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Introduction

During operation of compressor trains by a variable speed drive system
(VSDS) integer and non-integer harmonics are generated in the inverter.
Via the electrical system of inverter and motor a torsional excitation is
transferred across the air gap torque into the main mass of the motor. This
excitation may cause torsional resonances.

However, the main focus of this case study will be on the new electrical
damping method to attenuate the torsional excitations induced by an
Load Commutated Inverter (LCI) in a Variable Frequency Drive (VFD).

The effectiveness of the proposed electrical damping method will be
demonstrated in 2 case studies:

Case Study 1: Blocked speed ranges eliminated
Case study 2: High gear vibrations avoided
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Introduction

Motor Phase Current Trend
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Case Study 1: Blocked speed range eliminated

Blocked speed range in a performance map
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Case Study 1: Blocked speed range eliminated

Principle: Interharmonic Suppression

Additional control algorithm implemented as software

feature
Required input drive train data:
Critical TNF — currently up to 2 TNFs can be set

Frequency band DF — current limit +/- 5 Hz

No additional hardware required

Only acts on the critical interharmonic components 6*|f;,. —
fnotorl @NA 12%| fiie — frotor | that is within the specified DF

around TNF

A dedicated controller will alter the motor side inverter firing
angle within constraints to suppress the interharmonic

component in the estimated air-gap torque.
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Case Study 1: Blocked speed range eliminated

Principle: Interharmonic Suppression
g The inter-harmonic excitations coming from the drive will be almost eliminated.

g The input for this control is the critical natural frequency of the drive train and the frequency band around this
critical frequency.

g Within this band, the LCI injected inter-harmonics components, 6*|f;,c-fmotorl @Nd 12%|fiine-frmotor] Will be almost
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Case Study 1: Blocked speed range eliminated

Active Damping Through Drive Control Software |

Without electrical
interharmonics
damping of an LCI

With activated
improved electrical
interharmonics
damping of an LCI
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Case Study 1: Blocked speed range eliminated

With activated improved electrical
iInterharmonics damping of an LCI

Without electrical interharmonics
damping of an LCI

fN = electrical grid frequency
D N, fM = electrical motor frequency




Mechanical Improvement of Electrical Interharmonics Damping

Case Study 1: Blocked speed range eliminated

Relative Shaft Vibrations of HS-shaft
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Case Study 1: Blocked speed range eliminated

Compressor performance map
H—
=
S IHI Centrifugal R
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A I I » a, without any restrictions.
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Case Study 2: High gear vibrations avoided

High relative shaft
I_"_ 2 vibration of gear pinion

-c% observed. Vibration
4 I_ Axial frequency corresponds

21,5 MW © _IH Compressor with 1st torsional
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Case Study 2: High gear vibrations avoided
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o Shaft vibration frequency corresponds with
1st torsional natural frequency and correlates
with interharmonic excitation of LCl-inverter

Campbell Diagram under consideration of Air Gap Torque Pulsation
during Converter Operation
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Case Study 2: High gear vibrations avoided

High pinion shaft vibrations

Without electrical
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Case Study 2: High gear vibrations avoided
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Summary and Conclusion

Interharmonic pulsating torque are inherently injected by LCI drive system
« LCI drive systems are still the best fit for very high power applications

* The proposed Active Damping technique suppresses the critical
interharmonic excitations within the specified frequency range

« This does not have any impact on the normal operation of the drive

* Field measurements within Case Study 1 and 2 show the effectiveness
of the implemented active LCI interharmonics damping

s
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Outlook for new LCI drive train application

B synchronous Motor [l Train designed in order to avoid
33 MW
3360 .

Interharmonic excited torsional resonances
within the operating speed range.
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Outlook for new LCI drive train application

Without electrical
interharmonics
damping of an LCI

With activated
Improved electrical
interharmonics
damping of an LCI
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Outlook for new LCI drive train application
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Thank you for your attention
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