the
filtration duration of 24 min for the 30 NTU feed water sample
under the ANN control system was much longer than expected. The
estimated filtration duration for a 30 NTU feed water sample was
only 20 min. Such discrepancies occurred mainly because of the
training data range for all the ANN model and controllers. As
mentioned earlier, the ANN control system was designed for feed
water of 20 NTU and below. The training data was obtained from
feed water samples with turbidity ranging from 5 NTU to 25 NTU.
Even though the higher turbidity feed water of 30 NTU was not
covered in the training data, the ANN controller No. 1 was able to
reduce the filtration duration to 24 min. It is necessary to ensure
that the working range of the ANN control system is within the
training data range to obtain satisfactory results.

There were also possibilities that the feed water solids con-
centrations and turbidity correlation established in Fig. 9 might
have abruptly changed due to various conditions of the river water.
The feed water characteristics changes would cause the potential
membrane fouling propensity to increase and rendered the esti-
mation of « and c¢; inaccurate. This might results in higher accu-
mulation of solids on the membrane surface before a backwash
sequence was initiated. The ANN controller No. 2 was trained with
data of reverse TMP (TMP,,,) to ensure thorough cleaning of the
membrane during backwash sequences. Reverse TMP (TMPyy) is
the difference of hydraulic pressure between the filtrate port (clean
water inlet) and the feed port (discharge to drain) from the UF

Table 6
Summarized data from feed water sample with 30 NTU.
Initial Final Filtration Backwash
TMP TMP duration duration
15¢ cycle 0.36 Bar 0.41 Bar 24 min 50s
2" cycle 0.37 Bar 0.42 Bar 24 min 51s
3™ cycle 0.37 Bar 0.42 Bar 25 min 51s
4™ cycle 0.37 Bar 0.40 Bar 25 min 50s
5% cycle 0.36 Bar 0.41 Bar 24 min 50s
Average 0.37 Bar 0.41 Bar 24 min 51s

membrane module during backwash sequence. The higher value of
TMPy,, indicates higher resistance caused by accumulated solids on
the membrane surface during backwash sequence.

Under normal filtration sequence operation conditions, the
product of ac; should be approximately 8.38 x 10'> m~2 before the
filtration sequence stops and backwash sequence is initiated. River
water characteristic changes might cause significantly higher value
of acs than the estimated value from the ANN control system. In
order to simulate a higher value of acs, a 30 NTU feed water sample
from the same river was fed to the UF experimental system but the
turbidity was entered as 8 NTU into the SCADA system. The ANN
control system considered this feed water sample turbidity as 8
NTU based on the turbidity data entered into the system. Results in
Table 4 indicated that the filtration duration would be 50 min fol-
lowed by a 51 s of backwash duration under normal condition for a
feed water sample with 8 NTU of turbidity. Higher value of acs or
potential membrane fouling propensity (more than
8.38 x 10> m~2) was generated in this experiment at the end of the
filtration sequence.

Fig. 16 shows the TMP,,, profiles and the ANN controller No. 2
outputs for both the 8 NTU and 30 NTU feed water samples. ANN
controller No.1 limits the filtration duration of the 8 NTU feed water
sample to 50 min before initiating a 51 s of backwash sequence. The
TMPy,, profile for the 8 NTU feed water sample is shown in
Fig. 16(a). During initial stage of the backwash sequence, the TMP;,,
was 1.7 Bar and decreased to 1.6 Bar at the end of the 51 s backwash
duration controlled by the ANN controller No. 2 indicated in
Fig. 16(b). The backwash sequence removed accumulated solids
from the membrane surface to reduce the resistance and caused the
TMP,,, to decrease from 1.7 Bar to 1.6 Bar at the end of the sequence.
Since the 30 NTU feed water sample was entered as 8 NTU turbidity
in the system, the ANN controller No. 1 regulated the filtration
duration to 50 min before initiating a backwash sequence. During
the initial backwash sequence, the TMP;, of the 30 NTU feed water
sample clearly exhibited a much higher resistance of 1.9 Bar as
shown in Fig. 16(c). Due to the higher accumulation of solids on the
membrane for this feed water sample at the end of the filtration
sequence, a much higher resistance was expected during the initial
backwash sequence. Total backwash duration for the 30 NTU feed
water sample was 62 s as shown in Fig. 16(d). This has indicated
that the ANN controller No. 2 was able to allow longer backwash
duration based on the TMP;., and Vj,, data to ensure much longer
cleaning for the 30 NTU sample. Average backwash durations of
60 s or longer serve as an indication that the feed water charac-
teristic might have changed and require further attention or maybe
re-training of all the ANN model and controllers are necessary.

3.5. Comparisons between conventional set-points and ANN control
systems

All the experimental results from the conventional set-points
and ANN control systems were summarized in Table 7. The re-
sults obtained from the two feed water samples with different
turbidity (8 NTU and 18 NTU) have been compared in various
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Table 7
Results comparisons between conventional and ANN controllers.
Parameters Conventional Control ANN Control
Filtration duration
8 NTU (Feed water) 30 min 50 min
18 NTU (Feed water) 30 min 31 min
Fouling propensity(acs)
8 NTU (Feed water) 8.38 x 102 m~2 824 x 102 m2

18 NTU (Feed water) 8.03 x 102 m2
Water losses (backwash)

8 NTU (Feed water)

18 NTU (Feed water)

Initial TMP after backwash
8 NTU (Feed water)

18 NTU (Feed water)

(based on 20 NTU only)

4.9%
7.9%

9.6%
9.6%

0.36—0.38 Bar
0.37—-0.38 Bar

0.36—0.38 Bar
0.36—0.38 Bar

aspects such as filtration duration, potential membrane fouling
propensity (acs), water losses due to backwashes and the initial
filtration TMP after backwash sequences.

Conventional set-points control system utilized the pre-
determined 30 min filtration duration as limit for all feed water
samples with turbidity of 20 NTU and below. In Table 7 it was
shown that irrespective of the feed water turbidity (both 8 NTU and
18 NTU samples), the filtration duration was fixed at 30 min before
a backwash sequence was initiated. Under the conventional set-
points control system the water losses due to backwash was fixed
at 9.6%. After the backwash sequence the next filtration sequence
commences with initial TMP of between 0.36 and 0.38 Bar which
indicated a clean membrane surface has been restored. Comparison
analysis shown in Table 7 highlighted the ANN control system
capability to regulate the filtration durations based on the feed
water samples turbidity and potential membrane fouling pro-
pensity. The potential membrane fouling propensity represented
by acs for both the 8 NTU and 18 NTU samples were between

8.00 x 10> m~2 to 8.30 x 102 m~2 which were quite close to the
reference value of 8.38 x 1012m 2. A few advantages could be
noticed by using the ANN control system to replace the conven-
tional set-points control system.

Firstly the ANN predictive model could estimate the values of «
which varies with the feed water turbidity. This enables the system
to estimate the potential membrane fouling propensity or acs of
each feed water samples. The estimated values of acs should be
approximately the recommended value of 8.38 x 10'2m™2 to
ensure an acceptable level of potential membrane fouling pro-
pensity is reached before a backwash sequence is initiated. This
control system allowed feed water with low turbidity to undergo
longer filtration duration and feed water with higher turbidity with
shorter filtration duration while ensuring all of these feed water
samples have similar potential membrane fouling propensity at the
end of the filtration sequence.

The backwash sequence was triggered once the filtration
sequence was completed and ANN controller No. 2 would deter-
mine the duration of the backwash sequence. Under normal cir-
cumstances, the backwash duration was between 50 and 51s.
There were situations whereby the overall water losses due to
backwashes were significantly reduced to only 4.9% (8 NTU sample)
by having longer filtration duration. The water losses for the con-
ventional set-points control were 9.6% for both the feed water
samples of 8 NTU and 18 NTU. In order to determine the efficiency
of the backwash using the ANN control system, the initial TMP of
the next filtration sequence after a backwash sequence was
compared with the conventional control system. Both the con-
ventional set-points and ANN control systems indicated similar
initial TMP values of between 0.36 and 0.38 Bar after a backwash
sequence which shows almost similar cleaning efficiency were
achieved. The major drawback of the ANN control system is the
requirement to re-train all the model and controllers if there were
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significant changes of the feed water characteristics.

3.6. Implications of reducing water losses for industrial-scale water
treatment plants

Industrial-scale water treatment plants encounter numerous
economic and environmental challenges in most regions of the
world (Amini et al., 2015). Appropriate technology applied in these
water treatment plants are required to ensure efficient operation to
meet the stipulated quality and quantity of the treated water at the
lowest possible overall environmental and economic costs
(Abdulbaki et al., 2017). Electricity cost is one of the main opera-
tional expenditure for industrial-scale UF membrane water treat-
ment plants. It has been reported that the specific electricity
requirement for industrial-scale UF membrane water treatment
plants was expected to be about 0.20 kWh/m> (Pearce, 2008).
Specific electricity requirement could be significantly lowered
down by reducing water losses (Lam et al., 2017). Higher recovery
rate or lower water losses represent better efficiency in resources
management and cost savings. Based on reported electricity tariff
(denoted in United States Dollar or USD) of 0.0995 USD/kWh
(Sharma et al.,, 2015), an industrial-scale UF membrane water
treatment plant with treatment capacity of 5, 000 m3/hr would
require to pay electricity cost of 71, 640 USD/month. A mere 4.7%
water losses reduction or electricity cost savings would translate to
3, 367 USD/month.

Global carbon emission from the fossil fuels electricity genera-
tion sector continues to grow in recent years (Wolfram et al., 2016).
Reducing water losses not only cut-down the electricity cost, it also
reduces carbon emission in the overall water treatment process.
Regulating carbon emission is particularly important for countries
that impose carbon tax or carbon trading (Qi and Chang, 2013).
Efficient resources conservation (water and electricity) not only
results in commercial savings, it also reduces environmental im-
pacts with lower carbon emission.

3.7. ANN control system implementation for industrial-scale UF
systems

Water reduction or recovery control in water and waste water
treatment systems is a research field pursued by many researchers
(Abd El-Salam and El-Naggar, 2010; Manouchehri and Kargari,
2017; Wanjiru and Xia, 2018). This UF experimental study on the
advanced control system using ANN model and controllers have
indicated possibility of reducing water losses compared with the
conventional set-point control system. These positive results pave
the way for future research implementation on industrial-scale UF
membrane water treatment systems. The ANN control system
could be integrated as a part of the overall operation system of
industrial-scale UF membrane water treatment systems which
consist of many other control components.

Various membrane fouling models (Shirazi et al, 2010;
Arkhangelsky et al., 2011; Guo et al., 2012) have been suggested
which have emphasized that feed water characteristics play an
important role in the fouling mechanism. In this research study, it
was assumed that the membrane was thoroughly cleaned without
any irreversible fouling after the backwash sequences. Develop-
ment of an accurate membrane fouling model increases the
complexity of the control system significantly. Most end-users
prefer simple models or control systems that perform adequately
over complex models that describe the processes in excessive de-
tails (Lamnabhi-Lagarrigue et al., 2017). Re-training of all the ANN
model and controllers once every few weeks are deemed necessary
to allow the system to recognize the irreversible membrane fouling
current conditions.

The ANN control system allows a more efficient operation of the
dead-end constant flux UF process by regulating the duration of the
filtration sequence in accordance to the feed water characteristics.
This control system prolongs the filtration sequence for feed water
with low turbidity until it reaches a recommended potential
membrane fouling propensity («c;) to reduce overall water losses
during the intermittent backwash sequence. During the backwash
sequence, ANN controller No. 2 would ensure a thorough removal
of the cake fouling layer by analysing on-line data (TMP;e, and Vjy,).
The combine actions of controlling the acceptable membrane
fouling propensity and providing thorough backwash sequences
mitigate the irreversible fouling of the membrane and prolonging
the service lifetime of the membrane.

In this research study, the potential membrane fouling pro-
pensity represented by the product of acs was controlled within a
recommended value. Under such circumstances the rate of irre-
versible fouling is kept within the desired level before a more
rigorous and effective chemical cleaning (Levitsky et al., 2011) on
the membrane is necessary. The membrane service lifetime is
related to the exposure frequency and concentration of the cleaning
chemicals (Ujihara et al., 2016). It was shown that using the ANN
control system allows a thorough cleaning of the membrane since
the potential membrane fouling propensity (acs) was controlled
within an acceptable level before the backwash sequence. This
would ensure minimal chemical cleaning is required on the
membrane and the recommended lifetime of the membrane is
reached or exceeded before any membrane replacement is
necessary.

4. Conclusions

An advanced control system utilizing ANN model and control-
lers has been developed for the constant flux dead-end UF water
treatment process. Detailed comparison was made between the
conventional set-points and ANN control systems performance on
an UF experimental system with river water. The ANN control
system developed in this research was capable of reducing water
losses for feed water samples with low turbidity. This control sys-
tem takes into consideration the potential membrane fouling pro-
pensity of the feed water to determine the filtration durations. Such
alternative process control system would be of interest to the op-
erators of industrial-scale UF membrane water treatment plants
who are interested to reduce water losses.
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Nomenclature

a Specific cake resistance

Cs Feed water solids concentration

Vbw Total volume of water utilized during backwash
4P Trans-membrane pressure

I Filtrate viscosity

R Membrane resistance

m Cake mass per unit membrane area

] Filtrate flux

Vs Volume of feed water
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aCs Potential membrane fouling propensity
A Membrane surface area

ANN Artificial neural networks

APHA American Public Health Association
NTU Nephelometric Turbidity Units

PES Polyethersulfone

PLC Programmable logic controllers

PVDF Polyvinylidene fluoride

SCADA Supervisory control and data acquisition
TMP Trans-membrane pressure

TMP;ey, Reverse trans-membrane pressure

UF Ultrafiltration

usD United States Dollar
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