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a b s t r a c t

A major source of the wide presence of EDCs (Endocrine Disrupting Compounds) in water

bodies is represented by direct/indirect discharge of sewage. Recent scientific literature

reports data about their trace concentration in water, sediments and aquatic organisms, as

well as removal efficiencies of different wastewater treatment schemes. Despite the

availability of a huge amount of data, some doubts still persist due to the difficulty in

evaluating synergistic effects of trace pollutants in complex matrices. In this paper, an

integrated assessment procedure was used, based on chemical and biological analyses, in

order to compare the performance of two full scale biological wastewater treatment plants

(either equipped with conventional settling tanks or with an ultrafiltration membrane unit)

and tertiary ozonation (pilot scale).

Nonylphenol and bisphenol A were chosen as model EDCs, together with the parent

compounds mono- and di-ethoxylated nonylphenol (quantified by means of GCeMS).

Water estrogenic activity was evaluated by applying the human breast cancer MCF-7 based

reporter gene assay. Process parameters (e.g., sludge age, temperature) and conventional

pollutants (e.g., COD, suspended solids) were also measured during monitoring campaigns.

Conventional activated sludge achieved satisfactory removal of both analytes and

estrogenicity. A further reduction of biological activity was exerted by MBR (Membrane

Biological Reactor) as well as ozonation; the latter contributed also to decrease EDC

concentrations.
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1. Introduction 2007; Loos et al., 2007; Sun et al., 2008; Ying et al., 2009) and are
In recent decades, concerns regarding the occurrence of

Endocrine Disrupting Compounds (EDCs) in the environment

have rapidly increased worldwide. Municipal sewage and

Waste Water Treatment Plant (WWTP) effluents are consid-

ered to be major sources of pollution due to the documented

presence of such compounds at relevant concentrations (see,

inter alia: Auriol et al., 2006; Ternes and Joss, 2006; González

et al., 2007; Stasinakis et al., 2008; Ying et al., 2009; Sanchez-

Avila et al., 2009).

EU Directive 2008/105/EC (amending and subsequently

repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/

EEC, 84/4/9/EEC, 86/280/EEC and amending Directive 2000/60/

EC) sets strict quality standards for water bodies (many EDCs

being included among priority substances). Therefore, in the

future, efforts to adopt feasible and reliable treatment tech-

niques for wastewater cleaning will be made. Accordingly,

two important tasks should be pursued: (1) the assessment of

the removal capacity of conventional biological processes

and, consequently, (2) the evaluation of possible requirements

for additional (tertiary) treatment.

Even though data is available in the literature on both

issues, some lack in knowledge still persists: (1) the removal

potential of many EDCs by conventional activated sludge

plants is well-established (see for instance Farré et al., 2002;

Ternes and Joss, 2006; González et al., 2007; Joss et al., 2008;

Pothitou and Voutsa, 2008; Press-Kristensen et al., 2008),

nevertheless, data are not easily comparable due to different

treatment conditions, sampling procedures and analytical

methods; (2) tertiary chemical oxidation has been successfully

tested (Rosenfeldt and Linden, 2004; Auriol et al., 2006; Zhang

et al., 2006; Esplugas et al., 2007; Gultekin and Ince, 2007; Ning

et al., 2007; Bolong et al., 2009; Racz and Goel, 2010) but tech-

nical-economic feasibility is still to be fully demonstrated

(Auriol et al., 2006; Gultekin and Ince, 2007; Koh et al., 2008); (3)

chemical analysis alone is not useful to investigate synergistic

effects among mixtures of different pollutants and their

degradation by-products (a well-known phenomenon in the

case of endocrine disruptors: Hjelmborg et al., 2006; Bjorkblom

et al., 2008; Mnif et al., 2010). Several authors (Svenson et al.,

2003; Hashimoto et al., 2007; Fernandez et al., 2008; Mispagel

et al., 2009) have pointed out that water biological activity

should also bemonitored in order to better evaluate treatment

suitability; actually, endocrine activity assays have been

proposed in the last few years (Harris et al., 1997; Céspedes

et al., 2003; Isobe et al., 2003; Korner et al., 2004; Tan et al.,

2007; Fernandez et al., 2009; Jugan et al., 2009; Creusot et al.,

2010; Sousa et al., 2010).

In thiswork, an integrated assessment procedure, based on

bothchemical andbiological analyses,wasadopted toevaluate

the performance of biological and chemical oxidation in the

removal of target EDCs from municipal wastewater. The

following estrogen-like substances were considered: 4-non-

ylphenol (NP), its parent compounds 4-nonylphenol mono-

ethoxylate (NP1EO) and 4-nonylphenol diethoxylate (NP2EO),

andbisphenolA (BPA). Thesesubstanceswerechosenasmodel

EDCs since they are diffusely detected in the aquatic environ-

ment (Kolpinetal., 2002;Belmontetal., 2006;Gultekinand Ince,
included in the EU priority list (EU Directive 2008/105/EC).

Experimental workwas conducted at two full scaleWWTPs

located in Northern Italy equipped with either conventional

settling tanks (CAS, Conventional Activated Sludge: Verona

municipality) or with an ultrafiltration unit (MBR, Membrane

Biological Reactor: Brescia municipality). Tertiary chemical

oxidation was tested by means of an ozone pilot plant located

at the Verona WWTP.

The duration of the analytical campaigns was extended

so as to enable the accurate calculation of mass balances of

target compounds. Hormonal activity in water samples was

measured by means of human breast cancer MCF-7 based

reporter geneassay, using17b-estradiol (E2) as a standard.This

cell linewas chosen due to its high concentration of estrogenic

receptors and sensitivity (Pons et al., 1990; Urban et al., 2001;

Soto et al., 2006; Higashi et al., 2007).
2. Materials and methods

2.1. Treatment plants

2.1.1. Verona WWTP
This is a CAS plant (design size 370,000 p.e.) treating mainly

domestic wastewater. The process scheme includes primary

settling (volume ¼ 10,400 m3, 3 parallel basins); pre-denitrifi-

cation (volume ¼ 7200 m3, 5 parallel basins); oxidation-nitri-

fication (volume ¼ 16,600 m3, 5 parallel basins); secondary

settling (volume ¼ 26,100 m3, 6 parallel basins).

The sludge treatment line consists of: dynamic thickening,

anaerobic digestion and mechanical dewatering.

The following are the main operational data (typical

values): influent water flow ¼ 92,000 m3/d (dry weather); dis-

solved oxygen concentration in aerated tanks ¼ 2.0e2.2 mg/L;

total suspended solids concentration in biological reactors ¼
4.0e4.5 gTSS/L; influent characteristics (after screens and grit-

oil removal): 450 mgCOD/L, 200 mgBOD5/L, 240 mgTSS/L,

50mgTKN/L, 5mgPTOT/L; effluent characteristics: 30mgCOD/L,

5 mgBOD5/L, 12 mgTSS/L, 6.5 mgTKN/L; 4 mgNHþ
4 -N/L,

4 mgNO�
3 -N/L, <0.1 mgNO�

2 -N/L, 1.3 mgPTOT/L.

2.1.2. Brescia WWTP
This consists of 2 CAS lines and 1 MBR line (design size

380,000 p.e.), treating domestic and industrial wastewater.

The process scheme includes equalization/homogenization

(volume¼ 24,000m3); pre-denitrification (volume¼ 11,100m3,

3 parallel basins); oxidation-nitrification (volume ¼ 20,600 m3,

3 parallel basins); secondary settling (for conventional lines,

volume ¼ 7800 m3, 2 parallel basins) and ultrafiltration (for

MBR line). This configuration enabled the comparison of the

CAS process with the MBR technique.

The sludge treatment line consists of: dynamic thickening,

anaerobic digestion and mechanical dewatering.

The following are the main operational data (typical

values): influent water flow ¼ 71,500 m3/d (dry weather); dis-

solved oxygen concentration in aerated tanks ¼ 1 mg/L; total

suspended solids concentration in biological reactors ¼ 2.0

and 5.2 gTSS/L in CAS and MBR lines, respectively; influent
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Fig. 1 e Sampling points for the Verona (top) and Brescia (bottom) WWTPs (bold line [ wastewater; fine line [ sludge;

dotted line [ supernatant from sludge treatment; double line [ dewatered sludge).
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characteristics (after screens andgrit-oil removal): 310mgCOD/

L, 140 mgBOD5/L, 140 mgTSS/L, 29 mgTKN/L, 5 mgPTOT/L;

effluentcharacteristics: 15 (CASline)and8 (MBR line)mgCOD/L,

<5 mgBOD5/L, <5 mgTSS/L, 2.1 mgTKN/L, 3.1 (CAS line) and

0.5 (MBR line) mgNHþ
4 -N/L, 3.5 (CAS line) and 5 (MBR line)

mgNO�
3 -N/L, <0.2 mgNO�

2 -N/L, 0.6 mgPTOT/L.

2.1.3. Pilot scale ozonation plant
Supplied by SIAD SpA, Bergamo, Italy, this consists of a stain-

less steel tubular reactor (volume ¼ 1460 L) and is equipped
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Fig. 2 e Verona WWTP: daily average concentr
with a pure oxygen supply system (capacity ¼ 400 gO3/h). The

reactor can be fedwith a flow-rate up to 6m3/h in a continuous

mode of operation.

2.2. Monitoring campaign and treatment tests

2.2.1. Full scale CAS and MBR WWTPs
The Verona WWTP monitoring campaign was conducted in

winter (dry weather) from 5 to 20 February 2008: sampling

points were located as shown in Fig. 1 (top). It is important to
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ation of pollutants in influent wastewater.
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Table 1 e Verona WWTP: average concentrations of
target EDCs and percentage attached to 1.6 mmparticulate
fraction.

Influent Primary settling
tank effluent

Final effluent

Total
(mg/L)

Particulate
(%)

Total
(mg/L)

Particulate
(%)

Total
(mg/L)

NP 4.15 47 3.65 41 0.85

NP1EO 3.90 49 3.96 33 0.52

NP2EO 2.18 38 2.15 39 0.70

BPA 2.19 41 2.43 30 0.31

Table 2e BresciaWWTP: average concentrations of target
EDCs and percentage attached to 1.6 mm particulate
fraction.

Influent Final effluent
(CAS)

Final effluent
(MBR)

Total
(mg/L)

Particulate
(%)

Total (mg/L) Total (mg/L)

NP 4.70 64 0.74 0.79

NP1EO 7.89 51 0.29 0.30

NP2EO 5.01 45 0.64 0.96

BPA 1.94 63 0.47 0.50
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note that sewage entering the primary settling tanks includes

supernatants from the sludge treatment line.

The Brescia WWTP was monitored during a dry weather

summer period (23 June e 11 July 2008). Sampling points are

shown in Fig. 1 (bottom); unlike the Verona plant, influent

sampleswerenotaffectedbysupernatants fromthesludge line.

For both plants, wastewater was collected daily, over 24 h,

by automatic refrigerated auto-samplers equippedwith Teflon

pipesanddarkglass containers (pre-washedwithhydrochloric

acid and acetone); sludge was sampled instantaneously and

submitted immediately to analysis. The following parameters

were measured on collected samples: NP (mixture of 4-non-

ylphenol isomers), NP1EO (mixture of 4-nonylphenol mono-

ethoxylates isomers), NP2EO (mixture of 4-nonylphenol

diethoxylates isomers), BPA,COD, total suspendedsolids (TSS).

Estrogenicactivitywasmeasuredonlyat theBresciaWWTP,on

three 24-h samples collected during themonitoring campaign.

2.2.2. Ozonation plant
Two series of tests were conducted in order to assess the

effect of ozone dosage (12 and 20 mgO3/L) and, for each ozone
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Fig. 3 e Verona WWTP: mass balance of trace pollutants. “Degra

mass flow (final effluent, primary and excess sludge) from influ
concentration, three runs were performed at increasing

contact times (15, 22 and 30 min, respectively). During each

test, at 1, 2 and 3 HRT (Hydraulic Retention Time) time inter-

vals, grab samples of influent and effluent wastewater were

taken and immediately submitted to chemical (NP, NP1EO,

NP2EO, BPA), microbiological (total coliforms and Escherichia

coli) and biological (estrogenic activity) analyses. Based on

instrumentally detected data (ozone production and residue

in offgas), the actual ozone dissolution percentage was

calculated.
2.3. Chemical analyses

The method of Gatidou et al. (2007) was successfully adopted

for the extraction of analytes from liquid phase.

The following chemicals were purchased from Sigma

Aldrich (Taufkirchen, Germany): (a) standard reagents:

bisphenolA,NP1EO,NP2EO, 4-NP technicalmixtureof isomers,

as proposed by ISO 18857-1 (2005); (b) derivatization reagents:

MSTFA and pyridine; (c) internal standard: bisphenol A-d16.
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BPAPrimary 
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ded” mass obtained by subtracting the sum of each effluent

ent load.
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Influent samples were filtered on glass fiber filters (Whatman

GF/A, 4 ¼ 1.6 mm particle retention) in order to separate

particulate matter from the liquid phase. Liquid samples were

submitted to enrichment on SPE C18 (Supelco, Bellefonte, USA)

andconsequentelution. Filterswereweighedprior tofiltration;

solids retained by the filter were weighed by using a thermo-

balance set at 60 �C. Afterward, filters were placed into 50 mL

vials, and 9 mL dichloromethane-hexane 4:1, 1 mL BPA-d16
(500 ppb) and 100 mL HCl 6 Nwere added. Vials were submitted

to sonication for 30 min at 50 �C.
Derivatization was performed with 900 mL MSTFA (5% in

isooctane) and pyridine (100 mL).

Instrumental analysis was conducted using a gas-chro-

matograph 5975B inert XL EI/CI MSD equipped with a split/

splitless injector and autosampler (Agilent Technologies, Palo

Alto, USA).

http://dx.doi.org/10.1016/j.watres.2011.01.026
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Fig. 5 e Biological assay: calibration curve with the

reference estrogen E2.
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The RDS% (Recovery Determination Standard) varied from

7.3 to 13.7, depending on the target molecule; mean recovery

percentage referring to internal standard of BPA-d16 wasmore

than 80% (water samples) and about 60% (sludge samples); the

lowest concentration of the calibration curve was equal to

100 ppb for each pollutant (for further details about the

analytical procedure, see Pedrazzani et al., in preparation).

COD and TSS were measured as prescribed by the Italian

Standard Methods (APAT IRSA CNR No. 5130 and 2090, 2003),

the former after K2Cr2O7 oxidation, and the latter after 0.45 mm

filtration and 105 �C drying process, respectively.
2.4. Microbiological analyses

Raw samples of ozonation plant influent and effluent waste-

water were diluted in sterile NaCl 0.1% and submitted to total

coliforms and E. coli determination, accordingly with the MPN

(Most Probable Number) technique (Italian Standard Methods:

APAT IRSA CNR No. 7010B and 7030B, 2003). DST Colilert�

(IDEXX Laboratories, Westbrook, USA) was employed, based

on specific enzymatic reactions with ONPG (o-nitrophenyl

b-D-galactopyranoside) and MUG (4-methyl-umbelliferyl

b-D-glucuronide). Multiplates trays were placed in an incu-

bator at 36 � 1 �C for 24 h and positive results were read and

interpreted as prescribed.
2.5. Biological analyses

The pollutant extraction and clean-up procedure was the

same as reported for the chemical analyses; extracts were

resuspended in 1 mL DMSO (dimethyl-sulfoxide). Human

breast cancer cell line MCF-7 stably transfected with the ERE-

tK-LUC construct was maintained in DMEM (Modified Dul-

becco’s Medium, Euroclone, Milan), supplemented with 5%

calf serum, at 37 �C and 5% CO2. 24 h before treatment with

pollutants, cells were plated at a density of 6.0$105 cells/well in

six-well plates containing phenol red free DMEM and 5%

charcoal-stripped fetal calf serum.
Cells were treated with either reference estrogen (E2) or

pollutants culture medium solutions; dishes were kept at

37 �C for 24 h (Chau et al., 1998; Spink et al., 2003). Cells were

then harvested in TEN buffer (10 mM Tris, 10 mM EDTA,

150mMNaCl, pH 8.0) and pelletswere lysed in luciferase assay

buffer (25 mM Tris, 150 mM NaCl, 10 mM EDTA, 1 mM

dithiothreitol, 5% glycerol, 0.5% Triton X-100, pH 8.0). Lysate

was spun for 20 s at 13,000 g and supernatant submitted to

luciferase activity quantification, which was performed in

triplicate by means of a luminometer (Centro 960, Berthold

Tech., Germany) over 10 s (De Wet et al., 1987), expressed as

RLU (Relative Light Units) and normalized toward protein

concentration. Reference estrogen E2 (dissolved in absolute

ethanol) was employed for calibration curve definition, at

concentrations corresponding to physiological/sub-physio-

logical doses, i.e., from 10�13 to 10�7 M (the lower approaching

LOD e Limit of Detection).
3. Results and discussion

3.1. Verona WWTP: CAS process

The mass balance of target compounds was calculated based

on measured concentrations and recorded flow-rates of

different streams (wastewater and sludge). It should be high-

lighted that the daily flow-rate was quite stable during the

entire period (average value: 82.500 m3/d � 5%), thus yielding

reliable calculations, despite an expected slight variability of

influent concentrations (similar patterns were observed for

EDCs and conventional pollutants COD and TSS: Fig. 2).

Average weighted concentrations of pollutants in different

plant sections as well as solid-liquid phase partition percent-

ages are detailed in Table 1; the complete mass balance is

shown in Fig. 3.

As far as influent wastewater is concerned, the results

confirm the data from the literature, even though NP1EO and

NP2EO concentrations are close to the lowest values found

by several authors (Di Corcia et al., 1994; Solé et al., 2000;

Körber et al., 2000; Fuerhacker et al., 2001; Farré et al., 2002;

Planas et al., 2002; Fauser et al., 2003; Laganà et al., 2004;

Vethaak et al., 2005; Mart’ianov et al., 2005; Fountoulakis et al.,

2005; Lee et al., 2005; Jiang et al., 2005; Clara et al., 2005a, 2007;

Shen et al., 2005; Komori et al., 2006; Cantero et al., 2006;

Vogelsang et al., 2006; Nakada et al., 2006; Belmont et al., 2006;

Levine et al., 2006; González et al., 2007; Loyo-Rosales et al.,

2007; Stasinakis et al., 2008).

Average concentrations (Table 1) indicate that primary

sedimentation exerted negligible removal of trace pollutants,

notwithstanding an appreciable abatement of TSS (50%: data

not shown) and the relevant percentage of pollutants associ-

ated with particulate matter. As a confirmation, mass balance

revealed that only 5e6% (Fig. 3) of the influent amount of these

contaminants was in primary sludge, detected concentrations

being in the range 3e7 mg/kgTSS. This is in agreement with

published data (González et al., 2004; Levine et al., 2006), even

though removal percentages up to 20e30% are reported as

well (in particular for NPnEO, Ahel et al., 1994). However, an

exhaustive comparison with the literature is not possible

because primary settling performance is likely to be
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Fig. 6 e Brescia WWTP: comparison between estrogenic activity (measured in two different experiments and in three

different days W1, W2, W3) and EDC concentration (NP D BPA). Error bars represent maximum and minimum values

measured in 3 replicates in the case of biological data, while they show variation percentage in the case of chemical

analyses.
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influenced by hydraulic retention time and sewage tempera-

ture, and these data are often missing.

Taking into account final effluent, it can be observed that

biological process was able to reduce the concentrations of

target organics to a significant extent. These results are in

accordance with the data from the literature (Koh et al., 2005;

Auriol et al., 2006; Huntsman et al., 2006; Levine et al., 2006;

Nakada et al., 2006; Vogelsang et al., 2006; Clara et al., 2007;

Loos et al., 2007; Loyo-Rosales et al., 2007; Stasinakis et al.,

2008). It must be noted that the residual amount of NP, NP1EO

andNP2EOintheeffluent is theresultofbothremoval (bymeans
of biodegradation/sorption) and generation (as metabolites of

parent compounds) processes. Therefore, while in the case of

BPAwefocusonprimarydegradation, forNP,NP1EOandNP2EO

we refer to an apparent degradation. Trace pollutantswere also

detected in excess sludge at concentrations ranging from

0.26mg/kgTSS (BPA) to 4.08mg/kgTSS (NP1EO); however, mass

balance showed that the amount found in excess sludge

accounted for less than 0.5% of themass entering the biological

system. As already noted for primary sludge, these pollutants

were not removed with solid phase (sludge). Based on the

comparison between TSS (data not shown) and trace pollutant

http://dx.doi.org/10.1016/j.watres.2011.01.026
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concentrations in final effluent, a clear correlation could not be

evidenced,asalreadystated inthe literature (see,amongothers,

Jiang et al., 2005), who observed that tertiary filtration does not

improve the removal of EDCs.

3.2. Brescia WWTP: CAS and MBR processes

3.2.1. Chemical analyses
Weighted mean concentrations of trace pollutants are repor-

ted inTable 2whilemass balance is shown in Fig. 4 for CASand

MBR processes, respectively. Also in this case, no appreciable

scattering (�5%) with respect to average value was evidenced

for sewage flow-rate during the monitoring campaign.

Considering influent wastewater characteristics, while NP

and BPA were detected in similar concentrations as in the

Verona WWTP, NP1EO and NP2EO values were higher. This

may be due to several factors:

� the origin of influent wastewater (Brescia is located in

a heavily industrialized area);

� influent wastewater temperature (higher during the Brescia

monitoring campaign), which influences NPnEO degrada-

tion pathways, hence metabolite generation by biodegra-

dation processes;

� sewerpipeline features (length,hydraulic retention time,etc.).

Both CAS and MBR lines yielded a noticeable reduction of

trace pollutants and, like in Verona the plant, amounts

detected in excess sludge were very low: from 1.1% to 5.3% of

total influent mass (concentrations ranging from 0.38 mg/

kgTSS for NP to 1.51 mg/kgTSS for NP1EO).

3.2.2. Biological analyses
Water samples (influent and both CAS and MBR effluents),

taken on three different days of consecutive weeks (W1, W2

and W3) during the monitoring period, were submitted to

biological assays, which were repeated twice (experiment #1

and #2). Prior to each experiment, cell responsivity to E2 was

checked and a calibration curve was plotted (an example is

presented in Fig. 5).

Fig. 6 shows the results of the biological analyses. It is clear

that estrogenic activity was significantly reduced by both

treatments, and, in five of six cases, with greater efficiency by

theMBR system. This is a relevant outcomewhich emphasizes

the importance of biological analyses: actually, while EDC
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Fig. 7 e Comparison among studied processes: treatment
(NPþBPA) concentrationswere similar inoutlet samples taken

from both lines (Fig. 6), estrogenic activity exerted by CAS

effluent was almost always higher.

3.3. Overall comparison between CAS and MBR
processes performance

Removal efficiency and residual effluent concentration of

target compounds for all studied plants and processes are

compared in Fig. 7.

The experimental results show that, while the Brescia CAS

and MBR lines, where different sludge ages were kept (9 d for

CAS and 15 d for MBR, respectively), yielded similar perfor-

mances, the Verona CAS plant, having the same sludge age as

the Brescia MBR line, yielded on the contrary to slightly lower

removal efficiencies (apart from BPA). This phenomenon

might be due to different sewage temperature (16 �C and 23 �C
for the Verona and Brescia WWTPs, respectively).

Actually, it is well known, that sludge age and temperature

are crucial parameters: Clara et al. (2005b) argue that the

minimum required sludge age is 10 d at 10 �C, and further

increases do not lead to noticeable improvements. Moreover,

several authors (e.g. Auriol et al., 2006; Koh et al., 2008, 2009)

conclude that EDC removal occurs only in plants equipped

with nitrification stages (as in the Brescia and Verona

WWTPs). In addition, Clara et al. (2004) report that possible

MBR efficiency improvements might be ascribed to an

increase in sludge age, rather than to filtration.

Nevertheless, biological measurements carried out in this

work showed that estrogenic activity was reduced to a greater

extent by aMBR processwith respect to CAS treatment, even if

analytes were removed at a comparable level. While the

reason is still under investigation; it might be attributed to

metabolic pathways exhibited by differentmicrobial consortia

growing in MBR plants (Cicek et al., 1999; Clouzot et al., 2010).

3.4. Tertiary ozonation

3.4.1. Chemical and microbiological analyses
Actual ozone dosages (calculated based on dissolution effi-

ciency) were 8 and 11mg/L, respectively, during the two series

of tests.

Disinfection performance was very high: total coliforms

and E. coli were abated from 3.2 log efficiency (8 mg/L actual

ozone dosage, 15 min contact time) up to 4.2 (11 mg/L actual
lant)
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ozone dosage, 30 min contact time), notwithstanding the

initial concentration (2.4$105e1.0$106 MPN/100 mL total coli-

forms, 4.3$104e1.9$105 MPN/100 mL E. coli).

Influent trace pollutants concentrations were in the range

0.14e0.30 mg/L and 0.20e0.43 mg/L for NP and BPA, respectively,

while both NP1EO and NP2EO were below 0.20 mg/L. Time

profiles of NP and BPA normalized concentration are shown in

Fig. 8; NP1EO and NP2EO are omitted since they were below

detection limits. Assuming first order kinetics (and under the

hypothesis of plug-flow reactor), it was possible to estimate

reaction rate constants, which resulted, for both pollutants, in

the range 0.028e0.093 min�1 depending on ozone dosage.

3.4.2. Biological analyses
The influence of O3 dosage on estrogenic activity abatement is

shown in Fig. 9 (average values). Error bars indicate results

obtained during different experiments (i.e., reaction time

conditions).

Chemical oxidation was able to reduce estrogenicity of

wastewater remarkably.Nevertheless,whileahigherO3dosage

led to an appreciable improvement of EDC (NPþ BPA) removal,
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only a slight additional reduction of hormonal activity was

achieved. This may be due to the persistence of endocrine dis-

ruptors (e.g., including natural hormones) or the formation of

active by-products, as recently found by other authors (Huber

et al., 2004; Bila et al., 2007).
4. Conclusions

In this work, the fate of selected trace pollutants (NP, NP1EO,

NP2EO and BPA) in two full scale WWTPs was investigated.

Monitoring campaigns showed that the contribution of

primary settling in the removal of studied pollutants was

negligible, their content in primary sludge being quite low

(<10 mg/kgTSS). Biodegraded fractions ranged from 62.0%

(NP2EO, Verona plant) to 94.5% (NP1EO, Brescia plant); final

effluent concentrationswere always<1 mg/L and excess sludge

concentrations �5 mg/kgTSS for all analytes. Although the

WWTPs considered have different process schemes (CAS and

MBR, respectively) similar performanceswere observed. In fact

thisfindingwasexpectedbasedonthe literature, sincethemost

influential process parameters (sludge age and temperature)

were always within the optimal range for EDC biodegradation.

On the contrary, biological assays showed that MBR was

more efficient in estrogenicity reduction: this is a very

important finding of this research, whichwould not have been

highlighted if only chemical analysis had been performed.

As far as tertiary ozonation is concerned, chemical oxida-

tion of trace pollutants was described by first order kinetics,

rate constants being dependent on reagent dosage: for

instance, a 90% removal of BPA and NP could be achieved

either after 80 min at 8 mgO3/L, or 27 min at 11 mgO3/L.

Biological analyses confirmed the beneficial effect of

ozonation on the reduction of estrogenicity of CAS effluent.

However, unlike analytes, estrogenic activity abatement was

not significantly affected by ozone dosage.

In summary, CAS treatment enabled a satisfactory reduc-

tion of EDCs and estrogenicity, thanks to adequate process

http://dx.doi.org/10.1016/j.watres.2011.01.026
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conditions; a further decrease of biological activity was ach-

ieved by means of MBR and ozonation, but the latter, at the

same time, yielded an additional reduction in pollutants.

Finally, the efficacy of an integrated (chemicalþ biological)

approach in evaluating performances of wastewater treat-

ment processes was demonstrated: bioassays account for

synergistic effects of dozens of pollutants, the simultaneous

determination of which might be actually unfeasible.
Acknowledgments

This work was partly conducted within the Vigoni Project

(2006/2007) fundedby the ItalianandGermanGovernmentsand

by the EU project EXERA, LSHB-CT-2006-037168. The authors

thank Acque Veronesi s.c.a.r.l. for supporting the experimental

activities and SIAD S.p.A. for supplying the chemical oxidation

pilot plant. The authors are grateful to Silvia Avesani, Davide

Pensieri and Valentina Salogni for their fundamental support

during experimental activities conducted within their degree

theses.
r e f e r e n c e s

Ahel, M., Giger, W., Koch, M., 1994. Behaviour of alkylphenol
polyethoxylate surfactants in the aquatic environment e I.
Occurrence and transformation in sewage treatment. Water
Research 28 (5), 1131e1142.

Apat Irsa Cnr, 2003. Standard Methods for the Examination of
Water, Wastewater and Sludge Italy.

Auriol, M., Filali-Meknassi, Y., Tyagi, R.D., Adams, C.D.,
Surampalli, R.Y., 2006. Endocrine disrupting compounds
removal from wastewater, a new challenge. Process
Biochemistry 41 (3), 525e539.

Belmont, M.A., Ikonomou, M., Metcalfe, C.D., 2006. Presence of
nonylphenol ethoxylate surfactants in a watershed in Central
Mexico and removal from domestic sewage in a treatment
wetland. Environmental Toxicology and Chemistry 25 (1),
29e35.

Bila, D., Montalvão, A.F., Azevedo, D., Dezotti, M., 2007. Estrogenic
activity removal of 17b-estradiol by ozonation and
identification of by-products. Chemosphere 69 (5), 736e746.

Bjorkblom, C., Salste, L., Katsiadaki, I., Wiklund, T., Kronberg, L.,
2008. Detection of estrogenic activity in municipal wastewater
effluent using primary cell cultures from three-spined
stickleback and chemical analysis. Chemosphere 73 (7),
1064e1070.

Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T., 2009. A review
of the effects of emerging contaminants in wastewater and
options for their removal. Desalination 239 (1e3), 229e246.
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