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During operation of compressor trains by a variable speed drive system
(VSDS) integer and non-integer harmonics are generated in the inverter.
Via the electrical system of inverter and motor a torsional excitation is
transferred across the air gap torque into the main mass of the motor. This
excitation may cause torsional resonances.

However, the main focus of this case study will be on the new electrical
damping method to attenuate the torsional excitations induced by an
Load Commutated Inverter (LCI) in a Variable Frequency Drive (VFD).

The effectiveness of the proposed electrical damping method will be
demonstrated in 2 case studies:

Case Study 1: Blocked speed ranges eliminated
Case Study 2: High gear vibrations avoided
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Case Study 1: Blocked speed range eliminated
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Principle: Interharmonic Suppression
q Additional control algorithm implemented as software

feature

q Required input drive train data:
Critical TNF – currently up to 2 TNFs can be set
Frequency band DF – current limit +/- 5 Hz

q No additional hardware required

q Only acts on the critical interharmonic components 6*|fline –
fmotor| and 12*| fline – fmotor | that is within the specified DF
around TNF

q A dedicated controller will alter the motor side inverter firing
angle within constraints to suppress the interharmonic
component in the estimated air-gap torque.
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Case Study 1: Blocked speed range eliminated

Active Damping Through Drive Control Software



Principle: Interharmonic Suppression
q The inter-harmonic excitations coming from the drive will be almost eliminated.
q The input for this control is the critical natural frequency of the drive train and the frequency band around this

critical frequency.
q Within this band, the LCI injected inter-harmonics components, 6*|fline-fmotor| and 12*|fline-fmotor| will be almost

eliminated.
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With activated
improved electrical

interharmonics
damping of an LCI

Without electrical
interharmonics

damping of an LCI
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With activated improved electrical
interharmonics damping of an LCI
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Case Study 1: Blocked speed range eliminated

Without electrical interharmonics
damping of an LCI

fN = electrical grid frequency
fM = electrical motor frequency
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Case Study 1: Blocked speed range eliminated
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Case Study 2: High gear vibrations avoided
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Case Study 2: High gear vibrations avoided
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Case Study 2: High gear vibrations avoided
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Case Study 2: High gear vibrations avoided
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Summary and Conclusion

• Interharmonic pulsating torque are inherently injected by LCI drive system

• LCI drive systems are still the best fit for very high power applications

• The proposed Active Damping technique suppresses the critical
interharmonic excitations within the specified frequency range

• This does not have any impact on the normal operation of the drive

• Field measurements within Case Study 1 and 2 show the effectiveness
of the implemented active LCI interharmonics damping
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Outlook for new LCI drive train application
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